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ORIGINAL ARTICLE

C1r Upregulates Production of Matrix L)
Metalloproteinase-13 and Promotes Invasion

of Cutaneous Squamous Cell Carcinoma

DOpen
Kristina Viiklepp', Liisa Nissinen'”, Marjaana Ojalill’, Pilvi Riihild"*, Markku Kallajoki®,
Seppo Meri”®, Jyrki Heino’ and Veli-Matti Kihari'~

Cutaneous squamous cell carcinoma (cSCC) is the most common metastatic skin cancer, with increasing
incidence worldwide. Previous studies have shown the role of the complement system in cSCC progression. In
this study, we have investigated the mechanistic role of serine proteinase C1r, a component of the classical
pathway of the complement system, in cSCC. Knockout of C1r in cSCC cells using CRISPR/Cas9 resulted in a
significant decrease in their proliferation, migration, and invasion through collagen type | compared with that
of wild-type cSCC cells. Knockout of C1r suppressed the growth and vascularization of cSCC xenograft tumors
and promoted apoptosis of tumor cells in vivo. mRNA-sequencing analysis after C1r knockdown revealed
significantly regulated Gene Ontology terms cell-matrix adhesion, extracellular matrix component, basement
membrane, and metalloendopeptidase activity and Kyoto Encyclopedia of Genes and Genomes pathway
extracellular matrix—receptor interaction. Among the significantly regulated genes were invasion-associated
matrix metalloproteinases (MMPs) MMP1, MMP13, MMP10, and MMP12. Knockout of Cir resulted in
decreased production of MMP-1, MMP-13, MMP-10, and MMP-12 by cSCC cells in culture. Knockout of C1r
inhibited the expression of MMP-13 by tumor cells, suppressed invasion, and reduced the amount of degraded
collagen in vivo in xenografts. These results provide evidence for the role of Cl1r in promoting the invasion of

cSCC cells by increasing MMP production.

Journal of Investigative Dermatology (2022) 142, 1478—1488; doi:10.1016/}.jid.2021.10.008

INTRODUCTION

Epidermal keratinocyte—derived cutaneous squamous cell
carcinoma (cSCC) is the most common skin cancer with
metastatic potential. It is the second most common skin
cancer after basal cell carcinoma, and its incidence is
increasing all over the world (Nehal and Bichakjian, 2018).
The estimated metastasis rate of primary ¢SCC is 3—5%, and
the prognosis of metastatic cSCC is poor because >70% will
die of the disease within 3 years (Knuutila et al., 2020;
Nagarajan et al., 2019). Accordingly, cSCC has been esti-
mated to cause 20% of skin cancer—related mortality (Karia
et al.,, 2013; Nehal and Bichakjian, 2018; Que et al.,
2018). cSCC develops from premalignant lesion, actinic
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keratosis, to cSCC in situ (Bowen’s disease) and finally to
invasive and metastatic cSCC. The main predisposing factors
for the development and progression of cSCC are long-term
exposure to solar UVR, immunosuppression, chronic
inflammation, and chronic dermal ulcers (Ratushny et al.,
2012).

The complement system is an important part of the innate
immune system (Abu-Humaidan et al., 2014; Ricklin et al.,
2010; Rutkowski et al., 2010). It connects innate and ac-
quired immunity and serves as the first line of host defense.
The complement system is activated through three distinct
pathways, that is, classical, lectin, and alternative pathways,
in response to the influx of microbes or to tissue injury. All the
three pathways converge in cleavage of the central compo-
nent C3 to C3a and C3b fragments. C3b binds covalently to
target cells and launches the activation of the terminal
pathway and formation of the lytic membrane attack complex
(Bohlson et al., 2019, Riihild et al., 2019).

Activation of the classical pathway of complement is
typically initiated by binding of Clqrys, complex to a
complement-fixing antibody cluster of IgM or IgG bound to
the antigen on target cells. The C1 complex contains C1q and
two subcomponents C1r and C1s. The large C1q molecule is
composed of six collagenous triple helices, each with C1gA,
C1gB, and C1qC subunits. In addition to the collagenous
tails, C1q contains six globular head regions. Activation of
the Clqrys, complex is initiated by binding of the Clq
globular heads to structures on microbial, necrotic, and
apoptotic cells or to Igs and pentraxins, such as CRP, which
launch a stepwise autocatalytic activation of the serine
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Figure 1. KO of C1r suppresses the proliferation of cSCC cells. (a) Conditioned media of CRISPR/Cas9-treated UT-SCC-7 single-cell clones and WT UT-SCC-7
cells were analyzed by western blotting for the levels of C1r and C1s. TIMP-1 was determined as the loading control. (b) The number of viable UT-SCC-7 single-
cell clones and WT UT-SCC-7 cells was determined at the time points indicated using WST-1 assay (n = 8). (c) The confluency of UT-SCC-7 single-cell clones
and WT cells was determined using IncuCyte ZOOM (n = 8) (d) The levels of C1r and C1s in conditioned media, and (e) the levels of p-Akt, p-ERK1/2, total Akt,
and total ERK1/2 in cell lysates of C1r-KO cell pools and UT-SCC-7 c¢SCC-WT cells were determined by western blotting. TIMP-1 or B-actin was used as the
loading control. Quantitations of the western blots corrected for loading controls are shown below the panels. (f) The confluency of the C1r-KO and -WT UT-
SCC-7 cells was determined using IncuCyte ZOOM (n = 8). *P < 0.05, **P < 0.01, ***P < 0.001 by Student’s t-test. Akt, protein kinase B; cSCC, cutaneous
squamous cell carcinoma; ERK, extracellular signal—regulated kinase; KO, knockout; p-Akt, phosphorylated protein kinase B; p-ERK, phosphorylated

extracellular signal—regulated kinase; WT, wild type.

proteinase C1r, which in turn activates C1s (Navratil et al.,
2001; Venkatraman Girija et al., 2013). C1s subsequently
cleaves serum proteins C4 and C2 to C4a and C4b and C2a
and C2b fragments, respectively. The complex C4b2b, also
known as the classical pathway C3 convertase, then activates
C3 and initiates the lytic pathway (Bohlson et al., 2019;
Ricklin et al., 2010). It has been recently shown that tumor
cell-derived complement components exert cancer-
promoting properties and play a role in cancer progression,
independently of complement activation (Afshar-Kharghan,
2017; Reis et al., 2018; Riihila et al., 2019; Roumenina et
al., 2019).

We have previously shown significant upregulation of
complement components in tumor cells in cSCC in vivo and in
cSCC cell lines (Riihila et al., 2020, 2017, 2015, 2014).
Recently, we showed that components of the classical
pathway, C1r and CTs, are significantly upregulated in tumor
cells in ¢SCC in vivo (Riihild et al., 2020). In this study, we
have specifically investigated the mechanistic role of serine
proteinase Clr in the progression of c¢SCC. For this, we
generated Clr-negative cSCC cells using CRISPR/Cas9.
Knockout (KO) of Cir inhibited cSCC cell proliferation,
migration, and invasion through collagen type I. Furthermore,
KO of Clr suppressed the growth and vascularization of
¢SCC xenograft tumors and promoted the apoptosis of tumor
cells in vivo. KO of C1r resulted in significant downregulation
in the expression of invasion-associated matrix metal-
loproteinases (MMPs) MMP-1, MMP-13, MMP-10, and MMP-
12 by ¢SCC cells. KO of C1r also inhibited the expression of
MMP-13 by tumor cells, suppressed invasion, and reduced the

amount of degraded collagen in vivo in xenografts. These re-
sults provide evidence for the role of Clr in promoting the
invasion of cSCC cells by increasing MMP production.

RESULTS

KO of C1r decreases the proliferation of cSCC cells
C1r-negative cSCC cells were generated of metastatic human
cSCC cell line (UT-SCC-7) using CRISPR/Cas9. Analysis of
conditioned media with western blotting confirmed loss of
C1r in four cSCC single-cell clones, whereas the production
of C1s was not abolished (Figure 1a). The KO of C1r was also
confirmed by sequencing the PCR product obtained by
amplification of genomic DNA of single-cell clones in the
corresponding area (Supplementary Figure S1). C1r-KO
resulted in a significant decrease in the viability (Figure 1b)
and growth (Figure 1c) of cSCC cell clones. Four C1r KO
cSCC single-cell clones (C1r CRISPR 74_1, 74_2, 74_3, and
77_3) were pooled, and the expression of C1r and CTs in
pooled cells (C1r-KO) was confirmed using western blotting
(Figure 1d). Cell lysates of C1r-KO and —wild-type (WT) cSCC
cells showed decreased protein levels of protein kinase B
(Akt) and extracellular signal—regulated kinase (ERK) 1/2 in
C1r-KO cells, and this resulted in decreased levels of phos-
phorylated Akt and ERK1/2 (Figure 1e). In addition, a signif-
icant decrease in the growth of C1r-KO compared with that in
WT ¢SCC cells was noted (Figure 1f).

KO of C1r suppresses the growth of c¢SCC in vivo

C1r-KO and cSCC-WT cells (UT-SCC-7) were injected (7 x
10° cells) subcutaneously into the back of SCID mice (n =6
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in both groups). The growth of C1r-KO xenograft tumors
was significantly reduced, compared with that of WT
tumors (Figure 2a and b). The relative number of proliferating
Ki-67—positive cells (Figure 2b and c) and the number of
CD34-positive blood vessels were significantly lower in C1r-
KO tumors (Figure 2b and d). The percentage of active cas-
pase-3—positive apoptotic cells was significantly higher in
C1r-KO tumors than in WT tumors (Figure 2b and e).

Alteration of gene expression profile in C1r-knockdown

¢SCC cells

C1r expression was knocked down in three cSCC cell lines
with  short interfering  RNA (siRNA) (Supplementary
Figure S2), and gene expression profiling was performed by
mRNA  sequencing. Knockdown of Cir significantly
decreased the mRNA levels of CTR, C1RL (complement C1r
subcomponent like), and MAC-inhibitory protein (CD59),
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whereas the levels of mRNAs for other complement com-
ponents, including Cls, was not altered (Supplementary
Figure S3). The genes significantly regulated after Cir
knockdown were associated with Gene Ontology terms cell-
matrix adhesion, extracellular matrix (ECM) component,
basement membrane, and metallopeptidase activity and with
Kyoto Encyclopedia of Genes and Genomes pathway ECM—
receptor interaction (Figure 3a). Expression of genes coding
for several MMPs and integrins was significantly regulated in
Gene Ontology term metalloendopeptidase activity and
Kyoto Encyclopedia of Genes and Genomes pathway ECM—
receptor interaction, respectively (Figure 3b). Gene Ontology
term ECM component contained significantly downregulated
genes, including COLTAT, LAMC2, and COL4A6 (Figure 3b).
The expression of MMP genes associated with cSCC invasion
was investigated further. MMPI1, MMP13, MMP10, and
MMP12 were among the significantly downregulated MMP
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Figure 3. Alteration of gene expression profile in cSCC cells after C1r knockdown. cSCC cell lines (UT-SCC-12A, UT-SCC-91, and UT-SCC-59A) were
transfected with C1r siRNA or control siRNA (120 nM), and mRNA-sequencing analysis was performed 72 hours after transfection. (a) Summary of IPA
biofunctions and GO terms, KEGG pathways, and Reactome related to C1r knockdown (P < 0.05, log, FC > 1.0). (b) Significantly regulated genes belonging to
the GO terms ECM component and metalloendopeptidase activity and KEGG pathway ECM-receptor interaction are shown in gene blot. (c) Significantly
regulated mRNAs for MMPs after C1r knockdown are shown. (d) MMP13, (e) MMP1, (f) MMP10, and (g) MMP12 mRNA levels were determined by QRT-PCR
(n = 3). ***P < 0.001, Student’s t-test. cSCC, cutaneous squamous cell carcinoma; ECM, extracellular matrix; FC, fold change; GO, Gene Ontology; IPA,
Ingenuity Pathway Analysis; JNK, c-Jun N-terminal kinase; KEGG, Kyoto Encyclopedia of Genes and Genomes; MMP, matrix metalloproteinase; siRNA, short
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Figure 4. C1r upregulates the production of MMPs and promotes the invasion of cSCC cells. (a) Expression of MMP mRNAs in ¢SCC and normal skin in vivo.
RNA samples from human NS (n = 5), nonmetastatic (non-mcSCC, n = 3) ¢SCC, and metastatic (mcSCC, n = 2) cSCC were analyzed with Nanostring nCounter
Fibrosis panel. The data were visualized by hierarchical clustering using Pearson correlation. Relative levels of gene expression are depicted according to the
color scale shown. Normalized expression values are shown. (b) cSCC cells (UT-SCC-7) were transfected with control or C1r siRNAs, and 72 hours after,
transfection levels of MMP-13, MMP-1, MMP-10, and MMP-12 in conditioned media were determined by western blotting. TIMP-1 was used as the loading
control. (¢) MMP-13, MMP-1, MMP-10, and MMP-12 levels were determined in conditioned media of C1r-KO and -WT ¢SCC cells (UT-SCC-7) by western
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WT ¢SCC cells (UT-SCC-7), monolayer culture was scratched using 96-well WoundMaker (n = 8). Representative images of the cell migration assay are shown.
(f) To study the invasion of C1r-KO and WT cSCC cells (UT-SCC-7), monolayer culture was scratched with 96-well WoundMaker, and collagen | solution was
added in wells (n = 5—8). Cell invasion was imaged using the IncuCyte ZOOM. Representative images are shown. (g, h) cSCC cells were transfected with
control or C1r siRNAs, and 48 hours after the transfection, the cell monolayer was scratched using 96-well WoundMaker and (g) collagen | (UT-SCC-59A) or (h)
Matrigel (UT-SCC-91) solution was added in wells (n = 5—7). MMP-13 inh (10 pM) was added to the gel and medium, as indicated. Cell invasion was imaged
using the IncuCyte ZOOM or S3 real-time cell imaging system. Representative images are shown. Bar = 300 pm. *P < 0.05, **P < 0.01, ***P < 0.001, Student’s

t-test. cSCC, cutaneous squamous cell carcinoma; inh, inhibitor; KO, knockout; mcSCC, metastatic cSCC; MMP, matrix metalloproteinase; NS, normal skin; WT,
wild type.
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genes after C1r knockdown (Figure 3c). Downregulation of
MMP13, MMP1, MMP10, and MMP12 expression after C1r
knockdown was confirmed by QRT-PCR (Figure 3d—g and
Supplementary Figure S4a—d).

Expression of MMPs in ¢SCC in vivo

The expression of MMP genes in vivo in RNA samples of
c¢SCC tumors and normal skin was determined utilizing
Nanostring nCounter Fibrosis Panel (Figure 4a). The expres-
sion of mRNAs for MMPs, except for MMP2 and MMP14,
was higher in c¢SCCs than in normal skin, and metastatic
cSCC samples clustered together (Figure 4a). The mRNA
levels of MMP1, MMP10, MMP12, and MMP13 were upre-
gulated in cSCC compared with those in normal skin
(Figure 4a).

C1r upregulates the production of MMPs and promotes the
invasion of c¢SCC cells

The conditioned culture media of C1r-knockdown (Figure 4b)
and C1r-KO (Figure 4c) cSCC cells were investigated to
determine the production of MMPs. Decreased protein levels
of MMP-13, MMP-1, MMP-10, and MMP-12 were detected
in the medium of Clr-knockdown (Figure 4b) and C1r-KO
(Figure 4c) c¢SCC cells. The efficiency of Clr siRNAs was
analyzed at the protein level in c¢SCC cells (Supplementary
Figure S5).

Clr-overexpressing cSCC cells were generated to rescue
C1r expression in C1r siRNA-silenced cells. C1r and CTs
expression in the culture medium of Clr-overexpressing
(C1r_pcDNA3.1) or vector control (pcDNA3.1) cSCC cells
was determined (Supplementary Figure S6). Addition of
conditioned medium from C1r-overexpressing cSCC cells to
cultures of cells in which C1r was silenced resulted in a
marked increase in the production of MMP-13 and MMP-10
(Figure 4d). C1r-KO cells showed significantly decreased
migration (Figure 4e) and invasion through collagen type |
(Figure 4f) compared with WT ¢SCC cells. C1r knockdown
also resulted in significant inhibition of invasion of cSCC cells
through collagen type | (Figure 4g and Supplementary
Figures S7 and S8a) and Matrigel (Figure 4h and
Supplementary Figure S8b). Specific MMP-13 inhibitor
inhibited the invasion of control siRNA—transfected cells
through collagen I (Figure 4g and Supplementary Figure S8a)
and Matrigel (Figure 4h and Supplementary Figure S8b) but
had no effect on cell invasion after C1r knockdown.

KO of C1r downregulates the production of MMP-13 by

¢SCC tumor cells in vivo

C1r-KO and -WT xenografts were stained for histology by
H&E and for MMP-13 by immunohistochemistry. Histologi-
cal analysis of the xenograft tumors revealed different growth
and invasion pattern in C1r-KO tumors from those of WT
tumors. In WT tumors, cSCC cells were scattered to several
smaller islets in 67% of tumors, whereas in C1r-KO xeno-
grafts, tumor cells were grouped in larger tumor patches in
83% of tumors (Figure 5a). Positive MMP-13 staining was
noted in tumor cells in the invasive edge of xenografts
(Figure 5a). The percentage of tumor cells with strong staining
for MMP-13 was reduced in C1r-KO tumor margin compared
with that in WT tumors (Figure 5a). The area with strong
MMP-13—positive staining was quantitated and compared
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with total tumor area and scored as weak (+), moderate (++),
or strong (+++) (Figure 5a and b and Supplementary
Figure S9). Of the WT tumors, 33% were scored as strong
(+++), 33% were scored as moderate (++), and 33% were
scored as weak (+) (Figure 5b). In contrast, of C1r-KO tumors,
17% of cases were classified as strong (+++), 33% were
classified as moderate (++), and 50% were classified as
weak (+) (Figure 5b).

KO of C1r reduces collagen degradation in ¢SCC tumors

In vivo

To elucidate the effect of downregulation of MMP-13
expression, we determined the amount of total and
degraded collagen in xenografts. The total amount of
collagen in C1r-KO and WT xenografts was analyzed with
van Gieson (VG) staining. An increased amount of short,
straight, coarse, and thick collagen bundles was detected in
tumor margin between the tumor cells, especially in C1r-KO
xenografts (Figure 6a). Xenografts were scored positive (+) if
the bundles were detected in more than half of the margin of
tumors or negative (—) if the bundles were detected in less
than half of the margin of tumors (Figure 6a and b). In 83% of
C1r-KO tumors, the short straight, coarse, and thick collagen
bundles surrounding cSCC tumor cells indicating an
increased amount of collagen were detected in more than
half of the tumor edge (Figure 6a and b). In contrast, in WT
tumors only in 17% of xenografts, these short straight, coarse,
and thick collagen bundles were detected in more than half
of the tumor edge (Figure 6a and b).

To further analyze the function of collagenolytic pro-
teinases, such as MMP-13, xenografts were stained with
collagen hybridizing peptide (CHP), which specifically binds
to degraded, unfolded triple-helical collagen. Association of
VG and CHP staining in WT and C1r-KO tumors was
analyzed in adjacent sections (Figure 6¢). Costaining of VG
and CHP was not as strong in C1r-KO tumor group as in WT
tumors (Figure 6¢). The association was scored positive (+) if
the connection was detected in every point and negative (—)
if the connection was not detected in every point. In 83% of
tumors in WT tumors, the CHP staining in tumor edge was
associated with VG staining, indicating degradation of triple-
helical collagen molecules (Figure 6¢ and d). In contrast, in
67% of C1r-KO tumors, there were more areas where CHP
staining was not detected, although VG staining was positive,
indicating a reduced amount of degraded collagen (Figure 6¢
and d). Adjacent tissue slide of C1r-KO xenograft tumor was
used for negative control staining to exclude nonspecific
binding of CHP (Supplementary Figure S10).

DISCUSSION

The complement system is an important part of innate im-
munity. It can be activated through three pathways, that is,
classical, lectin, and alternative pathway, which all lead to
the activation of C3 and lytic pathway and eventually to lysis
of target cell (Venkatraman Girija et al., 2013). Recently, the
role of the complement system in cancer has been empha-
sized, and the autocrine role of tumor cell-derived comple-
ment components in cancer progression has been shown
(Afshar-Kharghan, 2017; Cho et al., 2014; Hajishengallis
et al., 2017; Kourtzelis and Rafail, 2016; Nissinen et al.,
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Figure 5. KO of C1r downregulates
the production of MMP-13 by ¢SCC
tumor cells in vivo. C1r-KO or -WT

o

UT-SCC-7 cells (7 x 10° cells) were
injected subcutaneously into the back
of SCID mice (n = 6 for each group).
Xenografts were harvested after 17
days and stained with H&E and with
immunohistochemistry using an

100
80
60
40
20

MMP-13 antibody. (a) Histological
analysis of the xenograft tumors
revealed different growth and invasion
pattern of C1r-KO tumors compared
with that of WT tumors (upper panels).
In WT tumors, cSCC cells were
scattered to several smaller islets (67%
of tumors) (left panels), whereas in
C1r-KO xenografts, the tumor cells
were grouped in larger tumor patches
(83% of tumors) (right panels). Arrows
indicate scattered smaller islets in the
tumor margin. (@) The representative
images of strong (4-+-+) MMP-13
staining in WT ¢SCC tumor cells
(lower, left panels). The representative
image of weak (+) staining intensity of
MMP-13 in C1r-KO tumor cells (right
panels). (b) The staining intensity of
MMP-13 was determined digitally,
and the percentage of strongly positive
cells was calculated. The area of
strong MMP-13—positive staining was

MMP-13

Percentage of samples (%)

WT C1r-KO

W+ B++ W+

measured and compared with total
tumor area and scored as weak (+),
moderate (++), and strong (+++).
Bar = 100 pm. cSCC, cutaneous
squamous cell carcinoma; KO,
knockout; MMP, matrix
metalloproteinase; WT, wild type.

2016; Reis et al., 2018; Roumenina et al., 2019). Our pre-
vious studies have shown the autocrine role of cSCC cell-
derived complement components C3 and FB and comple-
ment inhibitors FH and Fl in the proliferation and migration
of cSCC cells (Riihila et al., 2017, 2015, 2014). However, a
comparison of the complement expression profiles of
different cancers has revealed the unique role of distinct
complement components in different cancer types
(Roumenina et al., 2019). A number of pharmacological in-
hibitors against specific complement components are
currently in clinical trials and may offer therapeutic ap-
proaches to cancer (Riihild et al., 2019).

We have previously shown that the expression of C1r and
C1s is upregulated in tumor cells in ¢SCC in culture and
in vivo (Riihila et al., 2020). We also showed that cSCC cells
do not express C1q subunits, indicating that the autocrine
effect of C1r and C1s on cSCC cells is not dependent on the
presence of C1q (Riihild et al., 2020). Furthermore, we have
shown that Cls is cleaved and activated in vitro in the
absence of C1q (Riihild et al., 2020). However, several types
of cells, for example, macrophages, fibroblasts, and endo-
thelial cells, in the tumor microenvironment of cSCC in vivo
can produce C1q subunits (Bossi et al., 2014; Bulla et al.,
2016; Petry et al., 2001). It is therefore possible that Clq
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derived from stromal cells is present in the peritumoral area
of ¢SCC, allowing assembly of C1qr,s, complex. It has been
shown that locally produced C1q in cancer stroma may be a
tumor progression—stimulating factor independently of com-
plement activation (Bulla et al., 2016). We have noted that
mRNAs for the C4 and C2 components are not expressed by
cSCC cells (Riihild et al., 2014, 2015). Together, these results
indicate that components of C1qr;s, complex, C1q, Cl1r, and
C1s, may play a specific role in ¢SCC progression without
complement activation.

In this study, we have specifically investigated the mech-
anistic role of C1r in the progression of cSCC and generated
C1r-negative cSCC cells using CRISPR/Cas9. The results show
that KO of C1r in ¢SCC cells results in a significant reduction
in viability, proliferation, and invasion of cSCC cells in vitro.
In addition, the growth of xenograft tumors established with
Clr-negative cSCC cells is significantly suppressed and is
associated with reduced vascularization and an increased
number of apoptotic tumor cells. Our results also show that
reduction in total Akt and ERK1/2 levels results in decreased
levels of phosphorylated Akt and phosphorylated ERK1/2 in
C1r-KO cells, in accordance with previous studies showing
that the components of the ERK1/2 cascade can undergo
ubiquitination, which leads to the degradation of the
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WT C1r-KO

van Gieson CHP van Gieson CHP

substrate proteins and also regulates their activity and/or
localization (Laine and Ronai, 2005; Lu et al., 2002; Nguyen
et al., 2013). Together, these results provide evidence for the
important role of C1r in ¢SCC tumor growth in vivo.

To investigate the molecular mechanism of the effect of C1r
in more detail, mMRNA sequencing was performed for cSCC
cells after C1r knockdown. Knockdown of C1r significantly
regulated the genes belonging to Gene Ontology terms
related to invasion of cSCC cells, including genes coding for
invasion-associated MMPs: MMP1, MMP13, MMP10, and
MMP12, which are all located in MMP gene cluster in locus
11g22.3 (Ujfaludi et al., 2018). Interestingly, the expression
of MMP1, MMP13, MMP12, and MMP10 in cSCC cells is
coordinately regulated by signal transducer and activator of
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Figure 6. KO of C1r reduces collagen
degradation in ¢SCC in vivo. C1r-KO
or -WT UT-SCC-7 cells (7 x 10° cells)
were injected subcutaneously into the
back of SCID mice (n = 6 for each
group) and harvested after 17 days.
The total amount of collagen in C1r-
KO and WT xenograft tumors was
detected with van Gieson staining,
and degraded collagen was detected
by staining with CHP. (a) van Gieson
staining in WT and C1r-KO tumors.
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d Short, straight, coarse, and thick
collagen bundles were detected in
tumor edge rim (white arrows). (b) The
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= 80 and thick collagen bundles were

s 60 detected in more than a half of the

40 margin of the tumor and negative (—)

E 20 if short, straight, coarse, and thick

8 o collagen bundles were detected in less

& WT C1r-KO than a half of the margin of the tumor.

(c) WT and C1r-KO tumors were
stained with CHP. The association of
van Gieson (white arrows) and CHP
staining (black arrows) was analyzed
in adjacent sections of WT and CTr-
KO tumors. In WT tumors, the CHP
staining in the tumor edge rim was
associated with van Gieson staining,
as a marker of degraded collagen (left
panels). In C1r-KO tumors, there were
more areas where CHP staining was
not detected, although van Gieson
staining was positive, indicating a
reduced amount of degraded collagen
(right panels). (d) The costaining of van
Gieson and CHP as a marker of
degraded collagen was scored positive
(+) if both stainings were detected in
every point where short, straight,
coarse, and thick collagen bundles
were detected and negative () if
there were points, where a connection
was not detected in the tumor margin.
Bar = 100 pm. *P < 0.05 by ¥? test
(n = 6 for each group). CHP, collagen
hybridizing peptide; cSCC, cutaneous
squamous cell carcinoma; KO,
knockout; WT, wild type.

transcription 3 (Piipponen et al., 2020). It is conceivable that
coordinate upregulation of production of these MMPs by
cSCC cells generates a potent proteolytic network in the tu-
mor microenvironment and, this way, promotes invasion of
¢SCC (Riihild et al., 2021). Itis also possible that these MMPs
contribute to alterations in the structure of basement mem-
brane in actinic keratosis and ¢SCC in situ and, this way,
promote their progression to invasive cSCC (Karppinen et al.,
2016).

C1r KO inhibited cSCC cell invasion through collagen type
| matrix and downregulated production of MMP-1, MMP-13,
MMP-10, and MMP-12. Previous studies have shown that
MMP-13 (collagenase-3) promotes cSCC progression. MMP-
13 cleaves fibrillar collagens and several other ECM and
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basement membrane components (Nissinen and Ké&hari,
2014; Knduper et al.,, 1996a, 1996b). MMP-13 is not
expressed in epidermal keratinocytes in normal skin, in nor-
mally healing wounds, or in actinic keratosis and cSCC in
situ, but the expression is detected in tumor cells and stromal
fibroblasts in cSCCs (Airola et al., 1997; Impola et al., 2005;
Johansson et al., 1997; Kivisaari et al., 2008; Vaalamo et al.,
1997). MMP-13 promotes the growth and invasion of cSCC
in vivo, and its expression in cSCC cells is inhibited by p53
(Ala-aho et al., 2004, 2002). In addition, MMP-13 promotes
the survival of ¢SCC cells and fibroblasts (Ala-aho et al.,
2004; Toriseva et al., 2007). Our results showed that the
expression of MMP-13 by tumor cells in the invasive edges of
tumors was decreased in C1r-KO xenografts. In addition, the
amount of degraded unfolded triple-helical collagen was
decreased in C1r-KO xenograft tumors. In C1r-KO xenografts,
tumor cells were grouped in larger nests, whereas in WT
tumors, tumor cells were in smaller islets and scattered more
widely, indicating that C1r has a role in the shaping of ¢SCC
tumor growth and in invasion pattern in vivo. These results
show that loss of C1r in ¢SCC tumor cells suppresses their
MMP-13 production and invasion in vivo.

Our results raise the question of whether the effects of C1r
KO are mediated by direct C1r activities or by preventing C1s
activation or both. In the extracellular complement system,
C1r and C1s are strictly dependent on one another. They are
in complex, and activation of C1r is a prerequisite for acti-
vation of C1s (Venkatraman Girija et al., 2013). Because the
activation of C1r is dependent on conformational change, it
is conceivable that it could become activated also intracel-
lularly. Subsequently, C1r could activate CTs, and either of
the two or both could have an effect on the expression of
MMP-13 or the other MMPs. Thus, because of the similar
effects of C1r and CTs knockdowns, it seems possible that at
least part of the effects of C1r KO is due to the inability to
cleave and activate C1s (Riihild et al., 2020).

An interesting association between C1 activation and
dermal connective tissue has been recognized recently, with
the identification of Clr and Cls missense or in-frame
insertion/deletion sequence alterations in periodontal Ehlers—
Danlos syndrome, a specific autosomally dominantly
inherited subtype of Ehlers—Danlos syndrome characterized
by severe periodontal inflammation in response to mild pla-
que accumulation, pretibial hyperpigmentation, acrogeria,
skin fragility, and abnormal scarring (Kapferer-Seebacher
et al., 2016; Rahman et al., 2003). Examination of the skin
of patients with periodontal Ehlers—Danlos syndrome has
revealed decreased collagen content, abnormal variation in
collagen fibril diameter, and abnormally shaped fibrils, sug-
gesting collagen misassembly and degradation of collagen
(Rahman et al., 2003; Reinstein et al., 2013). Interestingly,
the C1r and C1s sequence alterations found in patients with
periodontal Ehlers—Danlos syndrome are gain-of-function
alterations, which result in activation of C1 (Grobner et al.,
2019; Kapferer-Seebacher et al., 2016). These observations
provide evidence for the role of C1r in regulating the turnover
of dermal collagen.

In summary, the results of this study show that KO of C1r in
cSCC cells results in significantly decreased proliferation,
migration, and invasion through collagen type | and
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suppresses the growth of human cSCC xenografts in vivo. In
addition, C1r KO decreases the expression of invasion pro-
teinases MMP-1, MMP-13, MMP-10, and MMP-12. These
results provide evidence for the role of C1r in regulating the
invasion of cSCC cells by increasing the production of
invasion-associated MMPs and suggest C1r as a therapeutic
target in the treatment of locally advanced and metastatic
cSCC.

MATERIALS AND METHODS
Detailed information on Materials and Methods is described in
Supplementary Materials and Methods online.

Ethical Statement

Collection of cSCC tissues was approved by the Ethics Committee of
the Hospital District of Southwest Finland. The research was carried
out according to the Declaration of Helsinki. All studied patients
gave written informed consent before surgery, and the study was
carried out with the authorization of Turku University Hospital
(Turku, Finland). All experiments with mice were carried out with
the permission of the State Provincial Office of Southern Finland,
according to institutional guidelines.

Cell cultures

Human cSCC cell lines were initiated from surgically removed
cSCCs (Farshchian et al., 2017). These cell lines were authenticated
by STR DNA profiling (Farshchian et al., 2017). Cell cultures were
performed, as previously described (Riihild et al., 2017).

mRNA expression profiling

RNA was isolated using miRNAeasy Mini kit (Qiagen, Chatsworth,
CA) from CT1r and control siRNA (120 nM)-transfected cSCC cell
lines (UT-SCC-12A, UT-SCC-91, and UT-SCC-59A). The sequencing
library was prepared using lllumina TruSeq Stranded mRNA Sample
Preparation Kit, and sequencing was performed using Illumina
HiSeq3000 (lllumina, San Diego, CA) at the Finnish Functional
Genomics Centre, Turku. The reads were aligned against the human
reference genome (hg38), and TMM normalization was used for data
normalization (R/Bioconductor package edgeR). For statistical
analysis, Limma package was used. RNA-sequencing data (acces-
sion number GSE174626) have been deposited in the public data-
base (Gene Expression Omnibus, National Center for Biotechnology
Information; http://www.ncbi.nlm.nih.gov/geo/).
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SUPPLEMENTARY MATERIALS AND METHODS

Knockout of C1r

To generate Clr-negative cell lines, genome editing method
was applied by transfecting UT-SCC-7 cells with an all-in-one
CRISPR/Cas9 vector (Sigma-Aldrich, St Louis, MO,
HS0000245574 guide RNA sequence: GCTTCACCCTG-
TATCCCGTGGG; HS0000245577 guide RNA sequence:
ACTTCTCCAACGAGGAGAATGQG). Transfected cells were
selected on the basis of the expression of GFP, allowed to
grow, and checked for C1r and C1s production in a cell
culture medium. Four CT7r-knockout (KO) cutaneous squa-
mous cell carcinoma (cSCC) single-cell clones (C1r CRISPR
74_1, 74_2, 74_3, and 77_3) were pooled to generate C1r-
KO cell line.

Tissue RNA

Normal human skin samples (n = 5) were obtained from the
upper arm of healthy volunteers or during mammoplasty
operation in Turku University Hospital (Turku, Finland). Hu-
man primary nonmetastatic (n = 3) and metastatic (n = 2)
cSCC samples were collected from surgically removed tu-
mors in Turku University Hospital (Riihild et al., 2020). Total
RNA was isolated from the tissue samples as previously
described (Riihilad et al., 2020).

Nanostring expression profiling

RNA (100 ng) was hybridized overnight at 65 °C with the
Human Fibrosis Panel (NanoString Technologies, Seattle,
WA). Purification and binding of the hybridized probes to the
cartridge were performed on the nCounter Prep Station, fol-
lowed by scanning the cartridge on the nCounter Digital
Analyzer (NanoString Technologies). The data analysis was
prepared using nSolver 4.0 (NanoString Technologies). The
quality of the data was confirmed; normalization was done
using the default quality control settings.

QRT-PCR

Total RNA was isolated and analyzed by QRT-PCR, as pre-
viously described (Riihild et al., 2020). The mRNA levels of
matrix metalloproteinases (MMPs), MMP1, MMP10, MMP12,
MMP13, and B-actin were analyzed by QRT-PCR using spe-
cific primers as described earlier (Stokes et al., 2010). The
samples were analyzed in duplicate, and the range of the
threshold cycle values was <5% of the mean in each mea-
surement. The mRNA levels of MMPs were corrected for
levels of B-actin MRNA.

Western blotting analysis

Production of C1r and C1s by cSCC cells was determined by
western blotting analysis of aliquots of conditioned media
under nonreducing conditions using specific polyclonal
rabbit anti-C1r (HPA0O1551; Sigma-Aldrich) and anti-C1s
(HPAO18852; Sigma-Aldrich) antibodies. Production of
MMPs was determined by western blotting analysis of ali-
quots of conditioned media under reducing conditions using
specific antibodies against MMP-1 (41-1E5; Merck Millipore,
Temecula, CA), MMP-10 (IVC5; Thermo Fisher Scientific,
Waltham, MA), MMP-12 (MAB919; R&D Systems, Minne-
apolis, MN) and MMP-13 (Ab-3; Merck Millipore). With
TIMP-1 antibody (Ab-1; Merck Millipore), equal protein
loading was confirmed. Cell lysates were analyzed with an-
tibodies specific for phosphorylated protein kinase B (Akt),
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phosphorylated extracellular signal—regulated kinase (ERK)-
1/2, total ERK1/2 (9271S, 9101, and 9102, all from Cell
Signaling Technology, Beverly, MA), and total Akt (sc-1618,
Santa Cruz Biotechnology, Santa Cruz, CA) by western blot-
ting. Even protein loading was firmed with B-actin antibody
(A1978; Sigma-Aldrich).

Knockdown of C1r expression with short interfering RNA

For short interfering RNA (siRNA) knockdown of C1r, ¢SCC
cells were grown to 50% confluency and transfected with
siRNAs targeting CTR mRNA (target sequences: Hs_CT1r_5,
5'-TCGGGAGAGCCCAGGATTCAA-3' [120 nM]; Hs_C1r_7,
5'-CAGGGTGAAGCTCGTCTTCCA-3’  [75 nM]; and
Hs_C1r_11, 5'-CCAGTTGTTGATSSCCACTAA-3') (75 nM) or
with negative control siRNA (all from Qiagen, New Delhi,
India) using siLentFect Lipid Reagent (Bio-Rad Laboratories,
Hercules, CA) as previously described (Riihild et al., 2020).
The function of C1r siRNAs was verified by western blotting.
B-Actin served as a loading control, and quantitation of
western blot band intensities was carried out by Image)
software, version 1.47v (National Institutes of Health,
Bethesda, MD; http://imagej.nih.gov/ij) (Schneider et al.,
2012).

mRNA expression profiling

RNA was isolated using miRNAeasy Mini kit (Qiagen,
Chatsworth, CA) from C1r- and control siRNA (120 nM)-
transfected ¢SCC cell lines (UT-SCC-12A, UT-SCC-91, and
UT-SCC-59A). The sequencing library was prepared using
[llumina TruSeq Stranded mRNA Sample Preparation Kit, and
sequencing was performed using lllumina HiSeq3000 (Illu-
mina, San Diego, CA) at the Finnish Functional Genomics
Centre, Turku. The reads were aligned against the human
reference genome (hg38), and TMM normalization was used
for data normalization (R/Bioconductor package edgeR). For
statistical analysis, Limma package was used. RNA-
sequencing data (accession number GSE174626) have been
deposited in the public database (Gene Expression Omnibus,
National Center for Biotechnology Information; http://www.
ncbi.nlm.nih.gov/geo/).

Overexpression of C1r

CI1R nucleotide sequence was obtained from National Center
for Biotechnology Information. The CTR cDNA fragment in
pEX-A128 was ordered from Eurofins Genomics (Ebersberg,
Germany) and cloned into pcDNA3.1 (Invitrogen, Carlsbad,
CA) comprising neomycin resistance gene. To validate the
integrity of cloned CTR segment, the construct was rese-
quenced. Stable transfections of UT-SCC-7 cells with the re-
combinant C1r expression construct (pcDNA3.1_C1r) or
control vector (pcDNA3.1) were performed using Lipofect-
amine 3000 reagent (Invitrogen, Carlsbad, CA) (Piipponen et
al., 2018). Cells were grown in the presence of 0.5 mg/ml of
geneticin (Gibco, Waltham, MA). In a rescue experiment,
cSCC cells were transfected with Cl1r siRNAs or control
siRNA. After 48 hours, the conditioned media of Clr-over-
expressing (C1r_pcDNA3.1) or vector control (pcDNA3.1)
cells were added, and incubation continued for 24 hours.

Cell number and viability assays
UT-SCC-7 C1r-KO and wild-type (WT) cells (5.0 x 10° cells
per well) were inoculated into 96-well plates. The IncuCyte
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ZOOM real-time cell imaging system (Essen BioScience, Ann
Arbor, MI) was used to study the growth of cSCC cells. Images
were taken every 2 hours by IncuCyte ZOOM, and the
relative confluence was analyzed by the instrument. Experi-
ments were carried out with eight parallel wells at every time
point. For cell viability assays, cSCC cells (1.0 x 10* cells per
well) were seeded on 96-well plates. The number of viable
cells was determined at 0, 24, 48, and 72 hours with Cell
Counting Kit-8 (Dojindo Laboratories, Kumamoto, Japan).
Experiments were carried out with eight parallel wells at
every time point.

Cell migration assays

UT-SCC-7 C1r-KO and -WT cells (3.5 x 10* cells per well)
were plated on ImagelLock 96-well plate (Essen BioScience,
Ann Arbor, MI) and incubated in a complete growth medium
for 24 hours to reach confluency. Cell division was inhibited
by treatment with T mM hydroxyurea (Sigma-Aldrich) treat-
ment in DMEM with 10% fetal calf serum for 6 hours. After
that, the cell monolayer was scratched with IncuCyte ZOOM
(Essen BioScience) wound scratcher, and incubation of the
cells was continued in DMEM with 1% fetal calf serum and
0.5 mM hydroxyurea. Images were taken every 2 hours by
IncuCyte ZOOM, and the relative wound density was
analyzed by the instrument. Experiments were carried out
with eight parallel wells at every time point.

Cell invasion assay

cSCC cells (5 x 10* cells per well) were plated on a
collagen type | (5 png/cm2, PureCol; Advanced BioMatrix,
San Diego, CA) or Matrigel (100 pg/ml) (Corning, Corning,
NY)-coated ImagelLock 96-well plate (Essen BioScience) 24
hours after transfection with C1r siRNAs or negative con-
trol siRNA. C1r-KO and -WT cells and siRNA-transfected
cells were allowed to adhere overnight. The cell mono-
layer was scratched, and Matrigel (4 mg/ml) (UT-SCC-7 and
UT-SCC-59A) or collagen type | (UT-SCC-7 and UT-SCC-
91) solution was added by mixing type | collagen (Pure-
Col) with  x5DMEM and 0.2 mol/l 4-(2-hydroxyethyl)-1-
piperazineethanesulfonic acid buffer (pH 7.4) at a ratio of
7:2:1, respectively. Sodium hydroxide (1 M) was added to
obtain a final pH of 7.4. Cell culture medium with 0.5%
fetal calf serum was added after allowing the collagen type
| solution (2.2 mg/ml) to polymerize for 2 hours at 37 °C.
MMP-13 inhibitor (444283, Merck, Darmstadt, Germany)
was added to the gel and medium in 10 UM concentration.
Images were taken every 2 hours by IncuCyte ZOOM or
S3 real-time cell imaging system, and the relative cell in-
vasion was quantitated using the IncuCyte ZOOM or S3
software (Essen BioScience). Experiments were carried out
with 6—7 parallel wells at every time point.

Human c¢SCC xenografts

Human cSCC xenografts were established, as described
previously (Riihila et al., 2017). UT-SCC-7 C1r-KO or WT
cells (5 x 10° were injected subcutaneously in the back of
severe combined immunodeficiency (SCID/SCID) female
mice (n = 6 in both groups) (CB17/lcr-Prkdc*“/IcricoCrl)
(Charles River LaboratoriesWilmington, MA). The size of tu-
mors was measured twice a week, and tumor volume was
calculated with the formula V = (length x width?) / 2 (Euhus
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et al., 1986). Tumors were harvested after 17 days for histo-
logical analysis and immunohistochemistry, as previously
described (Riihild et al., 2017). Proliferating cells were
detected with monoclonal human Ki-67 antibody (MIB-1;
DAKO, Glostrup, Denmark), and Mayer’s hematoxylin was
used as counterstain. The relative number of Ki-67—positive
cells was determined by counting 1,400—4,900 cells from all
sections at x20 objective using Image]) software (Schneider
et al., 2012). Vascularization of the xenograft tumors was
assessed by immunohistochemistry with anti-CD34 antibody
(Santa Cruz Biotechnology). Blood vessel density was eval-
uated in each sample by counting the number of CD34-
positive blood vessels in three defined microscopic fields
at x10 objective. Apoptosis of the xenograft tumor cells was
determined by immunohistochemistry with active caspase-3
antibody (Cell Signaling Technology, Danvers, MA). The
relative number of active caspase-3—positive cells was
determined by counting 4,800-8,750 cells from all sections
at x20 objective using Image) software (Schneider et al.,
2012).

MMP-13 stainings were performed with mouse mono-
clonal MMP-13 antibody (MAB13424; Merck Millipore). To
evaluate the MMP-13 staining intensity in xenograft tumor
tissue sections, QuPath bioimage analysis software, version
0.2.3, was used (Bankhead et al., 2017). Strong MMP-13
staining was distinguished digitally by creating threshold
0.4, which detects only strong staining on the basis of DAB
staining intensities. The areas of strong staining intensity were
measured and compared with whole-xenograft tumor areas
to calculate the percentage of strong positive staining of
xenograft tumor. Tumors were scored as weak (+), moderate
(++), and strong (+++) on the basis of the percentage of
strong MMP-13 staining. The staining was classified as weak
(+) if the strong MMP-13 staining accounted for <4% of
xenograft tumor area, moderate (++) if the strong staining
area was 4-9%, and strong if the area was >9%.

To visualize collagen paraffin-embedded, formalin-fixed
WT and C1r-KO xenograft tumor sections were stained with
van Gieson and collagen hybridizing peptide-biotin conju-
gate (B-CHP, BIO300, 3Helix, Salt Lake City, Utah) according
to manufacturer’s instructions (Hwang et al., 2017). The
specificity of collagen hybridization of CHP was tested using
negative control. For negative control staining, trimeric CHP
solution without the preheating step was added to the sample
to not dissociate CHP trimers from monomers by heating.

All tissue samples were stained at the same time, and
immunohistochemical detection was performed using
Labvision Autostainer to standardize the staining quality
and intensity. The stainings were performed in Core Fa-
cilities of the Institute of Biomedicine, University of
Turku, as previously described (Riihild et al., 2020). The
slides of xenograft samples were digitally scanned using a
Panoramic 1000 Slide Scanner (3DHistech, Budapest,
Hungary).
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Supplementary Figure S1. DNA Sanger sequencing of control and mutated c¢SCC cells (UT-SCC-7) after C1R knockout. Top row of chromatograms represents a
part of WT CTR-gene. Bottom rows on chromatograms represent mutated C7R gene sequences from one-cell clones. Guide RNA and PAM sequence in CRISPR/

Cas9 vector are shown in green. Comparison confirms apparent changes of DNA sequences around the cutting site in single-cell clones generated with CRISPR/
Cas9. cSCC, cutaneous squamous cell carcinoma; PAM, protospacer adjacent motif; WT, wild-type.
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Supplementary Figure S2. Expression of C1r in cSCC cells after C1r knockdown. cSCC cell lines (UT-SCC-12A, UT-SCC-91, and UT-SCC-59A) were transfected
with control or CTr siRNA_5 (120 nM). At 72 hours after transfection, mRNA-seq analysis was performed. Normalized C7R mRNA expression was determined
from cSCC cells with mRNA-seq after C1r siRNA knockdown. cSCC, cutaneous squamous cell carcinoma; mRNA-seq, mRNA sequencing; siRNA, short
interfering RNA.

o - M < — < M - - QN MW
58535550k S<oba % eBBoorFIIIT _o_Zg
v—v—v—v-v—v—v—v-v—v—(v’—)(\lmggEeemggongggmooou_u_u_u_u_u_u_u_Eu_En:n:
OO0OO0OO0OLVOLLOLLOLLOLLOLLOLLOLLOLLLLLLLLLOLLOLLOLLLLLLLLLOLLLLLLLLLLOLOLOLOLOOO

Control siRNA . ‘
Cirsi RNA_5 ‘
Kkk kk *k
Signal value
0 250

Supplementary Figure S3. Alteration of the expression of complement-related genes in cSCC cells after C1r knockdown. cSCC cells (UT-SCC-12A, UT-SCC-91,
and UT-SCC-59A) were transfected with control siRNA or C1r siRNA_5 (120 nM), and mRNA sequencing was performed 72 hours after transfection. Heatmap
shows the expression of complement-related genes after C1r knockdown. (**P < 0.01 and ***P < 0.001, R package Limma). cSCC, cutaneous squamous cell
carcinoma; siRNA, short interfering RNA.
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Supplementary Figure S4. C1r knockdown decreases the expression of MMP13, MMP1, MMP10, and MMP12 in c¢SCC cells. cSCC cell lines (UT-SCC-7, UT-
SCC-12A, UT-SCC-59A, and UT-SCC-91) were transfected with C1r siRNA_5 (120 nM), C1r siRNA_7 (75 nM), or control siRNA, and QRT-PCR was performed
72 hours after transfection. MMP mRNA (@) MMP13, (b) MMP1, (c¢) MMP10, and (d) MMP12 levels were determined (n = 3, *P < 0.05, **P < 0.01, ***P <
0.001, Student’s t-test). cSCC, cutaneous squamous cell carcinoma; MMP, matrix metalloproteinase; siRNA, short interfering RNA.
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Supplementary Figure S5. The efficiency of C1r siRNAs was analyzed at the
protein level in ¢SCC cells. cSCC cells (UT-SCC-7) were transfected with C1r
siRNA (C1r siRNA_7 or C1r siRNA_11) or control siRNA (75 nM).
Conditioned media were analyzed for C1r and CTs levels 8 days after
transfections by western blotting. B-Actin was used as a sample control.
Densitometric quantitation of C1r and C1s levels corrected for B-actin is
shown below the panels. cSCC, cutaneous squamous cell carcinoma; siRNA,
short interfering RNA.
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Supplementary Figure S6. Expression of C1r and C1s in CT1r-overexpressing
¢SCC cells. The levels of C1r and C1s in conditioned culture media collected
from C1r-overexpressing (C1r_pcDNA3.1) and vector control (pcDNA3.1)
UT-SCC-7 cells were determined by western blotting. TIMP-1 was used as the
loading control. Densitometric quantitation of C1r and CTs levels corrected
for TIMP-1 are shown below the panels. cSCC, cutaneous squamous cell
carcinoma.
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Supplementary Figure S8. C1r promotes the invasion of cSCC cells by increasing their production of MMP-13. ¢SCC (UT-SCC-7) cells were transfected with
control or C1r siRNAs, and 48 hours after transfection, the cell monolayer was scratched using 96-well WoundMaker, and (a) collagen | or (b) Matrigel solution
was added in wells. MMP-13 inh was added to the gel and medium at 10 pM concentration. Cell invasion was imaged using the IncuCyte ZOOM or S3 real-
time cell imaging system. Representative images are shown. Bar =300 pm. n = 5—7; **P < 0.01, ***P < 0.001, Student’s t-test. cSCC, cutaneous squamous cell
carcinoma; inh, inhibitor; MMP, matrix metalloproteinase; SCC, squamous cell carcinoma; siRNA, short interfering RNA.

1488.e8 Journal of Investigative Dermatology (2022), Volume 142



K Viiklepp et al.
C1r in Cutaneous Squamous Cell Carcinoma

Supplementary Figure S9. Moderate
(+ +) MMP-13 staining intensity in
¢SCC WT and C1r-KO xenograft
tumor cells. C1r-KO or -WT ¢SCC
cells (UT-SCC-7) (7 x 10° cells) were
injected subcutaneously into the back
of SCID mice, harvested after 17 days,
and stained with anti-MMP-13. The
areas of strong staining intensity of
MMP-13 were quantitated digitally
and compared with total tumor areas
and scored as weak (4), moderate
(+4), and strong (4+++).
Representative images of moderate
(4+) staining in WT (left panel) and in
C1r-KO (right panel) tumors are
shown. Bar = 100 um. cSCC,
cutaneous squamous cell carcinoma;
inh, inhibitor; KO, knockout; MMP,
matrix metalloproteinase; WT, wild
type.

Negative control Supplementary Figure S10. Detection

: 7 z of degraded collagen in ¢cSCC
xenograft tumor. C1r-KO cSCC cells
(UT-SCC-7) (7 x 10° cells) were
injected subcutaneously into the back
of SCID mice and harvested after 17
days. A xenograft tumor was stained
with CHP (left panel). An adjacent
tissue slide was used for negative
control staining to exclude
nonspecific binding of CHP. CHP stain
was added to sample slide without the
preheating step (right panel). Bar =
200 um. CHP, collagen hybridizing
peptide; cSCC, cutaneous squamous
cell carcinoma; KO, knockout.
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