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A B S T R A C T   

Water plays a crucial role in maintaining plant functionality and drives many ecophysiological processes. The 
distribution of water resources is in a continuous change due to global warming affecting the productivity of 
ecosystems around the globe, but there is a lack of non-destructive methods capable of continuous monitoring of 
plant and leaf water content that would help us in understanding the consequences of the redistribution of water. 
We studied the utilization of novel small hyperspectral sensors in the 1350–1650 nm and 2000–2450 nm spectral 
ranges in non-destructive estimation of leaf water content in laboratory and field conditions. We found that the 
sensors captured up to 96% of the variation in equivalent water thickness (EWT, g/m2) and up to 90% of the 
variation in relative water content (RWC). Further tests were done with an indoor plant (Dracaena marginate 
Lem.) by continuously measuring leaf spectra while drought conditions developed, which revealed detailed 
diurnal dynamics of leaf water content. The laboratory findings were supported by field measurements, where 
repeated leaf spectra measurements were in fair agreement (R2 = 0.70) with RWC and showed similar diurnal 
dynamics. The estimation of leaf mass per area (LMA) using leaf spectra was investigated as a pathway to 
improved RWC estimation, but no significant improvement was found. We conclude that close-range hyper-
spectral spectroscopy can provide a novel tool for continuous measurement of leaf water content at the single leaf 
level and help us to better understand plant responses to varying environmental conditions.   

1. Introduction 

Insights into the movement of water within plants, plant commu-
nities and ecosystems are crucial for understanding their responses to 
the environment. Measurement methods of leaf water content that can 
detect small differences that occur on diurnal or shorter time scales are 
needed to understand the interrelations of stomatal conductance, carbon 
exchange, water uptake and leaf water status (Hao et al., 2010). 
Knowledge on plant hydraulic traits and their variability is necessary for 
understanding the capabilities of plants in adjusting to a changing 
environment (Rosas et al., 2019). Leaf water content affects many plant 
physiological processes such as stomatal conductance, photosynthesis 
and growth, but there is a lack of methods that are capable of continu-
ously monitoring leaf water content of single leaves or tree canopies, 
especially in the subtle ranges that occur on a diurnal basis. Stomatal 
control and leaf gas exchange have been modelled based on environ-
mental conditions, such as vapour pressure deficit (VPD) and light, 

without explicitly considering the plant hydraulics and water status of 
the leaf (Dewar et al., 2018; Sperry et al., 2016). Recently it has become 
evident that considering these in addition to the environmental can 
deepen our understanding of leaf gas fluxes. Improved estimation and 
measurement methods of leaf water content can lead to better under-
standing and modelling of the relations between carbon exchange and 
the environment. 

Leaf water content can be assessed using multiple metrics. The direct 
physical representation of the layer of water within a leaf is measured as 
equivalent water thickness (EWT) or the mass of water per leaf area. 
EWT is often used as a metric in remote sensing literature due to the 
direct physical relationship between leaf absorption and EWT (Feret 
et al., 2019). However, EWT does not directly translate into plant water 
status, which we often are interested in. Leaf water potential is probably 
the most widely used metric of plant water status and it is strongly 
related to the relative water content (RWC) of leaves (i.e., the amount of 
water in the leaf per the amount of water in the leaf in turgid state) 
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(Bartlett et al., 2012; Rahimi et al., 2010). But due to the close relation 
between leaf spectra and EWT, remote sensing scientists have focused 
more on estimating EWT. However, the change in EWT can be linked to 
the change in RWC, which provides a possibility to estimate plant water 
status using leaf spectral reflectance (Browne et al., 2020). 

Remote sensing scientists have been studying the estimation of leaf 
water content for decades using the changes in infrared reflectance 
caused by altered leaf water content (Ceccato et al., 2001; Cheng et al., 
2011; Danson et al., 1992; Penuelas et al., 1993; Penuelas et al., 1997; 
Tucker, 1980). Various approaches and techniques have been used with 
different application perspectives and varying levels of success, for 
estimating leaf water content with wide ranging spatial scales, including 
terrestrial lidar (Elsherif et al., 2019a; Junttila et al., 2019; Junttila 
et al., 2021), imaging spectroscopy (Kotz et al., 2004), terahertz radia-
tion spectroscopy (Browne et al., 2020) and microwave remote sensing 
(Konings et al., 2019). These studies however lack in providing practical 
solutions to estimating dynamic changes in leaf water content. 

There are still many limiting factors with existing remote sensing 
methodologies in monitoring leaf water content from single trees several 
times a day. The limitation of passive spectroscopy is its dependence on 
external illumination, challenging the collection of dense time-series for 
assessing diurnal leaf water content dynamics. Active sensors such as 
terrestrial lidar can provide backscatter measurements any time of the 
day, but these devices have not been designed for spectral measurements 
and suffer from calibration issues (Junttila et al., 2019; Korpela, 2017). 
In addition, the temporal resolution of many of the developed ap-
proaches has been limited. Repetition rate of the measurements in 
addition to illumination conditions (especially when using passive im-
aging) limit the temporal coverage of airborne and satellite measure-
ments, again hampering the measurement of diurnal leaf water content 
dynamics. 

Stomatal control of transpiration is a sum of various different 
mechanisms. The stomata react e.g. to changes of water availability in 
the soil during drought in the time scale of hours or days (Tuzet et al., 
2003). In addition, the stomata also react in the time scale of minutes to 
fast changes in environmental conditions around the leaves caused e.g. 
by fluctuating light due to sunflecks (Campany et al., 2016) and fast 
changes in VPD which are coupled to rapid changes in bulk leaf water 
content, leaf hydraulics and leaf water storage and release capacity 
(Schymanski et al., 2013), and also to very local changes in the water 
content of the guard cells of the stomata and the surrounding epidermal 
cell (Buckley, 2005). In each case, the water status of the leaf and sto-
matal conductance are tightly coupled through feedbacks. There has 
been a lack of methods that can accurately measure changes in leaf 
water content non-destructively with a temporal resolution in the range 
of minutes, that could enhance the understanding between leaf water 
dynamics and leaf gas exchange. Respectively, widely applied methods 
used to assess plant water status, such as destructive measurements of 
RWC and leaf water potential, are labour intensive, require destructive 
sampling and are practically impossible to conduct at short time in-
tervals for a long period of time (e.g. Turner and Long (1980)). Novel 
leaf water content measurement methods with high temporal resolu-
tions could greatly enhance our understanding of the relationships be-
tween vapour pressure deficit (VPD) and leaf water content and 
therefore plant drought tolerance. 

Leaf reflectance in the shortwave infrared (SWIR) region 
(1300–2500 nm) is affected to a large extent by leaf structure and water 
content. EWT and leaf structure are the dominating traits in this region, 
but also leaf mass per area (LMA) contributes to the variation in leaf 
reflectance in the SWIR region (Feret et al., 2008; Yang et al., 2021), 
thus, complicating the retrieval of leaf water content from spectral 
measurements. Therefore, the effect of leaf structure and LMA should be 
minimized to achieve high accuracies in the retrieval of leaf water 
content (Feret et al., 2019). Geographically local and species-wise 
models that are developed to a limited range of leaf structural types 
and LMA could provide considerably higher accuracies in the estimation 

of leaf water content by reducing variation in reflectance induced by leaf 
structural traits. The estimation of LMA on the other hand could assist in 
the estimation of RWC, which is more closely linked to plant water status 
than EWT, because the water storage capacity of leaves depends on LMA 
(Garnier and Laurent, 1994). In addition to EWT and LMA, the leaf 
structure and organization of cells may induce considerable variation to 
SWIR reflectance even within species and can change throughout the 
growing season (Boren et al., 2019). 

The advancement of sensor technology has recently enabled the 
construction of handheld spectrometers (Beć et al., 2020). Miniaturi-
zation and lower costs have opened up new avenues for scientific and 
practical applications using spectroscopy when the sensors are 
becoming more widely available both in research and business (Huck, 
2021). Where a traditional spectrometer has required a backpack, the 
most recent sensors are the size of a matchbox and enable high temporal 
resolutions with continuous measurements of a single plant or a leaf, 
which are not possible using destructive sampling. In this study, we 
aimed to test if a small low-cost (under 2500 €) hyperspectral sensor 
could be used to monitor the diurnal dynamics of leaf water content, and 
potentially replace the use of destructive sampling methods in assessing 
leaf water content and plant water status. 

The aim of the study was to evaluate the capabilities of low-cost 
hyperspectral spectroscopy in monitoring diurnal variation of leaf 
water content using destructive and in-situ measurements, and leaf 
reflectance simulation. We had the following research questions (RQ): 

RQ 1. Can hyperspectral spectroscopy in the spectral ranges between 
1350 nm and 1650 nm and 2000 nm and 2450 nm be used to monitor the 
diurnal variation in leaf water content? 

RQ 2. What kind of predictive accuracy can be achieved in estimating 
leaf water content using low-cost hyperspectral spectroscopy? 

RQ 3. Can the estimation of LMA lead to improved estimation of RWC? 

These three research questions were investigated in three different 
empirical experiments to estimate the accuracy of the developed method 
and to cover short- and long-term monitoring of leaf water content in 
both field and laboratory conditions. 

2. Material and methods 

2.1. Outline of the conducted experiments 

This study consists of three different empirical experiments and a leaf 
reflectance spectrum simulation. We first used the PROSPECT-D leaf 
reflectance model to investigate the effect of EWT, LMA and leaf struc-
ture (leaf structural parameter N) on leaf reflectance spectrum in the 
SWIR region (Féret et al., 2017). Then, we used experimental data 
collected in two experiments (see below) to investigate the interlinkages 
between EWT, RWC and LMA to examine if the retrieval of LMA could 
improve the estimation of RWC. The aim of the first experiment 
(Experiment 1) was to investigate the estimation accuracy of EWT, RWC 
and LMA using hyperspectral reflectance measurements in the SWIR 
region and determine suitable wavelengths for measuring these vari-
ables (n = 44). The aim of the second experiment (Experiment 2) was to 
investigate the capabilities of the investigated sensors in detecting 
diurnal variation in EWT and RWC through continuous measurement of 
leaf reflectance spectra for 20 days in a controlled environment (n = 2). 
The third experiment (Experiment 3) aimed at investigating the mea-
surement of the diurnal leaf water cycle in field conditions using 
repeated leaf spectrum measurements (10 leaves measured seven times) 
and destructive sampling. A schematic figure of the experiment designs 
is presented in Fig. 1. 

The first study was conducted using destructive sampling, thus, EWT, 
LMA and leaf structure (N parameter in PROSPECT-D leaf reflectance 
model) varied between each sample. In the last two experiments, time- 
series data of leaf reflectance was used to reduce the amount of variation 
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caused by LMA and leaf structural parameter N on leaf reflectance 
spectrum and the estimation of leaf water dynamics. 

2.2. Simulation of leaf spectra using PROSPECT-D 

Leaf reflectance was simulated using PROSPECT-D leaf reflectance 
model to investigate the effect of leaf structural parameter N and leaf 
density expressed as LMA on leaf reflectance spectrum (Féret et al., 
2017). PROSPECT is a leaf reflectance model that simulates directional- 
hemispherical reflectance and transmittance based on biophysical and 
biochemical variables in addition to leaf structural parameter N. Leaf 
pigment concentrations were neglected because our simulations were 
concentrated on exploring the effect of leaf water content and structure 
in the SWIR region, which is not affected by leaf pigments. The simu-
lations were constrained by the ranges of LMA and EWT measured in the 
field experiment of this study (Experiment 3). Because the estimation of 
N parameter from spectrum was not possible due to the limited spectral 
range (Feret et al., 2008), we used a range between 1.8 and 2.5 that has 
been observed previously to occur within species (Boren et al., 2019). 

2.3. Investigated hyperspectral sensors 

We investigated two small sized hyperspectral sensors in leaf water 
content monitoring: NIRONE S1.7 (Spectral Engines, Espoo, Finland) 
and NIRONE S2.5. These sensors measure 1350–1650 nm region and 
2000–2450 nm region, respectively. The sensors have two vacuum 
tungsten lamps that illuminate the target. The wavelengths can be 
programmed but the full width at half maximum is 13–17 nm for the 

S1.7 sensor and 18–28 nm for the S2.5 sensor. The detector in the sen-
sors is a single element extended InGaAs type. Light enters the detector 
through a hole that is one millimeter in diameter. The viewing angle of 
the sensor is only 8 degrees; thus, resulting in a narrow measurement 
area when measuring at close-range. Signal-to-noise ratio is 11,000 for 
the S1.7 sensor and 1500 for the S2.5 sensor. The sensor dimensions are 
25 × 25 × 17.5 mm and it weighs 15 g. The sensor parameters used in 
the measurements were a point average of 100 and a scan average of 
three. Examples of leaf spectra are shown in Fig. 2. 

2.4. Experiment 1 

The first experiment was conducted on the 26th of August 2020 in 
the Viikki campus area in Helsinki, Finland. Twigs of silver birch (Betula 
pendula Roth) were detached from a young silver birch tree (height: 3.5 
m, diameter at breast height 3 cm) and put immediately under water for 
a re-cut to maintain water connectivity in the xylem. Leaves were then 
covered with aluminium foil and bagged with a plastic bag to allow full 
rehydration of the leaves for three hours. The twigs were then carried to 
the laboratory for further measurements. 

We measured 21 leaves in total using 44 leaf discs cut from the 
leaves. A set of four fully hydrated leaves were detached from the branch 
and placed on the table for sampling. The leaves were sampled two to 
three times within 60 min with the aim of obtaining a continuous range 
of leaf water statuses. A leaf disc of 10 mm diameter was cut from a leaf, 
weighted and the leaf reflectance was measured from the abaxial side 
using NIRONE S1.7 and S2.5 sensors consequently (Fig. 1). The 
remaining leaf was left to dry for 30–60 min and an additional disc or 

Fig. 1. Schematic representations of (A) experiment 1 with a leaf disc on top the NIRONE sensor, (B) experiment 2 with a leaf mounted on a sensor mount for 
continuous measurement, and (C) experiment 3 with a leaf on top of a NIRONE sensor (not detached). 

Fig. 2. Example of measured leaf spectra using NIRONE S1.7 and S2.5 with samples of varying equivalent water thickness (EWT, g/m2).  
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two were cut during that time. We measured a total of 44 leaf discs, i.e. 
two discs per leaf were measured on average. The leaf discs were then 
merged under water for 12 h to allow full hydration and weighted to 
measure turgid weight. The leaf discs were then dried in 60 ◦C for 48 h 
until they reached a constant mass and the dry weight was measured 
(Mullan and Pietragalla, 2012). It should be noted that using leaf discs 
can be used as a uniform sampling technique for leaf segments but may 
induce overestimation of RWC (Arndt et al., 2015). However, as we 
focused on covering a wide range of RWC values to investigate which 
wavelengths are the most sensitive to water content, the oversaturation 
issue became insignificant. This approach also allowed us to reduce 
error arising from within leaf water content variation (that would have 
arisen from measuring entire leaves) by matching the water content 
measurements with the small footprint of the spectral measurements. 

2.5. Leaf functional traits 

Leaf functional traits EWT, RWC and LMA were measured in exper-
iments 1 and 3 (Tables 1 & 2). EWT was measured by calculating the 
mass of water within a leaf disc (fresh weight – dry weight) and dividing 
that by the area of the leaf disc, expressed as g/m2. RWC was calculated 
by dividing the mass of water within a leaf disc by the difference be-
tween turgid weight and dry weight, expressed as percentages. LMA was 
calculated by dividing dry weight by leaf area. 

2.6. Experiment 2 

The second experiment was conducted in laboratory conditions with 
a common monocot house plant: Dracaena marginate Lem. using three 
leaves. The plant consisted of two stems growing in the same pot with 
heights of 1.2 m and 0.5 m. The plant was subjected to natural light from 
a west facing window, but the plant was subjected to direct sunlight only 
a few hours per day. Three hyperspectral spectroscopy sensors were 
installed in the plant to continuously measure leaf reflectance: NIRONE 
S1.7 (1350–1650 nm) and NIRONE S2.5 (2000–2450 nm). Each sensor 
was mounted to measure a different leaf. The NIRONE S1.7 and S2.5 
were measuring leaves of the taller stem. A custom 3D printed sensor 
mount was developed for this purpose, which kept the leaf and the 
sensor in place. Because the sensors generate heat, they were installed to 
measure at a 1.0 cm distance. The sensor mount design can be found 
from the supplementary files. After the installation of the sensors, the 
plant was left to adjust for three days. 

The D. marginate was subjected to drought during the monitoring 
period by scheduling a sparse watering schedule. The plant was moni-
tored from the 19th of March to the 8th of April and was watered twice 
during this period: on the 25th of March 1.0 l of water was given and on 
the 6th of April 0.5 l of water. The plant was well-watered before the 
start of the monitoring period. 

We investigated how the leaf spectra changed during the time be-
tween the 26th of March and April 5th (the period without watering), 
during which drought slowly developed as the amount of water in the 
soil depleted. We used time from last watering (TLW) as a coarse proxy 
of leaf water content during the drought period to identify wavelengths 
capable of capturing variation in RWC. We note that there are limita-
tions in the relationship between TLW and leaf water content, but it is 
well-known that leaf water content depletes as drought intensifies 

(Egilla et al., 2005; Li-Ping et al., 2006; White et al., 1996). 

2.7. Experiment 3 

Another experiment was conducted using repeated spectral mea-
surements of 10 silver birch leaves between the 31st of August and the 
1st of September 2020 in Hyytiälä Forest Research Station. The station is 
located at Juupajoki municipality in Southern Finland, where a station 
for measuring ecosystem-atmosphere relations (SMEAR II) is also 
located. The test forest site was a 58-year-old Scots pine (Pinus sylvestris 
L.) stand with admixtures of Norway spruce (Picea abies (L.) Karst.), 
rowan (Sorbus aucuparia L.), European aspen (Populus tremula L.), and 
common juniper (Juniperus communis L.). We monitored a mature silver 
birch (height: 18 m, diameter at breast height: 25 cm) for 22 h using 
NIRONE S1.7 and NIRONE S2.5 sensors and a linear displacement 
transducer dendrometer (G series spring Push, Vg/5/s, Solartron Inc., 
West Sussex, UK) at 1.5 m height to measure diurnal changes in xylem 
diameter. Ten healthy leaves were randomly selected from the canopy 
for repeated measurements using the NIRONE sensors. A marker was 
used to outline the measurement area to avoid the influence of within 
leaf variation of leaf properties on the measurement. A single mea-
surement of each leaf was conducted at seven time points during the 
monitoring period representing different leaf water status stages based 
on the diameter of the tree xylem. In addition, three leaves were 
destructively sampled for the measurement of RWC, EWT and LMA at 
each time point using same methods as for experiment 1 (Table 2). The 
leaf area was measured using a flatbed scanner (Epson V300, Suwa, 
Japan) and image analysis. 

2.8. Spectral features 

Spectral features were calculated from the measured reflectance 
values to investigate the dependence between spectra and leaf water 
content metrics. The measurements of NIRONE sensors were combined 
for each leaf and a normalized ratio index (NRI) of each wavelength 
combination was calculated (Eq. (1)). 

NRI =
γ1 − γ2

γ1 + γ2
(1)  

where γ1 and γ2 are the reflectance of each wavelength. 
The spectral features included the mean measured reflectance of 

each wavelength and the NRI. 
Daily metrics of leaf spectra were calculated in the drought experi-

ment (Experiment 3) to describe the development of spectral features 
over time. The daily metrics were the mean and range of each spectral 
feature for each day during the monitoring period. 

2.9. Statistical analysis 

First, destructive leaf sample measurements of EWT, RWC and LMA 
from experiment 1 and 3 were combined to investigate the interrelations 
of the measured leaf functional traits and the capability of EWT and LMA 
in predicting variation in RWC. A subset of experiment 1 was used by 
including only samples with RWC above 85% to avoid the effect of the 
drying of leaves and to focus the analysis on a range of RWC values that 
can occur in a diurnal timeframe. We used Pearson’s correlation 

Table 1 
The mean, minimum, maximum and standard deviation of equivalent water 
thickness (EWT) and relative water content (RWC) of the measured leaf disc 
samples (n = 44).   

Mean Minimum Maximum Standard deviation 

EWT (g/m2) 85.5 54.7 114.6 16.5 
RWC (%) 73.6 44.3 95.3 14.5 
LMA (g/m2) 68.3 57.3 78.9 5.6  

Table 2 
The mean, minimum, maximum and standard deviation of equivalent water 
thickness (EWT), relative water content (RWC) and leaf mass per area (LMA) of 
the measured leaf samples (n = 21).   

Mean Minimum Maximum Standard deviation 

EWT (g/m2) 123.8 107.2 139.3 10.1 
RWC (%) 93.9 90.5 96.1 2.5 
LMA (g/m2) 95.6 87.2 104.4 11.0  
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coefficient to investigate the correlation between EWT, RWC and LMA 
and linear regression modelling to investigate the capabilities of EWT 
and LMA in predicting RWC. 

Then, we investigated leaf spectra and developed linear regression 
models between the spectral features and the leaf functional traits to 
investigate their relations and capability to explain variation in EWT, 
RWC and LMA, and to identify suitable wavelengths. Single spectral 
features were used as predictors of the leaf functional traits (referred to 
as direct approach in the text). We also explored the prediction accuracy 
of RWC using the best spectral predictors of EWT and LMA as an alter-
native approach for predicting RWC. The rationale for this approach was 
the strong theoretical foundation of the effects of EWT and LMA on leaf 
spectra (Feret et al., 2019). 

In the second experiment, regression models were developed be-
tween TLW and daily metrics of spectral features to evaluate their 
capability in capturing changes in leaf water content over time during 
drought conditions and to identify prominent wavelengths for 
D. marginate (monocot vs. dicot silver birch). Then, a regression model 
was built using data from Experiment 1 and RWC was predicted for the 
monitoring period. Note that the regression model was built using data 
from silver birch and not D. marginate. 

In the third experiment, the spectral features that were identified 
most prominent in Experiment 1 were used to test their predictive ca-
pabilities in field conditions. Mean of destructively measured RWC and 
spectral features of the 10 leaves were used to build regression models to 
estimate RWC. Two approaches for estimating RWC were tested: direct 
prediction of RWC using leaf spectra (direct approach) and prediction of 
RWC using the best spectral predictors of EWT and LMA (alternative 
approach). 

We used coefficient of determination (R2), root-mean-square-error 
(RMSE) and mean absolute error (MAE) to evaluate the goodness of 
the models in explaining variation in leaf water content using leave-one- 
out cross-validation. The top five of the spectral features for explaining 
the variation in leaf water content are depicted in the results for each 
experiment. All the statistical analyses were conducted using R software 
(R Core Team, 2013) and the hsdar package for convenient handling of 
spectral data (Lehnert et al., 2018). 

3. Results 

3.1. Simulation of leaf spectrum variation induced by leaf structure and 
water content 

Simulation of leaf spectrum revealed differences in the amount of 
variance induced by leaf structural traits (N and LMA) and water content 
(EWT) (Fig. 3). The simulations showed that leaf structural parameter N 
causes the majority of the variation in reflectance in the SWIR region. 
EWT showed to induce more variation than LMA especially in the 
1390–1500 nm and 1850–2100 nm wavelength regions. The amount of 
variance caused by EWT and LMA was nearly equal in the 1600–1800 
nm and 2150–2350 nm wavelength regions. 

3.2. Estimation of leaf water content and leaf mass per area using leaf 
spectra in the short-wave infrared region (Experiment 1) 

Both investigated sensors showed high sensitivity to changes in leaf 
water content with increasing reflectance indicating decreasing leaf 
water content. Reflectance of every measured wavelength showed 
capable of estimating EWT with accuracies (RMSE) ranging between 
5.91 g/m2 and 9.48 g/m2 (Table 3). NIRONE S2.5 with the spectral 
range of 2000–2450 nm showed more consistent prediction accuracies 
of both EWT and RWC compared to the 1350–1650 nm range. The most 
accurate models in estimating EWT were using wavelengths: 2020 nm, 
2050 nm, 2010 nm, and 2030 nm. The most accurate models in esti-
mating RWC were developed using wavelengths: 2010 nm, 2020 nm, 
2000 nm, and 2040 nm. However, there were small differences (R2 

varied only 0.03 units) between wavelengths in the 2000–2450 nm 
domain in the estimation accuracy of both leaf water content metrics. 
Single wavelength features did not exhibit statistically significant re-
lationships with LMA. 

The regression models that utilized two wavelengths (i.e., normal-
ized ratio indices) were superior in terms of explaining variation in both 
EWT and RWC (Table 4). The NRIs explained up to 96% and 93% of the 
variation in EWT using the 1350–1650 nm and 2000–2450 nm spectral 
regions, respectively (Fig. 4). Variation in RWC was explained up to 90% 
and 89% by the 2000–2450 nm and 1350–1650 nm spectral regions, 
respectively. The highest estimation accuracy of EWT was achieved with 
an NRI of 1390 nm and 1370 nm wavelengths providing an RMSE of 

Fig. 3. Leaf reflectance spectrum simulated using PROSPECT-D. Other parameters were kept constant while A) equivalent water thickness (EWT), B) leaf structural 
parameter (N) or C) leaf mass per area (LMA) was varied. D) panel shows the normalized proportion of variance induced by EWT, N and LMA in these simulations. 
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3.41 g/m2. The highest estimation accuracy of RWC was achieved with 
NRI of wavelengths 2160 nm and 2090 nm providing an RMSE of 4.54%- 
units. 

The NRIs also showed capabilities of predicting LMA. NRI of 1650 
nm and 1380 nm wavelengths showed the highest estimation accuracy 
with an RMSE of 3.92 g/m2 and a coefficient of determination of 0.5. An 
NRI of 2300 nm and 2140 nm wavelengths was nearly as good in pre-
dicting LMA with an RMSE of 3.98 g/m2, explaining 48% of the varia-
tion in LMA. 

3.3. Improving the prediction of relative water content using equivalent 
water thickness and leaf mass per area 

Based on data from live trees from the field (Experiment 3), the 
measured leaf structural traits (EWT, LMA and RWC) were all signifi-
cantly correlated (p < 0.01) with each other. EWT and LMA showed the 
highest correlation coefficient (r = 0.91), EWT and RWC were 

moderately correlated (r = 0.68) and the lowest correlation coefficient 
was found between RWC and LMA (r = 0.46). We also found a signifi-
cant correlation between LMA and turgid weight per leaf area (r = 0.86) 
indicating a link between LMA, and the maximum water storage ca-
pacity based on the laboratory measurements (Fig. 5). 

We further tested the dependencies between destructively measured 
leaf structural traits and found that using both EWT and LMA as 
explanatory variables in predicting RWC led to a significantly higher 
coefficient of determination (R2 = 0.61) compared to using only EWT in 
explaining RWC (R2 = 0.46) (Fig. 6). 

Our findings above further indicated a link between LMA and RWC, 
thus, the prediction of RWC using leaf reflectance spectrum was 
explored using two approaches: a direct prediction using a single spec-
tral feature for estimating RWC and an alternative approach using a 
combination of spectral features that were the most accurate predictors 
of EWT and LMA. We found that an NRI of 2160 nm and 2090 nm 
wavelengths (best predictor for RWC) slightly outperformed a linear 

Table 3 
Statistics of linear regression models between each wavelength, measured using NIRONE S1.7 and NIRONE S2.5 sensors, and equivalent water thickness (EWT, g/m2) 
and relative water content (RWC). Coefficient of determination (R2), root-mean-square-error (RMSE) and mean absolute error (MAE) were calculated using single 
wavelength features (n = 44). Mean, maximum (max), minimum (min) and standard deviation (std) are calculated from all the developed regression model statistics.  

EWT 

NIRONE S1.7 1350–1650 nm NIRONE S2.5 2000–2450 nm  

mean max min std  mean max min std 

R2 0.76 0.80 0.66 0.39 R2 0.86 0.87 0.86 0.004 
RMSE 8.0 9.48 7.29 0.63 RMSE 6.07 6.21 5.91 0.09 
MAE 6.46 7.69 5.86 0.52 MAE 4.75 4.88 4.59 0.08  

RWC 
NIRONE S1.7 1350–1650 nm NIRONE S2.5 2000–2450 nm  

mean max min std  mean max min std 
R2 0.77 0.80 0.73 0.02 R2 0.81 0.82 0.79 0.007 
RMSE 6.86 7.47 6.47 0.32 RMSE 6.34 6.51 6.09 0.12 
MAE 5.76 6.14 5.47 0.23 MAE 5.39 5.53 5.17 0.10  

Table 4 
Coefficient of determination (R2), root-mean-square-error (RMSE) and mean absolute error (MAE) for top five linear regression models for estimating equivalent water 
thickness (EWT, g/m2), relative water content (RWC, %) and leaf mass per area (LMA, g/m2) using normalized ratio index (NRI) features (n = 44). γ1 and γ2 are the 
reflectance of each wavelength measured by NIRONE S1.7 and NIRONE S2.5 sensors and further used to derive NRI features.  

EWT 

NIRONE S1.7 1350–1650 nm NIRONE S2.5 2000–2450 nm 

λ1 λ2 RMSE R2 MAE λ1 λ2 RMSE R2 MAE 

1390 1370 3.41 0.96 2.66 2110 2020 4.32 0.93 3.52 
1390 1360 3.42 0.96 2.60 2110 2010 4.36 0.93 3.43 
1380 1370 3.42 0.96 2.68 2160 2020 4.36 0.93 3.50 
1390 1350 3.46 0.96 2.63 2110 2040 4.39 0.93 3.32 
1380 1360 3.48 0.95 2.69 2240 2020 4.39 0.93 3.49  

RWC 
NIRONE S1.7 1350–1650 nm NIRONE S2.5 2000–2450 nm 
λ1 λ2 RMSE R2 MAE λ1 λ2 RMSE R2 MAE 
1620 1410 4.85 0.89 3.95 2160 2090 4.54 0.90 3.88 
1610 1410 4.86 0.89 3.93 2160 2040 4.65 0.90 3.90 
1650 1410 4.86 0.89 4.02 2160 2070 4.70 0.89 4.06 
1640 1410 4.87 0.89 4.02 2160 2080 4.75 0.89 4.05 
1630 1410 4.87 0.88 3.99 2160 2050 4.78 0.89 4.02  

LMA 
NIRONE S1.7 1350–1650 nm NIRONE S2.5 2000–2450 nm 
λ1 λ2 RMSE R2 MAE λ1 λ2 RMSE R2 MAE 
1650 1380 3.92 0.50 3.18 2300 2140 3.98 0.48 3.1 
1530 1410 4.07 0.46 3.28 2350 2090 4.03 0.47 3.16 
1600 1390 4.08 0.46 3.37 2330 2110 4.03 0.47 3.44 
1640 1380 4.10 0.45 3.35 2300 2130 4.06 0.46 3.34 
1560 1400 4.11 0.45 3.39 2310 2120 4.21 0.42 3.34  
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regression model that employed the best spectral predictors of EWT and 
LMA with coefficients of determination of 0.90 and 0.89, respectively 
(Fig. 7). 

3.4. In-situ monitoring reveals detailed diurnal leaf water content 
dynamics (Experiment 2) 

The NIRONE S1.7 and S2.5 sensors showed to be able to explain most 
of the variation in TLW ranging from 90% using single wavelengths to 
99% using NRIs (Table 5) reflecting the reduction of leaf water content 
as drought increased. NRIs outperformed the reflectance of single 
wavelengths in terms of R2. The mean of NRI using 2340 nm and 2220 
nm wavelengths showed nearly 1:1 correlation with TLW, but it could be 
observed that the measurements of NIRONE S2.5 using the 2000–2450 
nm spectral range contained much more noise than the other sensors 
reducing the ability to measure diurnal dynamics of leaf water content 
(Appendix A). However, measurements in the 1350–1650 nm spectral 
range showed a clear diurnal trend. Visualization of the top NRIs in 
predicting TLW revealed that NRIs that employed neighboring wave-
lengths (e.g., 1540 nm and 1530 nm) contained more noise in the signal 
compared to NRIs (see Appendix A), which used wavelengths further 

apart (e.g., 1470 nm and 1350 nm). Thus, the NRI of 1470 nm and 1350 
nm was used for predicting diurnal changes in RWC for D. marginate. 

After identifying suitable wavelengths for D. marginate, a linear 
regression model using the measurements of experiment 1 was used to 
create a linear regression model for predicting changes in RWC. Fig. 7 
shows that according to the prediction, RWC varied between 79% and 
83% during the monitoring period with declining RWC as drought 
intensified and TLW increased. It could be observed that the diurnal 
variation of predicted RWC was affected by both air temperature, as 
changes in air temperature mainly control the evaporative demand due 
to its effect on VPD, and TLW. The amplitude of RWC variation was 
greater in well-watered conditions and reduced as time from last wa-
tering increased (Fig. 8). It is also observable how RWC maintains a 
higher level after watering for four or five days before it begun to 
gradually reduce towards the end of the drought period. 

3.5. Time-series of hyperspectral imaging can capture diurnal leaf water 
dynamics (Experiment 3) 

The results of Experiment 1 were utilized to estimate diurnal varia-
tion in RWC of silver birch in field conditions using repeated measure-
ments. We estimated RWC using a direct approach by utilizing the NRI 
of 1620 nm and 1410 nm wavelengths and using an alternative 
approach through the prediction of EWT and LMA with NRIs of 1390 nm 
and 1370 nm (EWT predictor) and 1650 nm and 1380 nm (LMA pre-
dictor) wavelengths (Fig. 9). Direct RWC estimation explained 70% of 
the variation in destructively measured RWC during the monitoring 
period. The regression model explained 81% of the variation in RWC 
when EWT and LMA were employed as predictors. 

However, the direct estimation of RWC with the NRI of 1620 nm and 
1410 nm wavelengths seemed to produce more constant RWC estimates 
on the leaf-level through the measurement period (Fig. 10). The direct 
estimation of RWC produced estimates that correspond well with 
destructively measured RWC in terms of both the diurnal trend and the 
predicted values. The changes in RWC also correspond well with the 
diurnal pattern of VPD. The estimation of RWC through spectral features 
of EWT and LMA did not produce as consistent diurnal patterns of RWC 
as the direct estimation of RWC did, but differences between individual 
leaves were greater. 

Fig. 4. Observed and predicted equivalent water thickness (EWT), relative water content (RWC) and leaf mass per area (LMA) using the regression models with 
normalized ratio index (NRI) features that resulted in the highest accuracy based on coefficient of determination (R2) and root-mean-square-error. EWT was predicted 
using the NRI of 1390 nm and 1370 nm wavelengths, RWC was predicted using the NRI of 2160 nm and 2090 nm wavelengths and LMA was predicted using the NRI 
of 1650 nm and 1380 nm. The line depicts 1:1 relationship and the regression line (not visible due to non-biased estimates). 

Fig. 5. The relationship between leaf mass per area (g/m2) and turgid weight 
per area (g/m2) (n = 44). 
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4. Discussion 

In this study, we aimed to demonstrate the capabilities of hyper-
spectral spectroscopy in measuring timely changes in leaf water content. 
We showed that low-cost hyperspectral sensors can be used to monitor 
changes in leaf water content that occur in a diurnal fashion. 

We found strong linear relationships between the measured spectra, 
the spectral features, and leaf water content measured both as EWT and 
RWC, in our laboratory experiment (Experiment 1). A slightly higher 
accuracy was achieved in estimating EWT than RWC and there were 
differences in the wavelengths that provided these estimates. EWT was 
estimated best with a narrow spectral region using spectral features 
between 1350 nm and 1390 nm, but longer wavelengths resulted in the 
most reliable RWC estimates with an NRI of 1620 nm and 1410 nm and 
NRI of 2160 nm and 2090 nm wavelengths. Our simulation results 
supported the experimental findings. The 1620 nm and 1410 nm 
wavelengths are located in regions that show higher proportion of 
variance induced by LMA and EWT in the SWIR region, respectively, 

likely resulting in better prediction of RWC. Similar results in the esti-
mation of EWT and RWC have been obtained many times before in 
several studies, showcasing various techniques that can be used to es-
timate leaf water content (Cheng et al., 2011; Feret et al., 2011). The 
spectral features showed also capabilities in explaining up to 50% of 
variation in LMA using an NRI of 1650 nm and 1380 nm wavelengths. 
The purpose of the first experiment was to validate the well-known re-
lationships between leaf water content and the spectral features, to give 
an estimate of the accuracy of the used method in estimating EWT, RWC 
and LMA and to identify suitable wavelengths for estimating them for 
silver birch. 

4.1. The role of leaf mass per area in predicting relative water content 

Interrelations of EWT, RWC and LMA were investigated using the 
leaf measurements of Experiments 1 and 3 to explore the role of LMA in 
predicting RWC. A significantly larger proportion of variation in RWC 
could be explained using both EWT and LMA as predictors of RWC 

Fig. 6. Observed and predicted relative water content (RWC) using equivalent water thickness and leaf mass per area using destructive leaf measurements as 
predictors in linear regression modelling (n = 39). The line depicts 1:1 relationship. 

Fig. 7. Direct approach in prediction of relative water content (RWC) using a normalized ratio index (NRI) of 2160 nm and 2090 nm wavelengths and an alternative 
approach using a combination of NRIs of 1390 nm and 1370 nm wavelengths (best predictor of equivalent water thickness) and 1650 nm and 1380 nm wavelengths 
(best predictor of leaf mass per area). The line depicts 1:1 relationship and the regression line (not visible due to non-biased estimates). 
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compared to using EWT only indicating that LMA estimation could 
improve estimates of RWC. The prediction of RWC using spectral fea-
tures was investigated using a direct approach (the best estimator of 
RWC) and through a combination of spectral features estimating EWT 
and LMA. Both approaches yielded similar results in the laboratory 
setting in Experiment 1, but the direct approach seemed to produce 
more consistent results in the field (Experiment 3). The direct estimation 

of RWC yielded results that were well aligned with the diurnal trend of 
destructively measured RWC. This could be a result of increased mea-
surement noise when utilizing two spectral features that are close to 
each other simultaneously in the EWT-LMA approach. 

The role of LMA in predicting RWC is likely to increase when a larger 
range of different leaf structures and species are measured. However, it 
may be that a general model that can accurately capture variation in 
RWC is not achievable, but local and species-wise models are needed for 
the accurate estimation of RWC from leaf spectral information. 

4.2. Monitoring of diurnal variation in leaf water content 

The second experiment demonstrated continuous in-situ monitoring 
of leaf spectra and leaf water content. Suitable wavelengths were 
investigated with regression modelling between TLW and spectral fea-
tures to identify suitable wavelengths for D. marginate and RWC was 
predicted through the monitoring period. The diurnal dynamics of leaf 
water content were clearly observable in the leaf spectra with spectral 
features from the 1350–1650 nm region (Fig. 8), but the 2000–2450 nm 
spectral region (NIRONE S2.5) did not show a clear diurnal trend due to 
a high amount of noise in the measurement (see Appendix A). It could be 
observed from the time-series of predicted RWC (Fig. 8) how the 
amplitude of diurnal RWC decreases as drought develops and is restored 
after the plant is watered. The range of predicted RWC was 79%–83% 
where the highest values were for a rewatered plant indicating unreal-
istic values of RWC (well-watered plants should have a RWC of ~95%) 
(Mullan and Pietragalla, 2012). The predicted RWC was likely biased 
due to the utilization of measurements from a different species (silver 
birch) in model development, which might also include some over-
saturation issues of RWC explained in the methods of experiment 1. 

Table 5 
Coefficient of determination (R2) for the top five regression models between 
time from last watering (TLW) and daily metrics of spectral features for each 
sensor. The monitoring period lasted 12 days. γ1 and γ2 are the reflectance of 
each wavelength used in normalized ratio index calculations.  

NIRONE S1.7 1350–1650 nm 

NRI (λ1, λ2) Reflectance at λ 

λ1 λ2 R2 feature λ R2 feature 

1540 1530 0.91 mean 1460 0.76 range 
1420 1400 0.90 mean 1450 0.75 range 
1410 1400 0.88 mean 1470 0.74 range 
1470 1350 0.87 mean 1370 0.74 range 
1550 1530 0.87 mean 1360 0.72 range  

NIRONE S2.5 2000–2450 nm 
NRI (λ1, λ2) Reflectance at λ 
λ1 λ2 R2 feature λ R2 feature 
2340 2220 0.99 mean 2450 0.90 mean 
2330 2260 0.99 mean 2440 0.88 mean 
2340 2310 0.99 range 2430 0.85 mean 
2330 2270 0.99 mean 2420 0.83 mean 
2320 2260 0.99 mean 2410 0.80 mean  

Fig. 8. Predicted relative water content (RWC) using 
the moving average of 20 reflectance measurements 
of normalized ratio index (NRI) of 1470 nm and 1350 
nm wavelengths (black line) and air temperature (red 
line) during the monitoring period (March 19–April 
8) of a Dracaena marginate (Lem.) leaf. Blue vertical 
lines denote a watering. The reflectance measure-
ments were conducted every 48 s and temperature 
measurements every 15 min. Dashed lines denote the 
midday (12:00) of each day. (For interpretation of the 
references to colour in this figure legend, the reader is 
referred to the web version of this article.)   

Fig. 9. Linear regression models between observed 
(destructively measured, n = 21) and predicted rela-
tive water content (RWC, n = 70) using A) direct 
estimation with a normalized ratio index (NRI) of 
1620 nm and 1410 nm wavelengths and B) estimation 
through equivalent water thickness (EWT) and leaf 
mass per area (LMA) using NRIs of 1390 nm and 
1370 nm (predictor for EWT) and 1650 nm and 1380 
nm (predictor for LMA) wavelengths. The line repre-
sents the 1:1 ratio and the regression line (lines too 
close to each other to be visible).   
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However, these issues are only circumstantial as the goal was to inves-
tigate if our sensor can observe the diurnal fluctuations in leaf water 
content, which were clearly observable in the measurements. The issues 
mentioned here were not apparent in Experiment 3, where the more 
robust standing method was used for measuring RWC and the same 
species was used for model development and predictions. The signal-to- 
noise ratio of the NIRONE S2.5 sensor (1500 vs. 11,000 in S1.7) seemed 
to hamper the measurement of diurnal dynamics despite the high cor-
relation between TLW and spectral features and the high sensitivity to 
leaf water content (Feret et al., 2019). Therefore, the NIRONE sensor 
S1.7 seems like a more viable option for continuous measurement of leaf 
water content. 

The daily dynamics that were observed in the D. marginate leaves 
correspond well with previous measurements of diurnal sap flow and 
xylem diameter dynamics in drought conditions (Jupa et al., 2017). We 
could observe in our measurements that the amplitude of variation was 
decreasing towards more severe drought conditions and that the 
amplitude of variation returned after watering similarly to the obser-
vations made by Jupa et al. (2017). Although it is challenging to fully 
understand the magnitude of changes in water content and convert the 
observed values in reflectance to absolute amounts of water, we can use 
this type of data to understand the variability of leaf water content. 
There is also a vast body of literature that supports our findings of the 
sensitivity of the investigated spectral regions on leaf water content 

(Cheng et al., 2011; Feret et al., 2008; Romer et al., 2012). We already 
have a detailed understanding of the physical changes of water on 
electromagnetic radiation and the relationship between water content 
and SWIR radiation (Becker and Autler, 1946; Lunkenheimer et al., 
2017), but the lack of suitable and affordable instruments has been 
hampering the full application of this knowledge. 

Based on our results, a spectral region in the 1350–1470 nm range 
showed to be especially important for the estimation of leaf water 
content and information on leaf structure and LMA was more focused in 
the 1600–1650 nm range. This indicates that narrow spectral ranges or 
measured wavelengths could capture changes in the investigated vari-
ables. The NIRONE sensors are programmable, and the measured 
wavelengths can be selected. This feature allows more rapid measure-
ments to be undertaken when the number of measured wavelengths is 
lowered enabling ultra-high time resolutions in measuring leaf spectra if 
needed. 

We observed that the measurement setup is very sensitive to any 
changes in viewing angle and distance on the measured spectra (not 
reported). Therefore, we suggest that to measure the daily changes of 
leaf water content, the sensor needs to be carefully installed and care 
taken so that the leaf does not change position during the measurement 
period and does not cause alteration to the measured reflectance due to 
changes in bidirectional reflectance distribution function. The sensor 
also causes a small heating effect as the lamp illuminates the target, 

Fig. 10. A) Relative water content (RWC) estimated using a normalized ratio index (NRI) of 1620 nm and 1410 nm wavelengths. Individual leaves are plotted with 
different colors. B) RWC estimated using NRIs of 1390 nm and 1370 nm (predictor for equivalent water thickness, EWT) and 1650 nm and 1380 nm (predictor for leaf 
mass per area, LMA) wavelengths. C) Variation in vapour pressure deficit (VPD, the red line) and xylem diameter (black line) during the monitoring period. D) 
Destructively measured RWC during the monitoring period. The error bars represent standard deviation from the mean. The dashed vertical lines denote sunset and 
sunrise. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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which could lead to bias during long-term monitoring on estimated leaf 
water content variation if VPD increases between the leaf and the sensor. 
Higher VPD could lead to increased transpiration and thus, also to a 
smaller leaf water content. However, no visible damage or effect on the 
measured leaves was observed during or after the 20-day monitoring 
period. 

The purpose of the third experiment was to test the sensors in a forest 
field experiment with mature silver birch trees and to measure diurnal 
dynamics of leaf water content in the field. Our results show that distinct 
diurnal trends of RWC were captured using a direct approach for esti-
mating RWC with an NRI of 1620 nm and 1410 nm wavelengths, which 
corresponded well with the trend in destructively measured RWC and 
VPD (Fig. 10). Different leaves showed varying ranges of RWC that may 
be due to differences in leaf structure (described with leaf structural 
parameter N), which the spectral feature is not capable of taking into 
account. We also used spectral features that predicted EWT (NRI of 
1370 nm and 1390 nm) and LMA (NRI of 1650 nm and 1380 nm) to 
estimate RWC, which resulted in a better relationship (R2 of 0.81 vs. 0.7) 
with measured RWC when the measurements were averaged. However, 
the leaf-level predictions of RWC using the EWT-LMA approach showed 
larger variability and inconsistencies when compared to the trend in 
measured RWC during the monitoring period, which could be a result of 
increased noise due to the utilization of an additional spectral feature. 

The measurements of the third experiment were conducted using 
only single measurements aiming at avoiding the change of exact mea-
surement position between different measurements. This could have 
affected the results, because of possible variation in the measurements 
and it could be more advisable to use many measurements of a single 
leaf. Afterall, the measurement area of the NIRONE sensor is tiny, about 
a millimeter in diameter, and the viewing angle is very narrow, only 
about 8 degrees. Therefore, multiple measurements of each leaf could 
give a more stable measurement of the leaf spectra, which can be 
influenced also by varying leaf water content within the leaf. 

A disadvantage of the presented method is the lack of multiple pixels 
compared to other imaging sensors, such as terahertz radiation spec-
troscopy (Browne et al., 2020) or terrestrial lidar (Elsherif et al., 2019b; 
Junttila et al., 2021). Spatial variation of leaf water content is more 
difficult to measure using the presented method, but on the other hand 
we were able to observe very clearly the small diurnal variation in leaf 
water content, which has been difficult to measure non-destructively. An 
interesting future approach would be to combine a time-series of 
hyperspectral spectroscopy at leaf-level and use that to up-scale the 
measurements to canopy-level using terrestrial lidar. 

5. Conclusions 

The results of this study showcase how low-cost (under 2500 €) 
hyperspectral spectroscopy can be used to estimate EWT and RWC and 
assess detailed leaf water content dynamics through time. The NIRONE 
sensors seem to embody spectral resolution and accuracy that enables 
the monitoring of leaf spectra in the SWIR region at a reasonable cost 
allowing multiple prominent applications for monitoring leaf water 
content. According to the results, the estimation of RWC through the 
estimation of EWT and LMA may improve estimation accuracy. How-
ever, a direct estimation of RWC from leaf spectra yielded better results 
in this study. Based on our results, the spectral region between 1350 nm 
and 1650 nm can be used to estimate EWT, RWC and LMA. Detailed 
temporal monitoring of leaf water dynamics can help us to further un-
derstand the movement of water within the soil-tree-atmosphere con-
tinuum. These low-cost sensors open new avenues for research in 
studying plant-water interactions by allowing continuous measurements 
and the detection of minute changes in leaf water content. 
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Appendix A. Appendix 

The appendix contains two figures from the Experiment 2 showing the increases in noise when NIRONE S2.5 was used for measuring leaf spectra 
(Fig. A1) and when neighboring bands were used for calculating NRI (Fig. A2). 
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Fig. A1. Moving average of 10 measurements of normalized ratio index (NRI) of 2340 nm and 2220 nm wavelengths (black line) of a Dracaena marginate (Lem.) leaf 
and air temperature (red line) during the monitoring period (March 19–April 8). The vertical blue lines denote the timing of watering. The reflectance measurements 
were conducted every 48 s and temperature measurements every 15 min. (For interpretation of the references to colour in this figure legend, the reader is referred to 
the web version of this article.) 

Fig. A2. Moving average of 10 measurements of normalized ratio index (NRI) of 1540 nm and 1530 nm wavelengths (black line) of a Dracaena marginate (Lem.) leaf 
and air temperature (red line) during the monitoring period (March 19–April 8). The vertical blue lines denote the timing of watering. The reflectance measurements 
were conducted every 48 s and temperature measurements every 15 min. (For interpretation of the references to colour in this figure legend, the reader is referred to 
the web version of this article.) 

Appendix B. Supplementary data 

Supplementary data to this article can be found online at https://doi.org/10.1016/j.rse.2022.113071. 

References 

Arndt, S.K., Irawan, A., Sanders, G.J., 2015. Apoplastic water fraction and rehydration 
techniques introduce significant errors in measurements of relative water content 
and osmotic potential in plant leaves. Physiol. Plant. 155, 355–368. 

Bartlett, M.K., Scoffoni, C., Sack, L., 2012. The determinants of leaf turgor loss point and 
prediction of drought tolerance of species and biomes: a global meta-analysis. Ecol. 
Lett. 15, 393–405. 
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