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EXPERT REVIEW OPEN

Cerebral dopamine neurotrophic factor protects and repairs
dopamine neurons by novel mechanism
Päivi Lindholm 1 and Mart Saarma 1✉

© The Author(s) 2021

Midbrain dopamine neurons deteriorate in Parkinson’s disease (PD) that is a progressive neurodegenerative movement disorder.
No cure is available that would stop the dopaminergic decline or restore function of injured neurons in PD. Neurotrophic factors
(NTFs), e.g., glial cell line-derived neurotrophic factor (GDNF) are small, secreted proteins that promote neuron survival during
mammalian development and regulate adult neuronal plasticity, and they are studied as potential therapeutic agents for the
treatment of neurodegenerative diseases. However, results from clinical trials of GDNF and related NTF neurturin (NRTN) in PD have
been modest so far. In this review, we focus on cerebral dopamine neurotrophic factor (CDNF), an unconventional neurotrophic
protein. CDNF delivered to the brain parenchyma protects and restores dopamine neurons in animal models of PD. In a recent
Phase I-II clinical trial CDNF was found safe and well tolerated. CDNF deletion in mice led to age-dependent functional changes in
the brain dopaminergic system and loss of enteric neurons resulting in slower gastrointestinal motility. These defects in Cdnf−/−

mice intriguingly resemble deficiencies observed in early stage PD. Different from classical NTFs, CDNF can function both as an
extracellular trophic factor and as an intracellular, endoplasmic reticulum (ER) luminal protein that protects neurons and other cell
types against ER stress. Similarly to the homologous mesencephalic astrocyte-derived neurotrophic factor (MANF), CDNF is able to
regulate ER stress-induced unfolded protein response (UPR) signaling and promote protein homeostasis in the ER. Since ER stress is
thought to be one of the pathophysiological mechanisms contributing to the dopaminergic degeneration in PD, CDNF, and its
small-molecule derivatives that are under development may provide useful tools for experimental medicine and future therapies
for the treatment of PD and other neurodegenerative protein-misfolding diseases.
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INTRODUCTION
Increased life expectancy and a growing aging population are
leading to an increase in the incidence of age-related diseases,
including Parkinson’s disease (PD) which affects 1% of population
over 60 years of age [1], and with more than 6 million people
diagnosed with PD globally [2]. PD is a progressing neurodegen-
erative movement disorder, in which midbrain dopamine (DA)
neurons in the substantia nigra (SN) degenerate and die. Major
motor symptoms of PD are slowness of movement, resting tremor,
rigidity, and postural instability that appear when there is about
30% loss of DA neurons in the SN and 50–60% reduction in striatal
DA axon terminals [3]. Patients with PD also suffer from non-motor
symptoms, including constipation, hyposmia, depression, lack of
motivation, sleep disorders, and cognitive decline that signifi-
cantly decrease quality of life [4, 5].
Although a few toxins and genetic mutations are known to

cause PD, the etiology is unknown in majority of cases. While
precise mechanisms of DA neuron death are unclear, increasing
body of evidence suggests that protein aggregation, mitochon-
drial dysfunction, inflammation, and reduced growth factor levels
are involved in the molecular pathogenesis of PD [6, 7].
Aggregation of misfolded α-synuclein (αSyn), a major component
of intraneuronal Lewy bodies, may possibly cause endoplasmic
reticulum (ER) stress in DA neurons leading to neuronal death

[8, 9]. Lewy body pathology can be widespread in the central
nervous system (CNS) as well as in the peripheral nervous
system (PNS) including the enteric nervous system (ENS) [10]. The
non-motor symptoms of PD can be related to the dysfunction
of DA and other neurotransmitter systems, such as the
noradrenergic and cholinergic systems [4]. However, the neuro-
pathological mechanisms behind the non-motor symptoms are
largely unknown.
Treatments are available that can improve motor symptoms of

PD in most patients, but no disease-modifying therapy exists.
Future therapies should include interventions that slow down or
prevent the degeneration and death of DA neurons, regenerate
the remaining DA neurons and increase their functional activity.
They should also alleviate non-motor symptoms of PD. Neuro-
trophic factors (NTFs) hold great promise as drugs that could
promote neuroprotection of DA neurons, and even have the
capacity to regenerate them. NTFs are small, secreted proteins
that promote neuronal survival, regulate development, function
and maintenance of neurons, and advance neuronal recovery
from injury [5, 11, 12]. Glial cell line-derived neurotrophic factor
(GDNF) family ligands (GFLs) GDNF (Figs. 1C, D and 3A) and NRTN
have been shown to be efficient in protecting DA neurons in
rodent and non-human primate (NHP) models of PD, but have
only shown modest effects in Phase II clinical trials in PD patients
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[5, 13, 14]. GDNF has not been shown to be neuroprotective in the
rodent αSyn model of PD, where αSyn was overexpressed by viral
vectors [15], but it in vitro and in vivo protects DA neurons from
accumulation of misfolded αSyn [16]. Why have GDNF and NRTN
given modest therapeutic effects in clinical trials so far? One of the
reasons is that patient populations with advanced PD were treated
in the Phase II clinical trials [17, 18]. Five years after clinical
diagnosis, PD patients have almost no striatal dopaminergic fibers
left and have pronounced loss of DA neuron cell bodies in the SN

[19]. Another important aspect is limited diffusion of GDNF and
NRTN in brain parenchyma that can decrease target engagement
[5, 14]. A major limitation of NTF therapy is the requirement for
their intracranial delivery using invasive brain stereotactic surgery,
as NTF proteins do not cross the blood–brain barrier (BBB). In
order to find out the real value of NTF therapy, several factors
should be taken into consideration. Firstly, treatment should be
started as soon as possible following the clinical diagnosis of PD.
However, currently this is regulated by ethical considerations,
which do not allow invasive surgery for the treatment of early
stage PD patients. Secondly, gene technology and protein design
can be used to improve the therapeutic and pharmacokinetic
properties of NTFs. Thirdly, it is possible to search for new trophic
factors and neurotrophic small molecules with better therapeutic
properties.
We have discovered a protein with NTF properties, named

cerebral dopamine neurotrophic factor (CDNF) [20], that together
with the related mesencephalic astrocyte-derived neurotrophic
factor (MANF, also known as ARMET) [21], form a novel
evolutionarily conserved family of unconventional NTFs [22–27].
CDNF and MANF have neurotrophic properties but they otherwise
dramatically differ from other known NTFs (Table 1). They have a
unique structure, mode of action and they can promote cellular
protein homeostasis by regulating ER stress, regulate inflamma-
tion and support neuron survival in animal models of PD [22–27].
Surprisingly, variants of CDNF can cross through the BBB thus
opening a new possibility for a systemic administration of this
neurotrophic drug [28]. In this review, we discuss the structure,
cellular effects, biology, and therapeutic potential of CDNF.
We also briefly introduce characteristic features of MANF in order
to give an overview of CDNF/MANF protein family.

CDNF and MANF are structurally unique proteins regulating
ER homeostasis
The three-dimensional structures of mature CDNF and MANF
proteins consist of a unique combination of two domains, an
amino-terminal (N-terminal) saposin-like domain and a carboxy-
terminal (C-terminal) SAF-A/B, Acinus, and PIAS (SAP) domain [29–
31] (Fig. 1A). The domains are connected by a flexible linker region
suggesting that they can perform separate functions [29–31].
Since saposin-like proteins usually interact with lipids or mem-
branes, it is probable that the N-terminal domain mediates the
CDNF/MANF interaction with lipids [31]. Indeed, MANF was shown
to directly bind sulfoglycolipid 3-O-sulfogalactosylceramide (sulfa-
tide) possibly via its N-terminal domain [32]. The C-terminal SAP-
domain is important for the neuroprotective activity of MANF,
since it can independently promote the survival of neurons in vitro
[29]. In their primary structure, CDNF/MANF proteins have eight
cysteine residues with conserved spacing, which are important for
the protein fold (Fig. 1B). Three intramolecular disulfide bonds
stabilize the saposin fold of the N-terminal domain and a fourth
disulfide bond can be formed in a CXXC motif in the SAP-
domain [31]. When the CXXC motif was mutated, neuroprotec-
tive activity of MANF was lost indicating that this motif is crucial
for the biological activity of MANF [33]. At the very C-terminal
end, CDNF and MANF have an ER retrieval sequence resembling
the canonical lysine-aspartic acid-glutamic acid-leucine (KDEL)
sequence preventing protein secretion from the ER [34, 35]
(Figs. 1A, B and 3C). In support for the role of KDEL-receptors
(KDEL-Rs) in regulating CDNF and MANF secretion, deletion of
the C-terminal KDEL-like sequence increases their release from
cells [33–37]. Human CDNF has potential sites for N-linked and
O-linked glycosylation but glycosylation is not required for its
secretion [20, 38].
In cells, CDNF and MANF reside mainly in the lumen of the ER

[39, 40] where, especially MANF and likely CDNF have an
important role in regulating of ER protein homeostasis and
promoting cell survival under ER stress [23, 26]. ER stress is a

Fig. 1 Structural features of human CDNF, MANF, and GDNF
proteins. A CDNF (PDB ID: 4BIT [30]) is a monomeric protein. It has
an amino-terminal saposin-like domain that may mediate interac-
tion with lipids, and a carboxy-terminal SAP (SAF-A/B, Acinus, and
PIAS) domain. The CXXC motif (CRAC and CKGC in CDNF and MANF,
respectively) forming a cysteine bridge is located in the C-terminal
domain. Cysteine bridges stabilizing the 3D structure are shown in
yellow. An ER retention signal (KTEL) is in the C-terminus of CDNF. B
Primary structure of CDNF and MANF. CDNF/MANF proteins have an
N-terminal signal peptide directing them to the ER (Pre). Conserved
cysteine residues in mature CDNF (green) and MANF (blue) are
indicated as yellow bars, and disulfide bridges as black connecting
lines. Human mature CDNF and MANF consist of 161 and 158 amino
acid residues, respectively, and the amino acid identity between
them is 59%. C Two GDNF (PDB ID: 1AGQ [126]) monomers
(molecular mass 15 kDa; indicated in blue and red) are connected by
an intermolecular disulfide bridge (in yellow) to form a homodimer.
D GDNF primary structure contains a signal sequence (Pre) directing
it to the secretory pathway, a pro-sequence that is enzymatically
cleaved releasing mature GDNF (red) with seven conserved
cysteines (in yellow). Number of amino acid residues is indicated.
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condition where protein-folding capacity of the ER is over-
whelmed resulting in accumulation of unfolded proteins in the
lumen. It can be due to various physiological and pathological
conditions, including increased demand of protein secretion,
synthesis of mutant proteins, hypoxia, nutrient deprivation, or
depletion of ER calcium. To overcome ER stress, an adaptive signal
transduction pathway termed the unfolded protein response
(UPR) is activated to restore ER protein homeostasis by increasing
expression of chaperones to improve protein folding capacity, to
attenuate translation to reduce protein folding load, and to
enhance ER-associated protein degradation (ERAD) to remove
misfolded proteins [41]. Three ER transmembrane proteins
inositol-requiring enzyme 1α (IRE1α; also known as ERN1), protein
kinase R-like ER kinase (PERK; also known as EIF2AK3) and
activating transcription factor 6 (ATF6) function as sensors for
disturbances in ER protein homeostasis in mammalian cells, and
their activation induces UPR signaling [41–44] (Fig. 2A). If recovery
of ER homeostasis fails, UPR can become chronic leading to
apoptosis [45]. UPR has been associated with pathophysiology of
several neurodegenerative protein-misfolding diseases, including
PD [46–48].
Based on the structural homology between CDNF and MANF,

we can hypothesize that their molecular mechanism of cytopro-
tective action has some similar features. Both CDNF and MANF are
widely expressed in mammalian tissues although with differential
levels [20, 49, 50] suggesting tissue-specific functions. The MANF
promoter contains ER stress response elements recognized by
UPR-induced transcription factors [39, 51, 52] and its expression is
increased in ER stress-related conditions [39, 53–55]. Biological
importance of endogenous MANF for the maintenance of ER
protein homeostasis was demonstrated in conventional and
pancreas-specific MANF knockout mice, where chronic UPR
activation contributes to the loss of pancreatic insulin producing
beta cell mass and development of diabetes mellitus-like
condition [56, 57]. In cultured cells, silencing of MANF led to
activation of UPR and increased susceptibility to ER stress-induced
cell death [58]. UPR activation was also detected in Caenorhabditis
elegans [59, 60] and Drosophila melanogaster [61] due to the loss
of functional MANF. MANF interacts with an ER chaperone BiP
[62, 63], and was shown to prolong BiP interaction with its clients
thus promoting protein-folding homeostasis in the ER [64]. We
recently observed that intracellular MANF is able to promote the
survival of cultured neurons by a mechanism relying on the
activity of either IRE1α or PERK pathways [63]. However, MANF

interaction with BiP was not required for its neuroprotective
activity [63]. Further studies demonstrated that MANF directly
binds to the luminal domain of IRE1α [65]. MANF binding
decreased ER stress-induced oligomerization and phosphorylation
of IRE1α, leading to attenuation of UPR [65]. Under homeostatic
conditions, BiP binds to the luminal domain of IRE1α, PERK, and
ATF6 keeping them inactive, whereas in ER stress BiP is dissociated
triggering the activation of UPR sensors [41]. MANF was shown to
compete with BiP for the interaction with IRE1α suggesting that
MANF is able to bind and regulate IRE1α activity only when BiP is
dissociated, as is the case in ER stress [65]. Thus, IRE1α could act as
MANF receptor in the ER and MANF, by moderating IRE1α activity
could promote cell survival during ER stress [65] (Fig. 2B). The
biological function of MANF in regulating ER protein homeostasis
was further supported by protein–protein interaction studies
suggesting that MANF is a member of a large multiprotein
complex of ER chaperones [63]. A recent report demonstrated that
MANF can function as a chaperone in the ER, although it does not
show structural or sequence homologies to known chaperone
families [66].
In ER stress-related disease models in vivo, expression of

endogenous CDNF was reported to increase after cerebral or
myocardial ischemia [67, 68]. In vitro, ER stress-inducing tunica-
mycin treatment increased CDNF expression in cardiomyocytes
[69] but not in an osteosarcoma-derived cell line [58]. Thus,
responsiveness of CDNF to ER stress may depend on cell type.
However, intracellular CDNF was cytoprotective against ER stress
and able to regulate UPR. Overexpression of CDNF alleviated ER
stress-induced astrocyte damage, and attenuated the expression
of ER stress-induced apoptotic proteins in neurons [70, 71]. What is
more, CDNF overexpression may induce a mild adaptive
conditioning UPR that prepares cells to encounter ER stress and
protects cells in this way [70]. Whether CDNF can regulate UPR via
binding to UPR sensors, similarly to the interaction of MANF and
IRE1α, is unknown (Fig. 2B).
Although CDNF and MANF are largely retained in cells, their

secretion is increased in ER stress when ER calcium is depleted
[36, 62, 67]. Secreted CDNF and MANF may function as autocrine
or paracrine trophic factors, promoting cell survival. In accordance
with their potential trophic activities, endogenous CDNF and
MANF can be detected in human serum [72, 73]. Circulating
concentrations of CDNF were not altered in PD patients while
MANF concentrations were significantly increased and positively
correlated with the Beck Depression Inventory scoring, which is

Table 1. General properties of CDNF, GDNF, and NRTN proteins.

CDNF GDNF NRTN References

Protein family CDNF/MANF TGF-β TGF-β [20, 123, 124]

Structure Saposin-like domain and
SAP-domain

Cystine knot Cystine knot [29–31, 123, 124]

Polypeptide Pre-CDNF Prepro-GDNF Prepro-NRTN [20, 123, 125]

Number of amino acids in mature
protein

161 134 102 [20, 123, 124]

Active conformation Monomer Homodimer, disulfide-
linked

Homodimer, disulfide-
linked

[30, 126, 127]

Molecular mass 18 kDa 32 kDa 25 kDa [20, 123, 124]

Calculated pI 7.7 9.44 9.01 [31, 128, 129]

Heparin binding Weak Strong Very strong [130, 131]

Diffusion in brain tissue Good Limited Very limited [84, 100, 132]

Solubility Good Good Poor [20, 133]

Stability Good Good Good [101, 134]

Inhibits cell death Yes Yes Yes [20, 135, 136]

Regulates UPR Yes ? ? [70, 121]
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used to measure the severity of depression. This suggests that
further studies would be useful to test whether blood MANF levels
can be used as a clinical marker of PD [73]. It has been proposed
that serum MANF functions as a systemic regulator of inflamma-
tion and metabolic homeostasis, thus protecting against age-
related deterioration [74].

Extracellular trophic activities and plasma membrane
receptors
Evidently CDNF and MANF can protect neurons as extracellular
trophic factors, as demonstrated for example in animal models of
PD (as discussed later in detail), and as potential intracellular
regulators of protein homeostasis in the ER. Whether these two

seemingly different cytoprotective activities of CDNF and MANF
engage the same or different intracellular signaling pathways and
molecular mechanisms is under investigation.
In contrast to classical NTFs, publications demonstrating

survival-promoting effects of extracellular CDNF and MANF on
naive neurons are limited. Exogenous CDNF was able to support
the development and survival of enteric DA neurons originating
from enteric neural crest-derived cells in vitro [75], whereas it did
not support the survival of cultured postnatal midbrain DA
neurons [76]. CDNF promoted neither the survival of superior
cervical ganglion (SCG) neurons, motoneurons, nor dorsal root
ganglion neurons in contrast to nerve growth factor (NGF) [20].
MANF protein added to the cell culture was unable to promote
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the survival of naive DA or SCG neurons, in contrast to GDNF and
NGF [29, 63]. Compared to naive neurons, the survival-promoting
effects of CDNF and MANF have been more prominent on injured
or stressed neurons [20, 29, 63]. For example, exogenous CDNF
protected DA neurons against toxicity of αSyn oligomers [30].
CDNF also protected hippocampal cells against synaptotoxicity of
amyloid-β peptide oligomers likely through regulation of ER stress
[77]. In addition to neurons, MANF has various effects on non-
neuronal cells. Exogenous MANF stimulated the proliferation of
mouse and human pancreatic beta cells [56, 57, 78] that,
compared many other cell types, have high physiological ER
stress due to synthesis and secretion of insulin [79]. MANF also
protected cultured embryonic DA neurons against ER stress and
decreased induction of UPR genes via a mechanism dependent on
either IRE1 or PERK pathways [63] suggesting that exogenous
MANF, similarly to intracellular MANF, can promote neuron
survival through regulating UPR. How could exogenous MANF
regulate UPR signaling in the ER? Bai and colleagues provided one
possible answer to this by proposing that extracellular MANF
bound to sulfatide can be endocytosed to cells where it mediates
cytoprotection by promoting ER homeostasis [32] (Fig. 3B). The
molecular mechanism of the potential endocytosis of MANF-
sulfatide and subsequent molecular events remain to be resolved.
Protein receptors proposed to interact with CDNF and MANF on

the PM are KDEL-R and neuroplastin (NPTN) [36, 67, 80] (Fig. 3B).
KDEL-R is mainly localized in the Golgi but it was also detected in
the PM where it could bind CDNF and MANF through C-terminal
KDEL-like sequences [36, 67] (Fig. 3B). Protective effects of
exogenous CDNF against myocardial ischemia/reperfusion injury
was dependent on the presence of the C-terminal lysine-
threonine-glutamic acid-leucine (KTEL) sequence and PI3K-Akt
signaling pathway [67]. However, the C-terminal arginine-
threonine-aspartic acid-leucine (RTDL) sequence of MANF was
dispensable for its neuroprotective activity in a model of cerebral
ischemia [33], suggesting alternative mechanisms for exogenous
MANF activity. Recently, NPTN was identified as a novel PM
receptor for MANF [80] (Fig. 3B). Direct binding of MANF to NPTN
decreased ER stress-mediated inflammation and cell death [80].
However, it is unclear whether NTPN is the major PM receptor for
MANF. Different from MANF, CDNF does not bind NPTN or
sulfatide [32, 80], suggesting that cell surface receptors for CDNF
remain to be discovered.

CDNF and MANF knockout neuronal phenotypes
There are only few studies reporting endogenous levels of CDNF
in patients with PD, obviously due to limited availability of tissue

material. In hippocampal samples of PD patients, CDNF levels
were increased while GDNF levels were decreased suggesting that
these factors could represent potential targets for modification to
help attenuate cognitive decline in PD [81].
Biological functions of CDNF in the nervous system has been

studied using mouse and zebrafish knockout models [75, 82, 83].
These studies indicate that CDNF expression is important for the
development and maintenance of various neuronal types and
circuits rather than specifically for DA neurons. Although CDNF
protects midbrain DA neurons in rodent models of PD [20, 84–89],
no gross anatomical changes were observed in the midbrain
DA system of conventional Cdnf−/− mice [83]. Numbers of DA
neurons in the SNpc, density of tyrosine hydroxylase (TH)- or
dopamine transporter (DAT)-positive fibers in the striatum, or
striatal DA or DA metabolite levels did not differ between Cdnf−/−

and Cdnf+/+ mice [83]. However, Cdnf deletion did lead to
changes of dopaminergic neurotransmission, as amphetamine
administration induced an increased hyperlocomotor response,
possibly resulting from altered function of DAT in the dopami-
nergic axon terminals in striatum of Cdnf−/− mice [83]. Expression
of UPR genes was not altered in the SN or striatum of Cdnf−/−

mice, suggesting that CDNF expression is not essential for the
maintenance of ER protein homeostasis in the midbrain DA
system [83]. Further characterization of Cdnf−/− mice demon-
strated the importance of Cdnf expression for the development
and maintenance of neurons in the ENS. Cdnf−/− mice suffered
from an age-dependent loss of enteric neurons due to increased
neurodegeneration and autophagy observed selectively in the
submucosal plexus of the intestinal wall, leading to slowed
gastrointestinal motility [83]. Cdnf expression was found to be
necessary for the normal development and survival of enteric DA
neurons since Cdnf deletion resulted in loss of DA neuronal
markers in the submucosal plexus [75]. The observed ENS defect
in Cdnf−/− mice was not only for DA neurons as the numbers of
NOS-, GABA-, and CGRP-expressing neurons were also decreased
[75]. The data suggest that the observed functional changes in
the brain dopaminergic system and loss of ENS neurons in
Cdnf−/− mice resemble deficiencies observed in early stage PD
[83]. In a human population study, mutations in CDNF gene were
not identified in patients with early-stage PD [90]. However, a
trend towards susceptibility to PD was observed in subjects
carrying an allele of an intronic CDNF single nucleotide
polymorphism (SNP) [90].
Zebrafish cdnf mutants generated using CRISPR/Cas9-genome

editing were viable, fertile, and had no gross morphologic
phenotype [82]. Importantly, loss of cdnf caused impairments

Fig. 2 General cellular scheme of unfolded protein response (UPR), and a potential mechanism how MANF and CDNF are regulating UPR
in the ER. A UPR is activated by ATF6, PERK, and IRE1α sensors located in the ER membrane of mammalian cells. In nonstressed conditions, ER
chaperone BiP associates to the luminal domain of IRE1α, PERK, and ATF6 keeping them inactive. When unfolded proteins accumulate in the
ER lumen causing ER stress, BiP is dissociated from the sensors, favoring activation of UPR. Unfolded proteins may also directly bind and
activate IRE1α and PERK [137–139]. Upon activation, IRE1α forms homodimers and oligomers leading activation of its cytosolic kinase domain,
trans-autophoshorylation and stimulation of its ribonuclease (RNase) activity. The active RNase domain of IRE1α removes an intron from XBP1
mRNA leading to the expression of transcription factor XBP1s, which induces transcription of genes related to ER quality control, ER-
associated degradation (ERAD), and lipid synthesis. The RNase of IRE1α may also degrade ER-targeted mRNAs and miRNAs through regulated
IRE1-dependent decay (RIDD), thus decreasing protein folding demand. IRE1α can—via adapter TRAF2—regulate c-Jun N-terminal kinase
(JNK) activation and apoptosis pathways, and NF-κB activation and pro-inflammatory signaling. Activated PERK phosphorylates α-subunit of
eukaryotic initiation factor 2 (eIF2), leading to transient arrest of translation initiation and decreased general protein synthesis. PERK also
phosphorylates transcription factor nuclear factor, erythroid 2-related factor 2 (NRF2) that regulates antioxidant response genes [140, 141].
Translation of ATF4 transcription factor is favored in conditions of limited eIF2α. ATF4 induces transcription of genes involved in protein
folding, redox control, amino acid metabolism and autophagy. Under prolonged ER stress, ATF4 induces pro-apoptotic transcription factor
CCAAT/enhancer-binding protein homologous protein (CHOP). Upon activation, ATF6 translocates to the Golgi where it is cleaved by
endopeptidases, releasing ATF6(N) fragment that functions as a transcription factor. ATF6(N) induces expression of XBP1 mRNA and
components of ERAD. XBP1s and ATF6(N) can induce MANF expression. For in-depth discussion of UPR please see excellent reviews [142–144].
B MANF directly interacts with the ER luminal domain of UPR sensor IRE1α. MANF binding decreases ER stress-induced oligomerization and
phosphorylation of IRE1α, leading to attenuation of UPR. BiP prevents MANF interaction with IRE1α, while MANF at physiological
concentrations does not affect BiP–IRE1α interaction, which suggests that MANF binds and regulates the sensor activity after dissociation of
BiP [65]. Similarly to MANF, CDNF may interact with a UPR sensor to regulate UPR.
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in dopaminergic, histaminergic, and GABAergic neurotransmitter
systems in selective brain areas, indicating that CDNF is
important in shaping the structure of neurotransmitter circuits
in these fish CNS [82]. In the brain, cdnf deletion led to increased

expression of tyrosine hydroxylase 2 which functions in DA
synthesis [82]. Alterations in the neurotransmitter networks were
associated with abnormal behavior, including impaired social
cohesion and anxiety-related risk taking in adult cdnf mutants

Fig. 3 Plasma membrane receptors of GFLs and MANF/CDNF. A GDNF Family Ligands (GFLs): GDNF; NRTN; artemin; and persephin, function
as homodimers to activate transmembrane receptor tyrosine kinase RET. Binding of GFLs to RET is mediated by GDNF family receptor-α
(GFRα1–4) co-receptors, which selectively interact with the GFLs. Ligand binding leads to homodimerization and autophosphorylation of RET,
resulting activation of multiple intracellular signaling cascades. GDNF binding to RET is mediated by GFRα1, and leads to activation of Akt,
MAPK and c-Src pathways, promoting neuronal survival and regeneration. B Neuroplastin (NPTN) is a novel receptor for MANF (1). Activation
of NPTN induces NF-κB transcription factor and expression of pro-inflammatory cytokines. MANF binding to NPTN decreases pro-
inflammatory response and protects cells against ER stress-induced inflammation and cell death [80]. MANF binds sulfatide (2). Sulfatide is
present in the plasma membrane (PM) of neurons and other cell types, suggesting that MANF can interact with sulfatide on the PM. MANF
bound to sulfatide can be endocytosed to promote ER homeostasis [32]. The molecular mechanism of the potential endocytosis of MANF-
sulfatide and subsequent molecular events are unclear. CDNF and MANF may bind to the KDEL-receptor (KDEL-R) on the PM via a C-terminal
KDEL-like sequence (3) [36, 67]. Exogenous CDNF promoted calcium homeostasis and mitochondrial maintenance in cardiomyocytes under ER
stress conditions by a mechanism dependent on its KDEL-like sequence suggesting that KDEL-R is binding CDNF [67]. The protective effect of
CDNF was mediated by PI3K/Akt signaling [67]. C MANF, CDNF, and KDEL-R are induced by ER stress. In unstressed cells, CDNF and MANF are
retained in the ER by KDEL-R, whereas in ER stress resulting from the depletion of ER calcium, they are released from cells. In ER stress, KDEL-R
possibly localizes to the PM where it may bind extracellular CDNF and MANF.
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[82]. Mutant fish were also more susceptible to drug-induced
seizures. Interestingly, the observed behavioral phenotypes of
cdnf mutant fish are reminiscent of human neuropsychiatric
conditions, such as schizophrenia [82], in accordance with the
suggested association between a CDNF SNP and schizophrenia
susceptibility in humans [91].
Homozygous loss-of-function mutations of the human MANF

gene were reported as a cause of childhood diabetes, and were
mechanistically connected to ER stress and impaired beta cell
function [92]. A homozygous MANF mutation was also associated
with mild intellectual disability, microcephaly, and deafness [93],
suggesting that MANF has a role in brain development and
normal auditory function. In accordance, Manf inactivation in mice
resulted in a hearing loss [94]. However, characterization of
conventional and CNS-specific Manf knockout mice indicated that
endogenous MANF is not required for the maintenance of
midbrain DA neurons [95]. CNS-specific deletion of Manf in mice
did not affect the number of TH-positive DA neurons in the SNpc,

number of dopaminergic fibers in the striatum, or the striatal
concentrations of DA or its metabolites in adult mice [95].
Although chronic activation of UPR was detected in the brain
tissue of Manf−/− mice, it did not result in neurodegeneration [95].
In contrast to observations in Manf knockout mice, Drosophila
Manf, encoded by a single homolog of human MANF/CDNF,
appears to be essential for the maintenance of DA neurites and
DA levels in the fly [96]. In DmManf mutant larvae, the volume of
DA neurites was diminished whereas somas were maintained,
suggesting that DA neurites degenerate before cell bodies [96],
thus resembling degeneration of DA neurons in PD. UPR-related
genes were upregulated in DmManf mutant embryos indicating
ongoing UPR [61]. Larval lethality of DmManf zygotic mutants was
rescued with ubiquitously expressed human MANF or CDNF,
indicating that DmManf and human MANF and CDNF are
functionally conserved [97]. Also in zebrafish, studies of manf
knockdown using antisense splice-blocking morpholino oligonu-
cleotides suggested that MANF is involved in the regulation of DA

Fig. 4 CDNF promotes survival of dopamine neurons. A Midbrain dopamine (DA) neurons project from substantia nigra (SN) to the
putamen forming nigrostriatal pathway. B In Parkinson’s disease (PD), midbrain DA neurons degenerate leading to motor and non-motor
symptoms. Cell bodies of DA neurons are located in the substantia nigra pars compacta (SNpc). C CDNF prevents neurodegeneration and
induces functional recovery of injured DA neurons in animal models of PD. Therapeutic CDNF could reduce ER stress and
neuroinflammation that are thought to be involved in the neuropathogenesis of PD. Differently from GDNF, CDNF does not show
survival-promoting effects on naive DA neurons.
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neuron development and maintenance [98]. In the manf-1 mutant
C. elegans worms neuronal development was normal; however,
there was loss of manf-1 activated ER stress and UPR [59, 60],
resembling observations in Manf−/− mice and supporting the role
of MANF as a regulator of ER homeostasis.

CDNF effects in animal models of Parkinson’s disease
In patients with PD, DA neurons located in the SN and projecting
to the striatum degenerate and die [7] (Fig. 4A, B). In animal
models of PD, degeneration of DA neurons can be induced using
neurotoxins 6-hydroxydopamine (6-OHDA) and 1-methyl-4-phe-
nyl-1,2,3,6-tetrahydropyridine (MPTP) [99]. In the first in vivo study,
a single injection of CDNF before the delivery of 6-OHDA into the
striatum significantly reduced amphetamine-induced ipsilateral
turning behavior and almost completely protected nigral DA
neurons in a rat model of PD [20]. When administered 4 weeks
after 6-OHDA, CDNF restored the dopaminergic function and
prevented the degeneration of DA neurons at least as efficiently as
GDNF [20]. In the following study, the neuroprotective effects of
2-week striatal infusions of CDNF, MANF, and GDNF were
compared in a rat 6-OHDA model [84]. CDNF rescued 6-OHDA-
lesioned nigral DA neurons and TH-positive fibers in the striatum,
whereas MANF and GDNF had no significant effect in these
measures [84]. The volume of distribution for injected MANF in the
striatum was larger than that of CDNF, and both MANF and CDNF
diffused significantly better than GDNF [84, 100]. Intrastriatally
injected CDNF similarly to GDNF was retrogradely transported
to the SN [84, 101], whereas CDNF injected to SN was not
anterogradely transported to the striatum [102].
Airavaara et al. [85] demonstrated that striatal administration of

CDNF was neuroprotective and neurorestorative for the TH-
positive cells in the nigrostriatal DA system in a mouse MPTP
model of PD. Jiaming and Niu [103] evaluated the therapeutic
effects of CDNF-expressing bone marrow-derived mesenchymal
stem cell (MSC) injections. Using intrastriatal, intraventricular, and
intravenous routes of CDNF-MSC administration, they showed
neurotrophic effects of CDNF-MSC grafts in a rat 6-OHDA model of
PD by intrastriatal and intra-lateral ventricular transplantation
routes. Since CDNF is mostly an intracellular protein, it was of
great interest to test CDNF effects using gene therapy approaches.
Bäck and colleagues [86] studied the neuroprotective effect of
adeno-associated virus (AAV) serotype 2 vector expressing CDNF
in a rat 6-OHDA model of PD. Elevated levels of CDNF expression
in the striatum resulted in a marked decrease in amphetamine-
induced ipsilateral rotations [86]. However, compared to studies
using CDNF protein delivery [20, 84], gene therapy of CDNF
provided only partial protection of DA neurons and their fibers
[86]. One reason for this can be the retention of CDNF inside the
cells with very limited diffusion of CDNF in the striatum [86]. Ren
et al. [88] examined the neuroprotective and functional restorative
effects of CDNF overexpression in the striatum via gene therapy
with an AAV2-CDNF vector in 6-OHDA-lesioned rats. In addition to
the significant restoration of TH-immunoreactive nigral neurons
and striatal fibers, positron emission tomography (PET) imaging of
DA transporters revealed functional recovery of the nigrostriatal
DA system [88]. Compared to the study by Bäck et al. [86] the
prominent neuroprotection by CDNF in the study by Ren et al. [88]
may be ascribed to the optimal expression level and greater
spreading of CDNF in the striatum. Hao et al. [104] demonstrated
robust long-term overexpression of MANF in rat striatum using
AAV9 vector-mediated gene delivery. In a 6-OHDA model of PD,
intrastriatal delivery AAV9-MANF provided significant protection
for nigral DA neurons and promoted regeneration of striatal DA
fibers and increase in striatal DA levels [104]. Striatal MANF
overexpression by AAV9 vector led to increased MANF levels also
in the SN, suggesting that MANF was retrogradely transported
from the striatum to SN, thus providing local protection for nigral
neurons [104]. The ability of GDNF and related NTFs to rescue DA

neurons in animal models of PD is limited when the neurotoxin-
induced lesion is severe [5]. Importantly, Wang et al. [105]
observed, using a rat 6-OHDA model of PD, that AAV8-CDNF
administration significantly improved motor function and
increased TH levels in rats with mild 6-OHDA-induced lesions,
but it had limited therapeutic effects in rats with severe lesions
[105]. Lentiviral vector-mediated overexpression of CDNF or MANF
alone in the SN showed differential protection of dopaminergic
function in the 6-OHDA model of PD [87]. While overexpression of
CDNF in the SN both reduced amphetamine-induced rotational
behavior and loss of striatal TH-positive innervation, overexpres-
sion of MANF in the SN only protected TH-positive cells in the
nigra [87]. However, combined nigral overexpression of CDNF and
MANF led to a robust reduction in amphetamine-induced
rotations and protection of both DA cells and their fibers,
indicating that CDNF and MANF can have synergistic neuropro-
tective effects [87]. Unfortunately, the levels overexpressed
CDNF and MANF in the brain tissue were not reported [87], thus
hampering comparisons of their neuroprotective effects. When
GDNF was overexpressed in the SN it was unable to direct
regeneration of TH-positive axons [106]. Since CDNF is not
anterogradely transported from SN to striatum [102], its effects
may resemble those of GDNF i.e., have full neuroregenerative
potential only when delivered to the striatum. These data
indicate that CDNF and MANF have differential modes of action
and encourages using a combination of different growth factors
for the treatment of PD. Indeed, an additive neurorestorative
effect of CDNF and GDNF was demonstrated in the 6-OHDA
model of PD in rats [89]. Experiments on cell lines and DA
neurons have clearly shown that CDNF and GDNF have
completely different modes of action. These additive effects
observed in a rat PD model also indicated different mechanisms
of action for CDNF and GDNF [89]. Both CDNF and GDNF were
able to activate the survival-promoting PI3 kinase-Akt signaling
pathway, but only CDNF decreased the levels of ER stress
markers ATF6 and BiP, in addition to the level of phosphorylated
eukaryotic initiation factor 2 α subunit (eIF2α) downstream of
the UPR sensor PERK [89]. In 6-OHDA-treated PC12 cells, a
cellular model of PD, CDNF treatment increased cell viability
through upregulating ratio of anti-apoptotic Bcl-2/pro-apoptotic
Bax proteins and downregulating caspase-3 activity, thus
resembling the function of NTFs [107].
Several in vitro studies have indicated that CDNF may provide a

novel therapy for neuroinflammation related to the microglia.
In microglial cells, CDNF attenuated the production of pro-
inflammatory cytokines prostaglandin E2 and interleukin-1β (IL-
1β) as well as remarkably suppressed the phosphorylation of c-Jun
N-terminal kinase (JNK) [108]. Nadella et al. [109] found that in the
6-OHDA-lesioned rats, CDNF overexpressed from a plasmid vector
reduced nitrosative stress, glial markers, and IL-6 levels in the SN,
but not TNFα and IL-1β levels, suggesting that CDNF may be a
potential novel agent for the treatment of neuroinflammation
seen in the PD.
We still have very limited information about the effects of CDNF

on nigral DA neurons in NHPs. CDNF therapeutic effects were first
studied in a unilateral 6-OHDA lesion model of PD in marmoset
monkeys and compared with the effects of GDNF [110]. This study
also monitored the severity of 6-OHDA lesions and treatment
effects in vivo using 123I-FP-CIT (a DAT ligand) SPECT [110]. This
analysis showed a significant increase of DAT binding activity in
lesioned monkeys treated with CDNF, whereas no statistical
difference was observed in the GDNF-treated group [110]. In a
more recent study, CDNF restored SN DA neuron integrity when
effects of CDNF and GDNF were compared in a rhesus monkey
MPTP model of PD [111]. The animal data together demonstrate
that CDNF not only protects but also restores the function of DA
neurons by regulating ER stress, neuroinflammation, and counter-
acting cell death (Fig. 4C).
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First results of clinical trials
Since the mode of action of CDNF differs from that of GDNF,
NRTN, and other growth factors tested in clinical trials for PD, and
CDNF was more efficient than GDNF in protecting the function of
DA neurons in animal models of PD [84, 110] it was important to
test CDNF in clinic. The first clinical Phase I-II, randomized, double-
blind study conducted by Herantis Pharma Plc. investigated
the safety and tolerability of intermittent bilateral intraputamenal
monthly infusions of CDNF (ClinicalTrials.gov Identifier:
NCT03295786) [23, 112]. A two-part study in 17 patients with
advanced PD was carried out in three university hospitals in
Finland and Sweden. During the initial 6-month period, all patients
received either placebo or CDNF at one of two dose levels. This
was followed by a 6-month period, in which all patients received
CDNF at one of the two dose levels, including the previous
placebo group patients. Treatment was administered via a dose
delivery system using intraputamenal catheters that were
implanted into the putamen at the beginning of the study.
Human recombinant CDNF, used in the study, was produced in a
mammalian cell line and its biological activity was rigorously
tested in neuronal survival assays. Intraputamenal CDNF infusions
were safe and well tolerated, and thus the primary endpoint of the
study was met. Exploratory endpoints included UPDRS scores and
DAT PET, which was performed with a high-resolution research
tomography system using DAT radioligand [18F]FE-PE2I [113].
A minimal clinical important difference in Unified Parkinson’s
Disease Rating Scale (UPDRS III) (off) was observed in the CDNF
dose-groups suggesting a potential slowing of disease progres-
sion. Furthermore, increased DAT availability in the putamen was
observed with PET in some patients that received CDNF
suggesting a potential improvement in dopaminergic function.
Although the study of patient population with advanced PD was
not designed to show efficacy of CDNF, the documented
improvements in some patients were very encouraging [112].

Concluding remarks
CDNF is an atypical neurotrophic protein that is cytoprotective
both in the ER and as an extracellular factor. In addition to
neuroprotective and neuroregenerative activities that, similarly to
other NTFs, partially occur via the activation of PI3 kinase-Akt
pathways [89, 114], CDNF also counteracts cell death by regulating
UPR pathways in the ER [70, 89]. CDNF protects against toxicity of
αSyn oligomers in vitro [30], and was recently shown to directly
interact with αSyn, reduce propagation of αSyn aggregation and
alleviate behavioral deficits induced by αSyn fibrils in mice [115].
CDNF also reduces the synthesis and release of pro-inflammatory
cytokines decreasing neuroinflammation [108, 109, 114, 116]. One
particularly interesting property of CDNF, which differentiates it
from classical NTFs, is that its effects on naive and healthy neurons
are low or even absent [20, 29, 63]. This may be very important
from the clinical point of view, because it suggests a good safety
profile for CDNF. Although CDNF has now been successfully tested
in rodent and NHP models of PD [20, 76, 84–86, 88, 103, 109–
111, 117–119], as well as in Phase I-II clinical trial in patients with
PD [23, 112], several challenges remain. CDNF can regulate UPR
pathways, but its receptors and signaling pathways remain poorly
described. We also know very little about how CDNF acts in the ER,
how it is secreted and whether it has both intracellular and plasma
membrane receptors. Despite the promising results in animal
models of PD, NTF- and CDNF-based treatments share a
fundamental drawback; they require a direct delivery of the
therapeutic protein to the brain through invasive surgery, since
NTFs and CDNF cannot pass through the BBB. We have recently
discovered a novel CDNF variant that acts similarly to CDNF, but
can efficiently pass through the BBB [28]. Furthermore, our
preliminary data show that this CDNF variant has beneficial
effects in both rodent 6-OHDA and MPTP toxin models of PD
when administered subcutaneously [28]. Although these data are

encouraging, much more work is needed before BBB-penetrating
CDNF-derived molecules can be taken to clinical trials. One
important reason for the limited success of clinical development
of NTFs so far is their poor pharmacokinetic characteristics, which
include inability to cross tissue barriers, poor diffusion in tissues,
ability to activate several receptors in different tissues and cell
types, and high costs of the drug [5]. The development of small
molecules selectively targeting CDNF receptors with optimized
pharmacokinetic properties can open a new avenue for the
development of disease-modifying treatments of neurodegenera-
tive diseases in the future.
CDNF was also shown to have beneficial effects in animal

models of Alzheimer’s disease [120], amyotrophic lateral sclerosis
[121], and Huntington’s disease [122]. However, further studies are
required to confirm these exciting results. Taken together, unique
properties of CDNF encourage its testing in different neurological
diseases, especially in those where neuronal protein homeostasis
has been perturbed.
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