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This work is focused on Bayesian hierarchical modeling of geographical distribution of marine
species Coregonus lavaretus L. s.l. along the Gulf of Bothnia. Spatial dependences are modeled
by Gaussian processes. The main modeling objective is to predict whitefish larvae distribution for
previously unobserved spatial locations along the Gulf of Bothnia. In order to achieve this objective,
we have to solve two main tasks: to investigate the sensitivity of posterior parameters estimates
with respect to different parameter priors, and to solve model selection task. In model selection,
among all candidate models, we have to choose the model with best predictive performance. The
candidate models were divided into two main groups: models that describe spatial effects, and
models without such description. The candidates in each group involved different number (6 or
8) and expressions of environmental variables. In the group describing spatial effects, we analyzed
four different models of Gaussian mean, and for every mean model we used four different prior
parameters combinations. The same four models of latent function were used in the candidates
where spatial dependences were not described. For every such model we assigned four different
priors of overdispersion parameter. Thus, all at all, 32 candidate models were analyzed.

All candidate models were estimated with Hamiltonian Monte Carlo MCMC algorithm. Model
checks were conducted using the posterior predictive distributions. The predictive distributions
were evaluated using the logarithmic score with 10 fold cross validation.

The analysis of posterior estimates in models describing spatial effects revealed, that these estimates
were very sensitive to prior parameters choices. The provided sensitivity analysis helped us to
choose the most suitable priors combination. The results from model selection showed that the
model, which showed best predictive performance, does not need to be very complicated and to
involve description of spatial effects when the data are not informative enough to detect well the
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larvae intensity correctly predicted the larvae distribution along the Gulf of Bothnia.
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1. Introduction

Species distribution models (SDMs) play central role for studying dynamics of different
species and their geographical distribution [27, 29, 30]. Since different SDMs are created
for different purposes and describe different phenomena, it is very important to know
well the main features of both ecological processes and existing modeling approaches.
It is essential to understand the geographical and environmental dimensions of species,
specifics of modeling marine species, and the problems that could appear because of data
quality. Based on this knowledge, the modeling goals, and information about strengths
and weakness of different SDMs, it is possible to make the most appropriate model choice.

The era of big data and development of the geographical information system (GIS)
have brought new information and changed a lot the trends in developing SDMs. The new
available data are on different scale and quality, and possess different structure [5, 15, 29].
In order to transform this information to valuable knowledge, novel ways to produce, store
and analyze the data are needed. Thus the field of data science was born to bring together
computational, algorithmic, statistical and mathematical methods and techniques towards
extrapolating knowledge from big data. The new models have to be able to answer to
new, more detailed questions.

Bayesian approach to data science is model-based, capable to develop new under-
standing, can appropriately quantify and propagate uncertainty, and through hierarchical
models is able to use population-level information to make inferences and predictions
about species distribution on unobserved locations. Bayesian SDMs are hierarchical sta-
tistical models that explain spatial pattern using environmental covariates [32, 33, 36, 38].
These models are complex, cannot be solved analytically and require integrating over un-
certainty. Such high dimensional integration is computationally expensive comparing to
other optimization-based data science methods [27, 29].

Big data availability have inspired also development of different numerical methods,
among them Markov Chain Monte Carlo (MCMC) method [4, 32, 33, 35]. MCMC is very
efficient for solving such complicated models that use big data, and made feasible and
attractive the implementation of Bayesian approach to SDMs.

The recent achievements in data science approach to SDMs led to intensive research
on Bayesian hierarchical spatial regression models describing dynamics of some marine
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2 Chapter 1. Introduction

species [22, 33, 34, 35, 36, 38]. These models are not only capable to make predictions,
but also provide new insights and understanding on species dynamics.

This work in this thesis is focused on Bayesian hierarchical modeling of geographi-
cal distribution of marine species Coregonus lavaretus L. s.l. along the Gulf of Bothnia.
Descrbed whitefish has different environmental preferences during its lifespan (larvae or
adult). Larvae occupy smaller areas and are very sensitive to the environmental condi-
tions. These smaller reproduction areas can limit the fish production [36]. The main
modeling objective is to predict whitefish larvae distribution for previously unobserved
spatial locations along the Gulf of Bothnia.

In order to achieve this objective, we have to select the model with best predictive
performance among the set of models with different level of complexity and different prior
combinations of involved parameters. Thus, we have to solve two main tasks: to investi-
gate the sensitivity of posterior parameters estimates with respect to different parameter
priors, and to solve model selection task. The choice of right combination of parameter
priors in this class of complicated hierarchical models determines the quality of posterior
results. In model selection task, among all candidates we have to choose the model with
best predictive performance. By selecting the best model we also clarify which environ-
mental variables are more influential and have to be included in the model, and how
important is to model spatial effects for particular data that are available.

The work starts with description of theoretical concepts used in hierarchical species
distribution modeling and representation of species as points in space. Next two chapters
introduce the foundations of Bayesian inference and prediction for modeling spatial data,
and describe the main principles and algorithms for Markov chain Monte Carlo sampling.
The prior distributions of all parameters, which are used in this work, and reasoning
to choose them, are explained in Chapter 5. Theoretical foundations of information
criterion, used for model selection, are presented in Chapter 6. Next the used data and
modeling workflow are described. The modeling experiment, where all model candidates
are stated, is explained in Chapter 9. In Chapter 10, the results of model performance
for all candidates are summarized. The model selection results are presented in Chapter
11. Next the predictive performance of the best chosen model is shown. At the end all
results are discussed, and conclusions are drawn.



2. Theoretical background

2.1 Hierarchical species distribution modeling

2.1.1 Data types

The data type and quality of measurements affect strongly the choice of appropriate
modeling method. Environmental variables describe abiotic environment. They could
be related to climate (temperature, precipitation), topography or seabed type in marine
ecosystems [28]. In the experiment described here 22 environmental variables were mea-
sured as Geographical Information System (GIS) map layers. Raster layers were converted
to prediction grids.

The most common data type of observed species are occurrence or abundance data.
Occurrence data are usually in binary form, and describe presence (1) or absence (0) of
species at given locations. In many cases only records about the locations, where species
live, are available (so called presence-only data) [26]. This introduces uncertainty about
the unobserved sites - if they are occupied or not [18].

Abundance data could be count or continuous. Continuous data express species
biomass. Count data correspond to the number of individuals at given location.

Count data could be collected by systematic surveys, such as point counts or quadrat
counts [20]. In both cases the data do not cover the whole study region. The data are
collected from a number of sampling sites of finite area (or volume for marine species)
during a fixed period of time [33]. In this work we use count data.

2.1.2 Species as points in space, modeling of spatial point pat-
terns

In this work, we aim to analyze and predict the underlying spatial pattern of whitefish
larvae abundance in the Gulf of Bothnia. For this purpose we need to model the process
that constructs patterns of points in the study region, denoted by D. Since an individual
of a species exists as a point in space, we treat the whitefish larvae counts as points in space
[20, 25, 33]. The total number of points in D is n′ = N(D). We assume that the available
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4 Chapter 2. Theoretical background

count (or occurrence presence/absence data) arise from point process distribution. The
set of locations, where the whitefish larvae are observed, S = {s1, . . . , s′n}, is a random
variable and we need to assign a probabilistic model to it. For any n′ ∈ 0, 1, 2, . . . we
denote a multivariate probability density over Dn′ by p(s1, . . . , s′n). If we denote by |∂si|
the area of arbitrary small circular neighborhood around si, the joint probability for point
pattern S is expressed as [2]

P (S) ≈ P (N(D) = n′)p(s1, . . . , s′n|P (N(D) = n′)
n′∏
i=1
|∂si| (2.1)

In Eq. (2.1) we have to define the probability distribution P (N(D) = n′) and
density p(s1, . . . , s′n|P (N(D) = n′).

In the Poisson process, the number of species N(B) in the subset B ⊂ D, where
D is a bounded region, follows the Poisson distribution, N(B) ∼ Poisson(λ(B)), where
λ(B) =

∫
B λ(s)ds and λ(s) is the intensity function of the process [2, 33]. The intensity

function λ(s) is given. In Poisson process if B1 and B2 are disjoint, then N(B1) and
N(B2) are independent.

The probability distribution of species counts in region D is

P (N(D) = n′) ∼ Poisson(λ(D)) (2.2)

where λ(D) is the total intensity over D, λ(D) =
∫
D λ(s)ds.

Then the probability p(s1, . . . , s′n|N(D) = n′) in a Poisson process over region D is
expressed as

p(s1, . . . , s′n|N(D) = n′) =
n′∏
i=1

p(si) =
n′∏
i=1

λ(si)/λ(D) (2.3)

The Poisson process is a conditional process p(s1, . . . , s′n|λ(s)), where the intensity
λ(s) is known. When the intensity surface λ is assumed as random, the resulting process is
called Cox process. In the Cox point process we need to marginalize over λ(s) and obtain
p(s1, . . . , s′n) = E[p[s1, . . . , s′n|λ(s)]]. In this work we model the spatial whitefish larvae
distribution by so called log Gaussian Cox process, where log(λ(s)) follows a Gaussian
process [33].

The likelihood after observing the point pattern S = {s1, . . . , s′n} in fully observed
region D is

L(s1, . . . , s′n, N(D) = n′|λ(s)) ∝ e−λ(D)
n′∏
i=1

λ(si) (2.4)

Since the integral in λ(D) =
∫
D λ(s)ds cannot be solved in closed form, we need to

find an approximate solution of Eq. (2.4). For this purpose D can be partitioned into
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dense grid, and the counts N(Bi) of every grid cell Bi, i = 1, . . . n are assumed to be
available. If the grid is dense enough, it is possible to approximate λ(Bi) ≈ λ(si)|Bi|,
where si is the center location of Bi.

The likelihood of counts over grid cells are approximated as:

p(N(B1), . . . , N(Bn)|λ(s)) =
n∏
i=1

Poisson(N(Bi)|λ(si)|Bi|) (2.5)

In the model of whitefish larvae counts the intensity function λ(s) is the probability
that one larvae present at location s, Bi = Vi is the sampled volume of water, N(Bi) = yi

are observations of whitefish larvae. In the experimental data, used in this work, many
sampling sites were observed, but not the whole region D. Hence, we can model the data
as obtained from Poisson process by so called thinning method [33].

Then the species counts are modeled as:

p(y1, . . . , yn|λ(s)) =
n∏
i=1

Poisson(yi|λ(si)Vi) (2.6)

In the cases when counts from sampling sites have larger variance than predicted
by Poisson distribution, it is plausible to assume a Negative-Binomial distribution for
the count observations. The Negative-Binomial model can be derived from Eq. (2.6) by
adding random effect to the rate parameter of Poisson distribution (λ(si)Viεi instead of
λ(si)Vi). If we give a Gamma prior for the random effect and marginalize over it, the
observation model becomes:

p(y1, . . . , yn|λ(s)) =
n∏
i=1

Negative Binomial(yi|λiVi, r)

= Γ(yi + r)
yi!Γ(r)

(
r

r + Viλi

)r ( Viλi
r + Viλi

)yi
(2.7)

where r is an overdispersion parameter. The expectation of the Negative Binomial dis-
tribution in Eq. (2.7) is E[yi] = Viλi, and the variance is V ar[yi] = Viλi(1 + Viλi/r).
The expectation and variance of Poisson observation model, given in Eq. (2.6), are
E[yi] = V ar[yi] = Viλi. In the limit case when r → ∞ the variance of Negative Bi-
nomial approaches the variance of Poisson model.

2.1.3 Hierachical modeling framework

As it was described in the previous section, the point pattern process is chosen as log
Gaussian Cox process, described as:

log λ(s,x(s)) = f(s,x(s)) (2.8)

f(s,x(s)) = β0 + x(s)Tβ + φ(s) (2.9)
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where f(s,x(s) is a Gaussian latent function, and x(s) = [x1(s), . . . ,xn(s)]T is a vector
of environmental variables, measured at locations s. The linear weights β ∼ N (0,Σβ) are
mutually independent, β0 is the intercept, and φ(s) is a spatial Gaussian process.

Eq. (2.9) allows to place the Negative Binomial point process observational model,
given by Eq. (2.7), within a Bayesian hierarchical structure, described as [33]:

[Data | process, parameters] y ∼ p(y|f(s,x(s), γ)) (2.10)

[process | parameters] f(s,x(s))|θ) ∼ GP (m(·|θ), k(·, ·|θ)) (2.11)

[(hyper)parameters] θ, γ ∼ p(θ, γ) (2.12)

Eq. (2.10) - (2.12) specify a flexible model where the process f and observations y are
separated. The first layer corresponds to the observational model given by Eq. (2.7)
and Eq. (2.8). γ denotes the observation model parameters. In our case γ = r, the
oversdispersion parameter in Eq. (2.7). The second layer specifies the prior for latent
process f conditionally to the parameters of covariance and mean functions θ. In our
model θ = [α, β, σ2

exp, 1/l]. On the third level priors of all parameters are defined.
A Gaussian process GP is a stochastic process (a collection of random variables

indexed by time or space), such that every finite collection of those random variables has
a joint multivariate normal distribution [33]. The spatial Gaussian process in the model
used here is defined as

φ(s) = GP (m(x(s)), k(s, s′)) (2.13)

The prior mean m describes the linear part of latent variable f

m = β0 + x(s)Tβ (2.14)

The spatial covariance function k(s, s′) in Eq. 2.13 is modeled here by exponential
covariance function

kexp(si, sj) = σ2
expe

−‖si−sj‖/l (2.15)

where ‖si − sj‖ is the Euclidean distance between si and sj, σ2
exp is the magnitude, and

l is the length scale, which determines how fast correlation function decreases when dis-
tance increases. Exponential covariance function is stationary and isotropic because it is
invariant to transitions in index domain, and depends only on Euclidean distance ‖si−sj‖
between two different geographical locations si and sj [33]. This is in accordance with "the
first law of geography", saying that "near things are similar because they influence each
other or are influenced by the same pattern generating processes" [28]. The spatial effect,
describing point pattern process in Eq. 2.7, does not depend directly on the distance
between different locations s and s′. The observations y(s) and y(s′) can be spatially
dependent, but not need to be close to each other [2, 11].
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2.2 Bayesian inference and prediction

2.2.1 Basic ideas of Bayesian inference

Bayesian inference answers the question "What we can learn about parameters θ given
that we have observed y?"

The answer is provided in three steps. First we define all parameter priors in Eq.
(2.12). Next we model the sampling distributions of f and y (Eq. (2.10) and (2.11)) given
θ. We update our knowledge about the unknown parameters by computing posterior
distribution p(θ|y) according the Bayes’ theorem [6, 13]

p(θ|y) = p(y|θ)p(θ)
p(y) (2.16)

The marginal distribution p(y) =
∫
p(y|θ)p(θ)dθ does not depend on θ, but can be in-

tractable to solve. In such cases for determining posterior p(θ|y) we need to use methods
that do not explicitly compute p(y).

We need to analyze the posterior estimates of β since one of our main goals is to
understand the effect of environmental variables on species distribution. Posterior samples
of β reveal weather a particular environmental covariate has a significant impact on species
intensity. Posterior analysis of covariance parameters σ2

exp and 1/l describes the strength
of spatial association between neighboring locations after adjusting for covariate effects.

The second, even more important goal of Bayesian analysis provided here, is to solve
prediction task. We aim to construct maps of whitefish larvae intensities λ(s) over entire
study region, Gulf of Bothnia. To do this, we need to predict the distribution of latent
variable f̃ and larvae counts ỹ on unobserved locations s̃. The corresponding posterior
predictive distributions p(f̃ |f) and p(ỹ|y) can be computed using Eq. (2.17) and Eq.
(2.18)

p(f̃ |f) =
∫
p(f̃ |θ)p(θ|f)dθ (2.17)

p(ỹ|y) =
∫
p(ỹ|θ)p(θ|y)dθ (2.18)

2.2.2 Posterior inference and spatial prediction of latent func-
tion and observational larvae counts

The latent function defined in Eq.(2.9) is normally distributed since both additive com-
ponents β0 + x(s)Tβ and φ are Gaussian. Then the marginal distribution of f =
[f(s1), . . . , f(sn)] is also Gaussian [33]:

f |S,X(S), θ ∼ GP (0,X(S)ΣβX(S)T + Kφ,φ) (2.19)
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where X(S) = [x(s1), . . . , x(sn)], Kφ,φ = Cov(φ, φ), φ = [φ(s1), . . . , φ(sn)]T . The elements
of the spatial covariance matrix Kφ,φ are computed according Eq.(2.15). The covariance
of linear part is k(x(s),x′(s′)) = x(s)Σβx(s)T

If we denote the value of latent variable at unobserved locations S̃ by f̃ , and envi-
ronmental covariates at S̃ by X̃, the joint prior for latent variables at locations S and S̃
is [33] f

f̃

 |S,X, S̃, X̃, θ ∼ N

0,
Kf ,f Kf ,̃f

Kf̃ ,f Kf̃ ,̃f

 (2.20)

where Kf̃ ,f = X̃(S̃)ΣβX(S) + Kφ̃,φ,Kf̃ ,̃f = X̃(S̃)ΣβX̃(S̃) + Kφ̃,φ̃,Kf ,f = X(S)ΣβX(S) +
Kφ,φ

The computation of posterior distribution in hierarchical Bayesian models has to be
performed in several steps [33, 35]. To improve readability, we further use the brief nota-
tions f = f(X(S),S) , y = y(X(S),S), f̃ = f̃(X(S), X̃(S̃), S̃,S) , ỹ = ỹ(X(S), X̃(S̃), S̃,S)

1. The full posterior of hyperparameters θ and γ and latent variable f can be
expressed by applying the Bayes theorem to hierarchical model Eq. (2.10) - Eq. (2.12):

p(f , θ, γ|y) = p(y|f , γ)p(f |θ)p(θ, γ)
p(y) (2.21)

The evaluation of the full posterior (Eq. (2.21)) can be provided in two steps:
1.1 First compute the marginal posterior for the hyperparameters p(f , θ, γ|y)

p(θ, γ|y) = 1
Z
p(y|θ, γ)p(θ, γ) (2.22)

where the normalizing constant Z =
∫
p(y|θ, γ)p(θ, γ)dθdγ

1.2 Next compute the marginal posterior of latent variables p(f |y) by marginalizing
over the posterior of hyperparameters, obtained in step 1.1.

p(f |y) =
∫
p(f |y, θ, γ)p(θ, γ|y)dθdγ (2.23)

2. Determine posterior predictive distribution of f̃ given latent variables f at ob-
served locations. The conditional distribution of set of latent variables given other set of
latent variables is also Gaussian [33]:

p(f̃ |f , θ, γ) ∼ N(Kf̃ ,f |θK
−1
f ,f |θf ,Kf̃ ,f |θ −K−1

f ,f |θKf ,̃f |θ) (2.24)

3. Determine the marginal posterior predictive distribution of f̃ given the observa-
tions y

p(f̃ |y) =
∫
p(f̃ |f , θ, γ)p(θ, γ|y)p(f |y, θ, γ)dfdθdγ (2.25)

4. Compute posterior predictive distribution of new observation ỹ at location s̃:

p(ỹ|y) =
∫
p(ỹ|̃f , γ)p(f̃ |y, θ, γ)p(γ|y)dγdf̃ (2.26)
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2.3 Conditional posterior mean and covariance of the
latent function

We aim to construct maps of log larvae predictive densities logλ(s) in the water along
Gulf of Bothnia, which is equivalent to compute the conditional mean and variance of the
latent function f̃ (see Eq. (2.8)). If we have already computed p(f̃ |f , θ, γ) and p(f̃ |y, θ, γ)
by Eq.(2.24) and Eq.(2.25), according Eq. (2.24) the mean

mp(f̃ |θ, γ) =
∫
Ef̃ |f ,θ,γ [̃f ]p(f |y, θ, γ)df = Kf̃ ,f |θK

−1
f ,f |θEf |y,θ,γ)[f ] (2.27)

The posterior predictive covariance between any set of latent variables f̃ can be
computed by applying the rule of total variance [13]

Covf̃ |y,θ,γ [̃f ] = Ef |y,θ,γ[Covf̃ |f [̃f ]] + Covf |y,θ,γ[Ef̃ |f [̃f ]] (2.28)

The first term in Eq. (2.28) simplifies to the conditional variance in Eq.(2.24), and
the second term is expressed as [33, 35]

Covf |y,θ,γ[Ef̃ |f [̃f ]] = Kf̃ ,f |θK
−1
f ,f |θCovf |y,θ,γ[f ]K−1

f ,f |θKf ,̃f |θ (2.29)

After grouping posterior predictive covariance of f̃ Eq. (2.28) becomes:

Kp(f̃ , f̃ |θ) = Kf̃ ,̃f |θ −Kf̃ ,f |θ

(
K−1

f ,f |θ −K−1
f ,f |θCovf |y,θ,γ[f ]K−1

f ,f |θ

)
Kf ,̃f |θ (2.30)

2.4 Bayesian computation, Markov chain Monte
Carlo sampling

2.4.1 Monte Carlo estimates

The practical problem in Bayesian inference is how to compute the integrals in normalizing
constant Z in Eq. (2.23) or predictive distributions in Eq. (2.25) and Eq. (2.26). Since
these integrals do not have analytical solution, we have to compute them numerically. The
expectation of posterior distribution p(θ|y) can be obtained by integration over posterior
density:

E(θ|y) =
∫
θp(θ|y)dθ (2.31)
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On the other hand, by the law of large numbers, the same expectation can be
computed as:

lim
M→+∞

1
M

M∑
h=1

θh = E[θ|y] (2.32)

where θh ∼ p(θ|y).
The quantity

1
M

M∑
h=1

θh (2.33)

is called Monte Carlo estimate for expectation of θ [33]. Once the samples θh are available,
we can apply different transformations g(θ) to them gh = g(θh)) for all h = 1, . . . ,M . For
example, the posterior variance could be computed using Monte Carlo estimate as:

V ar[θ|y] ≈ 1
M

M∑
h=1

(θh − θ̂)2 (2.34)

where θ̂ = 1
M

∑M
h=1 θh. Thus, using Monte Carlo estimates, we are able to compute

different measures related to summary statistics (quantiles, posterior density estimates)
or to sample from joint distribution using conditional distributions.

2.4.2 Markov chain Monte Carlo sampling

The main problem in obtaining Monte Carlo estimates is how to sample θh, h = 1, . . . ,M
from arbitrary distributions. For this purpose different Markov chain Monte Carlo meth-
ods (MCMC) are created [13, 33]. The idea is to construct a Markov chain with stationary
distribution corresponding to the desired distribution, from which Monte Carlo estimates
are sampled.

Metropolis-Hastings and Hamiltonian Monte Carlo algorithms

Metropolis-Hastings (MH) algorithm performs a random walk according to a Markov chain
whose stationary distribution is the desired target distribution. At each step in the chain,
a new state is proposed according to some proposal distribution, and either accepted
or rejected in agreement with dynamically calculated probability, called an acceptance
criteria. The key property of MH algorithm is that for computing acceptance probability
only the likelihood function p(y|θ) and the prior probability p(θ) are needed, but not the
intractable marginal likelihood p(y) (Eq. (2.16)) [33]. If the MH algorithm is run for long
enough (until the Markov chain converges), then the probability of being on a given state
on the chain is equal to the probability of the state [19]. Thus, walking on the Markov
chain and recording its states is like sampling from target distribution.
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The Hamiltonian Monte Carlo (HMC) algorithm is a modification of MH algorithm,
in which the random walk behavior is improved to move more rapidly and avoid a long
time zigging and zagging through the target distribution [13]. Transition proposal in
HMC is enhanced by adding a "momentum" variable ψh to each component θh in target
space. Although we are interested only in the simulation of θ, the sampling is provided
for the joint distribution p(θ, ψ|y). The vector ψ is an auxiliary variable, used to move
faster through the parameter space. A multivariate normal distribution with mean zero
and diagonal covariance matrix K is assigned to the momentum ψ. The matrix K is
called "mass matrix". Other parameters required by HMC algorithm, are the number of
leapfrog steps L and a scaling factor parameter ε. The word "leapfrog" is used because
the momentum updates are split into half steps. HMC also uses the information from the
gradient of the log-posterior density ∇log p(θ|y)

HMC algorithm proceeds by h = 1, . . . ,M iterations with each iteration executing
the following steps:

1. Update ψ with a draw ψ ∼ Multivariate-Normal(0, K)

2. Repeat the following leapfrog steps L times:

(a) Use the gradient of log-posterior density of θ to make a half-step of ψ:

ψ ← ψ + 1
2ε∇log p(θ|y)

(b) Use the momentum vector ψ to update the parameter vector θ:

θ ← θ + εK−1ψ

(c) Again use the gradient of the log-posterior density of θ to make a half-step of
ψ:

ψ ← ψ + 1
2ε∇log p(θ|y)

3. Denote the values of parameter and momentum vectors at the start of leapfrog
process as θh−1, ψh−1, and the corresponding parameter values after L leapfrog
steps as θ∗, ψ∗. Calculate acceptance probability as

r = p(θ∗|y)p(ψ∗)
p(θh−1|y)p(ψh−1)

4. Set

θh =

θ∗ with probability min(r,1)

θh−1 otherwise
(2.35)
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The tuning of sampling parameters in HMC algorithm may be problematic, because
of which latent variables may be heavily dependent in their posterior distribution [33].
To avoid this, we use the Cholesky decomposition of prior covariance matrix Kf ,f = LLT,
and sample from z = L−1f

Assessment of convergence and autocorrelation in Markov chain simulation

The material in this section is based on theoretical foundations reported in [13] and [33].
The building of Markov chain starts from randomly chosen initial state θ0, which may be
very far from the desired stationary distribution. Independently on the chosen θ0, after
sufficiently large sample, drawn in agreement with the chosen MCMC algorithm, the chain
has to converge to the desired proposal distribution. According to the Markov property,
every next state θh depends only on the current state θh−1. These dependences introduce
some autocorrelation that may lead to less precise inference of MCMC sample comparing
to the inference of independent sample of the same size. Thus, we have to assess two
main properties of the obtained MCMC samples - convergence to the desired stationary
distribution, and autocorrelation between the samples from the posterior distribution.

Assessment of convergence Since the early draws are influenced by the initial state,
they are not representative for the stationary distribution and have to be discarded from
further analysis (so called burn-in). We further analyze only the rest of the samples. To
check convergence, we have to simulate several sequences with starting points dispersed
through parameter space, and compare the resulting draws. Visual impression about
convergency can be obtained by constructing trace plots. The trace plot is a time series
plot of the Markov chains. It shows the evolution of parameter vector over the iterations
of one or many Markov chains [4]. In convergent models, trace plots look like random
noise jumping around a relatively constant number. The chains should look like they
are drawn from the same distribution. Since the visual inspection can be misleading, we
need to use some quantitative measures. The R̂-statistics measures the potential scale
reduction of the current MC estimate for the distribution of θ if the number of iterations
of the Markov chain was increased to infinity. We denote by L the number of independent
Markov chain and by M the number of samples in each chain. The mean of the samples
from l-th chain is θl = 1

M

∑M
i=1 θlh, and the total mean of all samples in all chains is

θ = 1
L

∑L
i=1 θl. Then the between-chain variance B and within-chain sample variance W

are defined as

B = M

L− 1

L∑
l=1

(θl − θ)2 (2.36)
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W = l

L

L∑
l=1

1
M − 1

M∑
h=1

(θlh − θl)2 (2.37)

The marginal posterior variance of θ is estimated as weighted average of the between and
within chain variances:

v̂ar+(θ|y) = M − 1
L

W + 1
M
B (2.38)

The estimators of posterior variance Eq. (2.38) and within chain variance Eq. (2.37) are
used to define R̂ statistics as

R̂ =
√
v̂ar+(θ|y)

W
(2.39)

Gelman et al. [13] recommend a general maximum acceptable threshold of at most 1.1
for the R̂ statistics.

Autocorrelation within the chain, effective sample size Since we take random
samples from the posterior distribution, the Monte Carlo estimate of posterior expectation
contains some randomness through the actual realization of θh, h = 1, . . . ,M . One
quantitative measure about the error caused by this randomness, is called a Monte Carlo
Standard Error (MCSE) and it is defined as a standard deviation of the MC average of a
random variable [33]

MCSE(θ) =
√
V ar[θh|y]

M
(2.40)

where θh, h = 1, . . . ,M are independent samples from the posterior distribution. MCSE
is different for different random variables and therefore should be computed for all of
them. In order to be able do compare the MCSE values for different variables, we can
use the folowing relative measure:

CV (θ) = MCSE(θ)
E[θ|y] (2.41)

where θ = 1
M

∑M
i=1 θl. CV (θ) is called a coefficient of variation. By exploring Eq. (2.41) it

is possible to show that with Monte Carlo methods it is harder to estimate small posterior
probabilities and therefore we need to use much more samples to estimate them [33].

When we estimate the variance of samples obtained via MCMC, we have to take
into account the autocorrelation within the chain. The variance of posterior mean is:

V ar(θ) = V ar

[
1
M

M∑
i=1

θh

]
= V ar[θh|y]

M
+ 2
M

M∑
h=1

M∑
h′=h+1

Cov(θh, θh′) (2.42)

When the covariance Cov(θh, θh′) ≈ 0 the MC error with Markov chain is approximately
the same as the MC error in the case of independent samples.
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Another scalar complementary measure about efficiency of Markov chain is the ef-
fective sample size neff . It is defined as the sample size M multiplied by the proportion of
variance estimate under the assumption of independent samples to the variance estimate
for an MCMC sample. In the limit case when M →∞ theoretical neff is defined as [33]

neff (θ) = M
V ar[θh|y]

V ar[θh|y] + 2∑∞h=1Cov(θ0, θh′) = M

1 + 2∑∞h=1Corr(θ0, θh′) (2.43)

Cov(θ0, θh′) and Corr(θ0, θh′) are theoretical covariance and correlation functions of
Markov chains, and similarly as the variance in Eq. (2.42) cannot be computed directly.
Similarly as MCSE, neff is different for different variables.

2.5 Prior distributions of hyperparameters

Prior distributions are unconditional probabilities, assigned before to observe any data.
They present the initial beliefs about the parameters. In the Bayes formula (Eq. (2.16)),
via the likelihood function posterior distribution adds information that comes from the
data, to the prior beliefs. When the information. provided by the data, is not strong
enough, posterior inference becomes very sensitive to the prior choice. If some priors are
not properly chosen, the posterior may become improper and thus it will be impossible
to provide any meaningful inference. The problem arises with increasing the model com-
plexity. Therefore the choice of priors is very important task and takes special attention
in scientific literature [12, 13, 14, 31, 33].

2.5.1 Prior classes

Depending on amount of available information involved, priors are uninformative, weakly
informative or informative [12, 13]. Informative priors include all available knowledge
from theory or previous experiments. Uninformative priors (called also noninformative)
are assumed in the case of missing preliminary information. Then one strategy is to
assume equal probabilities for all possibilities, like uniform priors do. Weakly informative
priors incorporate only partial insight so that the information, provided by them, is weaker
than the knowledge incorporated in any actual prior.

According to their exact definition, the priors are proper and improper [12, 13].
Proper priors p(θ) have a valid probability density function defined as∫

Θ

p(θ) = 1

Improper priors are extension of proper priors such that they do not integrate to a finite
number: ∫

Θ

p(θ)dθ =∞
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Hence the improper priors do not have direct statistical interpretation. If the prior is
improper, the resulting posterior may also be improper distribution. However, proper
priors always lead to proper posteriors.

2.5.2 Uninformative and weakly informative priors

The uninformative and weakly informative priors are the most commonly used in eco-
logical models [24]. Uninformative priors express vague or general information about the
parameters and aim minimal impact on the posterior inference. Common choice of such
priors are uniform U(0, 1), uniform on wide range, e.g. U(0, 100), or a normal N (0, σ2)
centered at 0 and standard deviation set at high values, e.g. σ2 = 1002 [12, 23, 24].
These distributions are flat over the interesting parameter range, but it is not guaran-
teed that they will remain invariant under transformation of parameters. Other examples
of uninformative priors are Jeffrey’s and reference priors.These priors also require very
informative data, which is not always a case [21, 40, 15].

Weakly informative priors are more informative comparing to uninormative ones,
but still the knowledge involved is weak and does not involve any actual preliminary
expertise. These priors are proper and designed to apply to more general model classes,
without describing all specific features. It is recommended to use weakly informative
instead fully informative priors because weak assumptions allow to extend the relevant
part of parameter space and thus to improve the model robustness. More specific prior
information may increase the model accuracy, but on the other hand it may also exclude
some plausible parameter values [12, 14, 15].

2.5.3 Weakly informative prior distributions

Standard prior choice for α and β is uninformative or weakly informative normal N (0, σ2
β)

[14, 33]. This prior is very weakly informative because σ2
β is larger than the posterior

variances of all the β parameters. Here we assume the priors β ∼ N (0, 10).
The observational model here is assumed as Negative binomial distribution, de-

scribed by Eq. (2.7). For the overdispersion parameter r in this model it is possible to
use weakly informative prior, such as half Normal HN (0, 1), half Cauchy HC(0, 5), half
Student HT (4, 0, 1), or Inverse Gamma IG(0.001, 0.001) [1, 12]. If the data possess small
amount of overdispersion, it is better to assume weakly informative prior for 1/r or 1/

√
r.

More informative prior Gamma G(9, 1) for r is also recommended [41] and used in this
work.

We also need to specify the hyperparameter priors σexp and l, involved in exponential
covariance function k(s, s′) (Eq. (2.15)). This task is challenging because it is known
that only the ratio σ2

exp/l is identifiable, but not both parameters alone [8, 15, 33]. The
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exponential covariance k(s, s′) forms a ridge in the likelihood function for σexp and 1/l,
so that if we assign different values of both parameters, but their ratio is a constant (for
example σ2

exp = 1/l), the pattern in k(s, s′) = f(S, σexp, 1/l) remains the same and only
the values of covariance function k(s, s′) differ [8]. The data can restrict the range of
possible covariance values, but even in the case of strong data, the prior will affect the
shape of posterior along the ridge. This means that the prior of 1/l will influence the
posterior of σ2

exp. If the prior of 1/l has light right tail that restricts short l values, this
means that in the posterior only bigger values of σ2

exp are feasible. The idea of penalized
complexity priors is to use coordinates parallel and orthogonal to the ridge to specify
the priors of both parameters (σexp, l) [8, 15]. Another possibility is to fix one of the
parameters. This solution is not very good because in the case when both parameters
vary, the model better fits the data, but most of all - because we cannot fully understand
the prior by fixing some parameters and assessing the effect of the others. We need
do understand the joint effect of prior as a multivariate distribution [10, 15]. Therefore
the careful choice of prior distributions for length scale 1/l and magnitude σ2

exp is very
important, especially in our case when we use data, for which it is known that they do
not express very strong spatial dependence [38]. The priors of variance and length scale
should be chosen so that they do not restrict some plausible values of observed fish counts.
The length scale prior has to be restricted between some minimal and maximal values,
lmin < l < lmax. The limit lmax determines shorter right tails of l and thus avoids an
overlap between the spatial effects modeled in Gaussian process, and linear regression
term affected in parameters space by larger variance of fixed effects β. The variance σ2

exp

should be penalized towards zero. We prefer to use prior for standard deviation σexp

instead of variance σ2
exp to avoid the problems that may occur with the very small values

towards zero. Here we assume that the spatial random effect describes the variability that
is not explained by the covariates. Here we use prior for 1/l instead for the length scale
l. This ensures that the prior is less flexible and therefore it will not explain variability
captured by linear term X(S)Tβ [33]. For both σexp and 1/l parameters weakly informative
priors are typically used [4, 14, 15, 33]. Priors for standard deviation σexp have to have
a peak near zero and very heavy right tail. The long right tail ensure that variance σ2

exp

may increase if the data become more informative at these higher variance values. Since
the fixed terms have higher values of their variance priors, the combination of the priors of
σexp and σβ ensures that the variability explained by spatial effects (lower σexp values) and
fixed terms (higher σβ values) are separated. Suitable prior distributions of σexp are those
from half-t family - Cauchy or Student-t, or half Gaussian. Gamma or χ2 distributions
are not recommended because both distributions are not defined at zero [4, 33]. For the
prior of length scale 1/l the weakly informative half Student t 1/l ∼ HT (ν, µ = 0, s) is
recommended [33]. The location parameter ν controls the mass along the distribution
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tail. The scale parameter s controls the width of the length prior. If we have some
preliminary information where could be the most probable parameter value of 1/l, we can
use wide unimodal distribution with peak at this guess. Other possibility is to use the
generalized inverse Gaussian distribution, which has an inverse gamma left tail and an
inverse Gaussian right tail [4].

2.5.4 Sensitivity to prior distributions: choice of priors to be
analysed

Ideally, we should choose the prior before to obtain any data. This is possible only when we
have very strong preliminary knowledge and therefore we are completely sure about prior
model assumptions. When uncertainty arises, we try to obtain additional information
via likelihood function and detect some possible problems in posterior distribution. If
there are some problems in posterior distribution, one possible reason may be because
some important features or parts in parameter space were not involved in the prior. Then
we have to go back and change the prior. It might be that posterior cannot distinguish
between the priors since under a common likelihood several priors will lead to the same
posterior [10, 15]. In this iterative modeling process we actually investigate the sensitivity
of posterior to different prior distributions. Here we provide sensitivity analysis by setting
different prior combinations of hyperparameters σexp and 1/l, and overdispersion r, and
investigate the joint effect of the chosen priors on posterior distribution. After that we
analyze the model performance and provide model selection to find the model with best
predictive performance.

The probability density functions of prior distributions, used for overdispersion pa-
rameter r are shown in Fig. 2.1. For standard deviation σexp and inversed of length scale
1/l parameters we here explore Half Student-t prior distributions with different values of
location and scale parameters. The probability density function of these distributions is
shown in Fig. 2.2.

2.6 Model selection

One of the main modeling goals is to choose the best model structure and parameter values
that describe the investigated phenomena. For this purpose different models have to be
compared before choosing the best among them. In Bayesian models this comparison
is based on predictive performance. Model comparison and model selection are different
tasks. Since we investigate different properties of the compared models, model comparison
is related to the inference and analysis. Model selection refers to decision theory because
we have to decide which model to choose. In both tasks the key problem is how to choose
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Figure 2.1: Prior distributions used for overdispersion parameter r. We use weakly informative Half
Cauchy and Inverse Gamma distributions, with small effect of overdispersion. The Gamma(9,1) prior
assumes significant overdispersion nearly the range of fixed effects.

a criterion about goodness of the model [32].

2.6.1 Scoring rules as a measure of predictive accuracy

One way to evaluate the model is through the properties of its predictions. For this
purpose scoring rules are introduced as a summary measure that assigns a numerical
score based on the realized values and reported predictive distributions. Scoring rules are
defined as positively oriented rewards that we want to maximize [7, 17]. If we denote by
P the realized predictive distribution for a fixed random variable Y = y, a scoring rule S
is defined as a function S = S(P, y), which describes the reward for prediction P given
the realized value y. If we denote by Q the best predicted, nearest to true predictive
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Figure 2.2: Half Student-t distribution used for prior of hyperparameters σexp and 1/l. Priors with
location ν = 4 have stronger influence towards zero. Increasing the scale value s decreases the peak
towards zero and increases the right tail.

distribution, the score S(P,Q) is then the expected value of reward S(P, y) when y is
drawn from the distribution Q

S(P,Q) = EQ[S(P, y)] =
∫
S(P, y)dQ(y) (2.44)

A positively oriented scoring rule is called proper if for all probabilistic distributions P
and Q the following inequality holds:

S(Q,Q) ≥ S(P,Q) (2.45)

Thus, for a proper score, the forecaster maximizes the expected score if he forecasts the
true distribution. A strictly proper score is a score such that equality in Eq. (2.45) is
achieved uniquely at P = Q [7, 17].
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The only strictly proper scoring rule is the logarithmic scoring rule

S(P, y) = log p(y)

where p(y) is the density for result y given by distribution P [32]. Concerning the model
selection task, logarithmic scoring rule has attractive properties related to information
theory. We assume that the sample sizes of all investigated models are sufficiently large.
Then, among all considered models, the model with the highest logarithmic score has the
lowest Kullback-Leibler information and thus the highest posterior probability [13, 32].
Therefore in this work we use logarithmic score to assess the model predictions.

2.6.2 Decision theory for model selection

In the framework of decision theory, model comparison task is defined as decision analysis,
while model selection is formulated as a decision problem [32]. To solve the decision prob-
lem, one has either to minimize the expected loss function, or to maximize the expected
utility function. Next we formalize the model selection task. We denote by d = {Md, a(d)}
a decision to choose the model Md ∈ D = {M1, . . . ,Mk}. Here we assume that the true
model M is among the investigated models D, M ∈ D. The prediction a(d) of Md may
be probability distribution or point estimate. A utility function U(d, D̃,D) measures the
goodness of chosen model d ∈ D. If we denote by D̃ the future data that will be observed,
the utility is denoted by U(d, D̃,D), and the expected utility for a decision d is defined
as:

Ū(d,D) = E[U(d, D̃,D)] =
∫
U(d, D̃,D) p(D̃|Mtrue) dD̃ (2.46)

where Mtrue is the true data generating process. Naturally, we do not know this and we
will present ways to approximate it below. We search for a decision about optimal model
d̂ that maximizes the expected utility

d̂ = arg max
d∈D

Ū(d,D) (2.47)

It is known that the optimal prediction for model Md under logarithmic scoring rule is
the posterior distribution of Md [32].

If we denote by ỹ the predicted value of the observation y, and by x̃ the predicted
value of covariate x, the utility function expressed by logarithmic score is defined as:

U(d, ỹ, x̃, D) = log p(ỹ|Md, x̃, D) (2.48)

The expected logarithmic density utility (Eq. (2.46)) for decision d becomes

Ū(d,D) =
∫ ∫

log (p(ỹ|Md, x̃, D)) p(ỹ, x̃|Mtrue) dỹ dx̃ (2.49)
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Thus, by selecting d̂ according Eq. (2.47), where expected utility Ū(d,D) is defined as
in Eq. (2.49), we choose the model Md that minimizes the Kullback-Leibler information
[32]. In the case of N future observations the observational vector is ỹ = [ỹ1, . . . ỹN ]T ,
and vector of covariates is x̃ = [x̃1, . . . x̃N ]T . The future data consist of D̃ = {ỹi, x̃i}Ni=1.
The expected utility Ū(d,D) in Eq. (2.49) depends on the full posterior predictive density
p(ỹ, x̃|D). If we assume that the true modelMtrue is known, and regression data are of the
type D = {yi, xi}ni=1, the expected utility of Mtrue, given by Eq. (2.46), can be computed
as:

Ū(d,D,Mtrue) =
∫
U(d, ỹ, x̃, D) p(ỹ, x̃|Mtrue) dỹ dx̃ (2.50)

Although we do not know the true model Mtrue, we might be able to approximate the
true data generating process p(ỹ, x̃|Mtrue) by applying Monte Carlo approximation. Then
approximated Eq. (2.50) becomes

Ū(d,D,Mtrue) ≈
1
N

N∑
i=1

U(d, ỹi, x̃i, D) (2.51)

where ỹi, x̃i ∼ p(ỹ, x̃|D). Additional benefit of the approximation given in Eq.(2.51), is
that we do not need to construct a model for x̃ [32].

2.6.3 K-fold cross-validation

The goals of cross-validation are to test the model’s ability to predict new, previously
unseen data, to clarify some problems related to overfitting or selection bias, and to
estimate how accurately the model will perform in practice. It is a resampling method
that uses different portions of the data to train and test a model on different iterations
[39]. In k-fold cross-validation the data is divided into k disjoint groups D = ⋃k

j=1Dj . At
every iteration each group Dj in turn is used as test data. One round j of cross-validation
uses one dataset partition into training subset, on which the analysis is performed, and
testing set, on which validation of analysis is performed. After k rounds, in which different
portion of the data is used as testing subset, the validation results are averaged over the
rounds to provide an estimate of the model’s predictive performance. The expected utility
(Eq. (2.51)) in k-fold cross validation is computed as

Ū(d,D,Mtrue) ≈
1
n

n∑
i=1

U(d, yi, xi, D\k(i)) (2.52)

where the test data are Dk = {xi, yi}li=1 and training data D\k(i) = ⋃
j 6=k(i) Dj involve a

collection of all k − 1 subsets that do not include data points yi, xi.
When k = 10 the model is estimated 10 times, which is feasible from computational

point of view. When we use the logarithmic scoring rule, replace Eq. (2.48) in Eq.(2.52)
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and obtain:

Ū(d,D,Mtrue) ≈
1
n

n∑
i=1

log p(yi|xi,Md, D\k(i)) (2.53)

Since the posterior estimates in every round are based on training data that are
smaller than the whole available dataset, we need to use large n to be sure that the
obtained posterior quantities are reliable and we can approximate p(yi|xi,Md, D\k(i)) ≈
p(yi|xi,Md, D). When we use smaller data set for training, this can cause underestimation
of the predictive fit for smaller data sets. The second important assumption in cross
validation is that the future data D̃ comes from the same generating process as the
training data D.

Eq.(2.53) still does not explicitly show how parameters are expressed in expected
utility function Ū(d,D,Mtrue). If we replace the true parameters θtrue by their posterior
distribution ppost = p(θ|y) and add them in Eq. (2.53), we obtain expression about
logarithmic pointwise predictive density (lppd) [13]:

lppd = 1
n

n∑
i=1

log
∫
p(yi|xi, θ)ppost(θ|y\k(i))dθ (2.54)

We again use Monte Carlo approximation and take S simulated draws θs, s =
1, . . . , S from posterior ppost(θ|y\k(i)), where posterior estimates of θ are obtained using
only the trainig data sets. Then computed lppd is

computed lppd = 1
n

n∑
i=1

log
( 1
S

S∑
s=1

p(yi|xi, θs)
)

(2.55)

Thus the Bayesian k-fold cross-validation (CV) estimate of out-of-sample predictive
fit is [13, 32, 37]

lppdk−CV = 1
n

n∑
i=1

log ppost(−k(i))(yi|xi, θ) = 1
n

n∑
i=1

log
( 1
S

S∑
s=1

p(yi|xi, θs
)

(2.56)

Eq. (2.56) provides a measure of predictive accuracy in the case of k-fold CV. By
historical reasons similar measures are called information criteria [13]. The information
criteria, based on Eq. (2.56) is defined as:

CV = −2 n lppdk−CV (2.57)

where n is the number of data points. Lower values of CV correspond to higher predictive
accuracy. The CV information criterion, given by Eq. (2.57), is used in this work for the
purpose of model selection.



3. Modeling experiment

3.1 Data description

The data used here are previously published and described in [36, 38]. The target species
is a sea-spawning whitefish (Coregonus lavaretus L. s.l.). This species spawns in October
to November and the eggs remain in the spawning grounds until hatching at ice breakup
in April to May. During that period the embryos are very sensitive to unfavorable changes
in environmental factors. The sea-spawning whitefish larvae appear in littoral areas soon
after hatching. The goal in the data collection is to sample whitefish larvae along the
Gulf of Bothnia. Gulf of Bothnia is the northernmost basin of Baltic sea and one of the
largest brackish water basins in the world. Its size is approximately 120 km x 600 km and
is characterizied by strong environmental gradients that influence the larvae distribution
and survival: sloping bottom with wide shallow areas in the east coast, deep hollows
forming rifts and faults close to the west coast, strong influence of wind and waves around
archipelago. Sampling of whitefish larvae started about one week after the ice break
from sought to north, when early larvae started feeding. The sampling was provided
using a beach seine in nearshore sites and tow net sampler in open water. Larvae were
sampled from 642 sampling sites in 21 sub-areas during 2009 - 2011 [36]. To avoid spatial
autocorrelation in the data, the sampling sites were randomized. Sampling subareas along
Gulf of Bothnia are shown in Fig. 3.1.

The data used here involve at most 8 environmental variables that are summarized
in Table 3.1. Since one of the main modeling goals is to construct predictive maps, the
environmental variables are available as Geographical Information System (GIS) map
layers. The raster layers were converted to a prediction grid of resolution of 300 m. For
all necessary GIS analyses authors have used ESRI ArcGIS or ERDAS software packages
[36].

Since the values of environmental variables X are different at different spatial
locations s, they are also called environmental covariates. From all listed variables
Xi, i = 1, . . . , 8, only X1 (visible bottom in shallow areas) is categorical, all others are
continuous. Our training data involve 216 data points measured in year 2010. The data
contain measurements on whitefish larvae counts, sampled volume of water, and the en-

23
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Figure 3.1: Map of Gulf of Bothnia. Sampling sub-areas are marked with circles and numbered (1-21).
The size of the circles indicates the count of sampling sites in each sub-area. From [36]

vironmental covariates at observed sites. The prediction locations involve 199 266 map
grid cells, corresponding to the locations, at which there are available measurement of en-
vironmental variables. The goal is to predict larvae counts at these unobserved locations.

3.2 Experiments

In this chapter we describe all different models to be compared. We investigate the impact
of three main factors on posterior inference and predictions. They are:

1. Effect of modeling spatial dependences.

2. Influence of different environmental covariates and expressions with different level
of complexity that describe linear part of latent variable

3. Sensitivity of posterior results with respect to different prior distributions of model
parameters
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Variable Description In Type Resol.(m) Unut Source

BOTCLS
Bottom classification

(soft, silt, sand, stones, rocks, cliff)
X1 class 200 NA FGFRI

DSAND Distance to sand, weighted by shallow area X2 cont. 90 I FGFRI
FE300ME The average fetch over all directions X3 cont. 300 m FGFRI
ICELAST The end of ice cover in 2009 X4 cont. 1852 E wk FMI
RIVERS Distance to rivers X5 cont. 150 m FGFRI
SALSPRS Spring salinity X6 cont. 10,000 psu FMI
D20M Distance to 20 m depth curve X7 cont. 200 m FGFRI

CHLA
Chlorophyll - a

summer phytoplankton concentration
X8 cont. 2000 I HELCOM

Table 3.1: Description of the environmental variables. The variables are available as thematic maps
layers. Last column shows the source of the data. The abbreviations are: Finnish Game and Fish-
eries Research Institute (FGFRI), Finnish Environment Institute (SYKE) and Swedish Environmental
Protection Agency (SEPA). I denotes index value. From [36, 38]

The notation of environmental covariates is given in the second column.

Different model versions are obtained in accordance with these criteria. The goal of
the experiment is to select the best model among all candidates based on CV information
criteria, described in Chapter 2.6. After choosing the best model, we conduct full posterior
evaluation and analyses as it was described in Chapter 2.4.

The common structure of general hierarchical model is presented as:

y|f ,N ∼
n∏
i=1

Negative Binomial (yi|Viλ(f(si,xi)), r) (3.1)

f(s,x)|l, σ2
exp ∼ GP (m(x), k(s, s′|l, σ2

exp) (3.2)

p(β, 1/l, σ2
exp, r) ∼ p(β)p(1/l)p(σ2

exp)p(r) (3.3)

The larval density in the water λ(si,xi) in Eq. (3.1) is modeled as λ(fi) = efi .

3.2.1 Models of the linear part of latent variable

Preliminary data transformations

Before to use experimental data in the model, we first provided some data transfor-
mations. Except for the first categorical variable Xexp

1 , we standardized all other co-
variates Xexp = [Xexp

2 , . . . , Xexp
8 ]T . The standardized environmental data are Xj =
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[(Xexp
j,1 −X̄j)/XSD

j , . . . , (Xexp
j,n −X̄j)/XSD

j )]T . X̄j are sample means, and XSD
j are standard

deviations of j-th covariate Xj, j = 2, . . . , 8. The purpose of standardization is to put all
environmental variables on the same scale and thus to be able to compare their influence
on posterior predictions. The other reason to provide it here was to facilitate MCMC
model convergence.

Models of Gaussian Process mean

As it was described in Chapter 3.1, the bottom type X1 is a categorical variable with 6
different classes. We model each class of X1 by its own effect as:

m0(X1) = α0 + α1δ1(X1) + α2δ2(X1) + · · ·+ α6δ6(X1) (3.4)

where δi(X1) = 1, i = 1, . . . , 6 if X1 = i, and δi(X1) = 0 otherwise. The intercept α0 = 1
[33].

All other environmental variables are continuous. The linear regression part in
Eq.(3.2) of the model that involves 6 covariates, is:

m1(X) = xTβ = m0(X1) + β2X2 + β3X3 + β4X4 + β5X5 + β6X6 (3.5)

When we extend this model by adding quadratic terms of all 5 continues variables,
the resulting regression becomes:

m2(X) = xTβ = m0(X1) + β2X2 + β3X3 + β4X4 + β5X5 + β6X6+

β7X
2
2 + β8X

2
3 + β9X

2
4 + β10X

2
5 + β11X

2
6

(3.6)

Adding X7 and X8 to the linear terms of covariates results in:

m3(X) = xTβ = m0(X1) + β2X2 + β3X3 + β4X4 + β5X5 + β6X6 + β7X
2
7 + β8X8 (3.7)

After adding the quadratic terms, the regression model becomes:

m4(X) = xTβ = m0(X1) + β2X2 + β3X3 + β4X4 + β5X5 + β6X6 + β7X7 + β8X8+

β9X
2
2 + β10X

2
3 + β12X

2
4 + β13X

2
5 + β14X

2
6 + β15X

2
7 + β16X

2
8

(3.8)

Thus, we investigate 4 different models of the mean m(x) in Eq. (3.2).

3.2.2 Modeling spatial effects

The latent variable in Eq. (3.2) is modeled by Gaussian process, where the spatial random
effect is modeled by covariance function kexp(si, sj) and describes the variability that is
not explained by the covariates. We investigate two cases:
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1. No spatial effects, kexp(si, sj) = 0. Here all variability is explained by involved
covariates in m(x).

2. The spatial effects are modeled by exponential covariance function (Eq. 2.15):

kexp(si, sj) = σ2
expe

−‖si−sj‖/l (3.9)

3.2.3 Different priors of hyperparameters and overdispersion
parameter

The third task of the experiment is to investigate the influence of different prior parameter
distributions on posterior results. We are interesting to learn how sensitive is the posterior
prediction with respect to different prior assumptions about hyperparameters.

Linear weights α and β, involved in Eq. (3.4) - Eq. (3.8) are called also fixed
effects, and are mutually independent. Usually normal distribution N (0, σ2

β) is assigned
to them. When σ2

β = 10, this prior is very weakly informative because σ2
β is larger than

the posterior variances of all the α and β parameters [14, 33]. Thus we assume

α, β ∼ N (0, 10) (3.10)

The possible prior distributions of overdispersion parameter r in Eq. (3.1), as well as
hyperparameter priors of σ2

exp and 1/l, involved in covariance function (3.9), are discussed
in Chapter 2.5. All prior combinations of spatial effects and overdispersion parameters
that we analyze further in this work, are listed in Table 3.2 and Table 3.3.

Param. 1 2 3 4 5
σexp half-t(4,0,0.1) half-t(4,0,1) half-t(4,0,0.5) half-t(1,0,0.5) half-t(1,0,0.5)
l/l half-t(4,0,1) half-t(4,0,1) half-t(4,0,1.5) half-t(1,0,1.5) half-t(1,0,0.5)
r half Cauchy(0,5) half Cauchy(0,5) half Cauchy(0,5) half Cauchy(0,5) Gamma(9,1)

Table 3.2: Weakly informative priors of standard deviation σexp, inverse length 1/l and overdispersion
r

Thus we analyze 36 versions of models describing spatial effects, and 16 versions of
models without spatial effects. The goal is to investigate all in all 52 model versions and
to choose the one with smallest CV information criterion.

3.3 Modeling workflow

In this work we use the Stan package for MCMC sampling, and R environment for further
statistical computing and graphics. RStan interface allows us to fit Stan models, called
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Parameters 6 7 8 9
σexp half-t(4,0,0.5) half-t(4,0,0.5) half-t(4,0,0.5) half-t(4,0,0.5)
l/l half-t(4,0,1.5) half-t(4,0,1.5) half-t(4,0,1.5) half-t(4,0,1.5)
r Gamma(9,1) Inv-Gamma(0.001, 0.001) Inv-Gamma(0.001, 0.001) half-t(4,0,0.5)

Table 3.3: Weakly informative priors of standard deviation σexp, inverse length 1/l and overdispersion
r

from R, and access the Stan output in R. Stan provides a free, ready-made refined HMC
algorithm for MCMC sampling. The tuning of the sampling parameters L and ε, as well
as determining the gradient of the log-posterior density, is done in automated manner [4].

In Stan, the user first provides a program to import the data and specify the Bayesian
model assumptions. Standard distributions (normal, gamma, binomial, Poisson) are pre-
programmed. Arbitrary distributions can be entered by directly programming the log
density [13]. Next the user provided program is translated to C++ and resulting C++
program is compiled and run. The resulting posterior sample of the model parameters
is returned to the user. Stan also provides ready made implementation of methods for
computing R̂ statistics and neff measure.

We first choose which environmental variables will be involved in the model. After
that we load in R the data about the chosen environmental covariates x(s), and whitefish
larvae counts y(s) at observed locations s. Next we standardize the chosen covariates, and
load the corresponding environmental data x̃(s̃) at unobserved locations s̃. We standardize
also the data x̃(s̃). For the task of cross-validation only the data at observed locations
x(s) and y(s) are used. These data are split to train and test data sets. The test data
are treated as previously unseen data and used to check the predictive performance. For
each of the models we use the same splitting of data in K = 10 groups.

The steps in the modeling workflow are:

1. Choose the model version to be analyzed and set priors of hyperparameters.

2. Import the data in R and provide the necessary data preprocessing.

3. Write a Stan program for the hierarchical model as a separate file with a .stan

extension. Stan model is used to obtain the joint posterior for h = 1, . . . ,M
fh, θh, γh ∼ p(f , θ, γ|y) (Eq. (2.21))

4. Call Stan output via Rstan in R and analyze convergency and autocorrelation of
posterior samples. Check posterior distributions of estimands in interest. Examine
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scatter plots to analyze correlation between hyperparameters σexp and 1/l. Compute
in R the posterior estimates of linear weights αh and βh.

5. Decide whether chains are sampling from posterior distribution.

6. Check whether priors are unduly influencing posterior.

7. Complete model selection and validation tasks by computing CV information crite-
rion. Repeat the previous steps as needed to find the final model.

8. Use the posterior estimates fh, θh, γh of the chosen model to compute in R the
posterior predictive mean mp(f̃ |θ, γ) (Eq.(2.27)) and variance Kp(f̃ , f̃ |θ) (Eq.(2.30))
of the log larvae density logλ. Plot the corresponding predictive maps and the map
of whitefish larvae density λ over the whole study region.

9. Analyze the obtained results.

In this scheme we first sample in Stan the posterior estimates fh, θh, γh, and next
compute posterior linear weights and all predictive quantities (f̃ , ỹ,mp(f̃ |θ, γ), Kp(f̃ , f̃ |θ))
in R. This is more efficient, feasible and fast way to proceed [33].



4. Results

4.1 Summary of the models performance.

Following the modeling workflow, described in Chapter 3.3, we have performed posterior
analysis of all 52 model versions. It turned out that for the prior combinations 2, 3, 4,
7 and 8 (listed in Table 3.2 and Table 3.3), all models (m1, m2, m3 and m4) failed to
produce any results due to numerical problems. Some observation values y were too huge
and exceeded the largest representable number in R 1.797693e + 308. Similar problems
concerning weakly informative Inverse Gamma (0.001, 0.001) prior are reported in [12].
The weakly informative half-Student(ν=1, 0, scale) may also be problematic as a prior of
either σexp or 1/l parameters. Therefore we next report only the results obtained by the
other prior combinations (1,5,6 and 9), listed in Table 3.2 and Table 3.3.

4.1.1 MCMC diagnostics: convergence and autocorrelation

Convergence

We use potential scale reduction statistic R̂ as a main tool for assessing convergence of
MCMC. We observed that R̂ - statistics of all investigated estimands in all model versions
was lower than the 1.01 threshold. The acceptable threshold, reported in [13], is higher
- 1.1. Thus, we conclude that all parameters and estimated quantities in all investigated
models are convergent. In addition, we performed visual inspection of convergence using
trace plots. It is recommended to apply trace plot for diagnosing convergence problems
only after R̂-statistics indicated some problems [9]. The trace plots of all investigated
quantities (latent functions f , hyperparameters and overdispersion parametrs) for all in-
vestigated model versions look acceptable. Here we illustrate the trace plots of two model
versions from every group - including spatial effects, and models without spatial terms.
Both illustrated models are the most complicated ones in the group. All analogous trace
plots of other models from the same group look very similar. The trace plots of some
latent functions f , hyperparameters σexp and 1/l and overdispersion r of a model m4,
prior 1, describing spatial effects, are shown in Fig.4.1. The trace plots of some latent
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functions f and overdispersion r of a model m4, prior 1, without spatial effects, are shown
in Fig.4.2.

Figure 4.1: Posterior estimation of model m4 involving eight covariates and their squared terms, with
spatial effects. Trace plots of some sampled latent functions fi, i = 50, . . . , 60, hyperparameters σexp, 1/l,
and overdispersion parameter r for priors 1 in table 3.2

Although all trace plots in Fig. 4.1 look acceptable, the trace plots of hyperparam-
eters σexp and 1/l look different comparing to the others. These trace plots explore the
same region of parameter values, but as σexp or 1/l approaches zero, the chain spends
some time in the same region of the parameter space.
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Figure 4.2: Posterior estimation of model m4 involving eight covariates and their squared terms, with-
out spatial effects. Trace plots of some sampled latent functions fi, i = 50, . . . , 60, and overdispersion
parameter r for priors r ∼ Cauchy(0,5)

Autocorrelation

The effective sample size neff is an estimate of the number of independent draws from the
posterior distribution of the estimand of interest. Since the draws within a Markov chain
are not independent if there is autocorrelation, the effective sample size neff is smaller
than the total sample size N . The exact definition of neff is given by Eq. 2.43 in Chapter
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2.4. We observe that for all models describing spatial effects neff is biggest for parameter
1/l comparing to neff of σexp and r.

The assessment of autocorrelation is provided via visual inspection of autocorre-
lation plots. These plots show the values of autocorrelation function versus lag. The
autocorrelation function should quickly decrease with increasing lag. If autocorrelation
function does not decrease quickly with lag, this indicates that the sampler is not exploring
the posterior distribution efficiently and results in increased R̂ values and decreased neff
values. All investigated models show quickly decreasing autocorrelation functions with re-
spect to all estimands in interest. Here we show two autocorrelation plots from the group
of models describing spatial effects (Fig. 4.3) and without involving spatial description
(Fig. 4.4). Autocorrelation plots of all other simpler models from the corresponding group
are very similar.

Thus we conclude that all 32 models show good convergence.

Correlation among the parameters

As it was reported in Chapter 2.5.4, the estimation of hyperparameters σexp and 1/l might
be problematic. We expect some correlation to appear in posterior estimates of σexp and
1/l. The trace plots of both parameters also suggest that there might be such correlation.
We examined correlation visually by scatter plots. Here we illustrate the scatter plots of
the most complicated model, describing spatial effects and Gaussian mean m4, where 8
covariates and their squared terms and involved. The four different scatter plots in Fig.
4.5 correspond to the four different prior combinations 1, 5, 6 and 9 given in Table 3.2
and Table 3.3.

We observed that the strongest pattern produce prior combination 5, and this is a
case for all models m1, m2, m3 and m4. This suggest that the parameters estimates of
separate parameters σexp and 1/l under this prior are not very reliable. Less correlated
look the hyperparameter estimates produced by prior combinations 1 and 9. The pattern,
observed when prior 6 is used, is not so strong comparing to the scatter plot using prior
combination 5, but the shape is similar.

4.1.2 Analysis of parameter estimates

We first examined posterior histograms of some latent functions f [i], i = 1, . . . 10 in all
investigated models. We observe that all f ’s are normally distributed, as it is expected in
Gaussian processes. Some of these histograms for the model involving spatial effects and
described by Gaussian mean m4 under prior combination 1, are shown in Fig. 4.6.

Posterior histograms of σexp, 1/l and overdispersion parameter r are shown in Fig.
4.7. We observe that the posterior distributions of both hyperparameters σexp and 1/l
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Figure 4.3: Posterior estimation of model m4 involving eight covariates and their squared terms, with
spatial effects. Autocorrelation plots of some sampled latent functions fi, i = 50, . . . , 60 and hyperparam-
eters σexp and 1/l, and overdispersion parameter r for priors 1 in table 3.2

are very similar to theit prior distributions σexp ∼ half-t(4,0,0.1) and 1/l ∼ half-t(4,0,1).
The posterior of overdispersion r is normally distributed.

Posterior histograms of linear weights α and β of all investigated models are nearly
normally distributed, as it is expected.

The means of parameter estimates of most significant parameters β , σexp, 1/l and
r in all models describing spatial effects, are given in Table 4.1. We assume all parameter
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Figure 4.4: Posterior estimation of modelm4 involving eight covariates and their squared terms, without
spatial effects. Autocorrelation plots of some sampled latent functions fi, i = 50, . . . , 60, and overdisper-
sion parameter r for prior r ∼ Cauchy(0,5)

values |β| > 0.5 as significant. The means of parameter estimates of most significant
parameters β and r in all models that do not include description of spatial effects, are
given in Table 4.2. The mean estimates, where 2.5% and 97.5% quantiles of the estimation
error are huge, are colored in gray. Since there is a big difference among the estimates
of linear parameters between the models m1, m2, and m3, m4 on the other hand, for the
models m1 and m2 we assumed that all parameter values |β| > 100 are significant. For
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(a) Priors 1 (b) Priors 5

(c) Priors 6 (d) Priors 9

Figure 4.5: Scatter plots of the hyperparameters σexp and 1/l model describing spatial effects by
exponential covariance function. The Gaussian mean m4 involves 8 covariates and their squared term.
The four different prior combinations 1, 5, 6 and 9 correspond to priors listed in Table 3.2 and Table 3.3
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Figure 4.6: Posterior estimation of model describing spatial effects and Gaussian mean m4 under prior
combination 1. Posterior histograms of first ten samples of the latent function f [i], i = 1, . . . , 10

the models m3 and m4 we assumed β as significant if |β| > 0.5. Since in both tables
95% confidence intervals of almost all α estimates are too large, these parameters are not
listed in the tables.

More careful inspection of Table 4.1 reveals that except for the model m1, in all
other models the mean estimates of hyperparameter 1/l and overdispersion r for priors
5 and 6 are not reliable. The results concerning 1/l may be explained by the strong
correlation pattern between hyperparameters shown in Fig. 4.5. We also observe that
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Figure 4.7: Posterior estimation of model m4 and exponential spatial covariance. Posterior histograms
of parameters σexp, l using priors 1 in table 3.2

independently on used prior combination, the most significant β parameters are almost
the same for every model m1, m2, m3 or m4. The same observation is valid for the model
without description of spatial effects (Table 4.2) - in every model m1, m2, m3 or m4 the
most significant β parameters are the same under different priors of r. We observe also
that β mean estimates for m1 and m2 are much bigger comparing to estimates in m3

and m4. The mean estimation values of r in m1 and m2 are very small,which indicates
that the overdispersion does not influence the prediction. Next based on its predictive
performance, we have to choose the best model among these 32 models.

4.2 Results from model selection

In model selection task, we aim to choose the best model by comparing CV information
criteria for every candidate, as it was described in Chapter 2.6. Next given the model with
lowest CV criterion, we have to analyze its posterior distribution and examine its predic-
tive power. The cross validation information criterion was computed for all models where
posterior inference did not resulted in numerical problems or NaN values due to large
values that exceeded the largest possible value in R. The corresponding CV information
criteria are shown in Table 4.3 and Table 4.4.

The lowest CV values in Table 4.3 is CV = 197, 0604 for the model including
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Models Priors Posterior mean estimates of most significant β’s σexp 1/l r

m1

1 β1 = −2.08 β2 = −0, 75 β5 = 0, 83 2,45 1,89 0.33
5 β1 = −2.15 β2 = −0.71 β5 = 1, 0 0,42 1,44 0.33
6 β1 = −2.13 β2 = −0.79 β5 = 0.97 0,70 1,67 8,9
9 β1 = −1, 79 β2 = −0.76 0,45 1,45 0.33

m2

1 β1 = −1, 06 β2 = −0.67 β7 = 0.75 0,11 1,01 0.32
5 β1 = −0.94 β5 = 1, 04 β7 = 1, 67 2,49 5,42 8,91
6 β1 = −1, 12 β5 = 1, 20 β7 = 1, 56 2,32 2,03 8,86
9 β1 = −1, 10 β2 = −0.66 β7 = 0.95 0,66 1,45 0.37

m3

1
β1 = −0, 84
β2 = −0, 92

β5 = −0, 82 β9 = −0, 84 β10 = −1, 02 0,10 0,98 0.3

5 β2 = −0, 93
β4 = 1, 07
β5 = −0, 53

β9 = −1, 12 β10 = −2, 11 2,91 4,26 8,95

6 β2 = −0.81 β4 = 1, 03 β9 = −1, 06 β10 = −2, 05 2,65 1,71 8,83

9
β1 = −0, 73
β2 = −0, 93

β4 = −0.66
β5 = −0, 8

β9 = −0.9 β10 = −1, 05 0,47 1,46 0.31

m4

1 β2 = −1, 57 β6 = −1, 14 β11 = −0.85 β12 = −1, 40 0,10 1,00 0.31
5 β2 = −1, 65 β6 = −1, 41 β11 = −1, 13 β12 = −1, 90 2,70 4,71 9,01
6 β2 = −1, 62 β6 = −1, 49 β11 = −1, 006 β12 = −1, 99 2,46 2,26 8,76
9 β2 = −1, 48 β6 = −1, 05 β11 = −0, 87 β12 = −1, 31 0,47 1,46 0,31

Table 4.1: The means of parameter estimates of the most sigificant parameters β (|β| > 0.5), hyperpa-
rameters σexp, 1/l and overdispersion r in the models desribing spatial effects. The prior combinations in
the second columns are described in Table 3.2 and Table 3.3.The mean estimates, where 95% confidence
intervals are too large, are colored in gray.

spatial effects, where the Gaussian mean m3 is described by Eq.3.7. The combination of
priors σexp ∼ Student_t(4, 0, 0.1), r ∼ Cauchy(0, 5) and 1/l ∼ Student_t(4, 0, 1) is most
feasible.

The values of CV information criterion for the models that do not describe spatial
effects, are shown in Table 4.4.

When we inspect carefully Table 4.4, we observe that the smallest value of CV
criterion is in the column for the prior r ∼ Cauchy(0, 5) and Gaussian mean m4, described
by Eq.(3.8). This model shows the smallest value of CV criterion in both tables Table
4.4 and Table 4.4. Therefore we continue our analysis using it.

Thus, we continue and analyze posterior predictive performance of the following
simpler model, described as:
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Models Priors Posterior mean estimates of most significant β’s r

m1

1 β3 = 238, 86 β4 = −117, 30 β5 = 174, 34 0.32
2 β3 = 238, 62 β4 = −117, 99 β5 = 174, 1 0.43
3 β3 = 238, 91 β4 = −117, 32 β5 = 174, 32 0,30
4 β3 = 238, 81 β4 = −117.29 β5 = 174, 25 0.31

m2

1 β3 = 397, 5 β6 = −470, 14 0.30
2 β1 = −397, 5 β6 = 469, 8 β7 = −250 0,44
3 β1 = −397, 0 β6 = 470, 0 β7 = −251, 0 0,30
4 β1 = −397, 52 β6 = 470, 15 β7 = −251, 13 0.31

m3

1 β2 = −0, 84 β5 = −2, 08 β6 = 1, 15 β10 = −1, 86 0.30
2 β2 = −0, 84 β5 = −2, 09 β6 = 1, 24 β10 = −1, 99 0,42
3 β2 = −0.85 β5 = −2, 18 β6 = 1, 14 β10 = −1, 90 0,28
4 β2 = −0, 91 β5 = −2, 19 β6 = 1, 17 β10 = −1, 93 0.30

m4

1 β1 = −1, 2 β2 = −0, 83
β5 = −1, 14
β6 = −0, 63

β7 = 0, 91 0.31

2 β1 = −1, 36 β2 = −0, 68 β5 = −0, 91 β7 = 0, 94 β8 = 0, 80 0,45
3 β2 = −1, 18 β2 = −0, 87 β5 = −1, 17 β7 = 0, 88 β8 = 0, 75 0,29

4 β1 = −1, 23
β2 = −0, 83
β3 = −0, 61

β5 = −1, 13
β7 = 0, 98
β8 = 0, 75

β14 = 0, 72 0,31

Table 4.2: The means of parameter estimates of the most sigificant parameters β, hyperparameters σexp,
1/l and overdispersion r in the models without spatial effects. In the second column the priors are denoted
as: 1 ∼ half Cauchy(0, 5), 2 ∼ Gamma(9, 1), 3 ∼ Inv −Gamma(0.001, 0.001), 4 ∼ halft(4, 0, 0.5). For
the models m1 and m2 parameter values |β| > 100 are assumed as significant. For the models m3 and
m4 we assumed β as significant if |β| > 0.5

Model
Priors

1 5 6 9
m1 228,3749 278,9655 280,5521 228,591
m2 234,0359 240,46 245,9719 233,926
m3 197,1243 200,983 208,997 198,271
m4 236,1184 225,5029 234,0437 230,9378

Table 4.3: Values of CV information criteria for the models describing spatial effects

y|f ,N ∼
n∏
i=1

Negative Binomial (yi|Viλ(f(xi)), r)

f(x) ∼ N(m(x), σ2)

m4(X) = xTβ = m0(X1) + β2X2 + β3X3 + β4X4 + β5X5 + β6X6+

β7X7 + β8X8 + β9X
2
2 + β10X

2
3 + β12X

2
4 + β13X

2
5 +

β14X
2
6 + β15X

2
7 + β16X

2
8

α, β ∼ N (0, 10)

r ∼ Cauchy(0, 5)
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Model
Priors of r

Cauchy(0,5) Gamma(9,1) Inv-Gamma(0.001, 0.001) Student-t(4,0,1)
m1 206,699 224,1808 198,63 213,69
m2 201,3634 200,6109 208,87 210,31
m3 196,9595 197,936 214,74 215,73
m4 189,4997 203,0221 207 208

Table 4.4: Values of CV information criteria for the models without description of spatial dependences

4.3 Analysis and predictive performance of the se-
lected model

The MCMC diagnostics of all investigated models was discussed in Chapter 4.1. The
chosen model is convergent and does not show problems in autocorrelation plots.

Posterior results

Posterior histograms of some samples of latent functions f [i], i = 50, . . . , 59 and overdis-
persion parameter r are shown in Fig. 4.9. All latent functions f [i] are nearly normally
distributed, as it is expected. Posterior histogram of r is also nearly normally distributed.

Posterior histograms of α parameters are shown in Fig. 4.9, and posterior histograms
of β’s are shown in Fig. 4.10. All α and β estimates are nearly normally distributed.

A posterior summary of the estimated overdispersion parameter r is shown in Table
4.5). Its 95% confidence interval is not very large. R̂ = 1 shows good convergence of
MCMC.

mean sd 2,5% 97.5% n_eff Rhat
r 0.31 0.07 0.26 0.46 2662.33 1.00

Table 4.5: Summary of the posterior estimate of overdispersion parameter r in the model with mean m4

involving eight covariates and their squared terms, without spatial effects, under prior r ∼ Cauchy(0,5).

Posterior summary of α and β estimates is shown in Table 4.6. The means and
95% confidence intervals of posterior α and β are presented graphically in Fig. 4.11. The
confidence intervals of α5 and α6 are smaller comparing to the confidence intervals of
other α’s. The most significant β parameters are β1, β2, β5, β7 and β8.
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Figure 4.8: Posterior estimation of the model with Gaussian mean m4 involving eight covariates and
their squared terms, without spatial effects. Posterior histograms of some latent functions f [i], i =
50, . . . , 59 and overdispersion parameter r under prior r ∼ Cauchy(0,5)

Predictive performance

Predictive maps, obtained from the model with Gaussian mean m4, involving eight co-
variates and their squared terms, without spatial effects, under prior r ∼ Cauchy(0,5),
are shown in Fig. 4.12. Three predictive maps are shown on this figure: log density mean
E(f), log density variance V ar(f), and intensity λ = eE(f). Since the counts λ vary a lot
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Figure 4.9: Posterior estimation of the model with meanm4 involving eight covariates and their squared
terms, without spatial effects, under prior r ∼ Cauchy(0,5). Posterior histograms, means and density
functions of α parameters

from very small to very huge numbers, we cannot see all of them on one scale. This is
illustrated on the the right map in Fig. 4.12. When we use log scale instead counts, this
problem disappears, and we see that the map on the left showing log density mean E(f)
is much more informative.

We observe that whitefish larvae is distributed almost everywhere on the map, with
less counts near to the south east part. This correspond to the predictive results reported
in [38]. Thus we can conclude that for these particular data the simpler model without
describing spatial effects is suitable choice to describe whitefish larvae distribution along
the Gulf of Bothnia. Furthermore, it was previously reported that for these data the most
predictive power comes from environmental variables, and the spatial component has only
a slight influence on the prediction [38]. The CV information criterion also shows the best
value for the chosen model.
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mean sd 2,5% 97,5%
α0 -0.66 2.85 -5.51 4.22
α1 -0.36 1.22 -2.41 2.01
α2 -0.59 1.21 -2.99 1.75
α3 0.83 2.25 -3.31 4.96
α4 -0.23 1.80 -3.61 2.83
α5 -0.86 0.84 -2.55 0.90
α6 0.14 0.75 -1.12 1.71
β1 -1.20 1.07 -3.04 0.78
β2 -0.83 0.74 -2.15 0.33
β3 -0.54 0.65 -1.82 0.94
β4 0.49 0.44 -0.43 1.25
β5 -1.14 0.83 -2.67 0.63
β6 -0.63 0.55 -1.65 0.55
β7 0.91 0.44 0.13 1.88
β8 0.71 0.59 -0.45 1.78
β9 0.12 0.32 -0.38 0.76
β10 0.12 0.26 -0.34 0.60
β11 -0.28 0.19 -0.66 0.08
β12 -0.36 0.85 -1.95 1.12
β13 0.28 0.15 0.00 0.56
β14 0.67 0.41 0.09 1.57

Table 4.6: Summary of the posterior estimates of fixed effects α and β in the model with mean m4

involving eight covariates and their squared terms, without spatial effects, under prior r ∼ Cauchy(0,5).
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Figure 4.10: Posterior estimation of the model with mean m4 involving eight covariates and their
squared terms, without spatial effects, under prior r ∼ Cauchy(0,5) Posterior histograms, means and
density functions of β parameters
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Figure 4.11: Posterior estimation of the model with mean m4 involving eight covariates and their
squared terms, without spatial effects, under prior r ∼ Cauchy(0,5). Posterior histograms, means and
density functions of β parameters
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Figure 4.12: Posterior predictions of the model with Gaussian mean m4, involving eight covariates and
their squared terms, without spatial effects, under prior r ∼ Cauchy(0,5). Plot of log density mean E(f)
(left), log density variance V ar(f) (center), and intensity λ = eE(f) (right).



5. Discussion

5.1 Posterior parameter estimates of fixed effects

In this thesis we investigated two main groups of models - describing spatial depen-
dences, and models without description of spatial effects. In each group we analysed the
performance of four models of Gaussian process means: involving 6 or 8 environmental
covariates, including either only linear terms, or adding also their squared terms. In the
group describing spatial effects, we applied four different prior parameters combinations to
every mean model. In the group where spatial effects were not described, we assigned four
different priors of overdispersion parameter to every separate model of latent function.
Thus, all at all, 32 candidate models were analyzed.

The common result for both groups of models was that independently on the chosen
prior combinations, for the same model of the mean mi, i = 1, . . . 4, the most significant
linear weights β are the same. For almost all models the posterior estimates of the
weights α are not very reliable because the large 95% confidence intervals. Since the
first environmental covariate is categorical, where we want to model separately the effect
of every class by different αj, j = 0, . . . , 6, these results show that it is problematic to
estimate every class separately and may be better to use different coding system to record
x1 and involve it in the regression model [3].

We observe that the prior distributions of overdispersion r or hyperparameters σexp
and 1/l (in the case spatial effects are involved) do not influence a lot the estimates of
fixed effect parameters α and β. The explanation might be because the spatial effect
model explains only the part of variability that is not explained by linear terms, so there
is not an overlap between both model parts.

Another interesting result are the big mean posterior estimates of all α’s and β’s
for all models including only linear terms and 6 or 8 covariates in the models without
describing spatial effects. In these models the mean posterior estimate of overdispersion
r is very small. Since the overdispersion is negligible small, in these models it might be
better to use Poisson observational model instead Negative binomial.
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5.2 Sensitivity of posterior to prior choices

For the models describing spatial effects, we examined 9 different combinations of param-
eters σexp, 1/l and r. It turned out that for 5 of these prior combinations all models of
Gaussian mean (m1, m2, m3 and m4) failed to produce any posterior results results due
to numerical problems. Some observation values y were too huge and exceeded the largest
representable number in R 1.797693e+308. These results are not surprising because simi-
lar problems when using weakly informative Inverse Gamma (0.001, 0.001) or half-t(ν=1,
0, scale) priors are reported in [12]. Furthermore, it is known that hyperparameters σexp
and 1/l might be correlated and therefore difficult to estimate separately. Also, the inten-
sity λ may take either very small or very big values, which also causes problems to show
it on the predictive maps. From all other prior combinations, the most problematic was
combination σexp ∼ half-t(1, 0, 0.5), 1/l ∼ half-t(1, 0, 0.5) and r ∼ Gamma(9, 1). Under
this prior, the posterior correlation between hyperparameters for all models m1, m2, m3

and m4 was very strong, and therefore the posterior estimates of both hyperparameters
were not reliable. The best posterior results were obtained using the prior combination
σexp ∼ half-t(4, 0, 0.1), 1/l ∼ half-t(4, 0, 1) and r ∼ half Cauchy(0, 5). Under this prior,
the posterior estimates of both hyperparameters were very weakly correlated, and the
obtained estimates were more reliable and close to the mean estimates, obtained by using
the rest of the priors. Thus, it was shown that posterior results are very sensitive to prior
choices of hyperparameters. The provided sensitivity analysis helped us to choose the
most suitable prior for the models that describe spatial effects. Concerning the models
without description of spatial dependences, different priors of overdispersion r did not
influence a lot the posterior estimates of the corresponding model m1, m2, m3 or m4.

5.3 Model selection

After computing the CV information criterion, it turned out that the best model from
the group describing spatial effects, is the model that uses the best prior combination
described above, and involved eight covariates and only the linear term. The best model
among the models without spatial effects, and also the best for all investigated models, was
the one that involves 8 covariates and their linear and squared terms. These result show
that all eight covariates are important and have to be involved in the model. The better
predictive performance of the model without describing spatial effects may be explained
with the quality of the data, that are not informative enough to be able to model better
spatial dependences.
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5.4 Interpretation of the results in ecological aspect

The practical significance of this work is determined by predictive performance of the
chosen model for the locations, where observations of larvae counts are not available.
The predictive maps of log whitefish larvae density for unobserved locations, produced by
the model, show in which regions the larvae distribution may be problematic, and where
might be abundance of whitefish larvae. It was more feasible to present larvae density on
log scale instead to draw directly larvae counts because the huge variability of the counts
from very small to huge numbers. The log larvae intensity maps may help ecologists to
take decisions about conservation in these regions, or fishing when it is feasible. Although
the selected model is quite simple, the predictive maps of log intensity, obtained by it,
look similar to the results, reported in [36, 38]. If more informative data are available, it
might be feasible to use a model describing also spatial dependences.

5.5 Further improvements

If some additional preliminary knowledge about the maximal value of whitefish larvae
counts becomes available, before real model analysis we may perform prior predictive
check. Its goal is to simulate some observational data based on priors and likelihood only,
and to analyze these data. If the generated data are not consistent with our expectations
and understanding, this means that there is something wrong in the chosen prior we
have to change it. At this step we can reject the prior if produced observational values
are larger than the maximal reported values, or even exceeded the largest representable
number in R. Thus prior predictive check can facilitate the sensitivity analysis task.

It became quite clear that for better modeling of spatial dependences, more infor-
mative data are needed. Once such data are available, the estimation of hyperparameters
may become more reliable. In such case also more complicated covariance functions may
be examined [2].

Additionally to the logarithmic score, used in CV information criterion,the predictive
distributions can be analyzed by so called probability integral transform (PIT) [16]. If the
model matches the true generating process, the distribution of PIT’s should be uniform.
The empirical PIT’s can be plotted as a histogram. Any clear deviations from uniformity
in the histogram shows mismatch between the predictions and true generating process.
This test can be added to other analyses to improve model assessment.



6. Conclusions

The provided analyses in this thesis showed that hierarchical Bayesian approach with
Gaussian processes for modeling spatial dependences is a very powerful tool to explain
and predict spatial data of marine species distribution. With these types of models, it
was possible to utilize geographical information and produce predictive maps where to
illustrate the distribution of larvae density for unobserved locations.

In this work we also illustrated that sensitivity analysis of posterior estimates to
prior distributions is a powerful method to select the most suitable prior in the case when
preliminary knowledge about the prior is quite weak. Even for the examined models with
known identifiability problems of hyperparameters, it was possible to choose the most
suitable prior combination that leads to almost uncorrelated hyperparameters, and to
produce meaningful posterior parameter estimates for the models that describe spatial
effects.

During model selection we compared models with different level of complexity and
different prior distributions and chose the one with the best predictive performance. The
results showed that the model, which demonstrated best predictive performance, does not
need to be very complicated and to involve description of spatial effects if the data are
not informative enough to detect spatial effects.
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