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Coagulation equations for aerosol dynamics

Marina A. Ferreira

September 10, 2020

Abstract

Binary coagulation is an important process in aerosol dynamics by which two par-
ticles merge to form a larger one. The distribution of particle sizes over time may be
described by the so-called Smoluchowski’s coagulation equation. This integrodifferential
equation exhibits complex non-local behaviour that strongly depends on the coagulation
rate considered. We first discuss well-posedness results for the Smoluchowski’s equation
for a large class of coagulation kernels as well as the existence and nonexistence of sta-
tionary solutions in the presence of a source of small particles. The existence result uses
Schauder fixed point theorem, and the nonexistence result relies on a flux formulation
of the problem and on power law estimates for the decay of stationary solutions with a
constant flux. We then consider a more general setting. We consider that particles may
be constituted by different chemicals, which leads to multi-component equations describ-
ing the distribution of particle compositions. We obtain explicit solutions in the simplest
case where the coagulation kernel is constant by using a generating function. Using an
approximation of the solution we observe that the mass localizes along a straight line in
the size space for large times and large sizes.
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5 Perspectives and open problems 20

1 Introduction

We consider particle systems where moving particles undergo binary coagulation, forming
larger particles. This simple system can be used to study the dynamics of aerosols in the
atmosphere [17] as well as raindrop formation, smoke, sprays and galaxies [1, 9].

When the number of particles is very large it becomes more relevant to study the average
behaviour of the particles rather than individual particle behaviour. This motivates a statis-
tical description of the system. In 1916 Smoluschowski [33] proposed an equation to describe
the particle size distribution over time, assuming that the system is homogeneous in space.

Let f(x, t) be the density of particles of size x > 0 at time t > 0. The Smoluchowski’s
coagulation equation, or simply coagulation equation, is the following mean-field equation for
the evolution of f

∂tf(x, t) =
1

2

∫ x

0
K(x− y, y)f(x− y)f(x)dy −

∫ ∞
0

K(x, y)f(x)f(y) (1.1)

where K(x, y) is the coagulation rate between particles of size x and y. The first term on
the right hand-side is the gain term due to the coagulation between particles of size x − y
and particles of size x to create a particle of size x. The second term is the loss term due to
the coagulation of particles of size x with any other particle in the system. Equation (1.1) is
an integrodifferential equation belonging to the class of kinetic equations as well as General
dynamic equations.

If the size is an integer, for example, if the size is described by the number of molecules
that constitute a particle, then the density of particles of size α ∈ N+ at time t, nα(t), satisfies
the discrete Smoluchowski’s coagulation,

∂tnα =
1

2

∑
β<α

Kα−β,βnα−βnβ − nα
∑
β>0

Kα,βnβ. (1.2)

Complementary research lines have emerged over the last decades on experimental, nu-
merical and theoretical issues. Algorithms to simulate Smoluschowski’s coagulation equation
have been developed to test hypotheses drawn from atmospheric data [25, 35] (see [26] for
a survey on numerical methods). On the other hand, theoretical results have clarified is-
sues such as existence and uniqueness of solutions for general classes of kernels [31, 16] or
the behaviour of the solutions for explicitly solvable kernels [30] as well as general kernels
[4, 5, 12, 15].

A particle may be characterized not only by its size but also by its composition, leading
to multicomponent coagulation equations where the size is described by a vector x ∈ Rd+ (or
α ∈ Nd) representing the size of each of the chemical components of a particle. An application
of multicomponent equations to aerosol dynamics is described in Section 2.2.

In this paper we review analytic results related to the continuous onecomponent equation
(1.1) and to the discrete multicomponent equation (1.2), with α, β ∈ Nd. We start with a
preliminary Section 2 where we give a short overview on various topics related to properties
of the solutions, applications, derivation from particle systems and notation. In Section 3
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we study well-posedness and existence of stationary solutions for one-component equation of
(1.1) for a class of kernels satisfying some growth bounds. More specifically, in Section 3.2
we present the main steps of the proofs of a well-posedness result for unbounded coagulation
kernels obtained in 1999 by Norris [31] and in Sections 3.3 and 3.4 we review the proofs
for existence and non-existence of stationary solutions to coagulation equation with source,
respectively, obtained recently in [13]. In Section 4 we consider the discrete multicomponent
equation with constant kernel. Following the computations presented in [21], we compute
in Section 4.1 explicit time-dependent solutions to the discrete multicomponent coagulation
equation with constant kernel K(x, y) = 1 and in Section 4.2 stationary solutions when an
additional source at the monomers is present. We also obtain approximations of both solutions
that show explicitly that mass localizes along a straight line in the multidimensional size space
for large times and large sizes. Finally in Section 5 we mention some more recent results in
the literature and open questions.

2 Preliminaries

2.1 Conservation of mass and continuity equation

By multiplying (1.1) by x and integrating in x from 0 to ∞ one obtains formally an equation
for the mass M1(t) =

∫∞
0 xf(x, t)dx given by d

dtM1(t) = 0. This shows that the mass is
conserved, provided that the integrals are well-defined. Associated to the mass-conservation,
one may write a continuity equation that shows that the mass is transported continuously
along the size space:

∂t(xf(x, t)) = ∂xJ(x, t) (2.1)

where the flux of mass from small to large clusters is given by

J(x, t) =

∫ x

0

∫ ∞
x−y

yf(y, t)f(z, t)K(y, z)dzdy (2.2)

As we will see in Section 3.3 a (non-equilibrium) stationary solution has a constant flux of
mass at large sizes, i.e., J(x) is constant for all x > L, for some positive L. Moreover this
flux plays an important role in the proof of non-existence of stationary solutions in Section
3.4.

Interestingly, if the coagulation rate is sufficiently large, the mass-conservation is lost.
Such phenomenon, called gelation, corresponds to the formation of infinitely large clusters
that are not seen any more by the equations and it may be interpreted as a change in state
from gas to gel. Mathematically gelation poses interesting challenges [11], however since it
has not been observed in atmospheric aerosols we do not elaborate about it in this text.

We note that, contrarily to the Boltzmann equation, the coagulation equation does not
preserve number of particles nor energy.

2.2 Aerosol dynamics in the atmosphere

Atmospheric aerosols are suspensions of small particles in the air, whose diameter ranges
approximately between 1 nanometre, in the case of molecular particles, to 100 micrometres,
in the case of cloud droplets and dust particles [17]. Aerosols influence sunlight scattering by
reflecting and absorbing radiation, and they constitute the seeds that originate the clouds.
Therefore, they play an important role in weather and climate forecast [6].

3



Aerosols are subject to complex processes that influence their size distribution over time.
One important process is the coagulation of particles to produce larger ones. Other processes
include the formation of new small particles, or monomers, due to certain physical and chem-
ical processes, the removal of particles due to gravity or diffusion, and the growth/shrinkage
due to condensation/evaporation [25]. Atmospheric aerosols are typically constituted by dif-
ferent chemicals, leading to multicomponent systems, which may alter the rate of the processes
mentioned before and consequently, the particle size distribution [35].

We consider the regime in which the particles are uniformly distributed in space. Moreover,
we assume that removal and growth of particles is not important, which in practice may
correspond roughly to sizes between 10 nanometers and 10 micrometers [17]. We are then led
to the study of multicomponent systems where particles undergo binary coagulation in the
presence of a source of small particles.

Coagulation kernels K have been derived for atmospheric aerosols using kinetic theory
under several assumptions on the shape and movement of the particles [17]. Aerosol particles
are commonly assumed to be spherical and to undergo elastic collisions with background air
particles. The number of such collision events is assumed to be much larger than the number
of collisions between two coalescing particles, which drives the system towards an equilibrium
where the particle velocities follow a Maxwell-Boltzmann distribution.

Moreover, any collision between coalescing particles yields a coalescing particle. Two
different coagulation kernels have been derived under the previous conditions for two different
particle size regimes, based on the relation between the particle size and the mean free path
in air, ie, the average distance travelled by a particle between two collisions. Under normal
pressure and temperature conditions, the mean free path in air, `, is of the order of ` ∼ 10
nanometres. If the size (diameter) of a spherical particle, dp, is much smaller than the mean
free path dp � `, the particle is more more likely to travel in straight lines before meeting
another coalescing particle. In this case the rate of coagulation has been estimated by the
free molecular coagulation kernel:

Kα,β = (α1/3 + β1/3)2(α−1 + β−1)1/2. (2.3)

Otherwise, if the size of a particle is much larger than the mean free path, dp � `, the
coalescing particle will meet many background air particles before meeting another coalescing
particle. In this case, the air behaves like a fluid and the coalescing particle is more likely to
diffuse. The coagulation rate has been estimated by the diffusive coagulation kernel:

Kα,β = (α−1/3 + β−1/3)(α1/3 + β1/3). (2.4)

This kernel has been first derived in the original work by Smoluchowski [33]. Other kernels
have been derived under different assumptions on the underlying background gas and particles
features, such as particles moving in a laminar shear or turbulent flow [17], and particles
having electric charges [34, 35].

The behaviour and even the existence of solutions to (1.2) strongly depends on the coag-
ulation kernel Kα,β. In Sections 3.3 and 3.4 we review existence of stationary solutions for
a large class of kernels which includes in particular the free molecular (2.3) and the diffusive
kernels (2.4).
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2.3 Derivation of Smoluchowski coagulation equation from particle model

The Smoluchowski coagulation equation has been rigorously derived using different approaches
that consider different types of particle systems. In one approach, a purely stochastic particle
system is considered, where pairs of particles are randomly picked to originate a new particle.
The associated stochastic process is usually called Markov-Lushnikov process. A different
approach considers spatial particle systems, where particles move in an Euclidean domain in
a deterministic manner and when they collide they merge with a certain probability.

The first approach is inspired in Kac-models for the derivation of the Boltzmann equation
[14]. A common strategy is to start from an infinite stochastic particle system where particles
of size x and y coalesce at a rate K(x, y) and to prove that the number density, after con-
veniently rescaled in such a way that the mean free time is constant, converges, as the unit
volume tends to infinity, to a measure that solves the Smoluchowski coagulation equation
with kernel K. This has been obtained for the additive kernel, product kernel as well as for
a class of sub-multiplicative kernels using combinatorial techniques and random graphs. See
[2] (Chapter 5.2) for an accessible exposition and [1] for a review on existing results and open
problems.

In the second approach, there are fewer rigorous results. The first result to the best
of our knowledge is due to Lang and Xanh [22]. They consider Brownian particles moving
in the three-dimensional Euclidean space according to Brownian motion with a diffusion
coefficient D. The particles are assumed to move independently on each other provided they
are at a distance greater than the sum of their radius 2R. Once they come closer than 2R
they coalesce with probability 1/2, forming one Brownian particle with the same radius R
and the same diffusion coefficient D. In the limit when the number of particles N goes to
infinity and the radius R goes to zero, such that RN remains constant, the authors prove
that the particles remain independent on each other (propagation of chaos) and that the
density function converges in probability to the solution to the Smoluchowski’s coagulation
equation with constant coagulation kernel. The limit where RN remains constant is the so-
called Boltzmann-Grad limit and is the limit of constant mean free time. A more general
case of coalescing Brownian particles with different diffusion coefficients where the diffusion
coefficient changes after coalescence, but not the size R, has been treated in [20]. More
recently, the change in size after coalescence has been considered in [32] in the case of a
one tracer particle moving in a straight line and coalescing with randomly distributed fixed
particles. In this case, a linear coagulation equation with a simple shear kernel was derived
in the kinetic limit where the volume fraction filled by the background of particles tends to
zero.

2.4 Notation

We use the notation R∗ := (0,∞) and R+ := [0,∞). We denote by M (I) the space of signed
Radon measures on I ⊂ R+, i.e., the non-negative measures having finite total variation on
any compact subset of I, and by ‖·‖ the total variation norm. We denote by M+(I) the space
of measures on M (I) that are nonnegative. The measures from M+(I) that are also bounded
are denoted by M+,b(I) := {µ ∈M+(I) |µ(I) < ∞}. The space M+,b(I) equipped with the
norm ‖ · ‖ is a Banach space. The notation ft(x) will sometimes be used to denote f(t, x).
We denote by Cc(I) or Cb(I) the spaces of continuous functions on I that are compactly
supported or bounded, respectively. For simplicity, we use a generic constant C > 0 which
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may change from line to line.

3 One component equation

3.1 Main results

We consider a large class of kernels K : (0,∞)2 → [0,∞) satisfying

K is continuous, (3.1)

and for each (x, y) ∈ (0,∞)2, there exist constants c1, c2, λ and γ such that

K(x, y) = K(y, x), K(x, y) ≥ 0, (3.2)

K(x, y) ≥ c1[xλ+γy−λ + yλ+γx−λ] (3.3)

K(x, y) ≤ c2[xλ+γy−λ + yλ+γx−λ], (3.4)

0 < c1 ≤ c2 <∞, (3.5)

and λ, γ ∈ R. (3.6)

Note that condition (3.1) implies that

K is measurable. (3.7)

This class includes in particular the physical kernels (2.3) and (2.4). The parameter γ
represents the homogeneity of the kernel, while λ represents the ”off-diagonal” rate. The
parameter γ yields the behaviour under the scaling of the particle size, while λ measures the
importance of collisions between particles of different sizes. Note that the bounds in (3.3)
and (3.4) are homogeneous, i.e., they satisfy for any k > 0, h(kx, ky) = kγh(x, y), but the
kernels are not necessarily homogeneous.

We assume the following conditions on the source η ∈M+(R∗)

supp η ∈ [1, L], for some L > 1 (3.8)

Note that then the source is bounded, i.e., η(R∗) <∞.
We consider the following definition of time-dependent solution [31].

Definition 3.1 Assume that K is a measurable function satisfying (3.2) and (3.4). Let
η ≡ 0. We will say that the map t 7→ ft : [0, T ) → M+(R∗), where T ∈ (0,∞] is a local
solution if it satisfies

1. for all compact sets B ⊂ R∗, t 7→ ft(B) : [0, T )→ [0,∞) is measurable

2. for all t < T and all compact sets B ⊂ R∗∫ t

0

∫
B×R∗

K(x, y)fs(dx)fs(dy)ds <∞,
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3. for all bounded measurable functions ϕ of compact support and t < T it holds

〈ϕ, ft〉 = 〈ϕ, f0〉+

∫ t

0
〈ϕ,L(fs)〉ds (3.9)

where L(f) is defined by

〈ϕ,L(f)〉 =
1

2

∫
R∗

∫
R∗

K(x, y)[ϕ(x+ y)− ϕ(x)− ϕ(y)]f(dx)f(dy),

4.
∫

R∗
x1x≤1f0(dx) <∞ and (3.9) holds with ϕ(x) = x1x≤1.

If T =∞ we call time-dependent solution.

One can easily check that condition 2 is the minimal one to have well-defined integrals.
Condition 3 is the weak formulation commonly used in the literature and it is obtained by
formally multiplying by a test function and integrating in x. Condition 4 is a boundary
condition imposing that no mass enters at 0.

Theorem 3.2 Let K a measurable function satisfying (3.2) and (3.4) with λ = 0 and γ < 1.
Let η = 0. If 〈x2, f0〉 <∞, then there exists a unique time-dependent solution (ft)t>0.

We consider now a source η 6= 0 of small particles entering into the system at a constant
rate and we study the existence of stationary injection solutions, i.e., solutions that satisfy
f(t, x) = f(0, x) for all t > 0 [13].

Definition 3.3 Assume that K : R2
∗ → R+ is a continuous function satisfying (3.2) and

the upper bound (3.4). Assume further that η ∈ M+ (R∗) satisfies (3.8). We will say that
f ∈M+ (R∗) , satisfying f ((0, 1)) = 0 and∫

R∗

xγ+λf (dx) +

∫
R∗

x−λf (dx) <∞ , (3.10)

is a stationary injection solution of (1.1) if the following identity holds for any test function
ϕ ∈ Cc(R∗):

1

2

∫
R∗

∫
R∗

K (x, y) [ϕ (x+ y)− ϕ (x)− ϕ (y)] f (dx) f (dy) +

∫
R∗

ϕ (x) η (dx) = 0 . (3.11)

Condition (3.10) is the minimal one for the integrals in (3.11) be well-defined. Stationary
injection solutions have a constant in time flux of mass from small to large sizes, due to the
source, therefore they are non-equilibrium solutions. Note that to be able to be stationary,
the volume of particles entering the system has to balance the volume of particles leaving the
system. Interestingly, there is an implicit removal of particles from the system at infinite sizes
that allows the existence of these solutions. As we see in the next two Theorems, for some
class of coagulation rates, including the diffusive kernel (2.4), such balance exists, while for
other class of kernels, including the free molecular kernel (2.3), such balance does not exist.

Theorem 3.4 Assume that K satisfies (3.2)–(3.6) and |γ + 2λ| < 1. Let η 6= 0 satisfy (3.8).
Then, there exists a stationary injection solution f ∈ M+ (R∗), f 6= 0, to (1.1) in the sense
of Definition 3.3.
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Theorem 3.5 Suppose that K (x, y) satisfies (3.2)–(3.6) as well as |γ + 2λ| ≥ 1. Let us
assume also that η 6= 0 satisfies (3.8). Then, there is not any solution of (1.1) in the sense
of the Definition 3.3.

Note that the diffusive kernel (2.4) satisfies the growth conditions (3.3)-(3.4) with γ = 0
and λ = 1/3, while the free molecular kernel (2.3) satisfies the growth conditions with γ = 1/6
and λ = 1/2. Therefore there exists a stationary solution for the diffusive but not for the free
molecular kernel.

The mass flux from small to large sizes associated to a stationary injection solutions is
given in the next Lemma.

Lemma 3.6 Suppose that the assumptions of Theorem 3.4 hold. Let f be a stationary injec-
tion solution in the sense of Definition 3.3. Then f satisfies for any R > 0

J(R) =

∫
(0,R]

xη(dx) (3.12)

with

J(R) =

∫
(0,R]

∫
(R−x,∞)

K(x, y)xf(dx)f(dy)

Remark 3.7 IfR ≥ Lη, the right-hand side of (3.12) is constant equal to Jη =
∫

[1,Lη ] xη(dx) >

0. Therefore, J(R) = Jη for R > Lη, i.e., the mass flux is constant in the regions that include
large sizes.

Proof: [Idea of the proof] For for each ε > 0, define a test function ϕ(x) = xχε(x) ∈ Cc(R∗)
where χε ∈ C∞c (R∗) is such that 0 ≤ χε ≤ 1, χε(x) = 1, for 1 ≤ x ≤ R, and χε(x) = 0, for
x ≥ R+ ε. Then using the test function in (3.11) the result follows after some computations
and after letting ε→ 0. �

3.2 Well-posedness

We describe the main ideas of the proofs obtained in [31] (Section 2).
The first step is to prove well-posedness for a truncated problem. The second step is to

compute estimates that allow us to remove the truncation and to obtain well-posedness for
the original problem.

Let B ⊂ R∗ be a compact set. We consider the space M (B) of finite signed measures
supported on B. Note that all measures in M (B) are bounded. Note that from the hypotheses
of Theorem 3.2 on the kernel we have that

0 ≤ K(x, y) ≤ w(x) + w(y), with w(x) := xγ and γ < 1. (3.13)

The truncated operator LB : M (B)× R→M (B)× R is defined by

〈(ϕ, a), LB(f, λ)〉 :=

1

2

∫
R∗×R∗

{ϕ(x+ y)1{x+y∈B} + aw(x+ y)1{x+y/∈B} − ϕ(x)− ϕ(y)} ×K(x, y)f(dx)f(dy)

+λ

∫
R∗

{aw(x)− ϕ(x)}w(x)f(dx)

8



for all bounded measurable functions ϕ on R∗ and all a ∈ R, where 〈(ϕ, a), (f, λ)〉 denotes
〈ϕ, f〉+ aλ. The truncated equation reads

〈(ϕ, a), (ft, λt)〉 = 〈(ϕ, a), (f0, λ0)〉+

∫ t

0
〈(ϕ, a), LB(f, λ)〉ds. (3.14)

An interpretation of the operator LB is the following (see [31] for more details). Particles
of size x and y merge at a rate K(x, y) and they produce a new particle of size x+ y. If the
merging particle has size outside B, we add w(x+ y) to λ.

A solution to (3.14) is defined next.

Definition 3.8 Let T ∈ (0,∞). We will say that (ft, λt)t∈[0,T ] is a local solution to (3.14)
if t 7→ (ft, λt) : [0, T ] → M (B) × R is a continuous map satisfying (3.14) for all t ∈ [0, T ].
Additionally, (ft)t∈[0,T ] is called a solution when [0, T ] is replaced by [0,∞).

Proposition 3.9 Suppose that f0 ∈M (B) with f0 ≥ 0 and λ0 ∈ [0,∞). The equation (3.14)
has a unique solution (ft, λt)t≥0 starting from (f0, λ0). Moreover ft ≥ 0 and λt ≥ 0 for all
t ≥ 0.

Proof:[idea of the proof] The first step is to show that there is a constant T > 0 depending
only on γ and B such that there exists a unique local solution (ft, λt)t∈[0,T ] to (3.14) starting
from (f0, λ0). This is obtained by using an iterative scheme of continuous maps (fnt , λ

n
t ) :

[0,∞) 7→M (B)× R defined by

(f0
t , λ

0
t ) = (f0, λ0)

(fnt , λ
n
t ) = (f0, λ0) +

∫ t

0
LB(fn−1

t , λn−1
t )

and proving that there exists a T > 0 such that (fn, λn) converges in M (B) × R uniformly
in t ≤ T to the desired local solution, which is also unique.

The second step is to prove that ft ≥ 0, t ∈ [0, T ], which is obtained using again an
iterative argument similar to the one used in the first step.

Finally, the third step is to show that the solution exists for all times t ∈ [0,∞). Choosing
ϕ = w and a = 1 we obtain that

d

dt
(〈w, ft〉+ λt) =

1

2

∫
R∗×R∗

{w(x+ y)− w(x)− w(y)}K(x, y)ft(dx)ft(dy) ≤ 0,

which implies that
‖fT ‖+ |λT | ≤ 〈w, fT 〉+ λT ≤ 〈w, f0〉+ λ0,

using a scaling argument, we may assume without loss of generality that 〈w, f0〉 + λ0 ≤ 1,
consequently ‖fT ‖ + |λT | ≤ 1. We can start again from (fT , λT ) at time T to extend the
solution to [0, 2T ] and so on. Moreover, choosing ϕ = 0 and a = 1 in (3.14), we obtain

d

dt
λt =

1

2

∫
R∗×R∗

{w(x+ y)1B̄(x+ y)}K(x, y)f(dx)f(dy) + λt

∫
R∗

w2(x)f(dx),

which implies that λt ≥ 0, for all t ≥ 0, due to ft ≥ 0, which ends the proof of the proposition.
�
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Proof:[Theorem 3.2] Fix f0 ∈ M+, such that 〈w, f0〉 < ∞. For each compact set B ⊂ R∗
define fB0 = 1Bf0 and λB0 =

∫
B̄ w(x)f0(dx). From Proposition 3.9 there is a unique solution

(fB0 , λ
B
t )t≥0 to (3.14) starting from (fB0 , λ

B
0 ). We now set ft = lim

B→R∗
fBt and λt = lim

B→R∗
λBt .

Using (3.13), we obtain by dominated convergence,

d

dt
〈ϕ, ft〉 =

1

2

∫
R∗×R∗

{ϕ(x+ y)− ϕ(x)− ϕ(y)}K(x, y)ft(dx)ft(dy)− λt〈ϕw, ft〉,

for all bounded measurable functions ϕ. One can prove that for all t < T and for any local
solution (gt)t<T ,

ft ≤ gt, 〈w, ft〉+ λt ≥ 〈w, gt〉. (3.15)

By hypothesis 〈w2, f0〉 <∞. SinceK(x, y) ≤ w(x)+w(y) it holds 〈w2, ft〉 ≤ 〈w2, f0〉 exp(2〈w, f0〉t).
Therefore 〈w2, ft〉 < ∞ for all t > 0, which allows to pass to the limit as B → R∗ in (3.14)
and to deduce that

λt = 0, t > 0. (3.16)

Then (3.15) and (3.16) imply that (ft)t≥0 is a solution and moreover, it is the only solution.
�

3.3 Existence of stationary solutions

We present the main ideas of the proofs obtained in [13].
The general strategy to prove existence of stationary solutions is similar to the one used

in the proof of well-posedness presented in the previous Section. First, we prove existence of
a stationary solution for a truncated problem and second, we obtain estimates that allow to
remove the truncation and to obtain the existence result for the original problem. Unfortu-
nately the method used to prove existence does not give uniqueness, that problem needs a
separate treatment (see [23] for a simple explanation of the available techniques).

Let ε > 0 and R∗ ≥ Lη, where Lη is the upper bound of the support of the source η
defined in (3.8). We will eventually make ε → 0 and R∗ → ∞. We consider kernels Kε,R∗

that are continuous, bounded and have compact support, such that

Kε,R∗(x, y) ≤ a2(ε), (x, y) ∈ R2
+ (3.17)

Kε,R∗(x, y) ∈ [a1(ε), a2(ε)], (x, y) ∈ [1, 2R∗] (3.18)

Kε,R∗(x, y) = 0, x ≥ 4R∗ or y ≥ 4R∗, (3.19)

and
lim

R∗→∞
Kε,R∗(x, y) = Kε(x, y) (3.20)

where Kε is continuous and satisfies Kε(x, y) ∈ [a1(ε), a2(ε)], for all (x, y) ∈ R2
+ and

lim
ε→0

Kε(x, y) = K(x, y). (3.21)

Additionally, in the evolution equation, we consider a cut-off of the gain term due to the
coagulation that ensures that the measure solutions are supported in [1, 2R∗] and bounded
at all times. To this end, we choose ζR∗ ∈ C (R∗) such that 0 ≤ ζR∗ ≤ 1, ζR∗ (x) = 1 for

10



0 ≤ x ≤ R∗, and ζR∗ (x) = 0 for x ≥ 2R∗. The regularized time evolution equation then reads
as

∂tf(x, t) =
ζR∗(x)

2

∫
(0,x]

Kε,R∗(x−y, y)f(x−y, t)f(y, t)dy−
∫

R∗

Kε,R∗(x, y)f(x, t)f(y, t)dy+η(x) .

(3.22)

Definition 3.10 Let ε > 0 and R∗ ≥ Lη. Suppose that Kε,R∗ satisfies (3.17)-(3.19) and η ∈
M+(R+) satisfies (3.8). Consider some initial data f0 ∈M+(R∗) for which f0 ((0, 1) ∪ (2R∗,∞)) =
0. Then f0 ∈M+,b(R∗). We will say that f ∈ C1([0, T ] ,M+,b(R∗)) satisfying f (·, 0) = f0 (·)
is a time-dependent solution of (3.22) if the following identity holds for any test function
ϕ ∈ C1([0, T ] , Cc (R∗)) and all 0 < t < T ,

d

dt

∫
R∗

ϕ (x, t) f (dx, t)−
∫

R∗

ϕ̇ (x, t) f (dx, t)

=
1

2

∫
R∗

∫
R∗

Kε,R∗ (x, y) [ϕ (x+ y, t) ζR∗ (x+ y)− ϕ (x, t)− ϕ (y, t)] f (dx, t) f (dy, t)

+

∫
R∗

ϕ (x, t) η (dx) , (3.23)

where ϕ̇ denotes the Fréchet time-derivative of ϕ.

Proposition 3.11 Let ε > 0 and R∗ ≥ Lη. Suppose that Kε,R∗ satisfies (3.17)-(3.19) and
η ∈ M+(R+) satisfies (3.8). Then, for any initial condition f0 satisfying f0 ∈ M+(R∗),
f0 ((0, 1) ∪ (2R∗,∞)) = 0 there exists a unique time-dependent solution f ∈ C1([0, T ] ,M+,b(R∗))
to (3.22) which solves it in the classical sense. Moreover, f is a Weak solution of (3.22) in
the sense of Definition 3.10 such that

f ((0, 1) ∪ (2R∗,∞) , t) = 0 , for 0 ≤ t ≤ T ,

and the following estimate holds∫
R∗

f(dx, t) ≤
∫

R∗

f0(dx) + Ct , t ≥ 0 ,

for C =
∫

R∗
η(dx) ≥ 0 which is independent of f0, t, and T .

Proof:[Idea of the proof] Since the kernel is bounded, the result may be obtained using Banach
fixed-point theorem. �

Definition 3.12 Let ε > 0 and R∗ ≥ Lη. Suppose that Kε,R∗ satisfies (3.17)-(3.19) and
η ∈M+(R+) satisfies (3.8). We will say that f ∈M+(R∗), satisfying f((0, 1)∪ (2R∗,∞)) = 0
is a stationary injection solution of (3.22) if the following identity holds for any test function
ϕ ∈ Cc (R∗):

0 =
1

2

∫
R∗

∫
R∗

Kε,R∗ (x, y) [ϕ (x+ y) ζR∗ (x+ y)− ϕ (x)− ϕ (y)] f (dx) f (dy)

+

∫
R∗

ϕ (x) η (dx) .

11



We denote by S(t) the semigroup defined by the time-dependent solution f obtained in
Proposition 3.11,

S(t)f0 = f(·, t)

that satisfies the semigroup property

S(t+ s)f = S(t)S(s)f, t, s ∈ R+.

The operators S(t) define mappings

S(t) : XR∗ →XR∗ , quad for each t1, t2 ∈ R+

with XR∗ = {f ∈M+(R∗) : f ((0, 1) ∪ (2R∗,∞)) = 0}.

Proposition 3.13 Under the assumptions of Proposition 3.11, there exists a stationary in-
jection solution f̂ ∈M+(R∗) to (3.22) as defined in Definition 3.12.

Proof: [Idea of the proof] The key point of the proof is to use Schauder fixed point theorem.
The first step is to obtain the existence of an invariant region for the evolution problem (3.23).
To that end, we choose a time independent test function ϕ(x) = 1 for x ∈ [1, 2R∗]. Using
the lower bound for the kernel (3.18) and that f(·, t) has support in [1, 2R∗] we obtain the
following estimate

d

dt

∫
[1,2R∗]

f (dx, t) ≤ −a1

2

(∫
[1,2R∗]

f (dx, t)

)2

+ c0

where c0 =
∫

R∗
η (dx). This implies that for a large enough M > 0, the set

UM =

{
f ∈XR∗ :

∫
[1,2R∗]

f(dx) ≤M

}
.

is invariant under the time evolution (3.22). Moreover, UM is compact in the ∗−weak topology
due to Banach-Alaoglu’s Theorem (cf.[3]), since it is an intersection of a ∗−weak closed set
XR∗ and the closed ball ‖f‖ ≤M .

The second step is to prove that for each t > 0, both maps S(t) : UM → UM and
t 7→ S(t)f0 are continuous in the ∗−weak topology.

Finally, the third step of the proof reads as follows. Since for each t, the operator S(t)
is continuous and UM is compact and convex when endowed with the ∗−weak topology, we
can apply Schauder fixed point theorem to conclude that for all δ > 0 there is a fixed point
fδ of S(δ) in UM . Moreover, since UM is metrizable and hence sequentially compact, there
is a convergent sequence {fδn}n∈N, i.e., there exists f̂ ∈ UM such that fδn → f̂ when δn → 0
in the ∗−weak topology. For each t we choose δn = t/n. Using the semigroup property we
obtain that S(t)fδn = S(nδn)fδn = S(δn)fδn . Using the continuity of t 7→ S(t)f0 and the fact
that S(0)f̂ = f̂ , we obtain S(δn)fδn → f̂ . On the other hand using the continuity of S(t)
we obtain that S(t)fδn → S(t)f̂ . Therefore S(t)f̂ = f̂ and thus f̂ is a stationary solution to
(3.22), which concludes the proof. �

The next Lemma provides uniform estimates for integrals.
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Lemma 3.14 Let a > 0, R ≥ a and b ∈ (0, 1) be such that bR > a. Suppose f ∈ M+(R∗),
ϕ ∈ C(R∗), g ∈ L1(R∗), and g, ϕ ≥ 0. If

1

z

∫
[bz,z]

ϕ(x)f(dx) ≤ g(z) , for z ∈ [a,R] ,

then ∫
[a,R]

ϕ(x)f(dx) ≤

∫
[a,∞) g(z)dz

ln(b−1)
+Rg(R) .

We now extend the previous existence result to general unbounded kernels K supported
in R2

+ and satisfying the conditions of the theorem 3.4.

Proof:[idea of the proof of Theorem 3.4] Let fε,R∗ be a stationary injection solution to (3.22)
as defined in Definition 3.12 provided by Proposition 3.13. The idea is to obtain estimates
that are independent on both ε and R∗ that allow to pass to the limit as ε→ 0 and R∗ →∞
and to obtain the existence of a stationary injection solution to the original problem as defined
in (3.3).

First we obtain an estimate uniform in R∗:∫
[0,2R∗/3]

fε,R∗(dx) ≤ C̄ε, R∗ > 0,

where C̄ε is a constant independent on R∗. This estimate implies, that taking a subsequence
if needed, there exists fε ∈M+ (R+) such that fε ([0, 1)) = 0 and:

fε,Rn∗ ⇀ fε as n→∞ in the ∗ −weak topology

with Rn∗ → ∞ as n → ∞. For any bounded continuous test function ϕ : [0,∞) → R, one
proves that fε satisfies

1

2

∫
[0,∞)2

Kε (x, y) [ϕ(x+ y)− ϕ(x)− ϕ(y)]fε (dx) fε (dy) +

∫
[0,∞)

ϕ(x)η (dx) = 0.

where Kε is defined in (3.20).
Second, we obtain estimates independent on ε:

1

z

∫
[ 2z3 ,z]

fε (dx) ≤ C̃

z
3
2

(
1

min
(
zγ , 1

ε

)) 1
2

, (3.24)

and
1

z

∫
[ 2z3 ,z]

fε (dx) ≤ C̃

z
3
2
√
ε
.

where C̃ is independent on ε. This estimate yields ∗−weak compactness of the family of
measures {fε}ε>0 in M+ (R+) . Therefore, there exists f ∈M+ (R+) such that:

fεn ⇀ f as n→∞ in the ∗ −weak topology

for some subsequence {εn}n∈N with limn→∞ εn = 0. Using (3.21) and Lemma 3.14, one can
prove that fε satisfies (3.11) for any ϕ ∈ Cc (R+). In particular, f 6= 0 due to η 6= 0.
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It only remains to prove (3.10). Taking the limit of (3.24) as ε→ 0 we arrive at:

1

z

∫
[2z/3,z]

f(dx) ≤ C̃

z3/2+γ/2
for all z ∈ (0,∞),

which implies
1

z

∫
[2z/3,z]

xµf(dx) ≤ C̃ zµ

z3/2+γ/2
for all z ∈ (0,∞),

for any µ ∈ R. From Lemma 3.14 we obtain the boundedness of the moment of order µ:∫
[0,∞)

xµf(dx) <∞.

for any µ satisfying µ < γ+1
2 . In particular, since |γ + 2λ| < 1, then the moments µ = −λ

and µ = γ + λ are bounded, which proves (3.10). �

3.4 Nonexistence of stationary solutions

We present the main ideas of the proof obtained in [13].
The proof is done by contradiction. Let the kernel K satisfy the power law bounds (3.3)-

(3.4) with |γ + 2λ| ≥ 1. Suppose that f ∈M+ (R∗) is a stationary injection solution of (1.1)
in the sense of Definition 3.3. Then f satisfies the weak formulation (3.11) as well as the
condition on the moments (3.10).

The first step is to rewrite (3.11) using the flux formulation. Consider the function J :
R∗ → R+ defined by

J (R) =

∫∫
ΣR

K (x, y)xf (dx) f (dy) (3.25)

where
ΣR = {x ≥ 1, y ≥ 1 : x+ y > R, x ≤ R} .

Let ε > 0, R ≥ 1 and χε ∈ C∞(R+) satisfy χε(x) = 1, x ≤ R and χε(x) = 0, x ≥ R + ε.
Choosing a test function ϕ(x) = xχε(x) we obtain from (3.11) the flux formulation

J(R) =

∫
[1,R]

xη(dx), R ≥ 1.

We note that J describes the flux of particles passing through ΣR and that this flux is constant
for all R ≥ Lη and equal to J (Lη) =

∫
[1,∞) xη(dx) > 0, i.e.,

J (R) = J(Lη), R ≥ Lη.

The second step is to prove that the main contribution to the integral (3.25) as R → ∞ is
due to collisions between particles of size close to R and particles of size of order 1. To that

end, for a given δ > 0 small, we consider a partition of ΣR = D
(1)
δ ∩D

(2)
δ such that

D
(1)
δ = {x ≥ 1, y ≥ 1 : y ≤ δx} ,

D
(2)
δ = {x ≥ 1, y ≥ 1 : y > δx}
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and we define

Jk(R) =

∫∫
ΣR∩Dkδ

K (x, y)xf (dx) f (dy) , k = 1, 2.

Therefore
J(R) = J1(R) + J2(R).

Using the upper bound for the kernel (3.4), the moment condition (3.10) and the fact that
ΣR ∩D2

δ ⊂ [1, R]× [ δR1+δ ,∞) one concludes after some computations that the contribution of
J2 vanishes as R→∞, i.e.,

lim
R→∞

J2(R) = 0

which implies that
lim
R→∞

J1(R) = lim
R→∞

J(R) = J(Lη).

In the remainder of the proof we will use the notation a := γ+λ and b := −λ if (γ+2λ) ≥ 1,
or a := γ+λ and b := −λ if (γ+ 2λ) ≤ −1. Then, the assumption (3.10) may be rewritten as∫

R∗

xaf (dx) <∞. (3.26)

The third step of the proof consists in obtaining a lower bound for the fluxes that implies a
lower bound for the number of particles in some region of the size space. Using the upper
bound for the kernel (3.4) we obtain after some computations

lim inf
R→∞

(
Ra+1

∫∫
ΣR∩D

(1)
δ

ybf (dx) f (dy)

)
≥ J (Lη)

c3

(
1 + δ|a−b|

) . (3.27)

For R sufficiently large we have that

ΣR ∩D(1)
δ ⊂ {(x, y) : 1 ≤ y ≤ δR, R < x+ y, x ≤ R}

whence, (3.27) implies the inequality∫
[1,δR]

ybf (dy)

∫
(R−y,R]

f (dx) ≥ J (Lη)

2c3

(
1 + δ|a−b|

) 1

Ra+1
(3.28)

for R ≥ R0 with R0 large enough. We now consider two cases separately a ≥ 0 and a < 0.
Let first a ≥ 0. Due to (3.26) we may define

F (R) =

∫
(R,∞)

f (dx) , R ≥ 1 . (3.29)

Using (3.29) we can rewrite (3.28) as

−
∫

[1,δR]
[F (R− y)− F (R)] ybf (dy) ≤ − J (Lη)

2c3

(
1 + δ|a−b|

) 1

Ra+1
for R ≥ R0.

Then, using a comparison argument (see Lemma 4.1 in [13]), for some constant B > 0, it
follows that

F (R) ≥ B

Ra
if R ≥ R0, for a > 0, (3.30)
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and
F (R) ≥ B log(R) if R ≥ R0, for a = 0. (3.31)

In the case a > 0, (3.30) implies

B ≤ RaF (R) ≤
∫

(R,∞)
xaf(dx)

Taking the limit when R → ∞ and using (3.26) it follows that B ≤ 0, which leads to a
contradiction. In the case a = 0, the contradiction follows from (3.31) in a similar way using
(3.26).

Let now a < 0. We define the function F by

F (R) =

∫
[1,R]

f (dx) , R ≥ 1. (3.32)

Using (3.32) we can rewrite (3.28) as:

−
∫

[1,δR]
[F (R)− F (R− y)] ybf (dy) ≤ − J (Lη)

2c3

(
1 + δ|a−b|

) 1

Ra+1
for R ≥ R0.

As in the previous case, using a comparison argument (see Lemma 4.2 in [13]), it follows that
there is B > 0 such that

F (R) ≥ B

Ra
if R ≥ R0 .

For a small ε > 0 satisfying ε < B there exists M such that∫
[M,∞)

xaf(dx) = ε .

Then for all R > M we have

B ≤ Ra
∫

[1,R]
f(dx) ≤ Ra

∫
[1,M ]

f(dx) +

∫
[M,R]

xaf(dx) ≤ Ra
∫

[1,M ]
f(dx) + ε.

Since a < 0, taking the limit as R→∞ we obtain B ≤ ε, which leads to a contradiction.

4 Multicomponent equation with constant kernel

4.1 Mass localization in time-dependent solution

We consider the multicomponent discrete equation with constant kernel Kα,β = 2,

dnα(t)

dt
(t) =

∑
β<α

nβ(t)nα−β(t)− 2nα(t)
∑
β>0

nβ(t) (4.1)

with initial condition

nα(0) =
1

d

∑
|β|=1

δα,β (4.2)
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where β > α denotes βi ≥ αi for all i = 1, ..., d and β > α, and δα,β = 1 if α = β and δα,β = 0
otherwise. Note that the initial condition (4.2) is supported in the monomers and its mass
is uniformly distributed by the types of particles. The initial mass of each type of particle is
1
d . Existence and uniqueness of a solution to (4.1)-(4.2) in the onecomponent case d = 1 is
proven in [30] for any initial condition satisfying

∑∞
α=1 nα(0) <∞ using Laplace transforms.

An explicit solution to the multicomponent problem has been obtained in [27] and [21] using
a generating function.

In this Section we review the computations described in [21] to obtain an explicit solution
to (4.19). We then study the long-time behaviour using an approximation of the solution for
large times and large sizes obtained in [21], in particular, we observe the phenomenon of mass
localization along a straight line in the size space.

Multiplying (4.19) by a compactly supported test function ψα and summing in α we obtain
the weak formulation

∂t

∞∑
α=1

ψαnα(t) =
∞∑

α,β=1

[ψα+β − ψα − ψβ]nα(t)nβ(t) (4.3)

The solution may be obtained using the generating function F : Rd × R+ → R defined by

F (z, t) =
∑
α>0

zαnα(t) (4.4)

where zα = zα1
1 zα2

2 ...zαdd . Using ψα = zα in (4.3) we obtain an equation for F ,

∂tF (z, t) = F (z, t)2 − 2F (z, t)N(t) (4.5)

where N(t) = F (0, t) =
∑

α>0 nα is the total number of particles at time t. From (4.2) the
initial number of particles is N(0) = 1. Using ψα = 1 in (4.3) we obtain an equation for N ,

∂tN(t) = −N2(t), N(0) = 1 ⇐⇒ N(t) =
1

1 + t
(4.6)

If we subtract equations (4.5) and (4.6) we obtain an equation for F−N , ∂t(F−N) = (F−N)2.
Solving this equation and using (4.6) yields an expression for F

F (z, t) =
F0(z)

(1 + t)(1 + t− tF0(z))
(4.7)

where F0(z) = F (z, 0) is given by F0(z) = 1
d

∑d
i=1 zi after substituting (4.2) in (4.4). The

expression for F will be used in the following to determine the solution to (4.1).
We note that if {nα}α>0 is a solution to the multicomponent coagulation equation (4.1),

then {n|α|}α>0, where |α| =
∑d

i=1 αi is the sum variable and n|α| is defined by n|α| =∑
β>0 nβδ|α|,|β|, is a solution to the one component equation with constant kernel K|α|,|β| = 2

and initial condition n|α|(0) = δ|α|,1. This result may be obtained using the weak formulation
(4.3) with a test function of the form ψα = ϕ|α|. We first solve the one component equation
to find an expression for {n|α|}α>0.

We consider the generating function f : R × R+ → R associated to the one component
problem

f(z, t) =
∞∑
|α|=1

z|α|n|α|(t), (4.8)
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which may be expressed by (4.7) with f0(z, t) =
∑∞
|α|=1 z

|α|n|α|(0) = z, i.e.

f(z, t) =
z

(1 + t)(1 + t− tz)
(4.9)

Using the Taylor series, we expand f around z = 0 and obtain

f(z, t) =

∞∑
k=1

zk
tk−1

(1 + t)k+1
, z <

1 + t

t
, t > 0. (4.10)

Comparing each term of the two series (4.10) and (4.8) we conclude that the solution to the
one component equation is

n|α|(t) =
t|α|−1

(1 + t)|α|+1
. (4.11)

The solution to the multicomponent equation (4.1) can now be computed by expanding
(4.7) and comparing with (4.4). Using the Taylor series in several variables we obtain the
expansion of (4.7) around 0,

f(z, t) =
∞∑
k=1

1

dk
tk−1

(1 + t)k+1
|z|k, |z| < d

1 + t

t
, t > 0. (4.12)

Comparing with (4.8) and using (4.11) and the fact that (z1+...+zd)
k =

∑
|α|=k

k!
α1!α2!...αd!z

α1
1 zα2

2 ...zαdd

we finally obtain the solution to the multicomponent coagulation equation (4.1) expressed in
terms of n|α|,

nα(t) = n|α|(t)g(α) with g(α) =
1

dk
k!

α1!α2!...αd!
. (4.13)

To study the long time behaviour, we use the fact that lim(1+t
t )t = e to obtain an approx-

imation for n|α|(t) for large |α| and large time t such that |α| ∼ t

n|α|(t) ≈ t−2 exp(−|α|
t

), t > 0 (4.14)

Remark 4.1 In [30] it was proven that n(x, t) = t−2 exp
(
−x
t

)
is in fact the limit of a

rescaled solution, provided the initial mass is either finite, which includes the case treated in
this Section, or its distribution function diverges sufficiently weakly.

We also consider an approximation of the function g

g(α) ≈ |α|−(d−1)/2 exp(−
|α|2−
2|α|

) (4.15)

where |α|2− = 1
d

d∑
i,j=1

(αi − αj)2 denotes the generalized mass difference variable. Using (4.14)

and (4.15) in (4.13) we obtain for large t and |α| the approximation

nα(t) ≈ t−2|α|−(d−1)/2 exp(−|α|
t

) exp(−
|α|2−
2|α|

). (4.16)
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We observe that besides the mass scale imported from the solution to the one component
equation, there is a second mass scale given by |α|− ∼

√
t. Introducing the variables ξ = |α|

t

and ρ = |α|−√
t

we may then write the solution in a scaling form

nα(t) ≈ t−(d+3)/2φ(ξ, ρ) (4.17)

where

φ(ξ, ρ) = ξ−(d−1)/2 exp(−ξ) exp(−ρ
2

2ξ
) (4.18)

Finally we note from (4.16) that for any fixed time, nα(t) reaches maximum values when
|α|2− = 0. This condition defines a straight line in the size space given by {α ∈ Nd

+ | α1 =
α2 = ... = αd}.

4.2 Mass localization in stationary solutions

Mass localization is also observed in stationary solutions to coagulation equations with source
by applying a similar study as in the previous Section. We consider the stationary multicom-
ponent coagulation equation with source and constant kernel as before Kα,β = 2,

0 =
∑
β<α

nα−βnβ − 2
∑
β>0

nαnβ + sα (4.19)

where sα is the source term. In analogy to the initial conditions in the time-dependent case
(4.2), the source term is given by

sα =
h

d

∑
|β|=1

δα,β, (4.20)

for some given h > 0.
The constant kernel belongs to the class of kernels that are considered in Section 3. In

particular, the constant kernel belongs to the subclass of kernels for which there is a stationary
injection solution (see Theorem 3.4). Following the computations of [21] we compute in the
following an explicit solution to the multicomponent equation (4.19).

For any compactly supported test function ψα, the weak formulation is now given by

0 =
∞∑

α,β=1

[ψα+β − ψα − ψβ]nαnβ +
h

d

∑
|α|=1

ψα. (4.21)

The generating function

F (z) =
∞∑
|α|=1

z|α|nα (4.22)

satisfies
F (z)2 − 2F (z)N + S(z) = 0 (4.23)

where S(z) = h
d

∑
|α|=1 z

α = h
d

∑d
i=1 zi and N =

√
h is obtained using an appropriate test

function in (4.21). The solution to (4.23) reads

F (z) =
√
h[1−

√
1− |z|

d
]. (4.24)
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Figure 1: Representation of an approximation of a stationary solution to the two component
coagulation equation with source and constant kernel (4.19). We observe a concentration of
particles along a straight line.

The solution to (4.19) is obtained by expanding F in powers of the variables zi and comparing
with (4.22), yielding

nα = n|α|g(α) (4.25)

where g is defined in (4.13) and

n|α| =

√
h(2|α|)!

(2|α| − 1)(2|α||α|!)2
. (4.26)

For large sizes we may approximate n|α| by
√
h|α|−3/2, therefore using also (4.15), we obtain

nα ≈
√
h|α|−(d+2)/2 exp(−

|α|2−
2|α|

). (4.27)

Like in the time-dependent problem, an additional size scale is observed |α|− ∼
√
|α|. Also

here we can see from (4.27) that a stationary solution nα reaches maximum values at the
straight line defined by {α ∈ Nd

+ | α1 = α2 = ... = αd}. A representation of (4.27) is shown
in Figure 4.2.

5 Perspectives and open problems

The existence and uniqueness result of a time-dependent solution have also been established
[31] for coagulation kernels satisfying (3.3)-(3.4) with γ + λ = −λ and λ > −1/2 using a
similar reasoning as in the proof of Theorem 3.2. Moreover, in [10] existence is obtained using
a different framework where the solution f is a function, for a class of kernels satisfying (3.3)-
(3.4) with c1 = c2 = 1, λ ∈ [−1, 1], γ ∈ [0, 2], γ ≤ −2λ, γ + λ ∈ [−1, 1] and (γ, λ) 6= (−λ,−1).
In [16] uniqueness is proved globally in time for a class of kernels satisfying (3.3)-(3.4) with
γ ≤ 1, λ = 0, and for a different class of kernels with γ ∈ (1, 2], λ = 1 up to a gelation time T .

20



In general well-posedness remains an open problem. We refer to the survey [24] for further
references.

In the presence of a constant source of monomers, the existence and non-existence results
presented in Section 3 are the most recent ones to the best of our knowledge. Previous results
[8] have been obtained for particular classes of kernels that are included in the more general
setting presented here. In the multicomponent equation with kernel K satisfying

c1w(x, y) ≤ K(x, y) ≤ c2w(x, y) with w(x, y) =
∑
i

xγi−λiyλi + yγi−λixλi , (5.1)

we expect the existence and nonexistence results to be still valid for each class of kernels
satisfying |γi + 2λi| < 1 for all i and |γi + 2λi| ≥ 1 for some i, respectively. Similarly to the
time-dependent solutions, we also expect that stationary solutions exhibit localization along
a straight line provided the bounds for the kernel are invariant under permutations.

Almost nothing is known about rigorous results for the multicomponent coagulation equa-
tions with general kernels. However, the well-posedness results for the one-component case,
are expected to also hold in the multicomponent case provided the kernel satisfies the bounds
(5.1) with γi and λi satisfy the same conditions for well-posedness in dimension d = 1 for
all i. Mass localization for large times is expected to hold for a class of kernels that satisfy
the same bounds with the additional condition that w is invariant under any permutation of
the components. An additive kernel that does not satisfy this invariance has been considered
in [36]. We expect that in that case the mass does not localize in a straight line, because
each component will have a different rate of coagulation and complex multiscale behaviour is
expected to emerge that may break down the nice localization structure.

Mass localization results are very important in the optimization of current algorithms as
they allow to focus the computations on the region of size space where the mass is expected
to be localized. The computational complexity of the multicomponent problem may in this
way be reduced to the complexity of the onecomponent problem.

There are also many open problems for more general coagulation equations with fragmen-
tation and additional sink and growth terms as well as on the derivation of these equations
from appropriate particle systems. We refer to [7] for a brief overview on some of these topics.
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