UNIVERSITY OF HELSINKI

https://helda.helsinki.fi

ClusTRace, a bioinformatic pipeline for analyzing clusters in
virus phylogenies

Pljusnin, llja

2022-05-28

Pljusnin, I, Truong, P, Sironen , T, Vapalahti, O , Smura, T & Kant, R 2022 ,"'
ClusTRace, a bioinformatic pipeline for analyzing clusters in virus phylogenies ', BMC
Bioinformatics , vol. 23, no. 1, 196 . https://doi.org/10.1186/s12859-022-04709-8 , https://doi.org/10.1101/2021.12.C

http://hdl.handle.net/10138/345281
https://doi.org/10.1186/s12859-022-04709-8

cc_by
publishedVersion

Downloaded from Helda, University of Helsinki institutional repository.
This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail.

Please cite the original version.



Plyusnin et al. BMC Bioinformatics
https://doi.org/10.1186/512859-022-04709-8

(2022) 23:196

BMC Bioinformatics

SOFTWARE Open Access

®

ClusTRace, a bioinformatic pipeline iy
for analyzing clusters in virus phylogenies

llya Plyusnin'?"®, Phuoc Thien Truong Nguyen? Tarja Sironen'?, Olli Vapalahti'?* Teemu Smura?*" and

Ravi Kant'2"

Teemu Smura and Ravi Kant
contributed equally.

*Correspondence:
llja.Pljusnin@helsinki.f

! Department of Veterinary
Bioscience, University

of Helsinki, 00014 Helsinki,
Finland

Full list of author information
is available at the end of the
article

B BMC

Abstract

Background: SARS-CoV-2 is the highly transmissible etiologic agent of coronavirus
disease 2019 (COVID-19) and has become a global scientific and public health chal-
lenge since December 2019. Several new variants of SARS-CoV-2 have emerged glob-
ally raising concern about prevention and treatment of COVID-19. Early detection and
in-depth analysis of the emerging variants allowing pre-emptive alert and mitigation
efforts are thus of paramount importance.

Results: Here we present ClusTRace, a novel bioinformatic pipeline for a fast and scal-
able analysis of sequence clusters or clades in large viral phylogenies. ClusTRace offers
several high-level functionalities including lineage assignment, outlier filtering, align-
ing, phylogenetic tree reconstruction, cluster extraction, variant calling, visualization
and reporting. ClusTRace was developed as an aid for COVID-19 transmission chain
tracing in Finland with the main emphasis on fast screening of phylogenies for markers
of super-spreading events and other features of concern, such as high rates of cluster
growth and/or accumulation of novel mutations.

Conclusions: ClusTRace provides an effective interface that can significantly cut down
learning and operating costs related to complex bioinformatic analysis of large viral
sequence sets and phylogenies. All code is freely available from https.//bitbucket.org/
plyusnin/clustrace/

Keywords: Phylogenetic analysis, Cluster analysis, Variant calling, Virus, SARS-CoV-2

Background

Emerging pathogens are a constant threat to mankind, as illustrated by the West Africa
Ebola [1] and Zika [2] virus outbreaks in 2014 and 2015, respectively, and the ongoing
Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) pandemic. These
viruses are of zoonotic origin, like the majority of emerging pathogens [3-5]. Wild
animals host a vast reservoir of pathogens and these can spill over to human popula-
tions under adequate conditions [4, 5]. Anthropogenic disturbances in high biodiver-
sity regions, new forms of land use, increasing human and production animal densities,
climate change, travel and globalization have dramatically increased this risk [4, 6].
The impact on human healthcare and economics has been illustrated by SARS-CoV-2
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pandemic that has caused numerous deaths and human suffering, delivery and work-
force shortages, travelling limitations, and many other disturbances to both business and
normal life activities [4].

All virus genomes change over time due to mutations introduced in the viral genome,
primarily by errors made by viral polymerases during replication [7]. However, most
changes have minor effect on the phenotype of viruses. However, some mutations may
affect the key pathogenic properties of the virus, such as transmissibility and disease
severity, or the performance of vaccines, therapeutic agents or diagnostic tools [7].

The rapid progress in sequencing technologies has provided an opportunity to study
viral molecular epidemiology and evolution in nearly real-time [8]. The current COVID-
19 is the first pandemic with the pathogen being under surveillance using full genome
sequencing on a global scale and over an extensive time period [9]. Surveillance of the
pandemic creates demand for fast and scalable sequencing, genome assembling, viral
strain assignment, phylogenetic analysis, variant calling and molecular epidemiology to
inform contact tracing and non-pharmaceutical interventions. Although bioinformat-
ics offers an abundance of methods and tools for sequence analysis, their employment
in virology and epidemiology can be hindered by the developer-user gap between bio-
informatics and other fields [10]. This gap can be bridged by pipelines tailored specifi-
cally for the analysis of viral sequences and equipped with intuitive interface and output
reporting.

SARS-CoV-2 is the causative agent of coronavirus disease 2019 (COVID-19) [11].
The SARS-CoV-2 pandemic has already infected more than 437 million people in 224
countries, causing nearly 6 million deaths globally as of 1st of March 2022 (https://www.
worldometers.info/coronavirus/).

SARS-CoV-2 is a global challenge, which is further complicated by the continuous
emergence of new Variants of Concern (VOCs) or Variants of Interest (VOI). Variants
that have carried VOC status include Alpha (B.1.1.7) [12], Beta (B1.351) [13], Gamma
(P.1) [14], Delta (B.1.617.2) [15] and, as of writing this, we are experiencing the spread
of Omicron variant (B.1.1.529) [16]. These VOCs pose an increased public health risk
due to having one or more of the following characteristics: higher transmissibility [17],
immune escape properties for antibodies from previous infection [18], lower response
towards current vaccines compared to the original wild type strains these vaccines were
based on [19]. Detecting and monitoring these novel variants is essential in SARS-CoV-2
surveillance.

A number of bioinformatic software packages are already available to help with detec-
tion, tracking and tracing of SARS-CoV-2 variation e.g. Pangolin [20], Nextstrain [21],
Nextclade [22], Jovian [23], HaVoC [24] and Lazypipe [25]. Such tools are certainly help-
ing the global effort for COVID-19 surveillance, but they are not void of limitations.
Tools like Pangolin and Nextclade are primarily designed for tracking large accumula-
tions of mutation events that are rare and may be preceded by the less visible sub-lineage
genetic changes. Nextstrain offers a comprehensive analysis, but is heavily dependent
on sequence metadata and dataset pre-filtering. Here we introduce ClusTRace (https://
www?2.helsinki.fi/en/projects/clustrace), a novel bioinformatic pipeline for Unix/Linux
environments that complements the existing toolkits with unsupervised clade or clus-
ter analysis, intuitive visualizations and reporting. ClusTRace can help with surveillance
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of the current ongoing COVID-19 pandemic and for any upcoming future epidemic or

pandemic.

Implementation

ClusTRace is a bioinformatic software package implemented primarily in Perl. Clus-
TRace supports several tasks that can be executed one by one or combined into pipe-
lines (Fig. 1).

The analysis starts with consensus genomic sequences output by a given sequenc-
ing platform (e.g., llumina). In the first step, ClusTRace assigns genomic sequences to
a dynamic Pango lineage classification with Pangolin [20]. Then, ClusTRace collects
sequences assigned to different lineages into separate multi-fasta files, so that each
multi-fasta contains all sequences assigned to a given Pango lineage. Although we use
Pangolin as the default lineage assigner, classification file can be produced with any
method preferred by the user (the pipeline will accept any csv-file that conforms to Pan-
golin output format). All downstream analyses are performed separately for each lineage
represented by a multi-fasta file.

Multi-fasta files are then pruned from outliers with SeqKit [26]. By default, we remove
all sequences that deviate more than 10% from the median length of the sequence set or
that have more than 10% gaps (these parameters can be modified on the command line
with —minlen, —-maxlen and —maxgap).

In the next step, filtered sequence sets for each lineage are aligned with MAFFT v7
[27]. Multiple sequence alignments (MSAs) are then trimmed for gaps with trimAl [28].
Trimmed alignments are used to construct phylogenetic trees with IQ-TREE 2 [29].
IQ-TREE 2 supports a wide range of substitution models and will, by default, use Mod-
elFinder to determine the best-fitting model [29]. The user can choose to create boot-
strapped consensus trees with IQ-TREE 2 Ultra-Fast Bootstrapping (ClusTRace—ufboot
option) [30]. For very large sequence sets, the user can choose to run VeryFastTree
[31] with GTR model (ClusTRace-tree vftree option). By default, ClusTRace will use
COVID-19 reference genome (NCBI acc NC_045512.2) as an outgroup sequence to re-
root all output phylogenetic trees. There is also an option to specify a separate outgroup
sequence for each run.

In the next step, sequence clusters are extracted with TreeCluster [32]. Clusters
are extracted with MaxClade-method at several pairwise distance cut-offs. We use

two cut-oft thresholds that are scaled to the size of the input reference genome (e.g.
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Fig. 1 ClusTRace flowchart. VFT, VeryFastTree
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SARS-CoV-2) and roughly correspond to twenty and thirty mutations between pairs
of sequences. MaxClade-method and cut-off thresholds (0.0007 and 0.001) were
selected ad hoc based on our previous work with SARS-CoV-2 phylogenies [33]. These
values can be easily modified by the user. Next, ClusTRace creates custom nexus trees
in which sequences are assigned labels and colours according to the assigned cluster.

ClusTRace can read date annotations from sequence ids and will accept common
date formats (e.g. “|YYYY-MM-DD|”). For date annotated sequences ClusTRace
will trace the speed of growth for the extracted clusters. This is done by assigning
sequences to time periods (calendar months or weeks) and by tracing the number of
sequences that are assigned to each cluster and that are dated up to the given time
period. For each lineage ClusTRace will print a separate cluster summary file with
detailed information on the extracted clusters. These spreadsheet summaries include
clustSeqN, clustSeqld and clustGR data sheets. The first and second data sheets report
the number and ids of sequences in each cluster for each time period, while the third
reports cluster size, median and maximal growth rates, and support value for the cor-
responding sub-phylogeny for each cluster. Separate clustGR data sheets are printed
for each cluster cut-off threshold (by default twenty and thirty). Median and maximal
growth rates are measured based on absolute increment in sequence number assigned
to each cluster between consecutive time periods.

In the last step, ClusTRace extracts MSA(s) and runs variant calling for the
extracted clusters. Nucleotide mutations are called from these against a reference
genome with MsaToVcf [34]. Nucleotide variants are filtered to exclude 100 nucleo-
tides (nt) from the start and the end of the genome (to avoid noise related to sequenc-
ing errors commonly seen in terminal regions), as well as any regions that have over
30 nt continuous stretches of below 75% coverage (these are also assumed to represent
sequencing errors) using trimAl [28]. We also exclude variants with support below
50%. These filtering options are specified in the pipeline default options and can be
modified. Amino acid (aa) variants are called with snpEff [35]. Finally, aa variants in
all clusters are parsed and added to the cluster spreadsheet summaries as clustMuta-
tions and clustMutationTable data sheets. The clustMutations sheet reports nt and aa
mutations for each cluster, reference aa mutations and non-reference aa mutations.
Reporting reference and non-reference mutations requires supplying reference muta-
tions in a separate file. For genes of interest non-reference mutations can be reported
separately (current version reports mutations for the S-gene). The clustMutationTable
sheet reports aa mutations for the fastest growing clusters in a binary matrix. The top
row lists aa mutations in genomic order with non-reference mutations highlighted in
bold.

ClusTRace also supports extracting nt and aa, reference aa and non-reference aa
mutations for lineage MSA(s) or for any other collection of MSA(s). Lineage muta-
tions are reported with spreadsheet summary tables similar to the cluster mutation
summaries.

ClusTRace also offers an interface to g3viz R library [36]. Using this interface in R,
the user can generate interactive mutation plots for both cluster and lineage vcf-files.
These interactive plots can be saved in the form of simple html files to complement
spreadsheet reports.
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Results

To illustrate the intended use of ClusTRace we analyzed a dataset of SARS-CoV-2 full
genome sequences from patient samples collected in Finland from January to June 2021.
We started by running ClusTRace Pangolin mapping to obtain 5379 sequences assigned
to Alpha and 1051 sequences assigned to Beta variants of concern (VOC) (GISAID
accessions are available in Additional file 1: Table S1). We then run ClusTRace multi-
fasta construction, outlier filtering, alignment, phylogeny with ultrafast bootstrapping
(~ufboot option), default clustering and variant calling for these two lineages. As our
outgroup sequences we used EPI_ISL,_ 601443 for the Alpha variant and EPI ISL_660190
for the Beta variant. All files output by ClusTRace for this analysis are available in Addi-
tional file 2.

To get a quick summary on the lineage mutations, we start with g3viz visualisation
(Fig. 2, interactive version available in Additional file 2). For Alpha we see that most
high frequency aa mutations follow mutations that have been reported as characteris-
tic for this lineage [37] (Fig. 2A). These include T10011, A1708D, 12230T, 3675_3677del
and P4715L in ORFlab, 69_70del, N501Y, A570D, D614G, P681H, T716l, S982A and
D1118H in S, D3L and S235F in N. For Alpha, there are just five aa variants specific for
Finnish data with frequency 10% or higher: K5784R and E6272G in ORFlab, N119H in
ORF3a and G96S and RG203KP in N.
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Fig. 2 Amino acid mutations for Finnish Alpha (A) and Beta (B) datasets. Plotting all mutations found in
at least ten sequences in Alpha (5379 sequences) and Beta (1051 sequences). Mutations that have been
reported as characteristic for a given lineage [37, 38] are plotted in purple, all other mutations are plotted in
green. Numbers in cirles indicate the number of sequences with the given mutation. Graphics were created

with the ClusTRace interface to g3viz [36]
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For Beta, approximately half of mutations with frequency 10% or higher were not cov-
ered by mutations that have been reported as characteristic for this lineage [38] (Fig. 2B).
Mutations matching characteristic mutations for Beta were: T265I, K1655N, K3353R
and P4715L in ORFlab, D80A, D614G and A701V in S, Q57H and S171L in ORF3a,
P71L in E, T205I in N, while the non-characteristic aa mutations with at least 10% fre-
quency were: T30581, A3209V, A3235S, D4459A, T59121 and A6976V in ORFlab, T191
and I896L in S, M24V, 126V and 127V in ORF7b, K44R and I121L in ORFS. Note that
Beta has non-characteristic mutations in Spike protein, which may potentially affect
their receptor binding: T191 in 789 (75%) and I896L in 175 (16.7%) sequences.

Cluster analysis with TreeCluster [32] yielded 108 clusters for Alpha and nineteen
clusters for Beta (Figs. 3 and 4, full consensus trees with clusters highlighted are avail-
able in files B.1.1.7.con.tree.mr =30.nex and B.1.351.con.tree.mr = 30.nex in Additional
file 2). We used the MaxClade method with a cut-off set to 0.001. Here we take a closer
look at the ten clusters for Alpha and Beta that had the highest per month growth rate
peaks over the analysed time period.

We start by discussing Alpha clusters. The ten fastest growing clusters covered 3,146
(58.5%) of all Alpha sequences. Cluster size varied in these ten clusters between 100
(1.9%) and 479 (8.9%) sequences (Fig. 5). Maximal growth rates ranged between 74 and
310 sequences per month and peak growth was during February and March. Number
of non-characteristic aa mutations introduced in these clusters ranged from one to six.
Solitary non-characteristic mutations in S-gene were found in clusters 56 (D80Y), 38
(D287@G) and 22 (A701V) (Table 1).
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Fig. 3 Consensus tree for Finnish Alpha dataset with clusters collapsed. Bar plots on the right indicate the
number of sequences in each cluster. For clarity, clusters with less than ten sequences and singletons were
removed. Inner nodes with no large cluster descendants are plotted in grey
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number of sequences in each cluster. For clarity, clusters with less than ten sequences were removed

Size

500-

400~

300-

200~

100 -

2020-12 2021-01 2021-02 2021-03 2021-04 2021-05
Month

Fig. 5 Growth rates for the ten fastest growing clusters in Alpha (B.1.1.7)
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The ten fastest growing clusters covered 979 (94.5%) of Beta sequences. Clus-
ter size was between fourteen (1.3%) and 259 (24.6%) sequences (Fig. 6). Maximal
growth rates ranged between 11 and 148 sequences per month and maximal growth
was during February (clusters 3 and 8), March (clusters 1, 4, 7, 10, 17, 18 and 19)
and April (cluster 9). Number of non-characteristic aa mutations introduced in these
clusters ranged from three to eight. Several clusters had non-characteristic muta-
tions in S-gene: L18F (cluster 1), T19I (clusters 8—10, 17 and 19) and I896L (cluster 9)

(Table 2).
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Fig. 6 Growth rates for the ten fastest growing clusters in Beta (B.1.351)

Benchmarking time and memory efficiency

We benchmarked ClusTRace performance on two datasets with default settings on
a Red Hat Enterprise Linux Server 7.9 on a single node with 32 x 2.1 GHz cores. The
first dataset included 6,430 SARS-CoV-2 genomic sequences from patient samples
collected in Finland from January to June 2021 (GISAID accession ids are available
in Additional file 1: Table S1). This run completed in 48 h and 6 min and consumed
83.26 GB of memory. The second dataset included 3,568 genomic sequences for Delta
variant sequenced from Finnish patient samples later the same year (GISAID acces-
sion ids are available in Additional file 3: Table S2). This run completed in 14 h and
16 min and consumed 75.44 GB of memory. Most time was spent within 1Q-Tree
calls. We see that execution time does seem to scale nonlinearly with dataset size but
is kept within acceptable limits for moderately large datasets. The required memory

usage for these datasets was well below available limits.

Discussion

The years 2020 and 2021 could arguably be referred to as a turning point in the his-
tory of global health. The COVID-19 pandemic has demonstrated that emerging path-
ogens can cause havoc in our globalised world. On the other hand, the pandemic has
also accelerated the development of better sequencing technologies, bioinformatic
tools, diagnostic tests, vaccines and many other fields. The ongoing pandemic has
emphasised the need for fast, scalable and, ideally pipelined, analysis of viral genomic
sequences. For health authorities, it is important to be able to streamline process-
ing large amounts of genomic sequence data into various summaries and reports
that can help to make rational decisions concerning e.g. restrictions, non-pharma-
ceutical interventions and border control measures to minimize further spread of
SARS-CoV-2. Researchers also struggle with the continuous inflow of SARS-CoV-2
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sequences that need to be organized into lineages, alignments and phylogenetic trees
in order to make sense of the constantly evolving pandemic.

Here, we have presented ClusTRace, a novel bioinformatic pipeline for fast and scal-
able analysis of large collections of SARS-CoV-2 sequences. ClusTRace supports many
types of relevant analyses. These include assigning sequences to lineages, collecting
sequences by lineage, filtering outliers, creating multiple sequence alignments, creat-
ing phylogenetic trees, extracting phylogeny-based sequence clusters, estimating cluster
growth rates, calling nt and aa variants for both lineages and clusters, as well generating
a number of table-based and interactive reports. Although most of these steps can be
performed separately with designated bioinformatic tools, pipelining with a high-level
interface helps to cut down on the learning and operating costs of complex bioinfor-
matic analysis. Several authors have commented on the developer-user gap between
bioinformatics and other fields in biology and biomedical research [10]. In this context,
high-level pipelines that are tailored to the need of virus research are an important way
to bridge this gap.

Popular pipelines for tracking viral outbreak phylodynamics include Augur, Auspice,
Nextstrain, Nextclade and Pangolin [20-22, 39]. Here, we reflect on key similarities
and differences of ClusTRace to these toolkits. Pangolin and Nextclade are primarily
concerned with classifying viral genomes into lineages or clades, while ClusTRace is
designed to track mutations within lineages. Nextclade also offers mutation calling for
large clades, which is similar to ClusTRace mutation calling for lineages. Nextstrain is
an integration of several toolkits, including Augur for analysing sequence and phylogeo-
graphical data, and Auspice for visualising results. Like ClusTRace, Augur offers func-
tionalities for filtering, aligning, phylogenetic reconstruction, re-rooting and refinement
of the obtained phylogenies, and offers functionalities to estimate mutation frequencies.
Unlike ClusTRace, Augur also infers sequences and ancestral traits for the ancestral tree
nodes. Auspice is designed to visualise phylogenetic and phylogeographic data output
by Augur in an interactive webpage format. In ClusTRace, we provide different visu-
alizations, namely spreadsheet summaries and interactive g3viz plots for high growth-
rate and/or mutation-rate clades. Unlike Nextstrain/Auspice visualizations, ClusTRace
focuses directly on parts of the phylogeny that are picked out by the unsupervised clus-
ter analysis and provides no details on the likely origin of the mutations in the tree.
However, this approach has its advantages, such as simplicity and speed; unlike Next-
strain/Augur, ClusTRace has no need for down sampling the sequence sets. ClusTRace
analysis is also largely unsupervised, i.e. clades are selected and examined for mutations
and growth-peaks automatically, in effect filtering clades with alarming features that can
then be checked manually more in detail.

In this work, we illustrated the intended scenario for ClusTRace usage on Finnish
Alpha and Beta variants of concern. Presented approach can be described as an unsuper-
vised phylogeny-based cluster analysis and variant calling. ClusTRace uses automated
unsupervised clustering coupled with cluster growth rate analysis and variant calling
to scan through the phylogeny. Clusters that display elevated growth rates, elevated
non-reference mutation content or mutations in genomic regions that are of accentu-
ated concern, such as the S-gene, can then be flagged for downstream analysis. In this
paper we focus on describing the method and do not attempt to link identified cluster to
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epidemiologic seeding events. However, in our other work on monitoring SARS-CoV-2
spread in Finland we have appleid identical clustering with some success. For example,
in [33] we monitored clusters for Alpha and Beta lineages and in that work clustering
suggested that these lineages have spread to Finland via multiple seeding events. In our
analysis of Finnish Omicron sequences we were able to identify a single large cluster that
most likely corresponded to a super-spreading event (n=236, which is 27.1% of all Finn-
ish cases) as well as numerous smaller clusters that indicate multiple seeding points [40].

The current SARS-CoV-2 pandemic might endure to the foreseeable future, and new
viral variants will likely continue to emerge. Therefore, the global response must con-
tinue to adapt and improve to mitigate the costs of the pandemic. The progress made
since the start of the pandemic in early 2020 with the global implementation of full
genome sequencing can be consolidated by developing efficient and scalable bioinfor-
matic tools that are specifically tailored for genomic surveillance of viral pathogens.
These tools must deliver fast, scalable and, ideally, unsupervised analysis and reporting
on the pandemic events of concern. Our pipeline, ClusTRace, adds to the available tool-
box the option for fast, scalable and unsupervised screening and reporting of the within
or local lineage events of concern, such as elevated growth and mutation rates. Clus-
TRace can also be adapted for the surveillance of viral pathogens other than the SARS-
CoV-2, which may prove useful in future epidemic emergencies.

Availability and requirements
Project name: ClusTRace.
Project home page: https://bitbucket.org/plyusnin/clustrace/src/master/;
https://www2.helsinki.fi/en/projects/clustrace/
Operating system: Linux.
Programming language: Perl.
License: GNU GPL.
Other requirements: listed on project home page.
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SARS-CoV-2: Severe acute respiratory syndrome coronavirus 2.
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