
https://helda.helsinki.fi

Privacy-friendly Discovery of Common Friends in P2P Networks

Meskanen, Tommi

IEEE

2022-04

Meskanen , T , Kuusijarvi , J , Ramezanian , S & Niemi , V 2022 , Privacy-friendly Discovery

of Common Friends in P2P Networks . in 31st Conference of Open Innovations Association

(FRUCT) . IEEE , Conference of Open Innovations Association , Helsinki , Finland ,

27/04/2022 . https://doi.org/10.23919/FRUCT54823.2022.9770904

http://hdl.handle.net/10138/345391

https://doi.org/10.23919/FRUCT54823.2022.9770904

cc_by_nd

publishedVersion

Downloaded from Helda, University of Helsinki institutional repository.

This is an electronic reprint of the original article.

This reprint may differ from the original in pagination and typographic detail.

Please cite the original version.



Privacy-friendly Discovery of Common Friends in
P2P Networks

Tommi Meskanen∗, Jarkko Kuusijärvi†, Sara Ramezanian∗, Valtteri Niemi∗
∗University of Helsinki and Helsinki Institute for Information Technology, Helsinki, Finland

{tommi.meskanen, sara.ramezanian, valtteri.niemi}@helsinki.fi
†VTT Technical Research Centre of Finland Ltd, Oulu, Finland

jarkko.kuusijarvi@vtt.fi

Abstract—In this paper we study the problem of comparing
a set of data between two parties in a peer-to-peer network to
determine the number of common friends. Several protocols for
private set intersection are presented in the literature. When
the sets are large these tend to be too slow for many purposes.
We consider the problem of two parties finding out how many
common friends they have in a privacy preserving way. This
problem has arisen in designing a peer-to-peer platform called
HELIOS. We present our solution for the problem that is more
efficient than older protocols but still sufficiently privacy-friendly
for our purposes. The solution is based on iteratively revealing
information about the hash values of friends’ identities in small
increments.

I. INTRODUCTION

We study the problem where two individuals, Alice and
Bob, are interested in how many common friends they have.
They do not want to reveal how many friends they have or
who are their friends. However, they may be willing to reveal
to each other who are the common friends. This is a problem
that arises when trying to update the social networks of users
in peer-to-peer networks in a privacy preserving way.

This problem can be solved, for example, by applying a pri-
vate set intersection protocol. Typically, private set intersection
protocols are complex and require a lot of computations and
data exchange between the parties [10]. Thus there is a need
for a more efficient solution. The problem can also be solved
by using a trusted third party. However, peer-to-peer networks
are usually built under the premise that no party needs to be
trusted by everyone. We consider the problem in the case there
is no trusted party available. We also assume that Alice and
Bob have limited computation capabilities. We assume that in
the context of friendships, the solution to the problem may
expose a moderate amount of information about the friends of
one user to another user if in trade-off the protocol becomes
more efficient in practice.

In our solution Alice calculates the hash values of her
friends (from their names, user accounts, email addresses or
some other attributes) and reveals to Bob some prefixes that
none of Alice’s friends have in their hash values. Bob does the
same and reveals to Alice some prefixes that none of his friends
have. We estimate how much information Bob learns about the
friends of Alice that are not friends of Bob and conclude that
this is a fair trade-off between privacy and efficiency in this
context. In addition to finding common friends, the protocol
can be used in other contexts where two parties need to find out
intersection of two sets of input data, and this should be done

by revealing only minimal amount of data about the elements
that are not in the intersection.

HELIOS is a new distributed social media platform. The
HELIOS platform is designed to protect users’ privacy and
users have control over how much information they share about
each other [5]. Because of this the users may wish not to share
their contacts to other users. However, this information could
be useful when users want to find other users with whom
they may share common interests. Users also tend to trust
other users more, even if previously unknown to them, when
they share a fair amount of common friends. The number of
common friends can be used as one measure in building a
trust value between two actors in the social graph. The trust
value is useful when adding new actors to one’s social graph,
as well as later on, when building the trust further. Thus it is
beneficial to develop methods for users to share information
in a privacy preserving way. [4]

In [6], a trust metric is used to calculate a composite
of individual security metrics that focus on the trustworthy
behaviour of the other party through a trusted third party. This
behaviour is measured with passive or active measurements
of the other party, focusing on the cybersecurity related tech-
nical measurements. In this paper, we focus on developing
a protocol to discover the common data items between two
peers, specifically the number of common friends. The result
of the proposed protocol can be used as one value, or metric,
to compose a trust value combining also other metrics, such as,
technical [6] or interaction, distance or information truthfulness
[4] based ones. It can also be used solely to calculate the
number of common friends in a more privacy-preserving
manner without other metrics.

The paper is organized as follows: In Section 2, we present
the mathematical and cryptographical building blocks that are
needed later in the paper. In Section 3, we list some alternative
solutions to solve the problem we are studying. The algorithm
that we propose is presented in Section 4. After that, in Section
5, we analyse the accuracy and the complexity of the protocol.
In Section 6 we explain some improvements of the protocol
that could be achieved using probability theory. The paper is
concluded with Section 7.

II. PRELIMINARIES

The algorithm presented in this paper is based on a cryp-
tographic hash function [12]. A cryptographic hash function
takes as an input a bit string of any length and returns a bit

______________________________________________________PROCEEDING OF THE 31ST CONFERENCE OF FRUCT ASSOCIATION

ISSN 2305-7254



string of a fixed length. It is assumed that evaluation of the hash
function can be done efficiently. If Hash is a cryptographic
hash function then it is computationally infeasible to find two
different inputs x and x′ such that Hash(x) = Hash(x′)
or to find x such that Hash(x) = y when output y is given.
SHA-256 is an example of a cryptographic hash function [13].

In a keyed hash function a secret key is used together with
the input string to generate the hash value [1].

In a secure multi-party computation there are several par-
ties, at least two. The parties follow a protocol to generate
a result of the computation. Each party may have an input.
Typically the parties send messages to each other and do
calculations with the data they have received. [14], [15]

A trusted third party is an entity that other parties can
employ in a secure multi-party protocol. The other parties trust
that the trusted third party always behaves as instructed by the
protocols and the only information the third party reveals to
anybody else is the information described in the protocol. The
trusted third parties are very useful but often it is difficult to
find entities that all other parties trust and that are also worthy
of this trust.

A private set intersection (PSI) protocol involves two or
more parties that all have some finite and private set of
elements in their possession. A PSI protocol is a method
to compute the intersection of these sets and to reveal the
intersection or the size of the intersection to all parties. This
method usually has the requirement that nothing else about the
private sets of the parties is revealed to other parties.

Several solutions are presented in the literature for the PSI
problem but all the general purpose solutions tend to require
several rounds between the parties and considerable amount of
computing resources [8], [10].

Our solution is motivated by a use case in peer-to-peer
networks. Details of such networks, including security aspects,
are explained, e.g., in the book by Korzun and Gurtov [7].

III. RELATED WORK

A trivial way to solve our problem could be: Alice sends
list of her friends to Bob and Bob sends back those who
are also his friends. Of course, then only Bob’s non-common
friends remain private.

A straight-forward way to try to solve our problem with
hash functions is as follows. Alice calculates the hash values
of all her friends individually and sends the values to Bob. Bob
also calculates the hash values of all his friends individually
and sends the values to Alice. Both of them can now count
how many of their hash values match with the hash values of
the other party. This is the number of their common friends.

This approach has several shortcomings. If Alice has the
interest to know if some person that is not one of her friends
is a friend of Bob, she may calculate the hash value of that
person and compare it with the hash values Bob sent. She can
do this even long after the protocol is finished.

Also, if Alice performs this protocol also with David, she
can compare the hashes Bob and David sent and find out how
many common friends Bob and David have between them.

Still another problem with this approach is that Alice
herself can use her correct hash values when calculating the
result but could send Bob some random hashes and thus Bob
is not able to calculate the correct result.

One improvement for this protocol would be that Alice
and Bob use a keyed hash function and the random key is
agreed together between Alice and Bob. Now Alice cannot
use the hash values she has received from Bob and David to
find out how many common friends Bob and David have. This
is because Bob and David use different keys when computing
the hashes. Although Alice knows both keys, she cannot find
out whether two hash values result from the same input.

The protocol could be made more secure by using blind
signatures [2]. Bob signs identity of each of his friends with his
private signing key and sends the hash values of the signatures
to Alice. On the other hand, Alice asks a blind signature from
Bob for identities of all her friends and then calculates the
hash values of these signatures. By doing comparisons between
two sets of hash values Alice can find out the number of their
common friends.

Alice cannot test if a person that is not her friend is a
friend of Bob because she does not know Bob’s signature
for this person. Here, and later in the paper, we assume that
Alice’s friends are the individuals that she uses as the input to
the protocol. She could, of course, pretend that she has more
friends than she has and use the identities of individuals she
has seen in TV as her friends. Protocols like the ones discussed
in this paper cannot protect against such false input values.

On the other hand, Bob cannot test if a person that is not
his friend is a friend of Alice because of the blindness of the
signature. He does not know the hash values of the signatures
of Alice’s friends.

For extra privacy, Alice and Bob could still use a keyed
hash function, together with blind signatures.

As mentioned already, another solution for the problem is
to use any protocol for private set intersection [8]. Usually,
these protocols reveal also what elements belong to the in-
tersection. In our setting this means that Alice and Bob also
learn who the common friends are. There are also multiparty
protocols for only finding out how many elements there are in
the intersection.

And lastly, if Alice and Bob have access to a trusted third
party, they can just send the names of their friends to the
trusted third party and the trusted third party will tell them
who are their common friends or how many common friends
they have. This method can also be used by sending keyed
hash values of identities instead of identities themselves. Then
the trusted party would not find out who the common friends
are [11].

A comparison of these solutions is presented in Table I. We
have compared our proposed solution against four solutions
mentioned above: the naive solution where Alice sends hashes
of her friends to Bob, the solution where Alice and Bob
together agree on a key and use keyed hash function, the
solution where Bob signs Alice’s friends before hashing and a
general PSI solution. We have listed if Bob can use exhaustive

______________________________________________________PROCEEDING OF THE 31ST CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 182 ----------------------------------------------------------------------------



search to find all friends of Alice and if Alice can find out
common friends of Bob and Carol after running the protocol
with both of them. We have also compared the relative speeds
of the solutions and listed what is the operation that has the
largest impact on the running time.

IV. OUR PROTOCOL

In the following we present our protocol for Alice and Bob
to find (the number of) their common friends. Note that this
protocol can be used for other purposes as well. The protocol
can be modified for problems where the sets of parties are
something else than their friends. To protect the privacy of the
parties against third parties, we assume that communication
between Alice and Bob is done using a secure channel.

We assume that both Alice and Bob have 1024 friends and
each has calculated the hash values (of 160 bits) of names of
their friends. If they have less than 1024 friends, then they can
use random dummy values to expand their number of friends
to 1024. Note that it is extremely unlikely that two users would
choose same dummy value, if the selection is done randomly.

Algorithm 1 Protocol for discarding prefixes of length k that
the common friends do not have
There are 2048 different hash value prefixes of length k bits
left.
0: Step 1; Initiator chooses 512 of these that are not prefixes

of the hash values of their friends and tells Responder to
discard all hash values that have these prefixes.

0: Step 2; Responder chooses another 512 of these that are not
prefixes of the hash values of their friends and tells Initiator
to discard all hash values starting with these prefixes.

There are 2048 different hash value prefixes of length k + 1
bits left.

Algorithm 2 Protocol for finding the common friends

0: Initiator := Alice; Responder := Bob;
0: For k = 11 to 30;

• Run one round of Algorithm 1 with parameter k;
• Switch roles of Initiator and Responder

0: Alice checks whom of her friends do not have discarded
prefixes

0: Bob checks whom of his friends do not have discarded
prefixes

Our protocol is described in Algorithm 1 and Algorithm 2.
The information flow between the two parties is described in
Fig 1. The parties continue running the algorithm for, e.g., 20
rounds.

The protocol can be adapted to the case where the maxi-
mum number of friends for each party is larger or smaller than
1024. It is important that there are always enough prefixes left
so that Alice and Bob can discard their shares of them. If we
assume that there are 2048 prefixes in the beginning. Alice
can discard 512 them and still leave all 1024 prefixes that
correspond to the hashes of her friends. After this there are
1536 prefixes remaining and Bob can discard 512 them and
still leave all 1024 prefixes that correspond to the hashes of

his friends. Then these 1024 prefixes can be expanded to 2048
longer prefixes and the algorithm can continue.

If we allow the parties to have maximum of 128 friends
then we could start from prefixes of length 8. There are 256
of these. Alice first discards 64 of these and Bob then discards
another 64. There are 128 remaining and these can be expanded
to 256 prefixes of length 9.

If we allow the parties to have maximum of 1’048’576
friends then we could start from prefixes of length 21. There
are 2’097’152 of these. Alice first discards 524’288 of these
and Bob then discards another 524’288. There are 1’048’576
remaining and these can be expanded to 2’097’152 prefixes of
length 22.

When the protocol is finished, Alice can count how many
of her friends have hash values that have prefixes that have
not been discarded. This is the number of the common friends
that the protocol gives. Note that Alice can also learn who
the common friends are. Also Bob can count how many of
the hash values of his friends have prefixes that have not been
discarded and who these friends are.

We have pictured the progress of the algorithm in Fig 2. In
this figure the algorithm starts from the prefixes of length 5.
This means that there are 32 possible prefixes. These are the
sectors on the innermost circle. We assume that Alice and Bob
both have 8 friends. The hash values of their three common
friends are pictured as black lines. The five friends of Alice
that are not friends of Bob are pictured by dashed lines and the
five friends of Bob that are not friends of Alice are presented
by dotted lines.

On the first round Alice has chosen eight prefixes to dis-
card. These are the eight lighter grey sectors on the innermost
circle. Note that three friends of Bob match three of these
prefixes and Bob learns that they are not friends of Alice.

On the first round Bob discards eight prefixes. These are
the eight dark grey sectors on the innermost circle. He also
discards eight prefixes of length 6 on the second round. These
are the sectors in the figure where the innermost circle is white
but the next circle is dark grey. After this, Alice learns that
four out of her friends are not friends of Bob.

The algorithm is continued until covering prefixes of length
9, after which three friends of Alice and also three friends of
Bob remain. These are actually the common friends but, of
course, after running the protocol to this point, Alice and Bob
just know for sure that their common friends are among these
three. If they would run the protocol for more rounds, they get
more and more convinced that all three are indeed common
friends.

V. ANALYSIS

In this section we analyze the accuracy of the solution, its
privacy properties and its efficiency, from both computation
and communication points of view.

A. Accuracy analysis

In the following we estimate for how many rounds the
protocol needs to be executed before the result is accurate
enough. If the number of rounds is not sufficiently large there

______________________________________________________PROCEEDING OF THE 31ST CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 183 ----------------------------------------------------------------------------



TABLE I. COMPARISON OF PROPOSED SOLUTIONS

Naive Keyed Blind PSI Our
hash hash signature solution

Secure against exhaustive search - - + + +

Secure against comparing two runs with different partners - + + + +

Fast + + - - (+)

Speed bottleneck hash hash signing varies number of communication rounds

Alice Bob
512 prefixes of length 11−−−−−−−−−−−−−−−−→

512 prefixes of length 11←−−−−−−−−−−−−−−−−
512 prefixes of length 12←−−−−−−−−−−−−−−−−

512 prefixes of length 12−−−−−−−−−−−−−−−−→
512 prefixes of length 13−−−−−−−−−−−−−−−−→

512 prefixes of length 13←−−−−−−−−−−−−−−−−
512 prefixes of length 14←−−−−−−−−−−−−−−−−

512 prefixes of length 14−−−−−−−−−−−−−−−−→
...

Fig. 1. The communication in the algorithm.

is a chance that the result is larger than the actual number
of common friends. Alice could interpret this as some of her
friends being common friends even if this is not the case. And,
vice versa, it is possible that Bob would think that some of
his friends are common friends even if this is not the case.
Moreover, it can happen that the result Alice has is not the
same as Bob has.

After the first round, for Bob, about three quarters of
his friends that are actually not Alice’s friends still remain as
candidates for common friends. For Alice, about two thirds of
her friends that are actually not Alice’s friends still remain as
candidates for common friends.

This is because, for any round with parameter k, the
prefixes of all of Initiator’s friends are among 2k − 2k−2 bit
strings. Responder chooses 2k−2 of those to be discarded. That
means 2

3 of Initiator’s friends that are not Responder’s friends
remain as candidates for common friends.

But then the roles change for the next round which means
reduction for Alice is with factor of 3

4 , while for Bob it is with
2
3 .

After the second round, for Bob, about 3
4 · 2

3 = 1
2 of his

friends that are not Alice’s friends remain as candidates for
common friends. For Alice, still about 2

3 · 34 = 1
2 of her friends

that are not Bob’s friends remain as candidates for common
friends.

After the fourth round, about
(
1
2

)2
= 1

4 of Bob’s friends
that are not Alice’s friends remain as candidates for common
friends and about 1

4 of Alice’s friends that are not Bob’s friends
remain as candidates for common friends.

We conclude, that after 2s rounds, for Bob (resp., Alice),
about

(
1
2

)s
of Bob’s (Alice’s) friends that are not Alice’s

(Bob’s) friends still seem as candidates for common friends.

If we assume that both Alice and Bob have at most 1024

friends then after 20 rounds the error in the count of common
friends is in average at most one friend for both Alice and Bob.
From another point of view, after 22 rounds, the probability
that the number of common friends is correctly calculated is
over 60%.

There is a small probability that a hash of one of the friends
of Alice has a very long common prefix with a hash of one of
the friends of Bob even when these are not common friends
In this case the algorithm would return that there is an extra
common friend if there are not enough rounds to reach to
longer prefixes than the common prefix.

If we consider the prefixes of length k > 20 then all (or
almost all) 1024 friends of Alice have a unique prefix. This
means that the probability of a any other friend of Bob having
the same prefix is 1024

2k
. The number of friends of Bob that

are not friends of Alice is at most 1024. Thus the expected
number of these having the same prefix than any friend of
Alice is smaller than

1024 · 1024
2k

= 220−k.

For example, starting with prefixes of length 11 and continuing
until discarding prefixes of length 30, the probability of any
friend of Bob that is not a friend of Alice still having a same
prefix as a friend of Alice is smaller than 2−10 ≈ 1

1000 .

B. Privacy analysis

In this section we discuss the amount of information that
may be leaked while running the protocol.

On the first round Alice asks to discard 1
4 of all possible

hash values and reveals that none of her friends have these
hash values.

On the second round Alice asks to discard 1
8 of all

possible hash values and reveals that none of her friends have
these hash values.

On the third round Alice asks to discard 1
16 of all possible

hash values and reveals that none of her friends have these hash
values.

After a few rounds Alice has asked to discard almost half
of all possible hash values and has revealed that none of her
friends have these hash values.

On the first round Bob asks to discard 1
4 of all possible

hash values and reveals that none of his friends have these
hash values.

On the second round Bob asks to discard 1
8 of all possible

hash values and reveals that none of his friends have these hash
values.

______________________________________________________PROCEEDING OF THE 31ST CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 184 ----------------------------------------------------------------------------



Fig. 2. The result of the algorithm. The range of hash function values is depicted as a compass rose In this picture Alice and Bob both discard 8 prefixes of
each length.

After a few rounds Bob has asked to discard almost half
of all possible hash values and has revealed that none of his
friends have these hash values.

If the protocol is run for many rounds, Bob learns almost
1
2 · 2160 hash values that do not belong to Alice’s friends, the
remaining values may belong to friends of Alice. However,
Bob does not learn which of the remaining hash values belong
to the friends of Alice.

The same is true for Alice about the friends of Bob.

It could be said that, in principle, approximately half of all
people in the world are revealed to Bob to not belong to the
friends of Alice. Bob could be interested in finding whether a

certain person is Alice’s friend although that person of interest
is not among Bob’s friends. Bob could then avoid discarding
that person’s hash prefixes. Then eventually Alice is sort of
”forced” to discard that person if the person is not her friend.
But this setting means that Bob does not follow the protocol
correctly. In other words, Bob’s actions are equivalent to using
false set of friends as input to the protocol. As mentioned
before, a protocol of the sort we are discussing in this paper
cannot protect against using false input values.

C. Communication cost

In this section we estimate how many bits of data Alice
and Bob need to sent to each other during the execution of

______________________________________________________PROCEEDING OF THE 31ST CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 185 ----------------------------------------------------------------------------



the protocol. We also present a method to send only 2048-bit
incidence vectors instead of 2048 prefixes of hashes.

On the first round, Alice has a list of all 2048 prefixes of
length 11. She can communicate her choice of the prefixes to
be discarded by sending an incidence vector of 2048 bits to
Bob. She orders the prefixes in the lexicographical order and
for each prefix sets the corresponding bit in the vector to be 1
if this prefix is to be discarded and 0 otherwise. For the next
round she makes a new list of 1536 prefixes of length 11 that
are available after her choice of 512 prefixes and forgets the
old one.

Bob can also order the 2048 prefixes of length 11 in the
lexicographical order and, after receiving the incidence vector
from Alice, he learns her choice.

On the first round, Bob has 1536 prefixes left. He chooses
512 to discard and saves this choice to an incidence vector
of length 1536, as described before. On the second round
he considers the 2048 prefixes of length 12. As before, he
orders them in the lexicographical order and saves his choice
of prefixes to discard in an incidence vector of length 2048.
Bob sends both of these vectors to Alice, who first learns which
vectors of length 11 are to be discarded and thus, what are the
2048 prefixes of length 12 that remain. She can arrange these
in the lexicographical order and learns from the second vector
Bob sent what prefixes he wants to discard.

Alice and Bob can continue this way on the following
rounds. Even when the prefixes are getting longer and longer,
the incidence vectors they send to each other on each round are
always of length 1536 and 2048. Thus, on each round Alice
sends to Bob or Bob sends to Alice less than 4000 bits of
information.

The ordering of the new, one bit longer prefixes in the
lexicographical order is quite easy because all the prefixes
are always in the lexicographical order. From each remaining
prefix two longer prefixes are generated by appending 0 or 1
to the end.

D. Time cost and comparison with other solutions

We have implemented the protocol in the case that both
Alice and Bob have at most 1024 friends and execute the
protocol for 20 rounds. The calculations took about 3ms in
total for Alice and Bob on an old Windows PC. The time that
the communication between Alice and Bob takes depends, of
course, on the properties of the network Alice and Bob are
using. In order to estimate the delays of running the algorithm
on Android devices and especially the HELIOS platform we
have implemented a test scenario for this purpose. The tests
were done on Android phones (Nokia 8.1) running a HELIOS
platform (see https://github.com/helios-h2020/) test application
on 4G connectivity. HELIOS p2p direct messaging feature
was used by adding support to a new protocol for finding out
common friends between two HELIOS peers that both support
this new protocol. The implementation allows to configure
the amount of rounds to be executed, thus allowing to adjust
the confidence and privacy-level as wanted. The HELIOS
messaging library adds its own internal message headers on top
of the actual payload of the protocol, i.e., either 2048 or 4096
bits. The protocol payload messages were random in this test

scenario, thus measuring the delays of the device, used network
and the platform. The messages were end-to-end encrypted
between the two applications with the messaging module of
HELIOS. During the tests, the applications used a HELIOS
relay to be able to communicate to each other, which obviously
adds milliseconds to the execution time. Overall, combining
the measured times, we estimate that using HELIOS platform
and two Android phones the communication typically takes
1700ms.

We now compare the time cost against other solutions,
in particular naive hashing solution, where hashes of friends
of Alice are sent to Bob for comparison, and the Oblivious
Transfer using Random Bloom Filter solution by Pinkas et al
[9]. The latter seems to be the fastest of secure PSI protocols
in the comparison made in another paper by Pinkas et al. [10].
We compare our protocol against the numbers in Table 9 of
the latter paper.

We start from the LAN setting where communication is
very fast. The naive hashing solution takes 1ms for 256
elements and 3ms for 4096 elements. For these set sizes
the protocol by Pinkas et al. takes 95ms and 346ms. To
make comparisons we continue by indirect reasoning about
the potential speed of our protocol in a similar setting. From
the numbers we can deduct that latency between Alice and
Bob is smaller than 1ms and thus for our protocol the transfer
of data would take less than 21ms. So, in total our protocol
would finish in 24ms for sets of 1024 elements.

Next we consider the WAN setting where round trip
of transmissions between Alice and Bob takes 97ms. It is
mentioned in the table that naive hashing solution takes 51ms
for sets of 256 elements and 119ms for sets of 4096 elements.
The time requirement of the protocol by Pinkas et al. is
968ms for sets of 256 elements and 3863ms for sets of 4096
elements. Similarly as above, we continue by speculating how
our protocol would perform in the WAN setting. Our protocol
needs 10 and half round trips so the time for sets of 1024
elements would be 10.5 times 97ms, in addition to 3ms that
is needed for computations on both sides. This is 1022ms in
total.

Thus our solution seems to be faster than the solution by
Pinkas et al. in both LAN and WAN cases. Our solution is
slower than the naive hashing but it provides better privacy.

VI. IMPROVEMENTS

We can use probability theory to estimate how close the
output of the protocol is to the actual number of common
friends. In this way we can reduce the number of rounds in
the protocol from 20 to 10 and still get a good estimate on the
number of common friends. On the other hand, we lose the
ability to accurately find out who the common friends are. For
Alice, her friends are divided into two sets, one set consists of
friends that are surely not common friends and another set in
which the friends may be common friends. Bob also learns that
his friends can be divided into two sets in a similar fashion.

Let us consider the situation from the Alice’s point of view.
On the second step of the first round Bob discards one third
of the prefixes. Before this, none of the friends of Alice are
discarded. There is a possibility of 1

3 for discarding a hash

______________________________________________________PROCEEDING OF THE 31ST CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 186 ----------------------------------------------------------------------------



value belonging to a friend of Alice that is not a friend of
Bob. In the first step of the second round Bob discards one
quarter of the remaining longer prefixes. In total, after the
second round, about

1

3
+

2

3
· 1
4
=

1

2

of all Alice’s friends that are not friends of Bob have discarded
prefixes.

About half of those friends of Alice that are not friends of
Bob but remain after first two rounds are discarded on third
and fourth round.

We can calculate that after 2s rounds, the probability that
a friend of Alice that is not a friend of Bob has a discarded
prefix is

p =

s∑

i=1

1

2i
= 1− 1

2s
.

Alice knows how many of her friends have hash values with
discarded prefixes. We denote by as the number of Alice’s
friends that have discarded prefixes after 2s rounds and by a
the number of Alice’s friends that are not friends of Bob and
thus would be discarded if the protocol would be run long
enough. We have

as ≈ pa

and thus Alice can calculate that

a ≈ as
p

=
2s

2s − 1
as.

Alice can now calculate an estimation for the number of
her common friends with Bob by subtracting this number from
her total number of friends.

We can do a similar analysis from the point of view of
Bob. On the first round one quarter of friends of Bob that are
not friends of Alice are revealed not to be friends of Alice.
And on the second round one third of the remaining friends of
Bob that are not friends of Alice are revealed not to be friends
of Alice.

Thus, after these transmissions, about

1

4
+

3

4
· 1
3
=

1

2

of all friends of Bob that are not friends of Alice are revealed
to Bob.

Therefore, if after 2s rounds Bob has learned bs friends of
his that are not friends of Alice, the total number of friends
of his that are not friends of Alice is about

2s

2s − 1
bs.

We now give an error estimation for this approximation.
The number of friends of Alice that are not friends of Bob but
are not yet revealed to not be friends of Bob follow binomial
distribution B(n, p) [3]. Here n is the number of friends of
Alice that are not friends of Bob, that we have denoted earlier
by a, p = 1 − 1

2s and 2s is still the number of rounds. The

variance for the number of friends of Alice that are not yet
revealed to not be friends of Bob is

np(p− 1) = a
2s − 1

4s

and the standard deviation is

√
np(p− 1) =

√
a

√
2s − 1

2s
.

Thus, if Alice has 100 friends that are not friends of
Bob, after 10 rounds of the protocol, the standard deviation
is 1.7. This means, approximately, that with probability 95%
the result of the algorithm is off by at most 2 ·1.7 ≈ 4 friends.

Using this method the parties can reduce the number of
rounds in the protocol and still get a good estimate on the
number of common friends.

VII. CONCLUSION AND FUTURE WORK

We have considered the problem of finding the intersection
of two sets, in a privacy friendly manner. Our motivation for
this is a case that has arisen in HELIOS social media platform.
Two parties want to find out how many common friends they
have in a privacy preserving way.

We have described our solution that is efficient and does
not reveal too much information about the private sets and thus
is more suitable for social media platforms than previous work.
This paper includes the analysis of the privacy and efficiency
of the protocol. We have also implemented the protocol and
showed that our solution is faster than prior solutions meeting
the same privacy level.

Several modifications to the protocol that are suitable for
solving different versions of the problem are also discussed.

Future work includes implementing the full protocol for
Android devices and making it eventually a part of the HE-
LIOS platform.

ACKNOWLEDGMENT

This work is supported by the HELIOS H2020 project.
HELIOS has received funding from the European Unions
Horizon 2020 research and innovation programme under grant
agreement No 825585.

REFERENCES

[1] Bellare, M., Canetti, R., & Krawczyk, H. (1996, August). Keying
hash functions for message authentication. In Annual international
cryptology conference (pp. 1-15). Springer, Berlin, Heidelberg.

[2] Chaum, D. (1983). Blind signatures for untraceable payments. In
Advances in cryptology (pp. 199-203). Springer, Boston, MA.

[3] Clapham, C., Nicholson, J., & Nicholson, J. R. (2014). The concise
Oxford dictionary of mathematics. Oxford University Press.

[4] Guidi, B., Kapanova, K. G., Koidl, K., Michienzi, A., & Ricci, L.
(2020). The contextual ego network p2p overlay for the next generation
social networks. Mobile Networks and Applications, 25(3), 1062-1074.

[5] HELIOS project homepage, Web: https://helios-h2020.eu/.

[6] Hiltunen, J., & Kuusijrvi, J. (2015, August). Trust metrics based on
a trusted network element. In 2015 IEEE Trustcom/BigDataSE/ISPA
(Vol. 1, pp. 660-667). IEEE.

[7] Korzun, D., & Gurtov, A. (2012). Structured peer-to-peer systems:
fundamentals of hierarchical organization, routing, scaling, and security.
Springer Science & Business Media.

______________________________________________________PROCEEDING OF THE 31ST CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 187 ----------------------------------------------------------------------------



[8] Meadows, C. (1986, April). A more efficient cryptographic matchmak-
ing protocol for use in the absence of a continuously available third
party. In 1986 IEEE Symposium on Security and Privacy (pp. 134-134).
IEEE.

[9] Pinkas, B., Schneider, T., & Zohner, M. (2014). Faster private set inter-
section based on OT extension. In 23rd USENIX Security Symposium
(USENIX Security 14) (pp. 797-812).

[10] Pinkas, B., Schneider, T., & Zohner, M. (2018). Scalable private set
intersection based on OT extension. ACM Transactions on Privacy and
Security (TOPS), 21(2), 1-35.

[11] Ramezanian, S., Meskanen, T., & Niemi, V. (2021, July). Multi-party
Private Set Operations with an External Decider. In IFIP Annual
Conference on Data and Applications Security and Privacy (pp. 117-
135). Springer, Cham.

[12] Rogaway, P., & Shrimpton, T. (2004, February). Cryptographic hash-

function basics: Definitions, implications, and separations for preimage
resistance, second-preimage resistance, and collision resistance. In Inter-
national workshop on fast software encryption (pp. 371-388). Springer,
Berlin, Heidelberg.

[13] US National Institute of Standards and Technology, Federal Information
Processing Standards Publication 180-4: Secure Hash Standard, Web:
http://www.csrc.nist.gov/publications/fips/fips180-4/fips-180-4.pdf,
2012.

[14] Yao, A. C. (1982, November). Protocols for secure computations. In
23rd annual symposium on foundations of computer science (sfcs 1982)
(pp. 160-164). IEEE.

[15] Zhao, C., Zhao, S., Zhao, M., Chen, Z., Gao, C. Z., Li, H., & Tan,
Y. A. (2019). Secure multi-party computation: theory, practice and
applications. Information Sciences, 476, 357-372.

______________________________________________________PROCEEDING OF THE 31ST CONFERENCE OF FRUCT ASSOCIATION

---------------------------------------------------------------------------- 188 ----------------------------------------------------------------------------


