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DeepRx is a deep learning receiver which replaces much of the functionality of a traditional 5G
receiver. It is a deep model which uses residual connections and a fully convolutional architecture
to process an incoming signal, and it outputs log-likelihood ratios for each bit. However, the deep
model can be computationally too heavy to use in a real environment. Nokia Bell Labs has recently
developed an iterative version of the DeepRx, where a model with fewer layers is used iteratively.
This thesis focuses on developing a neural network which determines how many iterations the
iterative DeepRx needs to use. We trained a separate neural network, the stopping condition
neural network, which will be used together with the iterative model. It predicts the number of
iterations the model requires to process the input correctly, with the aim that each inference uses as
few iterations as possible. The model also stops the inference early if it predicts that the required
number of iterations is greater than the maximum amount. Our results show that an iterative
model with a stopping condition neural network has significantly fewer parameters than the deep
model. The results also show that while the stopping condition neural network could predict with
a high accuracy which samples could be decoded, using it also increased the uncoded bit error rate
of the iterative model slightly. Therefore, using a stopping condition neural network together with
an iterative model seems to be a flexible lightweight alternative to the DeepRx model.
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1. Introduction

Deep learning offers an opportunity to address various problems. In wireless networks,
deep learning has been proposed to be used for various tasks, such as resource manage-
ment and traffic prediction in the data link layer of the network [1], or in the physical
layer for channel estimation [2], and for transmitting and receiving data [3, 4].

Transmission and reception of data in wireless systems is a complicated process
which contains multiple steps. The transmitter needs to complete steps such as adding
error correcting code to the transmission, turning sets of bits into modulated symbols
with certain amplitude and phase, and combining multiple of these symbols into one
signal which will be transmitted by an antenna. The receiver on the other hand has
to complete multiple steps to remove the noise from the signal, and to transform
the signal into bits. In MIMO (multiple-input and multiple-output), where multiple
antennas are used to transmit and receive data, the receiver has to complete additional
steps to process the received signals and to recover the actual transmitted signals.
MIMO DeepRx [5] is a deep learning receiver which works in a setting with multiple
transmitting and receiving antennas, and it replaces much of the functionality of the
traditional receiver with a deep fully convolutional neural network. However, as the
MIMO DeepRx is a deep model with many layers, the computations require a large
amount of power and time. In this thesis we investigate how to do this more efficiently.

An iterative version of the DeepRx was recently developed by Nokia Bell Labs.
The model has fewer layers which are used in an iterative fashion, and the model has
fewer trainable parameters than the deep model. However, calculations with this model
can be slow and heavy as well, as each computation uses a fixed number of iterations,
no matter the input. To make the usage of the iterative model more flexible, we will
train a separate neural network, the stopping condition neural network (SCNN), which
predicts the number of iterations the iterative model requires to process the input
correctly. The expected result is that an iterative model which uses an SCNN requires
fewer iterations than an iterative model which does not, and that using an SCNN does
not increase the errors of the iterative model significantly.

In Chapter 2 we give an overview of neural networks, with a focus on concepts
which are relevant for this thesis, such as fully convolutional neural networks and train-
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2 Chapter 1. Introduction

ing a neural network. In Chapter 3, we discuss how a sequence of bits is transformed
into radio waves in OFDM-systems, and how a radio wave is transformed back into a
sequence of bits in the receiver. We also discuss the deep learning receiver architecture
known as DeepRx, as well as an iterative version of the DeepRx. At the end of Chapter
3, we discuss other deep learning solutions that have been proposed to be used in the
receiver. In Chapter 4 we implement a stopping condition neural network that predicts
the number of iterations an iterative DeepRx requires to process an input. In Chapter
5 we show the results of using a stopping condition neural network with an iterative
DeepRx. We compare the performance of such a network to two models, a deep model
and an iterative model which does not use an SCNN. Conclusion and discussion of
future work is in Chapter 6.



2. Neural networks

Neural networks are a family of predictive computational models often used in machine
learning to detect patterns in the data and perform tasks such as classification. Their
simple computational structure is inspired by the structure of the brain, where units
known as neurons perform tasks and send signals to other neurons [6, 7]. Neural
networks, like the brain, learn the task they are given by looking for patterns in the
received data, and strengthening and weakening connections between neurons. While
the human brain is a much more complex network of neurons than the artificial neural
networks, neural networks in machine learning have proved to be able to perform well
in different tasks, for example in semantic segmentation of images [8] and machine
translation [9].

In this Chapter, we discuss the different neural network architectures and con-
cepts related to this thesis. We first give an overview of feedforward neural networks,
explaining how the input propagates forward in the network, and how the output is
produced. We then give an overview of convolutional neural networks and fully convo-
lutional networks, which are special neural network architectures often used in specific
tasks, when the input is an image or other multidimensional tensor. We then explain
three different concepts related to convolutional neural networks: depthwise separable
convolutions, residual connections and dilated convolutions. These concepts will be
useful later in Chapter 3 and 4, when we discuss DeepRx. Finally, in Section 2.3 we
explain how artificial neural networks are trained.

2.1 Feedforward neural networks

Feedforward neural networks consist of an input layer, one or more hidden layers, and
an output layer [10, 11]. Each layer contains computational units known as neurons (as
well as bias units). Each layer is connected to the next and previous layer by weights,
which determine how much each input to a neuron affects the output of the neuron. In
a fully connected network the layers are fully connected: each neuron is connected to all
the neurons of the next and the previous layer. When we discuss fully connected layers
later, we mean a feedforward neural network where the layers are fully connected. The
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4 Chapter 2. Neural networks

Figure 2.1: A fully connected network with two hidden layers, each containing three neurons.

size of the layers differs based on the type of the layer. In a fully connected neural
network the input layer is the same size as the input vector. The hidden layers can
have any size, and the output layer’s size depends on the task: in a classification task,
the size is typically the number of possible classes. The output of the last layer, the
output layer, is the output of the whole network. A fully connected network is shown
in Figure 2.1.

To make calculations effective, the inputs to a layer and the weights are presented
as matrices and vectors. The hidden layers receive their input from the previous layer
and calculate their output with the equation

h = g(WTx+ b), (2.1)

where W is the weight matrix, x is the input to the layer, b are the biases, and g is the
activation function [10]. The result is a vector of outputs of the hidden layer, which
will function as the input to the next layer.

The activation functions used in calculating the output of a layer introduce non-
linearity to the model. There are multiple different activation functions, and we will
briefly discuss three of them: the sigmoid function σ, the ReLU (rectified linear unit)
activation function, and the softmax function. In mathematical terms, these functions
are defined as

ReLU(x) = max(0, x), (2.2)

σ(x) = 1
1 + exp (−x) , (2.3)

softmax(xi) = exp (xi)∑
j exp (xj)

. (2.4)

The ReLU function is often used in the hidden layers as it can be calculated quickly
by doing a simple max-operation. The sigmoid function σ pushes the values to a range
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between 0 and 1. The softmax function uses the input values to create a probability
distribution, and it is often used in the output layer [10].

In addition to these layers, a batch normalization layer is often used before a
hidden layer. A batch normalization layer normalizes the input to have 0 mean and
unit variance, and it learns to scale and shift the input. This process has been found to
increase the speed of the training and a model’s accuracy [12]. In mathematical terms,
batch normalization is defined as

x̂i = xi − µB√
σ2
β + ε

, (2.5)

yi = γx̂i + β, (2.6)

where Equation 2.5 normalizes the input and Equation 2.6 scales and shifts the nor-
malized values. In the equations, xi is sample i in mini-batch B, µB and σ2

β are the
mean and variance of the mini-batch, and γ and β are the learned scaling and shifting
parameters. During inference, the mean and variance of the whole population is used
instead of the mean and variance of the mini-batch, to make the output only depend
on the input.

2.2 Convolutional neural networks

Convolutional neural networks (CNNs) are a special neural network architecture used
in tasks where the input to the network is multidimensional, for example an image. A
typical CNN consists of three types of layers: convolutional layers, pooling layers and
fully connected layers [10, 13, 14]. An input tensor is given as input to the first convo-
lutional layer, which extracts features from the input using kernels and a convolution
operation (Figure 2.2). The kernels are small tensors with an equal number of channels
as the input, and during training they learn to detect certain features in the input,
such as an edge in an image. During the convolution operation, the inner product of a
kernel and the input at each point is calculated, and output to its corresponding posi-
tion in the output tensor (called a feature map), which has a depth of one. Typically
many kernels are used per convolutional layer, with each kernel learning to detect one
feature in the input, and each kernel outputting a feature map. Using kernels instead
of fully connected layers reduces the number of parameters in the network significantly,
as a single kernel is used for all the positions in the input, and it is much smaller in
size than the input (for example 3 × 3). In mathematical terms, the output of the
convolution operation for a pixel of a 2D-image at position x, y is defined as

S(x, y) = (K ∗ I)(x, y) =
m̂∑
m

n̂∑
n

I(x−m, y − n)K(m,n), (2.7)



6 Chapter 2. Neural networks

where I is the image, K is the kernel, m̂ and n̂ the width and height of the kernel.
After all the feature maps have been created, the feature maps are passed through

a non-linear activation function. Because each feature map has a depth of one, the out-
put of the convolution layer is a tensor with depth equal to the number of kernels used,
and with a width and height that depend on the stride and the padding parameters.
The stride parameter defines how much a window is moved after each calculation.
With padding, the feature map received as input is padded with zeroes, helping with
calculations close to the edges of a tensor.

Figure 2.2: The kernel operation calculates the inner product of the kernel and the input at each
position, and outputs the value to a feature map [14].

The pooling layer follows a convolutional layer, and it is used to reduce the size
of the feature maps. The intuition of the pooling layers is that they capture the local
information of the feature maps and reduce it to a single number, reducing the size of
the feature map and making the information in the feature maps more coarse. This
is achieved by sliding a window through the feature maps and by using a pooling
operation. The pooling operation looks at the values of a feature map inside the
window, and depending on the pooling operation used, outputs a single value that best
describes all those values. In the case of max pooling operation, the value is simply the
maximum of all the values inside the window, whereas the average pooling operation
outputs the average of the neighborhood. Similar to the convolutional layer, stride and
padding parameters can be defined by the user.

After the convolutional layers and pooling layers are the fully connected layers.
The output of the last layer before the fully connected layers is reshaped to a fixed-size
vector, which the fully connected layers process, resulting in the output of the whole
network [10, 13, 14].
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2.2.1 Fully convolutional networks

While CNNs are useful for different tasks related to images, they do have a limitation.
Because a feedforward neural network requires fixed-size inputs, the reshaping of the
output of the last layer before the fully connected layers must always result in a vector
of the same size. This means that the input image must always be the same size.
Another problem is that with typical convolutional neural networks, tasks such as
pixel-level classification are quite difficult to do, because local areas in the input are
represented by a single value due to the pooling operations.

Fully convolutional neural networks can be used to overcome these limitations.
In fully convolutional networks the size of the input image does not have to be fixed.
The fully connected layers can be turned into 1×1 convolutional layers, or they can be
removed completely. When the fully connected layers are turned into 1×1 convolutional
layers, the coarse output of these latter layers can be fused with the finer-grained
outputs of earlier layers of the network. This leads to an output tensor that is the
same size as the input [8]. A fully convolutional network might not have pooling layers
at all, in which case the convolutionalization and fusing of outputs of different layers
might not be required at all. If only convolutional layers are used, the width and
height of the input can remain constant, and only the depth of the tensor changes. An
example of such a network is the DeepRx [15], which we will discuss more in Chapter
3.

In the next three subsections we will discuss depthwise separable convolutions,
residual connections and dilated convolutions, which are special concepts and additions
related to convolutional neural networks, and which we will be using later in Chapter
3 and Chapter 4.

2.2.2 Depthwise separable convolutions

The convolution operation can be optimized to require less parameters and less com-
putation time. Because the kernels of a convolutional layer have the same number of
channels as the input image, to output a feature map with depth one, the kernels handle
both spatial correlations and cross-channel correlations [16]. With depthwise separable
convolutions, the calculation of these two correlations is decoupled. Instead of one
inner product of two tensors, we will first perform a spatial convolution for each of the
channels separately. After this a 1 × 1 pointwise convolution is performed depthwise.
Computing the convolution this way reduces the parameters required significantly, and
improves the speed of the computations.
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2.2.3 Residual connections

Training very deep networks can cause the training and test loss to be high, even
without overfitting. The loss can be reduced by implementing residual connections
between layers, so that the input to a layer is also passed around it [17]. The residual
connections can skip multiple layers by stacking the layers of the network into residual
blocks. In mathematical terms, if no residual connections are used, the output of
multiple layers is marked as y = F (x). With residual connections, the input to the
residual block is included in the equation, changing the equation to y = F (x) + x,
where the addition is done elementwise.

Using residual connections introduces one challenge: since the addition is done
elementwise, the output of the residual block must be the same size as the input to the
residual block, making the use of pooling layers inside residual blocks difficult. This
problem can be fixed by using a 1× 1 convolution: if the output F (x) of the residual
block has a different number of channels than its input x, the channel size of x can be
changed to equal the channel size of F (x) by using a 1×1 convolution with the correct
number of output channels. If other dimensions are different, the size of them can be
reduced by increasing the stride of the 1× 1 convolution, though this causes some loss
of information.

Figure 2.3: A typical residual block with 2 convolutional layers on the left, a residual block with
equal number of convolutional layers and pre-activation on the right. Using pre-activation, the batch
normalization and activation layers are before the convolutional layer in the residual block [18].

A pre-activation architecture [18] can be used with deep residual models to im-
prove their ability to generalize and to make their training easier (Figure 2.3). With
pre-activation, the architecture of a residual block is changed. In a typical residual
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block, the convolutional layer is first, followed by batch normalization and an acti-
vation function. With pre-activation, the batch normalization is first, followed by an
activation layer and a convolutional layer.

2.2.4 Dilated convolutions

In normal convolutions, the convolution operation is done between the kernel and an
area on the image that is the same size as the kernel. To allow the kernels to use
an area larger than their size without increasing the number of parameters, dilated
convolutions can be used. In dilated convolutions, a set number of zeros is introduced
between the values of a kernel. The number of zeros depends on the dilation factor:
dilation factor 1 means a kernel with no added zeros, dilation factor 2 means we add
one zero between the values [19]. An example of this can be seen below, where the
matrix on the left is a normal kernel, and the matrix on the right is a 2-dilated kernel.

f1 =


3 5 5
2 1 4
2 7 9

 , f2 =



0 0 0 0 0 0 0
0 3 0 5 0 5 0
0 0 0 0 0 0 0
0 2 0 1 0 4 0
0 0 0 0 0 0 0
0 2 0 7 0 9 0
0 0 0 0 0 0 0



2.3 Training a neural network

During training a neural network is given training examples x, y repeatedly, where x is
the input to the network and y is the target value, the value we want the network to
output. The examples are given one by one or in batches, and they pass through the
network and produce an output ŷ. Using the output of the network ŷ and the target
value y, the loss function calculates the loss of the network. The loss is propagated back
through the network using backpropagation, and the gradient of the loss is calculated.
Using the gradient∇WL(y, ŷ) and an optimizer function, all the weights W are updated
slightly (defined by the learning rate hyperparameter) to a direction that reduces the
loss. While the backpropagation algorithm is an important part of learning in neural
networks, we will not discuss its details here. For a more detailed explanation, see
section 6.5 of Deep Learning [10].
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The training of a model continues for multiple epochs by constantly feeding train-
ing examples to the model and updating the weights with an optimizer. One epoch
consists of all the training data, and once all the training data has been fed to the
network, another epoch begins. A separate validation set is used to see how the model
performs with data that is not in the training set, and to see if the model overfits. Over-
fitting occurs when a model learns a training set too well and does not work well with
data outside the training set. When this happens, the training loss keeps decreasing
but the validation loss starts increasing. To avoid this, different regularization meth-
ods can be used, three of which are important for this thesis: early stopping, weight
decay and dropout. In the early stopping method we keep track of the validation set
loss, and once the validation loss starts increasing, the training is stopped [10, 11].
The weight decay is used to control the size of the weights. The size of the weights
decreases a certain amount during each update, forcing the network to learn to use
smaller weights. In addition to the decaying of weights, L1-regularization can be used
to introduce sparsity into the weight matrix, setting some weights to zero. The last
regularization method, dropout, is used during training to select a random set of neu-
rons during each mini-batch, effectively removing those neurons from the network for
that mini-batch. This forces the network to optimize only those parameters that are
left in the network [10].

2.3.1 Optimizers

There are multiple different optimizers that can be used to optimize the weights.
Common iterative optimizer functions are stochastic gradient descent (SGD) [10] and
Adam [20]. In SGD the gradients of the loss of a batch of inputs are averaged and the
weights are updated using this average:

W = W − ε
(1
b
∇W

b∑
i

L(yi, ŷi)
)
, (2.8)

where b is the batch size, L(yi, ŷi) is the loss of the i:th output and i:th target value,
∇W is the gradient of the loss wrt. all the weights of the network, and ε the learning
rate [10].

By using a momentum-hyperparameter v [21], the direction of the updates during
each time step is affected by the updates of the previous time step. In other words,
with momentum the updates are applied using a moving average of the gradients of
each time step:
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v = αv − ε∇W

(1
b

b∑
i

L(yi, ŷi)
)
, (2.9)

W = W + v, (2.10)

where v is the momentum-hyperparameter and α defines how much the previous value
of v affects the current value [10].

The Adam optimizer works by keeping track of the moving average of the gradi-
ents (first moment estimate mt, similar to momentum) and the square of the gradients
(second order estimate vt). The first moment estimate is an estimate of the mean
of the gradients, and vt an estimate of its uncentered variance. Unlike in SGD with
momentum, where momentum is a single scalar value, in Adam each parameter has its
own first and second order moments that are adapted during training. Adam uses two
separate hyperparameters during training to decay bothmt and vt. Before applying the
updates to the weights, Adam does two more steps. First it does some bias-correction
to the estimates mt and vt, as they are initialized as vectors of 0s, which biases them
towards 0. Then it calculates the ratio rt of the bias-corrected terms, using this and the
step-size parameter α to update the gradients. The ratio rt effectively means distance
from an optimum, with a higher ratio meaning a larger distance from an optimum,
allowing larger steps [10, 20].

We will be using a more recent optimizer, the LAMB optimizer [22], which can
be used to enable better learning in a distributed environment where the total batch
size is larger. Due to the effects a too large total batch size has on the generalization
performance of the model, however, the total batch size cannot grow too large [23].
The LAMB optimizer uses Adam as its base algorithm, and it uses layer-wise learning
rates which are adapted during training. The equations of the LAMB-algorithm for a
single time step t are shown in the equations below [22].
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gt = 1
b

b∑
j

∇l(yj, ŷj), (2.11)

mt = β1mt−1 + (1− β1)gt, (2.12)

vt = β2vt−1 + (1− β2)g2
t , (2.13)

mt = mt

1− βt1
, (2.14)

vt = vt
1− βt2

, (2.15)

rt = mt√
vt + ε

, (2.16)

x
(i)
t+1 = x

(i)
t − ηt

φ||x(i)
i ||

||r(i)
t + λx

(i)
t ||

(r(i)
t + λx

(i)
t ). (2.17)

In Equation 2.11, the gradients of the loss wrt. to the weights of time step t are
first calculated and stored into the variable gt. In Equation 2.12 and 2.13, parameters
β1 and β2 are used to first decay the previous values of mt and vt, after which mt and vt
are updated using the calculated gradient gt and the parameters β1 and β2. Equations
2.14, 2.15 and 2.16 handle the bias correction of mt and vt, and the calculation of their
ratio rt. Equation 2.17 is specific to the LAMB-algorithm. It applies the updates to
the weights one layer i at a time, normalizing the update and decaying weights. In the
update line, rit stands for the calculated ratio rt of layer i, and λ is the weight decay
parameter.



3. Deep learning receiver

The DeepRx model, which we will be working with in this thesis, replaces much of the
functionality of the traditional receiver. To understand better what the DeepRx does,
and what the purpose of our research is, we need to first explain how data has been
traditionally transmitted and received. In this Chapter, we give an overview of how
data is transmitted and received when using OFDM, the DeepRx architecture, and
discuss some other deep learning methods and solutions for receivers that have been
researched.

3.1 Transmission of signals with OFDM

Before discussing how bits are turned into radio waves and back, we will briefly discuss
the radio waves themselves. The properties of a radio wave that are relevant for this
thesis are frequency, amplitude and phase. The base unit for frequency is hertz (Hz),
and it describes how many cycles, or repeating events there are per second. A simple
example of this is a sine wave, where the trip from the top of a wave to the bottom
and back up again is one hertz. The amplitude is the height of the wave, and phase
describes how much the wave is shifted horizontally. These properties are shown in
Figure 3.1. The scale of amplitude and time are purposefully not shown, to make the
figures as simple as possible.

(a) Two time domain signals
with different frequencies.

(b) Two time domain signals
with the same frequency but a
different phase.

(c) Two time domain signals
with the same frequency but a
different amplitude.

Figure 3.1

13
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A signal can be represented in frequency domain or time domain. The signals in
Figure 3.1 are an example of time domain signals: time is on the x-axis, and the y-axis
describes the changes in the signal. When the signal is represented in the frequency
domain, the frequency is on the x-axis and the power, or amplitude is on the y-axis. A
frequency domain representation describes how much power each frequency has (Figure
3.2(b)).

In OFDM the frequencies of a transmission are selected so that they are orthog-
onal to each other; when the power of one frequency peaks, the power of others is
zero. By using an operation known as inverse fast Fourier transform (IFFT) multiple
frequencies can be combined into a single time domain signal, which can be then sepa-
rated back to the frequency components with fast Fourier transform (FFT) [24, 25, 26].
An example of this is shown in Figure 3.2, where (a) shows a single time domain signal
consisting of two different time domain signals, and (b) shows the results of the FFT.
After FFT, the single signal has been separated into its frequency components (Figure
2.1(b)).

(a) (b)

Figure 3.2: On the left, a single time domain signal (black) consisting of two different frequencies
(grey dotted lines). On the right, the same signal split into its frequency components in frequency
domain, after FFT.

The process of transmitting and receiving data in 5G is shown in Figure 3.3.
When transmitting data, the first step is the channel coding, where error detecting
bits are attached to the data, and the number of bits transmitted is matched with the
available resources[26]. These are shown in Figure 3.3 as LDPC-encoding, which is the
error detection part, and rate matching, which handles the matching of the number
of transmitted bits to available resources. In Figure 3.3, channel coding is followed
by symbol mapping, which means modulating the data with a modulation and coding
scheme (MCS) and mapping the resulting symbols to physical resource blocks (PRBs).
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Figure 3.3: Flowchart showing how data is transmitted and received in 5G, and which parts DeepRx
replaces. The top shows the transmitter, and the bottom the receiver. Picture from [15], © 2021 IEEE
(reprinted with permission).

Modulation is a complicated operation, and as it is not the focus of this thesis, we
will only give a simplified explanation. There are multiple ways to modulate the data,
QAM-modulation being one of the options. By using QAM-modulation, different sets
of bits can be represented by varying the amplitude and phase of a signal [26]. Each
combination of amplitude and phase is unique, and the signal it results in is called a
modulated symbol. The selected MCS determines how many bits a modulated symbol
represents; in 16-QAM a modulated symbol represents 4 bits, whereas in 64-QAM
symbols this is 6 bits [24, 25, 26]. A 16-QAM and a 64-QAM constellation are shown
side by side in figure 3.4.

Figure 3.4: 16-QAM and 64-QAM constellations. A simplified explanation for QAM-modulation is
that the x-axis determines the amplitude of the signal and the y-axis determines the phase.

In Figure 3.4 each point (symbol) represents a set of bits. While 16-QAM uses
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fewer bits per symbol, the amplitude and phase difference between different symbols
is larger. This makes it easier for the receiver to determine what symbol is received,
even if the received symbol is noisy [26]. Generally, a lower MCS is better for channels
with bad conditions, where the received data is very noisy.

In MIMO the modulated symbols can be transmitted in parallel using spatial mul-
tiplexing. In spatial multiplexing, the data is split into MIMO layers, which are trans-
mitted in parallel using multiple antennas and same frequencies [27]. The resources of
a single antenna are divided into time-frequency grids called physical resource blocks
(PRBs). A single PRB in 5G has space for 14 OFDM symbols on the x-axis and 12
subcarriers (frequencies separated by a set amount, 15kHz in our case) on the y-axis,
with a total space of 168 resource elements (REs) in the grid. Each modulated symbol
is mapped to a single RE, and pilot symbols are added to specific REs (DMRS inser-
tion in Figure 3.3). The pilot symbols are symbols that are known, and they are used
in the receiver to estimate the state of the channel. In MIMO, each MIMO layer has
different pilot symbol positions, selected so that the positions are not in use in other
MIMO layers. Figure 3.5 shows an example of the PRBs and pilot symbols used in a
transmission with two MIMO layers.

Figure 3.5: A figure showing the positions of pilot symbols (black) and modulated data symbols
(white) on the PRBs when two MIMO layers are used. Each square is a resource element. On y-axis
are the subcarriers. The positions of pilot symbols of one MIMO-layer are not in use in the other
MIMO layer (gray squares). Inverse Fast Fourier Transform is used on a column of the PRB to create
an OFDM symbol, which is a time domain signal.

After the addition of the pilot symbols, inverse Fast Fourier Transform (IFFT) is
used to turn the data of the different subcarriers of a column into a single time domain
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OFDM symbol. After this, a cyclic prefix (CP), which is a piece copied from the end
of a symbol, is added to the beginning of each OFDM symbol. Cyclic prefix is used
to help with the issue of inter-symbol interference (ISI), which occurs when a received
symbol interferes with another received symbol, and the symbols are mixed [28, 29, 15].

On the receiver side there are similar steps but in reverse order. The cyclic prefixes
are removed, and Fast Fourier Transform is used to turn the received time domain
signal into the frequency domain components it consisted of. Once the frequency
domain symbols are retrieved, the receiver uses the pilot symbols received to estimate
the channel. The channel estimate is used to remove the effects of ISI on the received
data symbols, using a process known as equalization. Finally, the log-likelihood ratios
(LLRs) for the received symbols are calculated in the demapping process. We define
the LLRs as

Lijl = log
(
Pr(cl = 0|x̂ij)
Pr(cl = 1|x̂ij)

)
, (3.1)

where Pr(cl = b|x̂ij) is the conditional probability that a bit at position l of a received
symbol is b, given the received symbol x̂ij. Once calculated, the LLRs are fed through
the rate dematching and LDPC decoding processes. If the LDPC decoding succeeds,
all the bits were received successfully [15].

3.2 DeepRx

DeepRx [15] is a deep fully convolutional neural network that is used to replace much
of the functionality of a traditional receiver (see Figure 3.3). It replaces the channel
estimation, equalization and LLR calculation parts of the traditional receiver with a
neural network, taking as input the signal after the Fast Fourier Transform, and out-
putting the LLRs of bits. The neural network introduced in the original DeepRx paper
is restricted to a SIMO (single-input, multiple-output) system, where the expected
number of transmitting antennas is 1. However, we will base our iterative model on
the MIMO version of the DeepRx, where there are multiple transmitting antennas, and
where each layer, meaning a data stream from a transmitting antenna to a receiving
one, has their own pilot symbols [5]. The input to the SIMO DeepRx is similar to that
of the MIMO DeepRx, so we will briefly discuss that first, as understanding it helps
understanding the MIMO model better.

The input Z to the SIMO DeepRx is an S×F × 2Nc grid, where S is the number
of OFDM symbols and F is the number of subcarriers used. To explain Nc, we will first
discuss the three parts that the input consists of. Y is the received signal after Fast
Fourier Transform, including the pilot symbols. This is a grid of shape S × F × Nr,



18 Chapter 3. Deep learning receiver

where S and F are as above and Nr is the number of receiving antennas. The second
part, Xp, is a grid of shape S × F , which contains zeros in all positions except those
where the pilot symbols are positioned in the input. The third part, Hr, is also a
grid of shape S × F × Nr, and contains the precomputed raw channel estimates for
the pilot positions. The result of concatenating Y, Xp and Hr is a tensor of shape
S×F ×Nc, where Nc = 2Nr + 1. The received signal is a complex number, so the real
and imaginary parts of the complex numbers are separated into different channels. This
doubles the number of input channels, resulting in the final input shape of S×F ×2Nc.
The network outputs a tensor with shape S × F × B, where B is the number of bits
per modulated symbol [15].

The input to the MIMO DeepRx is different to the SIMO DeepRx because the
MIMO DeepRx network contains additional preprocessing layers, preDeepRx and mul-
tiplicative layer, which are trained together with the actual DeepRx model [5]. The
input to the first preprocessing layer consists of the concatenation of two tensors: the
tensor containing received data signals, which has the shape F ×S×NR and the tensor
containing the raw-channel estimates, which has the shape F ×S×NR×NT , where NT

is the number of transmitting antennas. Unlike the SIMO DeepRx however, the real
and imaginary parts of the complex numbers are not separated into separate channels.
The concatenation results in a tensor with shape F ×S×NR(1+NT ). The preDeepRx
layer is a 3-block residual network, and its output is fed into the multiplicative layer.
The multiplicative layer learns which inputs and channels need to be multiplied, and
it scales the imaginary parts of the complex numbers of the channels. The output of
the multiplicative network is fed to the actual DeepRx model [5]. The architecture of
the MIMO DeepRx is shown in Figure 3.6

Figure 3.6: The architecture of the MIMO DeepRx. The received data and raw channel estimates
are concatenated and fed as input to the preprocessing layers. The output of the multiplicative layer
is used as input to the actual DeepRx model. Blocks where trainable weights are used are shown in
gray. Picture from [15], © 2021 IEEE (reprinted with permission).

The actual DeepRx model is similar in both the MIMO and SIMO case, with
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the exception that the MIMO model has more channels. The model is a deep fully
convolutional network with depthwise separable convolutions, residual connections and
batch normalization. It consists of multiple residual blocks and a final layer, which will
output the final output of the network. The model does not contain pooling layers to
keep the resolution constant (S × F ) throughout the network. The model also makes
use of dilations [15, 5]. A single residual block is shown in Figure 3.7.

Figure 3.7: A single residual block of DeepRx. One block contains depthwise separable convolutions,
batch normalization operations and non-linearity operations (ReLU). Picture from [15], © 2021 IEEE
(reprinted with permission).

The loss function used for the model is

Lq(θ) = log2(1 + sq)CEq(θ), (3.2)

where sq is the signal-to-noise ratio of the qth sample, and CEq(θ) represents the
binary sigmoid cross-entropy for the qth sample and weight vector θ. The binary
sigmoid cross-entropy is defined as

CE(θ) = − 1
DB

∑
i,j∈D

B−1∑
l=0

(
bijl log(b̂ijl) + (1− bijl log(1− b̂ijl))

)
. (3.3)

In the equation above, D stands for the number of data carrying symbols received, B
is the number of bits per modulated symbols, bijl is the lth bit of the symbol in position
(i,j) of the received data matrix. The last term in Equation 3.3, b̂ijl, is the DeepRx
model’s output for the same bit, passed through the sigmoid function (Equation 2.3).
Simply put, b̂ijl estimates the probability that the bit is one [15]. The network predicts
for each received bit the probability that the bit is one, and by using binary sigmoid
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cross-entropy the network learns to give high probability to bits that are one, and low
probability to bits that are not.

To allow the network to work with different QAM schemes (where number of bits
per received symbol varies), the model makes use of the hierarchies between different
constellations. The hierarchies mean that 4 points (symbols) in a higher modulation
and coding scheme can be mapped to a single point in a lower modulation and coding
scheme. The number of outputs for a symbol is set to 8 (256-QAM), and the outputs
of the network are masked so that only the actual bits used in modulation are used.
The MIMO DeepRx configuration used in this thesis is shown in Table 3.1.

Layer Output channels Additional parameters
PreDeepRx residual block 1 128 kernel size=3, dilation=(1,1)
PreDeepRx residual block 2 128 kernel size=3, dilation=(1,1)
PreDeepRx residual block 3 128 kernel size=3, dilation=(1,1)

Multiplicative layer 52
Residual block 1 128 kernel size=3, dilation=(1,1)
Residual block 2 128 kernel size=3, dilation=(1,1)
Residual block 3 256 kernel size=3, dilation=(3,2)
Residual block 4 256 kernel size=3, dilation=(3,2)
Residual block 5 256 kernel size=3, dilation=(3,2)
Residual block 6 256 kernel size=3, dilation=(6,3)
Residual block 7 256 kernel size=3, dilation=(3,2)
Residual block 8 256 kernel size=3, dilation=(3,2)
Residual block 9 256 kernel size=3, dilation=(3,2)
Residual block 10 128 kernel size=3, dilation=(1,1)
Residual block 11 128 kernel size=3, dilation=(1,1)

Output convolutional layer 16

Table 3.1: Configuration of the MIMO DeepRx.

3.2.1 Iterative DeepRx

The DeepRx, as shown earlier, is a deep fully convolutional neural network. In our case,
the DeepRx has 3 residual blocks in the PreDeepRx part, and 11 residual blocks in the
DeepRx part (Table 3.1). While a deep model with a fixed number of layers can be
powerful, it does contain a large number of parameters and it can be computationally
very expensive to use. A possible solution for this is to use an iterative model. Nokia
Bell Labs has developed an iterative version of the MIMO DeepRx model with only a
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few residual blocks that have a recurrent connection to the beginning. The difference
between this iterative model and a non-iterative model is shown in Figure 3.8. The
output of the last residual block is used by the output layer during each iteration to get
the LLRs of the iteration. The output of the last residual block is concatenated with
the LLRs and concatenation is used as input for the next iteration. During training
the model is trained with a fixed number of iterations and loss is calculated after each
iteration using the LLRs, and summed at the end to get the final loss of the network.
In mathematical terms, the loss function of an iterative model is

CEiter = CE(b, b̂(0)) + CE(b, b̂(1)) + ...+ CE(b, b̂(N)), (3.4)

where CE(b, b̂(k)) is the binary sigmoid cross-entropy loss with predicted bit probabil-
ities b̂(k) of kth iteration.

Figure 3.8: An iterative DeepRx model with one residual block on the left, a non-iterative model
with N-ResNetBlocks on the right. In the iterative model the loss is calculated after each iteration,
and the final loss is the sum of the losses.

3.3 Related works

The use of deep learning methods in the receiver is an active field of research. Deep
learning solutions for receivers can be categorized into two categories, solutions that
replace or enhance single parts of the receiver, and solutions that replace multiple parts
with a single machine learning model [30, 3]. Examples of the former category are using
deep learning for tasks such as MIMO-detection [31] or channel estimation and signal
detection [2]. Examples of the latter category are works such as the already discussed
DeepRx, as well as the Deep-Waveform [4], where the used machine learning archi-
tecture is a deep complex-valued convolutional neural network (DCCN). The DCCN
takes as input a synchronized time-domain signal, and outputs the LLRs of the bits.

A hybrid approach is to replace multiple parts in the receiver with multiple ma-
chine learning models. Goutay et al. propose an ML-enhanced receiver architecture
for multi-user MIMO [30], which replaces multiple components of the traditional re-
ceiver with machine learning models. The architecture utilizes convolutional neural
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networks, using separate convolutional neural networks for channel estimation and for
calculating the LLRs. By copying the machine learning models for every user and
sharing the trainable parameters between the copies, the architecture scales to work
with multi-user MIMO. All the machine learning components are trained jointly using
the estimated LLRs and binary sigmoid cross-entropy, similar to DeepRx. The archi-
tecture uses pre-activation residual blocks similar to DeepRx, with depthwise separable
convolutions and dilated convolutions. Due to the fact that it only uses machine learn-
ing during channel estimation and calculating the LLRs, the ML-enhanced receiver is
computationally less expensive than the original DeepRx.

Deep learning solutions have also been proposed for tasks different than the re-
ceiver tasks we have discussed so far. For example, Hanna et al. [32] discuss the
possibility of using a Dual Path Network (DPN) in the blind decoding of symbols
and classification of modulation and coding schemes. In this setup the receiver works
blindly, receiving data without having information such as the modulation and coding
scheme used, the length of the received signal or the preamble (a signal used in tasks
such as time synchronization and channel estimation [29]). The DPN is an architec-
ture consisting of a signal path and a feature path. The signal path uses parameters
provided by the feature path to remove effects such as ISI and noise from the signal.
The feature path predicts these parameters by using neural networks, using the original
signal and the outputs of different steps of the signal path as input.

Some previous work has researched the training of both the transmitter and
the receiver jointly using the autoencoder architecture [33, 3]. Autoencoder is an
architecture where the network has two parts, an encoder and a decoder. The encoder
learns to encode its input to some (typically) lower dimensional representation, and
the decoder learns to decode this representation back to the original input. Using
autoencoders, the transmitter functions as the encoder which encodes the transmitted
data, and the receiver functions as a decoder which decodes the encoded data. This
type of architecture does seem like a good solution for transmitting data, as the output
of the receiver should be exactly what was transmitted.



4. Stopping condition neural
network

While an iterative version of the DeepRx has fewer trainable parameters than the deep
version, using the iterative DeepRx can lead to unnecessary computations. Because the
iterative model is trained with a fixed number of iterations, during inference the model
keeps iterating until this fixed number of iterations has been completed, even if the
signal could already be decoded earlier. In an ideal case the model should iterate only
as much as is required for the signal to be decoded successfully. To support varying
levels of iteration, we train a separate neural network that takes the output of an
iteration as input and predicts how many iterations are required before its input can
be decoded. We will call this separate neural network the stopping condition neural
network (SCNN).

4.1 Creating the training and validation data

The SCNN is a model which uses the output of an iteration of the iterative DeepRx,
and predicts how many iterations are required. The goal is to train a model which
can accurately predict the number of iterations required. Before training an SCNN,
however, an iterative model needs to be trained first, and the training and validation
sets for the SCNN need to be created. To create the data sets we will make use of
a pretrained iterative DeepRx, that is trained with a fixed number of iterations. To
enable performance comparisons with the MIMO DeepRx model, we will train the fixed
iterations network with simulated data that is generated for a 4x2 MIMO case, using
a simulator created with Matlab’s 5G Toolbox [5]. The data contains different levels
of noise, with the signal-to-noise ratio (SNR) varying from -3 dB (very noisy signal
received) to 31dB (very good quality signal received). The QAM-modulation used for
the data is 16-QAM (4 bits per symbol).

We train a single model with 6 iterations using data simulated for a 4x2 MIMO
case (4 transmitting antennas and 2 receiving antennas). The architecture of the
iterative model is shown in Table 4.1. The PreDeepRx-layers consist of one residual

23
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Layer Output size
PreDeepRx residual block 1 312×14× 128

Multiplicative layer 312×14× 54
DeepRx residual block 1 312×14× 128
DeepRx residual block 2 312×14× 128
DeepRx residual block 3 312×14× 128
DeepRx residual block 4 312×14× 112

Output layer 312×14× 16

Table 4.1: Configuration of the iterative DeepRx used to generate the data.

block with 128 kernels. The DeepRx part consists of four residual blocks and one
output layer. The convolutional layers of the first three DeepRx residual blocks have
128 kernels of size 3x3. The convolutional layers of the last DeepRx residual block have
16 fewer kernels, because its output is concatenated with the output layer’s output,
which has 16 kernels, resulting in a total output size of 312× 14× 128. This tensor is
used as input during the next iteration. The LLRs that are fed to the LDPC-decoder
are in the output layer’s output, reshaped to size 2××312× 14× 8. The first DeepRx
residual block uses 3-dilated kernels in the horizontal direction and 2-dilated kernels
in the vertical direction. The next three DeepRx residual blocks use 1-dilated kernels
(normal kernels) in both horizontal and vertical directions.

Once the model is trained, we will feed the trained model its training and valida-
tion data sets as input and create the training and validation data sets for the SCNN
using Algorithm 1 shown below.

The algorithm describes a case where batch-processing is not used, and the net-
work only takes a single input at a time. The output of each iteration is fed into an
LDPC-decoder (line 6). If the decoding is a success, the number of iterations so far
and the output of the iteration are saved, and the execution of the first loop is stopped.
If the decoding fails, the output of the iteration is saved, and the loop continues (lines
7-11).

After the first loop, if the decoding was not successful at any point, the number of
iterations required to decode is set to be higher than the maximum number of iterations
(lines 12-13). After this, a second loop is started, during which the number of iterations
until decoding was successful is combined with the output of an iteration, to create a
final training data point (lines 14-18). The final data point will contain the output of
an iteration, and the number of iterations remaining until that output was successfully
decoded.
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Algorithm 1: Create SCNN data set
1 outputs = array[maxIter]
2 input = inputToNetwork
3 target = 0

4 for iter = 1 to maxIter do
5 input = runIteration(input)
6 ldpc = ldpcDecode(input)
7 if ldpc == 1 then
8 target = iter
9 outputs[iter] = input

10 break
11 outputs[iter] = input
12 if target == 0 then
13 target = maxIter + 1
14 for iter = 1 to maxIter do
15 if target > iter then
16 item = outputs[iter]
17 numItersRemaining = target− iter
18 saveTrainingDataPoint(item, numItersRemaining)

In Figure 4.1, we show some statistics about the training data set generated with
this method using the 4x2 MIMO model. As is seen in Figure 4.1 (a), the distribution of
the target value is quite even. The only exception is target category 0, which is nearly
double the size of the other values. The reason for this is seen in Figure 4.1 (c), where
it is shown that most of the decoded samples were decoded after just one iteration.
Because of the second loop, each sample that required more than one iteration also
contributes to the lower values, as the loop continues until that sample is decoded and
numItersRemaining on line 17 is zero. However, samples that were decoded after one
iteration only iterate the second loop once, increasing only the number of samples in
category 0. A scatter plot showing the SNRs and number of iterations of samples is
shown in Figure 4.1 (b). Many samples that were decoded, especially samples with
higher SNR, were decoded with just 1 iteration. However, some successfully decoded
samples with lower SNR required more iterations.

The distribution of successful and unsuccessful decoding per SNR is shown in
Figure 4.1 (d). The plot contains information about the amount of data successfully
decoded or unsuccessfully decoded per SNR. The distribution of the samples is skewed
to the right towards the lower SNRs. This explains the high number of values in column
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7 of Figure 4.1 (c), because a large portion of the data is data with SNR lower than
2, below which the model produces poor results. Samples with SNR higher than 13
were almost always decoded successfully, and samples that fall between 2 and 13 were
either decoded or not, with a higher number of samples not decoded.

(a) Distribution of iterations remaining until
decoding was successful. This is used as target
when training the SCNN.

(b) Scatter plot showing the iterations re-
quired for decoding the signal per SNR.
Higher SNR data could be decoded with 1 or
2 iterations, some lower SNR samples required
more iterations.

(c) Distribution of iterations required. Most
samples that were decoded successfully were
decoded after 1 iteration.

(d) Distribution of successfully decoded and
unsuccessfully decoded data, with SNR on the
x-axis.

Figure 4.1

4.2 Training the stopping condition neural network

The architecture of the SCNN is a residual network with k residual blocks similar to
what is shown in Figure 3.7. The size of the tensor should be reduced before it is fed
to a fully connected network later, so we will use an average pooling operation after
each residual block to gradually reduce the size of the data. After the residual blocks,
there are the fully connected layers and an output layer. The output layer contains t
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units, where t is the size of the target array. We use softmax as the activation function
of the output layer to create a probability distribution for the outputs. The goal of
training the SCNN is to maximize the probability of the correct output and minimize
the probability of other outputs. The loss function used for the network is categorical
cross-entropy.

We will train an SCNN using data generated with the iterative model. A single
input to the SCNN models has dimensions 312× 14× 128, and the target is a one-hot
encoded array of size 7. The model uses average pooling layers between residual blocks,
aiming to reduce the dimensions as much as possible without losing too much infor-
mation. Because fully connected layers introduce a lot of parameters to the network,
the dimensions of the data need to be as small as possible, to allow for smaller fully
connected layer sizes. The configuration of the SCNN is shown in Table 4.2.

Layer Output size Additional parameters
Residual block 1 312×14× 128 kernel size=5, dilation=(1,1)
Average Pooling 156×7× 128 Pool size=(2,2)
Residual block 2 156×7× 128 kernel size=5, dilation=(1,1)
Average Pooling 78×4× 128 Pool size=(2,2)
Residual block 3 78×4× 128 kernel size=5, dilation=(1,1)
Average Pooling 39×2× 32 Pool size=(2,2)
Residual block 4 39×2× 32 kernel size=5, dilation=(1,1)
Average Pooling 20×1× 32 Pool size=(2,2)

Fully connected layer 1 64 dropout rate=0.3
Fully connected layer 2 64 dropout rate=0.3

Softmax layer 7

Table 4.2: Configuration of the stopping condition network which uses average pooling operations
between residual blocks.

The average pooling layers of the SCNN gradually reduce the size of the input,
halving the width and height of the input each time. The result is a tensor with
dimensions 20 × 1 × 32. The tensor is flattened to a vector of size 640 that is fed as
input to the fully connected layers. The fully connected network of the SCNN has 2
hidden layers with 64 neurons, and an output layer with 7 neurons. The hidden layers
use a dropout rate of 0.3 as a regularization method.

The model is trained for 200 000 iterations, where one iteration equals one training
sample. Learning rate is increased gradually for 800 iterations until it reaches 0.00001
per sample. The learning rate stays at 0.00001 per sample until 30% of the iterations
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have been completed, after which it is decreased linearly to 0. Validation is run every
20 000 samples to keep track of the validation loss. In addition to validation loss,
we will keep track of two other metrics, validation accuracy and validation probability.
Validation accuracy is the number of correct predictions in a batch divided by the batch
size. A prediction is correct if the number of iterations with the highest probability
equals the target value. Validation probability is the probability of the predicted value.
In an ideal case the probability of prediction is always 100%, however it will be less in
most, if not all of the validation cases. The probability will be used later in the inference
phase, where the prediction probability must be higher than a given threshold.

4.3 Inference with DeepRx using the stopping con-
dition

There are two ways to use the SCNN together with the iterative DeepRx, both shown
below in Algorithm 2 and 3. Intuitively, Algorithm 2 is an actual stopping condition,
as during each iteration the SCNN is used to check whether to continue iterating or to
quit. Algorithm 3, on the other hand, only uses the SCNN once, or until a prediction
has a high enough probability. Using the SCNN only once is an ideal choice, as it
results in fewer computations during inference, however we will test both methods to
see how they perform.

Algorithm 2: DeepRx inference, run SCNN after every iteration

1 inputToNextIter = input
2 for iter = 1 to maxIter do
3 inputToNextIter, LLRs of iteration = runIteration(inputToNextIter)
4 numItersRemaining, probability = SCNN(inputToNextIter)
5 if probability < threshold then
6 continue
7 if numItersRemaining == 0 then
8 return LLRs of iteration
9 if (numItersRemaining + iter) > maxIter then

10 return LLRs of iteration
11 return LLRs of iteration

Predicting the number of iterations after each iteration requires the setting of
two stopping conditions for the prediction. If the prediction is zero iterations, the
iteration can be stopped instantly, as the output of the iteration can be decoded al-



4.3. Inference with DeepRx using the stopping condition 29

ready. Similarly, if the prediction leads to a higher number of iterations than the
maximum number of iterations, the iteration is stopped, as the output of the itera-
tion cannot be decoded within the maximum number of iterations, making continuing
pointless. In addition, a probability threshold can be set, so that if the probability
of the prediction is lower than the threshold, the prediction is ignored and the itera-
tion continued. This way the more uncertain predictions are not taken into account,
and only the predictions which are more certain affect the stopping of the network.
However, finding a good threshold does require some experiments with the model.

Algorithm 3: DeepRx inference, run SCNN once

1 stopIter = null
2 inputToNextIter = input
3 for iter = 1 to maxIter do
4 inputToNextIter, LLRs of iteration = runIteration(inputToNextIter)
5 if stopIter == null then
6 numItersRemaining, probability = SCNN(inputToNextIter)
7 if probability > threshold then
8 stopIter = iter + numItersRemaining
9 if stopIter == iter then

10 return LLRs of iteration

Predicting the number of iterations once is a more straightforward process: after
the first iteration the SCNN is called with the output of the iteration, and the number
of iterations run is capped to the output of the SCNN. In terms of performance this is
the ideal way to use the SCNN, as the number of additional computations is minimal.
As with the previous case, a probability threshold can be set to only accept predictions
that are highly probable. If a threshold is used however, the SCNN might be called
multiple times, until the threshold is crossed or the maximum number of iterations is
completed.





5. Results and discussion

In the first section of this Chapter we compare the total amount of parameters between
a deep model, an iterative model, and an iterative model which uses an SCNN. Then
we will test the accuracy of the predictions of the SCNN, using the Algorithms 2 and
3, with and without a threshold. In the last section we will test how an iterative model
with an SCNN performs compared to a deep model and an iterative model without an
SCNN, by comparing the uncoded bit error rates of the models. Finally, we compare
the amount of time an inference takes on average with different models.

5.1 Parameters and inference time

As stated in Chapter 4, the iterative model should be more lightweight than the deep
model, even when it is using an SCNN. The deep model we compare our models to
is a MIMO DeepRx model with DeepRx layers similar to what was described in the
original DeepRx paper, however with the added PreDeepRx layers that the MIMO case
requires. The configuration of this network is shown in Table 3.1, while the iterative
model is the model used to create the training data for the SCNN, shown in Table 4.1.

A comparison of the parameters of the different models is shown in Table 5.1.
The deep model has close to 3000 000 parameters, whereas the iterative model has less
than a third of that. Adding the SCNN to the iterative model increases the number
of parameters by a few percent, setting its total amount to approximately 36% of
the number of parameters of the deep model. Clearly The iterative model is a more
lightweight model than the deep model, even when using the SCNN.

Model Number of parameters % of deep model parameters
Deep model 2,952,720 (2.9M) 100%

Iterative model 920,999 (0.92M) 31.19%
Iterative model + SCNN 1,062,638 (1.06M) 35.99%

Table 5.1: Comparison of the number of trainable parameters of each model.
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While the smaller number of parameters makes it a more lightweight model, the
computations can still take as much time as with the deep model, if the number of
iterations used is, on average, large. We test the performance of an iterative model
which uses an SCNN (which we call NNscnn) using the validation set. We are interested
in the distribution of iterations completed when the SCNN is used, as well as the
distribution of the decoding results of the samples.

5.2 Performance of the SCNN

In this section we discuss the accuracy of the SCNN when used with an iterative model.
More specifically, we discuss the false negatives and positives, as well as true negatives
and positives. We consider a prediction of the SCNN to be correct if a sample is
decoded and is processed in 1-6 iterations, or if a sample is not decoded successfully
and predicted to take 7 iterations. Similarly, an incorrect prediction is one where the
sample is not decoded but is predicted to take 1-6 iterations, or the sample is decoded
and predicted to take 7 iterations. We refer to samples which were not decoded, and
which are in categories 1-6 as false positives, and decoded samples in category 7 as false
negatives. We consider 4 scenarios: predict once during inference with no threshold
and with threshold 0.5 (probability over 50%), and predict after each iteration with
no threshold and threshold of 0.5. For each scenario, we ran over 80000 inferences
with NNscnn using the validation set. The number of iterations each inference required
was saved and mapped to the result of the decoding. Table 5.2 shows the results for
the first two scenarios, where the SCNN is only called once (until probability exceeds
threshold).

As seen in the table, with or without a threshold the SCNN was able to predict
with relatively high accuracy which samples could not be decoded, with over 90% of
the undecoded samples predicted to be in category 7. Similarly, in both scenarios the
most successfully decoded samples required only 1 iteration, with a smaller number of
samples requiring 2 or 3 iterations. In both scenarios none of the samples were predicted
to take 4 or 5 iterations. Without a threshold, 21 samples required 6 iterations but
were not decoded successfully, whereas with a threshold this category was empty. Some
samples that used 1 to 3 iterations could not be decoded, implying that they either
would have required more iterations, or the SCNN should have predicted a category
7. The 21 samples in category 6 can be considered to be outliers, as the training data
had no samples that belonged to category 6.

Predicting once with a threshold of 0.5 resulted in a distribution of iterations quite
similar to the distribution of the no threshold case, with the most notable differences
being in categories 1, 2 and 7. In category 1 using a threshold reduces the number of
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Predict once, no threshold
Iterations Decoded/not decoded samples % out of 84600

1 48882/2338 57.78%/2.76%
2 488/235 0.58%/0.28%
3 212/43 0.25%/0.05%
4 0/0 0%/0%
5 0/0 0%/0%
6 0/21 0%/0.02%
7 42/32339 0.05%/38.23%

Predict once, threshold 0.5
Iterations Decoded/not decoded samples % out of 84600

1 48360/1758 57.16%/2.08%
2 1334/382 1.58%/0.45%
3 148/128 0.17%/0.15%
4 0/21 0%/0.02%
5 0/0 0%/0%
6 0/42 0%/0.05%
7 233/32194 0.28%/38.05%

Table 5.2: Table showing the number of samples decoded or not decoded when using an SCNN with
an iterative DeepRx. On top, no threshold was used, on bottom, a threshold of 0.5 was used.

false positives (that is, samples that should be in category 7, but are in categories 1-6)
by nearly a 1000. The number of true positive samples in category 2 is increased by
1%, with a small increase in false positives however, and a decrease in the true positives
of category 1.

Table 5.3 shows the results of using Algorithm 2, for a case when no threshold was
used, and when a threshold of 0.5 was used. The results are similar to the ones above,
with the iterations having a similar distribution as them. Using a threshold caused an
increase in the false negatives in category 7, as well as false positives in categories 2-3.

The number of false positives in categories 1-3, as well as the near empty cate-
gories of 4-6 could be explained by the uneven distribution of iterations in the training
data. If we compare the distribution of Figures 5.2 and 5.3 to the distribution of iter-
ations in the training data (Figure 4.1(c)), we see that in all distributions iteration 1
has the most samples out of all the categories 1-6. However, while the training data
has samples in columns 4-5, the SCNN predicted close to 0 samples in those columns.
It can be reasonable to assume that the samples that weren’t decoded in 1-3 iterations
are samples that might belong to categories 4-5 (or category 7), as the number of it-
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Predict during each iteration, no threshold
Iterations Decoded/not decoded total % out of 84600

1 48830/2279 57.72%/2.69%
2 637/214 0.75%/0.25%
3 64/0 0.08%/0.03%
4 0/0 0%/0%
5 0/0 0%/0%
6 0/0 0%/0%
7 63/32513 0.07%/38.43%

Predict during each iteration, threshold 0.5
Iterations Decoded/not decoded total % out of 84600

1 48376/1761 57.18%/2.08%
2 1381/379 1.63%/0.45%
3 85/85 0.10%/0.10%
4 0/0 0/0
5 0/0 0/0
6 0/0 0/0
7 233/32300 0.28%/38.18%

Table 5.3: A table similar to 5.2, but SCNN was run after each iteration.

erations predicted can be expected to follow a somewhat similar distribution to the
one shown in Figure 4.1. The uneven distribution in the training data can affect the
performance of the SCNN. Because an iterative model which uses an SCNN should
have a similar distribution of iterations as the training data, it could be the case that
the SCNN has predicts the samples which took 4-5 iterations incorrectly, to improve
overall performance and to generalize better.

5.3 Comparison to other DeepRx models

To get a better understanding of how well the NNscnn, we will next compare its perfor-
mance to two other models: the deep MIMO DeepRx NNdeep, and an iterative model
NNfixed which does not use an SCNN. We will use the uncoded BER (bit error rate)
as a metric. Before calculating the uncoded BER, the LLRs need to be turned into
bits. Each LLR in the output is turned into a bit using the following equation:

bit =

1, if LLR < 0

0, otherwise.
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The resulting bits are compared to the target bits, and the ratio of false predictions
and total bits define the uncoded BER [15]. Figure 5.1 shows the uncoded BER of the
different models. The plots show SINR (signal to interference and noise) on the x-axis,
and the uncoded BER on the y-axis. In our case the SINR will equal SNR, because in
the data the interference is 0.

(a) Uncoded BER of NNdeep. (b) Uncoded BER of NNfixed.

(c) Uncoded BER of NNscnn.

Figure 5.1: Uncoded BERs of the different DeepRx models compared to the uncoded BER of a
traditional receiver (described in Section 3.1). Green line shows the uncoded BER of a traditional
receiver which has full channel information.

The results in the figure show that NNdeep and NNfixed have similar uncoded
BERs, with uncoded BER decreasing as SNR increases. With NNscnn the results are
different, as while the uncoded BER does decrease as SNR increases, the decrease is
smaller than with the other two models. NNscnn performs worse than the LMMSE-
receiver when the channel is known (green line). The reason for the results can be
found in the SCNN: as was shown in Figure 4.1(b), the higher SNR data points were
decoded with only 1 or 2 iterations. Because the iterative model always completes at
least 1 iteration, the false positives of category 1 (Table 5.2 and 5.3) could be samples
of high SNR that would have been decoded on iteration 2. As inference was stopped
after the completion of the first iteration, the sample could not be decoded perfectly,
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leading to an increase in the uncoded BER in the high SNR range. The same reasoning
applies to false positives in category 2. They might be samples that could be decoded
in 3 iterations.

Model Inference time avg. Inference time sd
NNdeep 34.3ms 5.76ms
NNfixed 50ms 5.82ms
NN scnn, predict once, 0 threshold 24.55ms 4.08ms
NNscnn, predict once, 0.5 threshold 25.22ms 3.72ms
NN scnn, predict continuously, 0 threshold 25.12ms 5.26ms
NNscnn, predict continuously, 0.5 threshold 25.34ms 4.53ms

Table 5.4: Averages and standard deviations of inference times of each model.

We also compared the time an inference required on average with each model
using the validation set and a batch size of 1. While the inference time itself depends
on the hardware, as well as the configurations of the different networks, the difference
in the averages can provide useful information, such as how much faster the iterative
model is when using a stopping condition network. The average inference times and
standard deviations (sd) are shown in table 5.4.

Using an SCNN is clearly faster than both NNdeep and NNfixed, requiring only
half as much time as the fixed model, and close to 30% less time than the deep model.
NNfixed is the slowest, as it needs to run the four residual blocks and the output layer
6 times during each inference. While the inference time of NNfixed can be reduced
by using a configuration with less iterations, as long as there are samples which can
be decoded with less iterations than the maximum amount, using an SCNN should be
faster than not using one.

To summarize all the results, using an iterative DeepRx model with an SCNN
can lead to models with significantly fewer parameters and faster inference time. The
downside is that the SCNN can increase the uncoded bit error rate of the iterative
DeepRx. It is possible this could be fixed by using an iterative DeepRx configuration
where the iterations required to decode the samples are distributed more evenly.



6. Conclusion

In this thesis we considered the use of a stopping condition neural network in com-
bination with an iterative DeepRx model. The motivation behind our work was that
when combined with a separate stopping condition neural network, the iterative model
would be able to vary the number of iterations it uses, using fewer iterations for good
quality signals and more iterations for noisier signals. In the case of a very poor quality
signal, which the receiver cannot decode, the stopping condition neural network would
be able to predict that decoding the signal is not possible and would stop the iterative
model from processing the input any further.

To train the stopping condition neural network we first trained an iterative model
with a fixed number of iterations. We then created the training and validation sets
for the stopping condition neural network. This we achieved by doing inference on
the training and validation sets of the fixed model, using an LDPC-decoder after each
iteration and saving the output of each iteration. We considered the task a multi-class
classification problem. We implemented the stopping condition neural network as a
residual convolutional neural network, with average pooling layers between residual
blocks, and fully connected layers at the end of the network.

To test how the iterative model worked in combination with a stopping condition
neural network, we compared its performance to a deep model, and an iterative model
without a stopping condition neural network. We showed that the use of the stop-
ping condition neural network does not significantly increase the number of trainable
parameters. Similarly, we showed that the use of an iterative model in combination
with a stopping condition neural network does have significantly less parameters than
a deep model. We showed that using a stopping condition neural network does reduce
the number of iterations the iterative DeepRx uses. The results showed that while the
error rate of the stopping condition neural network is relatively small, it does increase
the uncoded BER of the iterative DeepRx, especially in samples with high SNR. We
theorized that the uncoded BER of the high SNR samples was most affected due to
the uneven distribution of iterations in the training data, and due to misclassifications
by the stopping condition neural network. We suggested some improvements, such as
finding a better configuration for the iterative DeepRx, which would have a more even
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distribution of iterations. In addition to this, our work still left room for other future
work. Combining the categories into larger ones could simplify the classification task
and reduce the classification errors in the high SNR samples. The task could possi-
bly be modeled as a binary classification task, if instead of predicting the number of
remaining iterations, the model would predict if iteration is stopped or not (similar
to Algorithm 2, but with two classes). Finally, the threshold used for the predictions
of the stopping condition neural network requires further investigations, firstly to find
out if it is even viable to use a threshold, and secondly to find out that in the case it
is viable, what is the correct threshold.
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