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LATEX

The Traveling Salesman Problem (TSP) is a well-known optimization problem. The time needed
to solve TSP classically grows exponentially with the size of the input, placing it into the NP-hard
computational complexity class–the class of problems that are at least as hard as any other problem
solvable in nondeterministic polynomial time. Quantum computing gives us a new approach to
searching through such a huge search space, using methods such as quantum annealing and phase
estimation. Although the current state of quantum computers does not give us enough resources
to solve TSP with a large input, we can use quantum computing methods to improve on existing
classical algorithms. The thesis reviews existing methods to efficiently tackle TSP utilizing potential
quantum resources, and discusses the augmentation of classical algorithms with quantum techniques
to reduce the time complexity of solving this computationally challenging problem.
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1. Introduction

Quantum computing is a rising field in technology that offers a new and different way
of performing computations. Although they might never completely replace classical
computers, quantum computers can perform certain kinds of computations much more
efficiently than classical computers. The Traveling Salesman Problem (TSP) is a well-
known computationally difficult problem, and the best classical algorithms either take
a huge amount of time (proportionally to the size of the given problem instance) to
find an optimal solution, or trade accuracy for speed and do not guarantee an exact
solution at all. We will analyze various classical algorithms, and then explore some
quantum algorithms that could potentially improve the speed and accuracy of solving
TSP.

1.1 Computational complexity

An algorithm is a finite sequence of well-defined instructions that perform a task, often
used to solve a problem. There can be many different algorithms that can solve the same
problem. A good way to compare algorithms is by their time and space complexities.
Time and space are both limited resources when it comes to computing. Time refers to
the amount of time an algorithm takes to arrive to a stopping point, usually measured
in the total number of steps the algorithm takes as a function of the size of the input.
Space, in the context of computation, is the number of bits in memory an algorithm
needs to use for the computation, and is also measured as a function of the size of the
input [1].

Big-O notation is often used when analyzing and comparing algorithms; it is
used to describe the behavior of a function at its limits, and can simplify complicated
functions to make it easier to compare to other functions [1]. Big-O is the asymptotic
upper bound, and is written as f(x) = O(g(x)), meaning that there exist some positive
constants c and k such that 0 ≤ f(x) ≤ cg(x) for all x ≥ k [2]. Here the function f

is the function we are estimating, and g is the comparison function. For a function f

which is polynomial, it is conventional to use only the highest degree term for the Big-
O notation, and all multiplicative and additive scalars are disregarded (for example,

1



2 Chapter 1. Introduction

f(x) = 3x3 + 2x2 + 5x+ 1 is O(x3), since f(x) ≤ 12x3 for all x ≥ 1) [1].
Although the size of the input to an algorithm is technically measured in bits,

it can be simplified to be the number of input values instead. For example, for an
algorithm that sorts values in an array, the size of the input would be the number of
values in the array, even though that may or may not equal the number of bits needed
to represent the entire array [1]. For a problem whose input can be represented as a
graph, the size of the input would often be the number of vertices in the graph. We
will refer to the input size of the problem as n.

Here are some note-worthy time complexities with examples of algorithms with
the listed runtimes, listed in order from slowest to fastest growth [3]:

• constant time, O(1) - accessing an array index, inserting or deleting from a list;

• logarithmic time, O(log n) - binary tree functions, binary search;

• linear time, O(n) - summing up values in a list, for/while loops, linear search;

• quasilinear time, O(n logk n) for some positive constant k - merge sort;

• quadratic time, O(n2) - traversing a 2-D array, insertion sort;

• polynomial time, O(nk) for some positive constant k - maximum matchings in
graphs, basic arithmetic operations, selection sort;

• exponential time, O(2p(n)) where p(n) is some polynomial in n - generating all
password possibilities of length n;

• and factorial time O(n!) - generating all permutations of a list of n elements.

Some computational problems are more difficult to solve than others. The com-
putational problems are classified into complexity classes based on the time or space
complexities of the best known (or proven) algorithms needed to solve them. Since
there are different types of computers, we use Turing machines as the standard mod-
els, the deterministic version of which (processing at most one step at a time) has the
same computational power as our real-world standard computer [4]. In this thesis, we
will focus on the classical complexity classes polynomial time (P) and nondeterministic
polynomial time (NP), as well as some probabilistic and quantum complexity classes.

1.1.1 Turing machines

Firstly, let us define a Turing machine, or TM. A Turing machine is a theoretical,
abstract machine that takes as input a discrete string of symbols of a predefined, finite
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Figure 1.1: An example of a TM with three tapes. [5]

alphabet and, based on a finite set of rules, performs any of the following operations
[5]:

• Read a symbol of the input.

• Read a symbol from the working space, or "scratch pad" (i.e. local memory used
for performing computations).

• Write a symbol to the scratch pad, based on the values read.

• Either stop and output a 0 or a 1, or move on to the next step based on the rule
set.

The scratch pad in a TM is a finite set of tapes: infinite one-directional line of cells,
with each cell being able to hold a symbol from the alphabet of the machine. Each
tape has a tape head: a tool that can move left or right along the tape, one cell at a
time, and potentially read or write symbols on the tape. One of the tapes in the TM
is the input tape, which is read-only, and another is the output tape, which is where
the TM writes its results before halting [5].

The states of a TM are based on the set of rules of the TM, the positions of the
tape heads, and what the readings of the tape heads are. The states include a start
state and a halting state. Figure 1.1 shows the current state of the TM in the register.
The TM also includes a defined transition function, which describes the rule the TM
uses at each step of the computation [5].
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A non-deterministic Turing machine is able to take multiple paths at once, as
opposed to deciding on exactly one transition at any step. In fact, a non-deterministic
TM can process a limitless number of branches at once. This way, it can perform an
exponential number of tasks in polynomial time.

We use the Turing machine models to define the computational complexity
classes.

1.1.2 Computational complexity classes

Figure 1.2: A Euler diagram for the P, NP, NP-complete, and NP-hard complexity classes. The left
side is assuming that P ̸= NP, and the right side assumes that P = NP. [6]

The complexity class P contains all problems that can be solved by a deterministic
TM in polynomial time in the worst case (the worst possible instance of a problem of
the given input size) [4]. This means that there exists, or is proven that there can exist,
an algorithm that solves the problem in O(nk) time, where k is a positive constant.
Some examples of problems in P are array-sorting problems, matrix multiplication, and
finding shortest paths in networks [4].

The NP complexity class contains problems whose solutions can be verified by a
deterministic TM in polynomial time, but the solution to the problem may be more
difficult to obtain [4]. Clearly, P is a subset of NP, since a solution to a P problem can
be verified in polynomial time or faster. An example of a problem in NP but not in P
is the Boolean satisfiability problem, also known as SAT. The problem is presented as
a propositional logic formula built using variables that can take on the values true or
false, conjunctions, disjunctions, negations, and parentheses, and asks the question if
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there exists an assignment of values to the variables to make the formula true. Given
an assignment, it is simple to check whether the assignment satisfies the formula, and
can easily be done within polynomial time bounds. However, finding an assignment to
satisfy the formula is much trickier.

SAT is an example of an NP-complete problem. NP-complete is a complexity class
of decision problems for which answers can be checked for correctness in polynomial
time, and no other NP problem is no more than a polynomial factor harder [7].

Another subset of NP is the NP-hard complexity class. NP-hard problems are
"at least as hard as the hardest problems in NP". The more formal definition is that a
problem H is NP-hard if any problem L in NP can be reduced in polynomial time to
H, meaning that if it takes 1 unit of time to solve H, the solution of H can be used to
solve L in polynomial time [8].

While the SAT problem is NP-complete, its generalized version MAX-SAT (max-
imum satisfiability) is NP-hard. This problem asks for the maximum number of clauses
that can be made true by assigning truth values to the variables in the Boolean formula.

Figure 1.2 illustrates the relationship between the P, NP, NP-complete, and NP-
hard complexity classes. Note that it is not yet proven whether or not P = NP (i.e.
whether or not the problems we classify as NP can actually be solved in polynomial
time), though it is widely suspected that P ̸= NP.

The probabilistic Turing machine (PTM) is a variation of a non-deterministic
Turing machine that chooses between available transitions at each step based on some
probability distribution [5].

Bounded-error probabilistic polynomial time (BPP) is the class of decision prob-
lems solvable by a PTM in polynomial time with an error probability of less than 1/3
in all instances [9].

Since quantum mechanics are probabilistic in nature, we can define quantum
complexity classes in a similar way as the probabilistic complexity classes.

1.1.3 Quantum complexity theory

Similar to classical complexity classes, quantum complexity classes group together
problems that can be solved within certain bounds with a quantum computer. While
classical computing uses a Turing machine model to assess the difficulty of computa-
tional problems, the quantum counterpart is based on the Quantum Turing machine
model (QTM). A common QTM model, in essence, uses a classical deterministic TM
with an extra tape for the qubits, as shown in Figure 1.4. The qubit tape is an infinite
series of qubits, with one qubit per square, each initialized to the zero state. We can
define a number of tape heads scanning the qubit tape to perform operations on the
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Figure 1.3: An example of a quantum Turing machine model that uses an extra tape for the quantum
part. [9]

corresponding qubits. Having three tape heads allows for the QTM to model the uni-
versal gate set with up to three-qubit operations, and any more is usually unnecessary
[9].

Figure 1.4: BQP is suspected (but not proven) to be within PSPACE, the class of problems that
require a polynomial amount of space to be solved. Notice that it also intersects NP, and encompasses
the entirety of P [10].

We can then define the quantum complexity class bounded-error quantum poly-
nomial time (BQP) as the class of decision problems solvable by a QTM in polynomial
time with an error probability of at most 1/3. This is the quantum counterpart of
BPP, and BPP ⊆ BQP [9].

The quantum computational analogue of NP is known as QMA, short for quantum
Merlin-Arthur, and is based on the idea of a quantum proof [9]. A quantum proof is
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a quantum state that plays the role of a certificate or witness to a quantum computer
that functions as a verification procedure [9]–essentially a solution to the computational
problem that needs to be verified. QMA is then defined as the class of problems whose
solution (being in the form of a polynomial-sized quantum state) can be verified by a
quantum computer in polynomial time, with accuracy of at least 2/3 [9]. We notice that
NP ⊆ QMA; however, there are some problems in QMA not known to be in NP, such
as the local Hamiltonian problem, the quantum analogue to the classical MAX-SAT
problem [9].

Since quantum computing results are probabilistic in nature, it is important to
ensure that the solutions we obtain are within specific error bounds. The error bound
of 1/3 is simply a convention, since it is strictly greater than 1/2 [9]. Higher accuracy
is desirable, if possible.

1.2 Traveling salesman problem

The traveling salesman problem (TSP) is a well-known optimization problem. In
essence, the problem is as follows:

Given a list of cities and the distances between them, what is the shortest
path through all cities (and returning to the starting city) that minimizes
the total distance travelled?

TSP is an NP-hard problem in combinatorial optimization, so it is as at least as
hard as the hardest problems in NP. TSP also has a decision version, which is answered
by "yes" or "no":

Given a list of cities and the distances between them, is there a path through
all the cities (and returning to the starting city) with a total length ≤ k,
for some positive value k?

The decision version of TSP is an NP-complete problem. This means that the solution
to the problem can be verified in polynomial time, the solution can be obtained in
polynomial time with a non-deterministic TM model, and also that this problem can
be used to simulate any other problem that is verifiable in polynomial time.

TSP can be presented as a graph problem, with the vertices representing the
cities and weighted edges representing the distances between the cities (example shown
in Figure 1.5). The graph does not necessarily need to be symmetrical. While a
symmetrical graph can represent distances (the distance between city A and city B is
the same as the distance between city B and city A), a non symmetrical graph can
represent cost for travel (travelling from city A to city B could have a different cost
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Figure 1.5: An example of a TSP instance with 5 cities, with the optimal route shown in blue.

than vice versa). The graph may or may not be a complete graph. A complete graph is
one such that every vertex has an edge to every other vertex. Many algorithms to solve
TSP create a representation of the problem as a complete graph, and give a sufficiently
high weight to any edges not included in the original problem to discourage a path
through that edge [11].

A typical way to represent a TSP graph is with G = (V,E), where G is the name
of the graph, V is a set of vertices, and E is the set of edges. The weights of the edges
can be described with w(u, v), where (u, v) denotes the edge connecting vertex u to
vertex v [1].



2. Quantum Computing

In a nutshell, a quantum computer utilizes the laws of quantum mechanics to perform
computations. Rather than a direct upgrade to classical computers, quantum comput-
ers solve problems differently from classical computers, and are so far only known to
be useful for certain types of problems. Quantum computing, in theory, is useful for
solving problems that search through huge search spaces of combinations. A classical
computer would need to test each possible solution one by one, while a quantum com-
puter is able to work with many possible solutions simultaneously to potentially arrive
at a solution much quicker [12].

There are several different kinds of quantum computers, including the universal
gate-based quantum computer and the quantum annealer. While both kinds are useful
for solving problems with a huge search space, a quantum annealer is only useful for
solving an even more specific kind of problem: optimization problems [13]. Since the
TSP involves finding the optimal route out of an enormous number of possible routes,
quantum annealing can potentially provide us with a speedup.

Quantum gates are the operations a quantum computer performs on quantum
data (e.g. quantum bits), and a set of quantum gates is considered universal if any
unitary operation (defined in Section 2.2) on the quantum data can be approximated
arbitrarily well with a quantum circuit involving only the gates in the set [10]. A
quantum computer equipped with a universal set of quantum gates is called a universal
quantum computer [14].

The postulates of quantum mechanics are the foundation for quantum computing.

2.1 Single qubit states

A quantum bit, or qubit, is a single unit of memory in a quantum computer. The
representation of a qubit is different from a classical bit: rather than discrete 0’s and
1’s, a qubit can be represented by a state within a Hilbert space.

Postulate 1. A complex vector space with inner product (i.e. Hilbert space) is associ-
ated to any isolated physical system. This is called the state space of the system, and

9



10 Chapter 2. Quantum Computing

the system is completely described by its state vector, which is a unit vector in the state
space. [10]

Postulate 1 describes the theoretical representation of a qubit as a 2-dimensional
vector in a complex Hilbert space C2. The most commonly used basis within this
Hilbert space is the computational basis, with the vectors |0⟩ and |1⟩:

|0⟩ =
1
0

 , |1⟩ =
0
1

 (2.1)

The pure state of a single qubit can be written as a normalized linear combination of
the basis states as such:

|ψ⟩ = α |0⟩ + β |1⟩ (2.2)

for any α, β ∈ C2 such that |α|2 + |β|2 = 1.

Figure 2.1: A single qubit state can be represented by a point on the Bloch sphere. [14]

A good way to visualize a qubit is with the help of the Bloch sphere, a unit 2-
sphere with antipodal points corresponding to mutually orthogonal state vectors [10].
The computational basis states |0⟩ and |1⟩ are mapped to the opposite ends of the
Z axis, as shown in Figure 2.1. The radius of the sphere is 1. Since qubit states
are normalized, the state of a single qubit can be mapped to a point on or within
the surface of the Bloch sphere. The general pure state formula for the Bloch sphere
representation is

|ψ⟩ = cos θ2 |0⟩ + eiϕ sin θ2 |1⟩ . (2.3)
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On the physical side, a qubit usually consists of an isolated and controlled particle.
Some properties of the particle can be measured and are used as the states of the qubit.
For example, if the particle is an electron, its spin property can be used: spin up would
be represented as the |0⟩ state and spin down would be represented as the |1⟩ state.
For a photon, the vertical and horizontal polarization can be used for the basis states
[10].

2.2 Quantum gates

The operations that can be performed on a qubit are explained by Postulate 2:

Postulate 2. A unitary transformation describes the evolution of a closed quantum
system, so the state of the system |ψ⟩ at time t1 is related to state |ψ′⟩ at time t2 by a
unitary operator U which depends only on the times t1 and t2,

|ψ′⟩ = U |ψ⟩ (2.4)

The Schrödinger equation is another way to describe the evolution of a closed quantum
system:

iℏ
d |ψ⟩
dt

= H |ψ⟩ (2.5)

where H is the Hamiltonian, a fixed Hermitian operator that represents the energy of
the system. [10]

Another definition for a unitary operator is that it is a transformation on a vector
within the Hilbert space that preserves the inner product, or the "length" of the vector
within the Hilbert space [10].

In the universal gate-based quantum computing model, the unitary transforma-
tions are called gates, and can be written simply as unitary matrices. On the Bloch
sphere, the unitary operators change the position of the state vector. To apply the
gate to a qubit, we can perform matrix multiplication of the gate’s matrix to the state
vector, with the matrix on the left side of the vector.

One of the properties of a unitary operator is that its inverse is equal to its
Hermitian adjoint (also called conjugate transpose), denoted by the dagger symbol †.
For a unitary operator U and its adjoint U †, we have

UU † = U †U = I (2.6)

where I is the identity operator [10]. Since a unitary operator preserves inner product,
applying a unitary operator to a single qubit state will not make the qubit vector leave
the surface of the Bloch sphere [10].
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These unitary operators are made into quantum gates in the universal quantum
computer. Some important gates are the Pauli gates, the Hadamard gate, the I gate,
and the P, S, T, and U gates.

2.2.1 Pauli gates

The Pauli gates are the X, Y, and Z gates, and rotate the qubit state by π radians
about the respective axis on the Bloch sphere [14].

The matrix representation for the X gate is

X =
0 1
1 0

 = |0⟩ ⟨1| + |1⟩ ⟨0| . (2.7)

In terms of the computational basis, the X gate transforms the state |0⟩ into |1⟩ and
the state |1⟩ into |0⟩. Because of this logical inversion in the computational basis, the
X gate is often also referred to as the NOT gate.

The Y gate can be written as

Y =
0 −i
i 0

 = −i |0⟩ ⟨1| + i |1⟩ ⟨0| , (2.8)

and the Z gate as

Z =
1 0
0 −1

 = |0⟩ ⟨0| − |1⟩ ⟨1| . (2.9)

Notice that the Z gate does not change the state of the qubit if it is in one of the
computational basis states. This is because the states |0⟩ and |1⟩ are the eigenstates
of the Z gate. The computational basis is sometimes called the Z basis for this reason
[14].

In addition to the computational basis, another popular basis is based on the
eigenstates of the X gate: the X basis (also known as the Hadamard basis, and we will
see why shortly). This basis consists of the states

|+⟩ = |0⟩ + |1⟩√
2

and |−⟩ = |0⟩ − |1⟩√
2

. (2.10)

2.2.2 Hadamard gate

The Hadamard gate, or H gate, creates an equal superposition of the computational
basis states |0⟩ and |1⟩, and places the state vector away from the poles of the Bloch
sphere. The matrix form of the Hadamard gate is

H = 1√
2

1 1
1 −1

 . (2.11)
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This is a rotation of the state vector around the vector
[
1, 0, 1

]
(the line between

the X and Z axis) on the Bloch sphere [14].
The Hadamard gate transforms the computational basis into the X basis. This

transformation can also be reversed by applying the Hadamard gate again [10]. The
equal superposition means that measuring a state in the Hadamard basis gives a 50%
chance of measuring 0 and a 50% chance of measuring 1. We will discuss quantum
measurement in a future section.

Superposition is incredibly useful for quantum computing. Being able to be in a
combination of basis states allows us to encode much more information in one qubit
than in one classical bit. Superposition is the main mechanic that gives quantum
computing an advantage over classical computing.

2.2.3 I, P, S, T gates

The I gate is the identity gate, and makes no change to the qubit state. The I gate
applied to a single qubit can be written in matrix form as the identity matrix,

I =
1 0
0 1

 . (2.12)

It can be used in calculations, for example when showing that two gates are inverses
of each other [14].

The P gate, also called the phase gate, requires a real-valued parameter ϕ for its
definition. The matrix form of the P gate is:

P (ϕ) =
1 0
0 eiϕ

 . (2.13)

This gate rotates the qubit state by ϕ radians around the Z axis [14].
A commonly used ϕ value for the P gate is ϕ = π/2, giving us the S gate. The

matrix representation of the S gate is:

S =
1 0
0 eiπ/2

 . (2.14)

Another name for the S gate is the
√
Z gate, since applying it twice will give us the

same transformation as applying the Z gate once [14]. Notice that the S gate is not its
own inverse; its inverse, denoted as S†, is the P gate with ϕ = −π/2, as such [14]:

S† =
1 0
0 e−iπ/2

 . (2.15)
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Since the definition of a unitary operator states that its adjoint is equal to its inverse,
we can show that for a qubit state |ψ⟩, we have

SS† |ψ⟩ = S†S |ψ⟩ = I |ψ⟩ = |ψ⟩ . (2.16)

The T gate is another gate that is a variation of the P gate with a specific
parameter value, this time with ϕ = π/4 [14]. The T gate and its adjoint are written
as:

T =
1 0
0 eiπ/4

 , T † =
1 0
0 e−iπ/4

 (2.17)

Similar to the S gate, the T gate is sometimes called the 4
√
Z gate, since applying it

four times is the same as applying a Z gate once [14].

2.2.4 U gate

The U gate is the most general of all single-qubit quantum gates, and is parameterized
by the angles of rotation around each of the three axes [14]. It takes the form

U(θ, ϕ, λ) =
 cos

(
θ
2

)
−eiλ sin

(
θ
2

)
eiϕ sin

(
θ
2

)
ei(ϕ+λ) cos

(
θ
2

) . (2.18)

We can show that, for example, the H and P gates are equivalent to specific cases of
the U gate [14]:

U(π/2, 0, π) = 1√
2

1 1
1 −1

 = H, and (2.19)

U(0, 0, λ) =
1 0
0 eiϕ

 = P. (2.20)

We can use the U gate to construct any other single-qubit gate. This is extremely
useful for many quantum algorithms, such as phase estimation.

2.3 Quantum measurement

In order to get usable results from qubits, which we can see have an infinite num-
ber of possible states, we need to measure them. Postulate 3 explains how quantum
measurement works.

Postulate 3. Quantum measurements are described by a collection of measurement
operators {Mm} acting on the state space of the system, such that a measurement gives
outcome m with probability

p(m) = (Mm |ψ⟩ ,Mm |ψ⟩) = ⟨ψ|M †
mMm |ψ⟩ . (2.21)
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The state after measuring the observed value m is

Mm |ψ⟩√
⟨ψ|M †

mMm |ψ⟩
. (2.22)

The measurement operators satisfy the completeness equation,∑
m

M †
mMm = I, (2.23)

and the sum of the probabilities is also 1. [10]

The measurement operators are Hermitian, or self-adjoint, so M †
m = Mm. As

mentioned before, the most common measurement basis is the computational basis,
the basis consisting of the vectors |0⟩ and |1⟩. The computational basis measurement
operators are then M0 = |0⟩ ⟨0| and M1 = |1⟩ ⟨1|, and the probability of measuring
m ∈ {0, 1} is

p(m) = ⟨ψ|M †
mMm |ψ⟩ = ⟨ψ|MmMm |ψ⟩ = ⟨ψ|Mm |ψ⟩ (2.24)

since Mm is a projector (an operator that satisfies M2 = M) in the computational
basis [10].

A state in equal superposition has a uniform probability distribution for the
measurements in the computational basis [10]. A simple way to achieve this is to apply
the Hadamard gate to a qubit in one of the computational basis states. After that,
if the qubit is measured, there is a 50% chance of measuring a 0 and a 50% chance
of measuring a 1. In simple terms, when a state is measured, its state is flattened or
projected onto the measurement basis, and we obtain an outcome with a probability
that depends on the state of the qubit prior to measuring.

We can see that we lose information when we measure a qubit, since we can
only observe one of two possible results. If the qubit was in superposition prior to
measurement, the state of the qubit is unavoidably changed. Hence, we want to make
sure we have performed all the operations we wanted to perform on a qubit before we
measure it.

2.4 Multiple qubit states

Postulate 4 explains the mathematical representation of multiple-qubit states.

Postulate 4. The state space of a composite system is the tensor product of the state
spaces of the component systems. Thus, if the component systems are numbered 1
through n, and system number i is prepared in the state |ψi⟩, then the joint state of the
total system is |ψ1⟩ ⊗ |ψ2⟩ ⊗ · · · ⊗ |ψn⟩. [10]
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Hence, a state consisting of n qubits can be represented by a vector in a 2n-
dimensional Hilbert space, with the help of the tensor product. The computational
basis for a two-qubit state then would be:

|00⟩ = |0⟩ ⊗ |0⟩ =


1
0
0
0

 ,

|01⟩ = |0⟩ ⊗ |1⟩ =


0
1
0
0

 ,

|10⟩ = |1⟩ ⊗ |0⟩ =


0
0
1
0

 ,

|11⟩ = |1⟩ ⊗ |1⟩ =


0
0
0
1

 .

(2.25)

Then, the general two-qubit state can be written as:

|a⟩ = a00 |00⟩ + a01 |01⟩ + a10 |10⟩ + a11 |11⟩ =


a00

a01

a10

a11

 , (2.26)

with |a00| + |a01| + |a10| + |a11| = 1 [10].
We can see that the information that can be stored by multiple qubits is exponen-

tial, since a superposition of n qubits allows for the quantum computer to operate on
2n combinations at once [10]. The amount of information that 500 qubits can represent
would not be possible to represent with even more than 2500 classical bits [15].

A state with multiple qubits cannot always be represented with a Bloch sphere
for each qubit, however. An entangled state (also called an inseparable state) is one
such that cannot be expressed as a combination of two separate qubit states. The Bell
states are examples of entangled two-qubit states [10]:

|β00⟩ = |00⟩ + |11⟩√
2

; (2.27)
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|β01⟩ = |01⟩ + |10⟩√
2

; (2.28)

|β10⟩ = |00⟩ − |11⟩√
2

; (2.29)

|β11⟩ = |01⟩ − |10⟩√
2

. (2.30)

An interesting property of entanglement is that the outcome of the measurement of
one qubit affects the result of the other. For example, for the Bell state |β00⟩, there
is a 50% chance of measuring 0 in both qubits and a 50% chance of measuring 1 in
both qubits–and 0% chance of measuring any other combination of results [10]. This
is a curious mechanic in quantum physics: for entangled particles, the outcome of one
measurement is directly linked to the outcome of the other measurement, even with a
physical distance between them. There is no way to know prior which outcome both
measurements will take.

2.5 Quantum algorithms

2.5.1 Controlled gates

In addition to the various single-qubit gates, there are quantum gates that handle
multiple qubits at once. Probably the most important class of multi-qubit gates are
the controlled gates. The Controlled-NOT (CNOT) gate is a two-qubit gate that uses
the first qubit as the control and applies the NOT gate (also known as the X gate) on
the second qubit if the first qubit is in the |1⟩ state, and makes no change if it is in the
|0⟩ state [10]. This gate is less simple if the controlled qubit is in a state that is not
one of the computational basis states, though. The matrix representation of CNOT is
[10]:

CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 . (2.31)

The CNOT gate transforms the state |10⟩ into |11⟩ and the state |11⟩ into |10⟩, and
leaves the states |00⟩ and |01⟩ unchanged.

The CNOT gate acting on one qubit with two other qubits as control is called
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the Toffoli gate (or CCNOT), and is represented by the matrix [10]:

CCNOT =



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0



. (2.32)

Figure 2.2: The circuit for the CU gate can be decomposed into single-qubit gates and CNOT gates.
[10]

We can make any single-qubit gate U into a controlled-U gate by decomposing
U into the form U = eiαAXBXC, where A, B, and C are single qubit operations such
that ABC = I, and eiα is some overall phase shift [10]. We then write the controlled-U
gate as CU = (P (α) ⊗ A)(CNOT )(I ⊗ B)(CNOT )(I ⊗ C). Notice that we turn the
single-qubit X gate into the controlled-X (CNOT) gate and construct a P gate using
the phase shift. Figure 2.2 shows the circuit implementation of the controlled-U gate.
We will discuss quantum circuits and their representations shortly.

2.5.2 Quantum Fourier Transform

The quantum Fourier transform (QFT) is the key to many important quantum algo-
rithms, including phase estimation. QFT is an efficient algorithm for performing a
discrete Fourier transform of quantum mechanical amplitudes [10].

The discrete (classical) Fourier transform transforms a function into one that
is easier to manage. It acts on a vector (x0, . . . , xN−1) and maps it to the vector
(y0, . . . , yN−1) by the following formula [14]:

yk = 1√
N

N−1∑
j=0

xjω
jk
N , (2.33)
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where ωjk
N = e2πi jk

N [14].
The QFT acts on a quantum state |X⟩ = ∑N−1

j=0 xj |j⟩ and maps it to the quantum
state |Y ⟩ = ∑N−1

k=0 yk |k⟩ according to the same formula [14]:

yk = 1√
N

N−1∑
j=0

xjω
jk
N , (2.34)

with the same definition for ωjk
N [14]. This transformation affects only the amplitudes

of the state [14].
The unitary matrix representation of the QFT is [14]:

UQF T = 1√
N

N−1∑
j=0

N−1∑
k=0

ωjk
N |k⟩ ⟨j| . (2.35)

Applying the QFT transforms a quantum state from the computational (Z) basis
to the Fourier basis (also known as the Hadamard basis, or X basis). The Hadamard
gate is a single-qubit QFT, and transforms the computational basis states |0⟩ and |1⟩
to the Hadamard basis states |+⟩ and |−⟩, respectively [14].

Since quantum gates are unitary operators, all gates have an inverse that can
reverse the operations performed on the qubits. The inverse quantum Fourier transform
reverses these changes to the quantum state, and puts qubits in the Hadamard basis
back into the computational basis [10].

2.5.3 Quantum circuits

Qubits, quantum gates, measurements, and resets are all components that can be used
to build a quantum circuit [14]. A quantum circuit is a computational routine consisting
of coherent quantum operations on quantum data such as qubits, and concurrent real-
time classical computation, and any quantum program can be represented by a sequence
of quantum circuits and non-concurrent classical computation [14].

Figures 2.2 and 2.3 show two examples of quantum circuits. The circuit in Figure
2.3 is the circuit for quantum teleportation. The circuit is interpreted from left to right,
and each vertical segment is applied in order of appearance. This circuit handles three
qubits, q0, q1, and q2, and two classical bits, crz and crx. Qubit q0 is initialized to some
state |ψ⟩, and q1 and q2 are initialized to |0⟩, which is the conventionally default starting
state. Then the Hadamard gate is applied to q1, and then CNOT is applied to q2 with
q1 as the control. The circuit then performs another CNOT, this time on q1 with q0 as
the control, and then the Hadamard gate on q0. We then measure q0 and q1 and store
the measurement information in the classical bits crz and crx, respectively. Finally,
we perform a controlled-X operation on q2 using crx as the control (i.e. if crx is 0, we
make no change, else we apply the X gate to q2), and then controlled-Z on q2 with crz
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Figure 2.3: An example quantum circuit with three qubits (q0, q1, and q2) and two classical bits
(crz and crx). This circuit performs an algorithm called quantum teleportation. [14]

as control. This is the circuit for the quantum teleportation algorithm–the initial state
of q0, |ψ⟩, is "teleported" to qubit q2 [14]. By the end of the algorithm, we now have q2

in the state |ψ⟩, and the states are q0 and q1 are unimportant. Quantum mechanics do
not allow us to create exact copies of states (shown by the no-cloning theorem [10]), so
the quantum teleportation protocol is a way to move quantum information from one
qubit to another [10].

Typically, a quantum circuit begins with initialization, followed by a series of
quantum gates, and ends with measurement. Algorithms that utilize quantum com-
puting usually begin with a classical procedure to translate the problem into something
a quantum computer can work with, then run the appropriate quantum circuit(s), and
then classically process the results of the quantum part [14].

2.6 Quantum annealing

Quantum annealing is a different quantum computing method that utilizes the adi-
abatic theorem and other areas of quantum mechanics to find the optimal solution
within a large search space. The adiabatic theorem states that the Hamiltonian H0 of
a quantum system in the ground state can be evolved into a different Hamiltonian HP
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without leaving the ground state via the formula

H(t) =
(

1 − t

T

)
H0 + t

T
HP (2.36)

assuming a large enough time T , and assuming that H0 and HP do not commute [13].
This is useful because we can set up the Hamiltonian H0 to have a ground state which
is easy to prepare and find. HP is then the Hamiltonian whose ground state we are
trying to find to solve the computational problem [16].

The method of using quantum annealing to solve optimization problems is called
adiabatic quantum optimization (AQO) [16]. This typically involves mapping the op-
timization problem to a problem easily solvable with a quantum annealer (such as the
Ising problem, to be discussed later), utilizing the machine to find the optimal solution,
and then decoding the results to find the optimal solution to the original problem.

Quantum annealers do not utilize quantum gates in the way universal gate-based
quantum computers to, and have differently implemented qubits. This limits the types
of problems solvable with a quantum annealer.

2.7 NISQ

The current state of existing quantum computers is described as the Noisy
Intermediate-Scale Quantum (NISQ) era. As of today, the largest set of connected
qubits equipped with universal quantum gates is IBM’s 127-qubit Eagle processor, un-
veiled in November 2021 [17]. Although this is a huge milestone in regards to quantum
technology, a quantum computer of this size is not enough to change the world in a
practical way. It is, however, a useful and vital step towards improving our technology’s
computational capabilities [18].

In addition to such a low number of connected qubits, universal gate-based quan-
tum computers currently struggle with noise: the optimal conditions required for noise-
free quantum computing are extremely difficult to achieve, if not completely impossible
[18]. The potential error within the quantum system scales with the number of con-
nections between the qubits, as well as the number of operations performed [10, 18].

Quantum annealers have been around for longer than universal gate-based quan-
tum computers. The current state-of-the-art quantum annealer is a D-Wave machine
named "Pegasus", with a quantum processor chip equipped with 5,000 low-noise qubits,
released in February 2019 [13]. This type of quantum computer, however, is only useful
for certain types of problems. We often need to restructure computational problems in
order to make the most of quantum annealers.

In spite of these practical obstacles, we can explore the theoretical benefits of
quantum technology. Quantum computing can potentially give us significant improve-
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ments for solving computationally difficult problems such as the TSP.



3. Solving TSP classically

For the following sections, let n be the number of vertices, or cities, in the arbitrary
TSP instance. Let m be the number of edges. Assume the TSP graph is directed
and complete, which gives us the general worst-case instance since it gives the greatest
amount of information to search for a solution in.

3.1 Exact solutions

The following algorithms find the exact optimal tour for the given TSP instance. These
algorithms perform slower than ones that find "good enough" solutions, but guarantee
to output the best solution possible.

3.1.1 Brute-force algorithm

The brute-force algorithm tests out all possible solutions and compares them to find
the shortest path. This takes O(n!) time, since there are n! permutations of all vertices
and it takes linear time to calculate the total path distance of each permutation (simply
summing the weights of the edges between each vertex in the permutation) [19]. This
algorithm takes O(n2) space, which is the space needed to store the graph itself [20].
It doesn’t require any significant amount of extra workspace.

3.1.2 Held-Karp algorithm

The Held-Karp Algorithm (also known as the Bellman-Held-Karp Algorithm) is a dy-
namic programming approach to solving TSP, so it takes advantage of previous calcu-
lations in a recursive manner in order to reach a solution quicker [1]. This algorithm
works as follows:

The vertices are numbered 1, 2, ..., n, with some vertex numbered as 1 being the
starting point. The starting point doesn’t matter, since the solution returns to the
starting point to make a cycle [19]. The next set of steps calculate for each set of
vertices S ⊆ {2, ..., n} and every vertex e ̸= 1 not contained in S, the shortest one-way

23
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path from vertex 1 to vertex e that passes through all cities in S but not through any
city outside of S. Call this distance g(S, e), with d(u, v) denoting the length of the
direct edge from vertex u to vertex v. For the set S = ∅, g(S, e) = g(∅, e) = d(1, e), so
simply the length of the edge from vertex 1 to vertex e. For sets S that contain only
one element, for example S = {a}, we have g(S, e) = g({a}, e) = the length of the
path 1 → a → e. Once we get to sets S that contain two or more elements, we need
to consider multiple path options and select the shortest. For example, for S = {a, b},
we have g(S, e) = g({a, b}, e) = the shorter of the two possible paths 1 → a → b → e

or 1 → b → a → e. We can use the results of the calculations for sets containing k

elements to quickly find the results for sets containing k + 1 elements. For example,
if we know that path 1 → a → b → c is shorter than 1 → b → a → c, then the path
1 → a → b → c → e is certainly shorter than 1 → b → a → c → e [19] [21].

In general: Let S ⊂ V \{x1} ≡ {x2, x3, . . . , xn} be a subset of size s, with 1 ≤ s ≤
n− 1. For each vertex xi ∈ S, we define cost(xi, S) as the length of the shortest path
from x1 to xi which travels to each of the remaining vertices in S once. Specifically,
we do this by implementing the following recursion formula [19]:

cost(xi, S) = min
xj

{cost(xj, S\{xi}) +Dji}, (3.1)

where xj ∈ S\{xi}. For the case where S only contains one element, define [19]:

cost(xi, S) = D1i. (3.2)

The Held-Karp algorithm takes O(2nn2) time and O(n2n) space [22]. This is
much faster than the brute force algorithm, but it uses more space by a factor of 2n.

This is a significant speedup over the brute-force algorithm, since it does not
check absolutely every permutation of cities possible. Once it has found the shortest
path through a subset of the cities, it does not need to check another permutation of
that subset of cities when another city is added to the route [23]. The implementation
of this algorithm into code is also very simple, since the recursion gives the overall
problem the same structure as the smaller subproblems [21].

3.2 Approximate solutions

The following algorithms are approximation algorithms: they do not guarantee to find
the exact optimal route through all cities, but instead find a solution that is "good
enough" [20]. There is a trade-off between the resources required to arrive at a solution
and the accuracy of the solution.

A way to assess the quality of the solution acquired via an approximation algo-
rithm is with the use of the Held-Karp (HK) lower bound. The HK lower bound is
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obtained by using a technique called Lagrangian relaxation (also known as subgradient
optimization), and gives us a good approximation of the length of the optimal tour in
a TSP instance [24]. The HK lower bound is, on average, within 0.8% of the length of
the optimal route for random TSP instances with many thousands of cities [24], so it
is a generally excellent estimator of the true optimal solution of a TSP instance. The
HK lower bound is obtained by modifying the graph to obtain different minimum-1
trees to approximate the value of the optimal TSP tour.

3.2.1 Greedy algorithm

The first and perhaps most obvious approximation algorithm for solving TSP is the
general greedy algorithm. A greedy algorithm is one that makes the choice that looks
best at the moment, i.e. makes a locally optimal choice in hope that it will lead to a
globally optimal solution [1]. Although the implementation of a greedy algorithm is
typically straight forward, it does not always lead to the best results [1].

The general greedy algorithm for TSP involves adding the shortest edges to the
tour one by one, until all cities are connected [25]. A way to do this is to sort all
edges from shortest to longest. We then add the shortest edge that will neither create
a situation where any single vertex has more than 2 edges, nor a cycle with less than
the total number of cities. This process is repeated until we have a cycle containing all
cities in the TSP [25].

We discover that for every number of cities n ≥ 2, there is an instance of TSP for
which this greedy algorithm results in the worst tour [26]. Clearly, this method is very
far from optimal in all cases. However, it runs in a O(n2 log2(n)) time complexity, and
is able to reach a solution typically within 15-20% of the HK lower bound [20].

3.2.2 Nearest-neighbor algorithm

The nearest-neighbor (NN) algorithm is another greedy or naive algorithm. It is also
quite straight forward, and is incredibly simple to implement. The general idea is to
keep moving to the nearest unvisited city until all cities are visited.

In detail, algorithm is as follows:

1. Begin with all cities set to "unvisited". We will need to keep track of which cities
we have already visited.

2. Select an origin city.

3. Select the closest neighboring unvisited city by comparing the edges originating
at current city to any unvisited neighboring cities. If all cities have been visited,
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connect the current city back to the starting city and end the program. Otherwise,
connect the newly found city to the current city.

4. Repeat Step 3 for every new city added to the path until all cities have been
visited and are connected [27].

The NN algorithm runs in worst-case O(n2) time and O(n) workspace (in addition
to the O(n2) space required to store the input graph), and obtains a solution within
25% of the HK lower bound [27].

A variation of this algorithm is the repetitive nearest-neighbor algorithm (RNN),
which performs the NN algorithm for every starting vertex, and selects the best tour
obtained [26]. The time complexity for RNN is hence O(n3 log2(n)), since NN is re-
peated O(n) times (once for every vertex). The best route found by RNN will be better
than at least n/2 − 1 other routes [27].

3.2.3 Christofides algorithm

Figure 3.1: The Christofides algorithm in action. (a) shows a minimum spanning tree M , (b) shows
the minimum-weight perfect matching P on the vertices in W (with the curved edges being the ones
in P ), (c) shows the Eulerian circuit C, and (d) shows the final tour for the TSP [28].

The Christofides algorithm works for cases of TSP that are symmetric (edge from
vertex a to vertex b is the same weight as the edge from vertex b to a) and follow the
triangle inequality [25]. The triangle inequality states that for every three vertices a, b,
and c, the weights w of the edges between them must satisfy w(a, b) +w(b, c) ≥ w(a, c)
[27]. This is a typical feature in an x-y metric space coordinate plane [25]. The
algorithm is as follows [28]:

1. Construct a minimum spanning tree M from the graph G representing the TSP
instance, as shown in part (a) of Figure 3.1. A minimum spanning tree is a
subset of edges of a connected, undirected, edge-weighted graph that connects
all vertices together without any cycles, such that the total weight of the edges
is minimized [1].
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2. Let W be the set of vertices of G that have odd degree in M , and let H be the
subgraph of G induced by the vertices in W . So then H is the graph that has W
as its vertices, and all edges from G that join these vertices.

3. Find a minimum-weight perfect matching P in the subgraph consisting of the
vertices from H. A perfect matching is a set of all pairwise non-adjacent edges
such that all vertices of the graph are incident to an edge in the matching, and a
minimum-weight perfect matching is one such that the total weight of the edges
in the matching are minimized [1].

4. Combine the graphs M and P to create a graph G′ without combining parallel
edges into single edges–allow G′ to have two copies of the same edge, if that is
the result (illustrated in part (b) of Figure 3.1).

5. Create a Eulerian circuit C in G′, which is a circuit that visits each edge exactly
once, as shown in part (c) in Figure 3.1.

6. Convert C into a tour by skipping over previously visited vertices (part (d) in
Figure 3.1). [28]

A minimum spanning tree (Step 1) can be found in O(m log n) time or faster [29],
which along with the rest of the steps are relatively insignificant to Step 2, which is
the most time-consuming step of the algorithm. Step 2 takes O(n3) time [28]. How-
ever, despite being slower than some other approximation algorithms, the Christofides
algorithm guarantees a TSP solution within 3/2 of the total weight of the optimal tour
[28].

3.2.4 Yatsenko’s algorithm

Yatsenko gives an interesting approach to solving TSP. The steps are as follows [30]:

1. Construct a route with three points. Two of the points are the farthest apart on
the graph in terms of the total edge weight between them, and the third point
is added to connect all three to maximize the sum of the distance between the
three.

2. Add points one at a time as such: for each edge on the route, select a third point
whose addition to the route would change the length of the route by the smallest
amount (this change of length is called disturbance, and is equal to the sum of
the two added edges minus the removed edge). Then, out of the thus selected
third points (one per edge), add to the route the one whose addition creates the
greatest disturbance.
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3. Repeat Step 2 until all points are added to the route. [30]

Although Yatsenko claims that this algorithm gives an exact solution in polyno-
mial time [31], numerous counterexamples have been given to show that this algorithm,
in fact, does not guarantee useful results at all [30]. In order to solve the subproblems
in order to optimize the tour obtained with this algorithm, the total running time of
the algorithm would not be polynomial in the worst case [30].

3.2.5 Other algorithms

There are many other approximation algorithms for solving TSP, such as the Genetic
algorithm [20], Ant Colony Optimization algorithm [27], Farthest Insertion algorithm
[25], and others. The various approaches each balance the trade-off between resources
needed (especially running time) and the accuracy of the results. However, we still
notice that in order to guarantee the most optimal TSP tour, we require an algorithm
with a much slower running time.



4. Solving TSP with quantum
computing

There are many ways to approach TSP classically, ranging from iterating through
permutations to breaking down the problem in certain ways. Quantum computing,
which we know can be useful for optimizing and for searching for solutions through
large search spaces, gives us a different way of tackling TSP.

4.1 Phase estimation

This is a quantum computing approach to solving TSP, utilizing a quantum computing
technique called phase estimation.

One approach using phase estimation is described by the Qiskit Textbook [14].
In a nutshell, the method follows this framework:

1. Encode the edge weights of the TSP instance as phases.

2. Establish unitary operators in such a way that their eigenvectors are the compu-
tational basis states and eigenvalues are different combinations of the aforemen-
tioned phases.

3. Build a quantum circuit to apply phase estimation to specific eigenstates to com-
pute the total distances for all routes.

4. Use a quantum search algorithm to find the minimum total distance and the
route associated with it. [14]

We will use an example TSP instance of n = 4 cities with arbitrary distances
between them to explain the algorithm.

4.1.1 Encoding the edge weights

Figure 4.1 shows a directed complete graph, with the vertices representing cities and
the edges representing the cost or distance between cities. Since the graph is directed,
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Figure 4.1: An example graph with 4 vertices and edges labeled with their phases. [14]

the weight from city a to city b can be different from the weight from city b to city a.
This can be made into an undirected graph simply by making the weight from a to b
equal to the weight from b to a.

The given distances are encoded as phases, so ϕi→j is the cost from city i to city
j, with i, j ∈ [1, n].

We can represent the graph as an n × n matrix, with the element in index (i, j)
being the phase (encoded weight) of the edge i → j. For our example, this would give
us matrix A [14]:

A =


ϕ1→1 ϕ1→2 ϕ1→3 ϕ1→4

ϕ2→1 ϕ2→2 ϕ2→3 ϕ2→4

ϕ3→1 ϕ3→2 ϕ3→3 ϕ3→4

ϕ4→1 ϕ4→2 ϕ4→3 ϕ4→4

 (4.1)

Notice that all diagonal elements of A are 0 [14].
Since A is not guaranteed to be unitary, in order to construct unitary matrices,

we first construct a matrix B using A by taking eiϕi→j for every element (i, j) in A:
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[14]

B =


eiϕ1→1 eiϕ1→2 eiϕ1→3 eiϕ1→4

eiϕ2→1 eiϕ2→2 eiϕ2→3 eiϕ2→4

eiϕ3→1 eiϕ3→2 eiϕ3→3 eiϕ3→4

eiϕ4→1 eiϕ4→2 eiϕ4→3 eiϕ4→4

 (4.2)

The diagonal elements of B are 1 [14].

4.1.2 Constructing the unitary operators

Now we can construct a unitary matrix Uj from B for each city j as such [14]:

Uj = (
n∑

i=1
B[j][i] × outer product of all possible basis vectors), (4.3)

where j, i ∈ [1, n]. The rest of the elements in Uj are set to 0. As a result, Uj is a
diagonal unitary matrix created from column j of B [14].

Using our example graph of 4 cities, we only need a basis for two qubits to
construct Uj. Here is an example construction for U1 [14]:

U1 =eiϕ1→1 |00⟩ ⟨00| + eiϕ2→1 |01⟩ ⟨01| + eiϕ3→1 |10⟩ ⟨10| + eiϕ4→1 |11⟩ ⟨11|

=


eiϕ1→1 0 0 0

0 0 0 0
0 0 0 0
0 0 0 0

+


0 0 0 0
0 eiϕ2→1 0 0
0 0 0 0
0 0 0 0



+


0 0 0 0
0 0 0 0
0 0 eiϕ3→1 0
0 0 0 0

+


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 eiϕ4→1



=


eiϕ1→1 0 0 0

0 eiϕ2→1 0 0
0 0 eiϕ3→1 0
0 0 0 eiϕ4→1 .



(4.4)

We combine these Uj matrices into one unitary matrix using the tensor product:
U = U1 ⊗U2 ⊗· · ·⊗Un. Since each Uj is a n×n matrix (4×4 in our example) and each
Uj is a diagonal matrix, U is a nn ×nn diagonal matrix [32]. U has (n− 1)! eigenstates
with eigenvalues being the total cost (encoded as phases) of the corresponding TSP tour
[32]. We can normalize the phases to be in the range [0, 2π] once we know the range
of distances between the cities in the TSP instance, and then the phase estimation
algorithm will find the eigenvalues of matrix U [32].
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Sequence path Eigenstate
1 - 2 - 3 - 4 |11000110⟩
1 - 2 - 4 - 3 |10000111⟩
1 - 4 - 2 - 3 |10001101⟩
1 - 4 - 3 - 2 |01001110⟩
1 - 3 - 2 - 4 |11001001⟩
1 - 3 - 4 - 2 |01001011⟩

Table 4.1: The possible solutions to our example TSP instance, excluding equivalent routes, and
their corresponding eigenstates. [14]

4.1.3 Setting up the circuit

The total number of possible combinations of cities is n!, but since the TSP tours
are cycles, there are (n − 1)! unique possible routes (since, for example, the route
1 → 2 → 3 → 4 is equivalent to the route 2 → 3 → 4 → 1) [32]. In our example with
4 cities, this gives us (4 − 1)! = 3! = 6 unique routes. Column 1 in Table 4.1 gives all
the possible unique tours, with vertex 1 as the starting city. Additionally, if the graph
is symmetrical, and the weight of edge (i, j) is the same as the weight of edge (j, i),
then there are only (n− 1)!/2 unique routes [14].

The paths are encoded into the computational basis states (which are also the
corresponding eigenstates of the unitary matrix U that we constructed prior) via the
formula: [14]

|ψ⟩ = ⊗j |f(j) − 1⟩ (4.5)

for j from 1 to n, and where the function f(j) gives us the city from which we travelled
to city j. Since the cities are numbered in decimal form, after calculating f(j) − 1, we
need to convert the result to binary [14]. For example, for the path 1 → 2 → 3 → 4,
we get [14]:

|f(1) − 1⟩ = |4 − 1⟩ = |310⟩ = |112⟩

|f(2) − 1⟩ = |1 − 1⟩ = |010⟩ = |002⟩

|f(3) − 1⟩ = |2 − 1⟩ = |110⟩ = |012⟩

|f(4) − 1⟩ = |3 − 1⟩ = |210⟩ = |102⟩

(4.6)

Taking the tensor product of these results, we have:

|11⟩ ⊗ |00⟩ ⊗ |01⟩ ⊗ |10⟩ = |11000110⟩ . (4.7)

Column 2 of Table 4.1 shows the eigenstates corresponding to each of the tours in our
example.
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Figure 4.2: The complete circuit for phase estimation on the 1 → 2 → 3 → 4 tour in the example
TSP instance with 4 cities. [14]

Now, in order to use phase estimation, we need to construct a controlled-U gate:
CU ≡ C(U1 ⊗U2 ⊗U3 ⊗U4) ≡ CU1 ⊗CU2 ⊗CU3 ⊗CU4 [14]. We can decompose each
of the Uj matrices into controlled-unitaries as such:

Uj =


eia 0 0 0
0 eib 0 0
0 0 eic 0
0 0 0 eid



= (
1 0
0 ei(c−a)

⊗

eia 0
0 eib

) ·


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 ei(d−c+a−b)

 .
(4.8)

The matrix
1 0
0 ei(c−a)

 is the unitary gate U1(c−a), the matrix
eia 0

0 eib

 is the unitary

gate U1(b− a) (with the global phase eia factored out), and


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 ei(d−c+a−b)

 is a

controlled unitary matrix CU1(d− c+ a− b) [14].
We then need to make each of the matrices above into controlled unitary matrices,
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so U1(c − a) into CU1(c − a), U1(b − a) into CU1(b − a), and CU1(d − c + a − b) into
CCU1(d − c + a − b) [14]. The latter is controlled controlled U1 [14]. This step is
necessary to use Qiskit, the Python-based quantum programming language, to build
this circuit [14].

Figure 4.2 shows a complete circuit for the phase estimation algorithm on the
1 → 2 → 3 → 4 tour in our example. The corresponding eigenstate, |11000110⟩, is
encoded into the set of qubits labeled eigen, and the phase estimation is performed
onto the unit qubits. After applying our U gate in increasing powers of 2 with each of
the unit qubits as control, the unit qubits are put back into the computational basis
with the inverse quantum Fourier transform. The result of this algorithm gives us the
binary encoding of the estimated total phase of the corresponding TSP tour [14].

4.1.4 Interpreting the output

To decode the 6-bit binary result of the phase estimation algorithm, we first convert
it to decimal. For example, if our result was the bit string 100100, that would be 24
in decimal. The phase θ that was estimated by the algorithm can then be found with
the formula:

θ = d

2b
, (4.9)

where d is the decimal value we obtained from the circuit, and b is the number of bits
in the bit string. In our example case, this gives us θ = 24

26 = 0.375 [14]. However,
if the phase we were trying to estimate is not in the form d/2b, the phase estimation
algorithm will not have a 100% probability of outputting the exact corresponding bit
string. To obtain more accurate results, the algorithm needs to be run many times and
the results need to be plotted to find the two most likely outputs. The true phase will
be between the two most likely outputs, closer to the most likely output [14].

This circuit needs to be set up and run for each TSP tour. For other tours,
we simply change which eigen qubits the X gates are applied to, to construct our
eigenstate. After the phases are estimated for each tour, we can use a search algorithm
to find the minimum value of the tour lengths [14].

4.1.5 Analysis

In order to obtain the phase accurate up to m bits with probability of success at least
1 − ϵ, the number of qubits t needed for phase estimation is given by [32]:

t = m+ ⌈log
(

2 + 1
2ϵ

)
⌉. (4.10)

In addition to the phase estimation qubits, this algorithm requires n log2(n− 1) qubits
to encode the TSP tours for an instance with n cities.
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Inverse quantum Fourier transform runs in O(t) steps, with t being the number
of qubits in the first register (the unit qubits in Figure 4.2) [10]. The other gates do
not take any significant number of steps to run. We only need to set up the operator U
once per TSP instance, since the same operator is used to test each of the eigenstates.
Setting up U does not take longer than O(n2) time. A classical search algorithm can
find the minimum value of an unsorted array of n elements in O(n) time [1], which
in our case would be O ((n− 1)!) since we have a total of up to (n − 1)! tours to
find the minimum of. A quantum search algorithm improves on that by finding the
minimum value of an unsorted array of n elements in O (

√
n) time [33], which would

be O
(√

(n− 1)!
)
, which is approximately O

(
4
√

2π(n− 1)(n−1
e

)(n−1)/2
)

by Stirling’s
approximation formula [1].

Qiskit Textbook claims that this algorithm grants a quadratic speedup over the
classical brute force algorithm for a large number of cities [14]. Finding minimum tour
length after computing them all clearly takes a significant amount of time relative to
the size of the input: a TSP instance with n cities takes O

(√
(n− 1)!

)
time to find

the minimum tour distance. The classical brute force algorithm to solve TSP runs in
O(n!) time, so a quadratic speedup is still rather insignificant.

4.2 Quantum annealing

As mentioned previously, quantum annealing uses the adiabatic theorem to transform
one Hamiltonian into another in order to easily obtain the ground eigenstate. We use
a method called adiabatic quantum optimization (AQO) to solve TSP.

The general idea for using AQO to solve TSP is as follows:

1. Map TSP to the classical Ising problem.

2. Make Ising model into a quantum computing problem.

3. Use quantum annealing to solve Ising model.

4. Decode results to find optimal TSP tour.

4.2.1 Ising model

An Ising model is a mathematical model that consists of a huge square lattice of sites,
where each site can be in one of two states: -1 and +1 [34]. Neighboring sites interact
in a certain way, which is given by the parameter J [34]. The total energy of the system
is determined by the sum of the interactions of every neighboring pair of sites [34].
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Figure 4.3: The Ising model can be pictured as a square lattice of cells, each cell being in one of two
possible states. [34]

The classical Ising model can be expressed as a quadratic function of a set of N
spins si = ±1 as such [16]:

H(s1, . . . , sN) = −
∑
i<j

Jijsisj −
N∑

i=1
hisi, (4.11)

and the quantum version of this Hamiltonian is simply [16]

HP = H(σZ
1 , . . . , σ

Z
N), (4.12)

where σZ
i is a Pauli matrix acting on the ith qubit in the Hilbert space of N qubits

|+⟩ , |−⟩⊗N , and Jij and hi are real numbers [16].
The Ising spin glass problem is an NP-hard problem for classical computers, and

is defined as follows:

Given an Ising model, what is the ground state energy of the Hamiltonian
H? [16]

The decision version of the problem is NP-complete:

Given an Ising model, does the ground state of H have energy ≤ 0? [16]

Note that the method of using the Ising model to solve other computational prob-
lems is also known as quadratic unconstrained binary optimization (QUBO), and that
terminology is often used in mathematical literature [16].

4.2.2 Encoding TSP into the Ising problem

Consider a TSP instance over n cities. For simplification, let the starting city be fixed
for each route. Let W be the n × n cost matrix with each element (i, j) representing
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the weight of the edge from vertex i to vertex j. Define a binary variable bti such that
bti = 1 if the ith city is visited at time t. Then the QUBO encoding is as such [35]:

HQUBO(b) = A1

n∑
t=1

(1 −
n∑

i=1
bti)2 + A2

n∑
i=1

(1 −
n∑

t=1
bti)2 +B

n∑
i,j=1
i ̸=j

Wij

n∑
t=1

btibt+1,j. (4.13)

Here we have parameters A1, A2 > Bmaxi ̸=j Wij to be adjusted during optimization
[35].

We represent the quantum state to adiabatically evolve the Hamiltonian from H0

to HQUBO as such [35]:

|θ⟩ =
r∏

i=1
exp(−iθmix,iHmix) exp(−iθobj,iH) |+⟩ , (4.14)

with r being the number of levels of the circuit [35]. Here we would have HQUBO as
the Hamiltonian H which we are trying to evolve the state into.

The minimum eigenvalue of the Hamiltonian HQUBO is the energy of its ground
state.

The maximum number of qubits needed to represent every route is N = (n− 1)2

[35]. However, we can adjust the encoding so that QUBO requires only ⌈log(n!)⌉ =
n log(n) − n log(e) + O(n) qubits (derived with the Stirling formula).

The optimal encoding of the TSP routes into bit strings is by using a factorial
numbering system in which the ith digit starting from least significant can be any
number between 0 and i− 1, so in general [35]:

(dk . . . d0)! ≡
k∑

i=0
d0 · i!. (4.15)

To decode this, we can compute the modulo by consecutive natural numbers, and that
can be converted to the permutation of cities via Lehmer codes, which starting with the
most significant factoradic digit, take the (k + 1)th digit of the sequence (0, 1, . . . , k)
[35]. The used digit is removed, and the procedure repeats for the next digits, and the
taken digits in the given order directly encode a permutation [35]. The Hamiltonian
can be adjusted according to the encoding [35].

After the Hamiltonians and encodings are set up, a D-Wave machine (a particular
quantum annealer) can perform the required computations to obtain the eigenvalue of
the ground state of the target Hamiltonian, which is the encoding of the shortest tour
of the TSP [35] [16]. The quantum annealing circuit can also be modeled on a universal
gate-based quantum computer, since quantum annealers have very limited uses. We
try to minimize the number of gates we use for this, which relates to the number of
qubits required to encode the TSP.
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4.2.3 Analysis

The optimal encoding approach requires approximately O(n)range(W ) number of mea-
surements (where range(W ) is the difference between the largest and smallest value
in the cost matrix), but also requires an exponential circuit depth and volume (num-
ber of gates needed) when modeled with a universal gate-based quantum computer
[35]. Other tour-encoding schemes, such as the basic QUBO encoding with Hamil-
tonian HQUBO, while requiring more qubits to encode the instances (n2 in the case
of QUBO), take a smaller circuit depth and volume (12n and 12n3, respectively, for
QUBO) to perform the required computations [35].

The mapping of TSP to the Ising model is done in a polynomial number of steps,
but the power of this polynomial can grow very rapidly [16]. The number of spins in
the Ising spin glass problem scales no faster than n3 [16].

For a problem of input size n, we typically find that AQO requires a time T =
O(exp

{
αnβ

}
) for some positive coefficients α and β, as n → ∞ [16]. Although AQO

may not solve NP-complete problems in polynomial time, it can still offer at least a
small improvement over the classical algorithms [16].

4.3 Quantum algorithm based on Held-Karp

As we have seen, the classical Held-Karp dynamic programming algorithm breaks down
the TSP into smaller subproblems to provide a huge speedup in the time complexity
to obtain the exact optimal solution, with a runtime of O(n22n) for a TSP instance of
n cities.

This quantum computing approach to TSP uses ideas from the Held-Karp algo-
rithm by running a quantum minimum-finding algorithm on specifically-sized subprob-
lems of the Held-Karp algorithm. This way, we can run classical Held-Karp to a point
where quantum minimum-finding will help speed up the rest of the algorithm.

4.3.1 The algorithm

The algorithm is as follows [36]:
Let G = (V,E,w) be the given graph representing the TSP instance, where

|V | = n is the number of verticies (cities), E ⊆ V 2 is the set of edges, and w : E → N
are the edge weights. We let w(u, v) = ∞ if the edge {u, v} /∈ E. Assume we can access
the appropriate edge weights in w in polynomial time, p(n). Let L = max{u,v}∈E w(u, v)
be the length of the largest edge in the instance. We know that adding two integers
takes O(logL) time [36].
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Let D = {(S, u, v) | S ⊆ V, u, v ∈ S} and define f : D → N as follows: f(S, u, v)
is the length of the shortest path in the graph induced by S that starts at vertex u, ends
at vertex v, and visits all vertices in S exactly once. This is similar to the Held-Karp
breakdown of TSP. Let N(u) be the set of neighbors of vertex u in G. We can calculate
f(S, u, v) with the following recurrence [36]:

f(S, u, v) = min
t∈N(u)∩S

t̸=v

{w(u, t) + f(S \ {u}, t, v)}, (4.16)

with f({v}, v, v) = 0 for any v [36]. Note that f(S, u, v) can also be calculated recur-
sively by splitting S into two sets as such: let k ∈ [2, |S| − 1] be some fixed number,
then [36]:

f(S, u, v) = min
X⊂S,|X|=k
u∈X,v /∈X

min t∈X
t̸=u{f(X, u, t) + f((S \X) ∪ {t}, t, v)}. (4.17)

Let α ∈ (0, 1
2 ] be a parameter to be specified later [36].

Now we perform the following steps [36]:

1. Calculate the values of f(S, u, v) for all |S| ≤ (1 − α)n
4 classically using dynamic

programming with Eq. 4.16 and store them in memory.

2. Run quantum minimum-finding algorithm over all subsets S ⊂ V such that
|S| = n/2 to find the answer,

min
S⊂V

|S|=n/2

min
u,v∈S
u̸=v

{f(S, u, v) + f((V \ S) ∪ {u, v}, v, u)}. (4.18)

To calculate f(S, u, v) for |S| = n/2, run quantum minimum-finding for Eq. 4.17
with k = n/4. To calculate f(S, u, v) for |S| = n/4, run quantum minimum-
finding for Eq. 4.17 with k = αn/4. For any S such that |S| = αn/4 or |S| =
(1 −α)n/4, we know the value of f(S, u, v) from the classical preprocessing. [36]

4.3.2 Analysis

We use the notation f(n) = O∗(cn) for the case where f(n) = p(n) · cn for p(n) being
some polynomial expression of n, and some constant c.

We know that the quantum minimum-finding algorithm can find a minimum value
of an unordered array with a success probability of at least 2/3 in O(

√
n) time [36].

The time complexity of the classical preprocessing part is [36]:

O∗
((

n

≤ (1 − α)n/4

))
= O∗

(
2H( 1−α

4 )n
)
. (4.19)
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The complexity of the quantum part, considering the complexity of quantum minimum-
finding, is [36]:

O∗


√√√√( n

n/2

)(
n/2
n/4

)(
n/4
αn/4

) = O∗
(

2
1
2(1+ 1

2 + H(α)
4 )n

)
. (4.20)

The total complexity of the algorithm is optimized when the complexities of the two
parts, expressions 4.19 and 4.20, are equal. We do this by selecting the optimal value
for α, which we find to be approximately 0.055362 [36]. This makes the running time
of the whole algorithm O∗(20.788595n) = O∗(1.727391...n). The arithmetic operations on
integers increase the time complexity by a multiplicative factor of O(logL) [36].

This TSP approach does not consider the amount of physical resources required
for the computations. The number of qubits required to perform quantum minimum-
finding is log2 m, where m is the size of the set we search through [10]. In this case, we
search through m = O(2n/2) elements, so the number of qubits needed is log2 O(2n/2) =
O(n/2) qubits, which is excellent compared to the qubits required for other quantum
computing approaches to TSP.
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5.1 Analysis

We compare the performances of the various algorithms for solving TSP.
The following table compares the time and space complexities of the algorithms,

as well as labels whether they involve quantum computing and whether or not give an
exact optimal solution (as opposed to an approximate solution).

Algorithm Time Space Quantum? Exact?
Brute Force O(n!) O(n2) No Yes
Held-Karp O(2nn2) O(n2n) No Yes

General greedy O(n2 log2(n)) O(n2) No No
NN O(n2) O(n2) No No

RNN O(n3 log2(n)) O(n2) No No
Christofides O(n3) O(n2) No No
Yatsenko’s > O(n3) O(n2) No No

Phase estimation O(
√

(n− 1)!) a qubits Yes Yes
QUBO O(exp{αnβ}) O(n2) qubits Yes Yes

AQO with optimal encoding O(exp{αnβ}) O(n⌈log(n!)⌉) Yes Yes
Quantum Held-Karp O∗(1.727391...n) O(n/2) qubits Yes Yes

Table 5.1: A comparison between all the discussed TSP approaches. Here we have a = m+⌈log2(2+
2
2ϵ )⌉ + n log2(n − 1).

We notice that the classical approximation algorithms have a much quicker time
complexity than the classical exact solution algorithms for TSP. The classical ap-
proximation algorithms generally run in polynomial time, whereas to get an exact
solution, the best classical algorithm runs in over exponential time. The phase es-
timation algorithm still runs in an exponential time complexity (as we had shown
before, O(

√
(n− 1)!) ≈ O( 4

√
2π(n− 1)(n−1

e
)(n−1)/2)) despite utilizing quantum com-

puting. The quantum annealing approach, however, is quite promising, arriving at the
exact TSP solution in exponential time. Finally, the quantum computing augmenta-
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tion to the Held-Karp algorithm, despite still running in exponential time, reduces the
time from the classical Held-Karp’s O(2nn2) to O(p(n) · 1.727391...n) (for p(n) being
some polynomial in n). Comparatively, even though the two time complexities are very
similar, this is still a speed-up in obtaining the exact TSP solution.

The space complexity with the classical algorithms is not typically a matter of
concern. The amount of memory space available in classical computers makes it pos-
sible to solve TSP for very large instances; it is the time complexity that is the main
issue.

We see that involving quantum computing does, in fact, improve on the best
known classical algorithm for obtaining the exact optimal route in the TSP. However,
the exact optimal solution TSP remains an NP-hard problem–none of the exact solu-
tion algorithms, including the ones utilizing quantum computing, run faster than in
exponential time.

The quantum computing approaches are promising; however, the required num-
bers of qubits are generally too much for the current state of existing quantum com-
puters. Note that the qubit requirement for the two quantum annealing algorithms is
in terms of quantum annealer qubits–there are thousands of low-noise qubits effectively
available for quantum annealing, so at this time, this algorithm is more practical for
solving larger instances of TSP than the universal gate-based algorithms [13]. For the
universal gate-based quantum computers, though, we currently do not have enough
qubits (let alone fault-tolerant circuitry) to work with large TSP instances, so classical
computing is still currently the best way to solve TSP.

5.2 Future work

We already see that combining quantum computing with the classical Held-Karp dy-
namic programming algorithm shows improvement on solving this difficult computa-
tional problem. More algorithms may be developed that take advantage of the tech-
niques that some of the other classical approaches use. Currently we know that quan-
tum computing is best used for searching for a single solution through huge search
spaces, making it more useful for finding exact TSP solutions than for approximating.
However, there may be ways to utilize quantum computing to improve on the classical
approximation algorithms, either to improve the accuracy of the results, or to provide
an even greater speed-up.

Quantum computing systems will keep improving as researchers experiment and
discover new ways to construct quantum systems, both physically and theoretically. As
we build our experience with quantum technology, we can improve on old algorithms
to solve computationally difficult problems, as well as invent new approaches with our
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newly realized resources.
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