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Abstract We analyze the expressive resources of IF logic that do not stem from
Henkin (partially-ordered) quantification. When one restricts attention to regular IF
sentences, this amounts to the study of the fragment of IF logic which is individuated
by the game-theoretical property of action recall (AR). We prove that the fragment of
prenex AR sentences can express all existential second-order (ESO) properties. We
then show that the same can be achieved in the non-prenex fragment of AR, by using
“signalling by disjunction” instead of Henkin or signalling patterns.

We also study irregular IF logic (in which requantification of variables is allowed)
and analyze its correspondence to regular IF logic. By using new methods, we prove
that the game-theoretical property of knowledge memory is a first-order syntactical
constraint also for irregular sentences, and we identify another new first-order frag-
ment. Finally we discover that irregular prefixes behave quite differently in finite and
infinite models. In particular, we show that, over infinite structures, every irregular
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prefix is equivalent to a regular one; and we present an irregular prefix which is sec-
ond order on finite models but collapses to a first-order prefix on infinite models.

Keywords Independence-friendly logic · Existential second-order logic · Sig-
nalling · Action recall · Knowledge memory · Irregular formulas
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1 Introduction

Independence-friendly logic ([?], [?]) is one of a number of formalisms that have been
developed in order to make various notions of dependence and independence acces-
sible to the instruments of logical investigation. Independence-friendly (IF) logic and
similar formalisms (Dependence-friendly logic, Dependence logic [?]), in particular,
were developed as more flexible approaches to the logic of Henkin quantifiers ([?]).
The Henkin quantifier Hn

k is a matrix∀x
1
1 ∀x2

1 . . . ∀xn
1 ∃y1

...
...

. . .
...

...
∀x1

k ∀x2
k . . . ∀xn

k ∃yk


which, differently from a linear sequence of the same quantifiers, is meant to state
that each yi is supposed to be chosen as a function of x1

i , . . . ,x
n
i only. In IF logic, the

same is achieved by means of a linear prefix, together with a slashing device. For
example, the Henkin quantifier H1

2, that is,(
∀x1

1 ∃y1
∀x1

2 ∃y2

)
is expressed in IF logic by the following linear sequence of quantifiers1

∀x1
1∃y1∀x1

2(∃y2/{x1
1,y1}).

The slashed quantifier (∃y2/{x1
1,y1}) expresses the fact that y2 is independent from

x1
1 and y1.

It has been gradually realized that, in spite of the fact that it stems from the study
of Henkin quantifiers, IF logic derives its expressiveness also from other sources.
Henkin quantifiers are partial orderings of first-order quantifiers; but in IF logic also
intransitive (thus not ordered) dependence sequences are allowed, for example

∀x∃y(∃z/{x}).

Here y depends on x, z depends on y, but z does not depend on x. It is known that
such quantifier sequences, also known as signalling patterns, can be used to express
higher-order concepts ([?],[?],[?]); for example, the IF sentence

∃v∀x∃y(∃z/{x})(x = z∧ y 6= v)

1 There are (up to renaming of variables and permutation of quantifiers) a few alternative ways
for expressing the Henkin quantifier H1

2 in IF logic, for example ∀x1
1∀x1

2(∃y1/{x1
2})(∃y2/{x1

1,y1}) and
∀x1

1∀x1
2(∃y2/{x1

1})(∃y1/{x1
2,y2}).



Independence-friendly logic without Henkin quantification 3

is known to characterize the class of all (Dedekind) infinite structures (this idea is
attributed, in [?], to Fred Galvin).

By a dichotomy result of Sevenster ([?]), Henkin and signalling patterns are
known to exhaust the higher-order expressive power of prenex regular2 IF logic: if a
regular sentence is in prenex normal form and does not contain Henkin or signalling
patterns, then it is equivalent to some first-order sentence ([?]). Non-prenex, regu-
lar IF logic is known to contain further expressive syntactical patterns (involving the
interaction of quantifiers and connectives) that are neither of the Henkin nor the sig-
nalling type, yet allow describing NP-complete problems such as SAT and SET PAR-
TITIONING ([?]); the problem of a complete classification of such patterns is still
open. Less is known of irregular IF logic, which will be addressed here in Sections
7.2, 8 and 9. The aim of the present paper is a better understanding of the resources
of IF logic that do not stem from Henkin quantification.

A peculiarity of independence-friendly logic is the close link between its syntax
and the theory of extensive games of imperfect information. The link is given by the
so-called Game-Theoretical Semantics, which we will review in Section 2. Through
this connection, game-theoretical concepts throw light on peculiarities of the logic;
and vice versa, the study of logical phenomena can cast new light on the foundations
of game theory.

It is well known, through the works of Henkin, Hintikka and others, that it is pos-
sible to define a notion of truth for first-order languages in terms of certain games of
perfect information, which involve two players called Verifier (“Eloise”) and Falsi-
fier (“Abelard”), who take it in turns to point out evidence for or against the truth of a
given sentence ϕ in a given structure M. The resulting Game-Theoretical Semantics
(GTS) is equivalent to the usual Tarskian one.

When moving from first-order to IF languages, extending the Tarskian semantics
is not straightforward3; instead, it is quite natural to generalize semantic games by
allowing imperfect information, in a way that the independence constraints expressed
by syntax correspond (roughly speaking) to the fact that a player is forced to make
his/her choices in ignorance of the outcomes of some earlier moves ([?]). This gen-
eralization allows new complex possibilities. Many IF games are actually games of
imperfect recall: the players may forget what they knew at earlier stages of the game.

In this paper, we will be particularly interested in a game-theoretical property
called action recall (AR). Eloise has action recall if she cannot forget her own moves;
assuming regularity, an IF sentence has AR (i.e., all its corresponding games have
action recall) for Eloise if its sets of slashed variables associated to existential quan-
tifiers contain no existentially quantified variables. Thus e.g. ∀x(∃y/{x})R(x,y) has
AR, while ∃x(∃y/{x})R(x,y) does not have it.

The fragment of sentences with action recall for Eloise is particularly important
for our purposes because, in it, it is impossible to write the usual IF translations of
Henkin prefixes4, and yet it is a highly expressive fragment. Therefore, it is natural

2 Regular sentences do not contain requantification of variables.
3 It can be done, at the cost of defining a notion of satisfaction by sets of assignment, instead of the

usual single assignments. See e.g. [?],[?],[?],[?],[?].
4 This point is exemplified by the IF rendition of the H1

2 prefix, shown above: its “slash set” {x1
1,y1}

contains an existentially quantified variable, y1.
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to wonder to what degree the IF-definable concepts are expressible under the restric-
tion of action recall. IF logic is known to capture exactly the existential second-order
(ESO) definable classes ([?]). We will show that the Henkin prefixes Hn

2 are explicitly
definable in the prenex, regular fragment of AR (therefore, by means of signalling).
The Hn

2 prefixes, taken together, are known to capture all ESO definable concepts
([?]); thus, the prenex, regular fragment of action recall suffices for full IF expressive
power. We also present a simpler translation of the Hn

2 prefixes into the non-prenex
fragment of AR without signalling patterns; in this case, the relevant source of ex-
pressiveness is a form of “signalling by disjunction”. Furthermore, we present an
alternative proof for this claim by using irregular IF sentences instead.

Properties of irregular IF sentences and prefixes have not been studied much and
their expressive power is not very well understood. We extend the understanding of
them by studying irregular IF logic from different perspectives. Firstly, we present a
new kind of “regularization procedure” which can be used for naturally translating
irregular sentences into regular ones. Moreover, we observe that when this proce-
dure is applied to prenex sentences, it leaves the quantifier-free part intact. We also
present an alternative type of regularization procedure that can be applied to partic-
ular fragments of IF logic, among which is the fragment of sentences that have the
property of knowledge memory (KM)5. This procedure can be used to generalize a
result of [?], stating that the fragment of knowledge memory is first order, to the case
of irregular sentences. The alternative regularization also allows us to prove another
first-orderness criterion, orthogonal to the criterion of knowledge memory.

After this we study irregular prefixes by first making observations on how irreg-
ular Henkin/signalling prefixes have different properties compared to regular ones.
Then we apply our regularization procedure to irregular prefixes to show that their
expressive power amounts to a more general question of the expressive power of reg-
ular prefixes “relative” to variable sets. Next we demonstrate how irregular prefixes
behave quite differently over infinite and finite models. In infinite models, requanti-
fied variables can be used “in full potential” for signalling. The proof of this claim
also provides a straightforward technique for checking whether an irregular prefix is
second order over infinite models. Finally we show how irregular prefixes may gain
expressive power in finite models, and present an example of an irregular prefix Q∗
which defines a problem in LOGSPACE which is not first-order definable. However,
interestingly Q∗ collapses to a first-order prefix on infinite models.

Structure of the paper.

First, in Section 2, we review preliminary notions about IF syntax, game-theoretical
semantics and Skolemizations; we also generalize the notion of expressive power of
prefixes relative to variable sets. In Section 3 we review the definitions of Henkin and
signalling patterns and extend them to the case of irregular formulae. In Section 4 we
define memory properties, Action Recall (AR), Knowledge Memory (KM) and Per-
fect Recall (PR), and generalize their syntactical characterizations to include irregular

5 An IF sentence is said to have KM if in the corresponding semantic game the Verifier never forgets
what she knew in earlier stages of the game.
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sentences. In Section 5 we present several examples of expressing NP-complete prob-
lems in the fragment of AR. In Section 6 we show how to capture ESO in the prenex
fragment of AR and in Section 7 we do the same in the non-prenex fragment of AR
without signalling. In Section 8 we present two regularization methods for irregular
sentences and use them to isolate two new first-order fragments, one of which is the
irregular fragment of KM. Finally, in Section 9 we study the properties of irregular
prefixes in finite and infinite models.

2 Preliminaries

Structures are denoted by capital italic letters. To keep the notation simple, we do not
introduce a separate symbol for the domain of a structure; thus if M is a structure,
a∈M and RM ⊆M2 mean that a is an element of the domain of M and RM is a binary
relation on the domain of M, respectively.

An assignment of variables on a structure M is a function s : V →M, where the
domain V of s is a finite set of variables. We denote the set of all assignments on M
with domain V by As(V,M). Given s ∈ As(V,M) and a ∈M, we write s(a/v) for the
assignment with domain V ∪{v} such that s(a/v)(v) = a and s(a/v)(u) = s(u) for
u ∈ V \ {v}. If x = (x1, . . . ,xn) is a tuple of variables, we use the shorthand notation
s(x) for (s(x1), . . . ,s(xn)).

2.1 Syntax of IF logic

The syntax of IF logic is a restriction of the usual first-order syntax, to which we add
quantifiers of the forms (∃v/V ) and (∀v/V ), where V is a finite set of variables, called
the slash set of the quantifier. When V = /0, we use the abbreviation Qx := (Qx/V ).
The syntax is restricted, with regards to usual first-order languages, in that

– we only allow the connectives ∧,∨ and ¬, and
– for simplicity, we only allow ¬ to occur in front of atomic formulae.

The set Free(ϕ) of free variables of a formula ϕ is defined as usual, with the proviso
that also variables from slash sets can be either free or bound. In detail:

– Free(α) is the set of all variables occurring in α , in case α is a literal (i.e., an
atomic formula or the negation of an atomic formula)

– Free(ψ1∧ψ2) = Free(ψ1∨ψ2) = Free(ψ1)∪Free(ψ2)
– Free((∃v/V )ψ) = Free((∀v/V )ψ) = (Free(ψ)\{v})∪V .

For example, in ∀x(∃y/{x,y,z})ψ , the occurrence of x in the slash set is bound,
while the occurrences of y,z are free. We say that an IF formula ϕ is a sentence if
Free(ϕ) = /0.

We will need two different notions of substitution, one for variables and one for
terms. Let ϕ be a formula, x,y variables and t a term.

– Substitution of a variable for a variable: Subv(ϕ,x,y) denotes the formula ob-
tained by replacing with y all the free occurrences of x in ϕ .
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– Substitution of a term for a variable: Subt(ϕ,x, t) denotes the formula obtained
replacing with t all the free occurrences of x in ϕ , except those occurring in slash
sets.

Notice indeed that replacing a complex term within a slash set would not produce
a well-formed IF formula. On the other hand, both kinds of substitution allow re-
placing a variable for another variable, but the result in the two cases may dif-
fer; for example, Subv((∃z/{x})R(x,z),x,y) = (∃z/{y})R(y,z) 6= (∃z/{x})R(y,z) =
Subt((∃z/{x})R(x,z),x,y).

When considering subformulae ψ of an IF formula ϕ , we define (as normally for
IF logic) that different occurrences of ψ in ϕ are considered as different subformulae.
Hence the set of subformulae, Sf(ϕ), of ϕ is actually the set of nodes in the syntactical
tree of ϕ .

A further restriction on the syntax of IF logic that is often assumed in the literature
(see, e.g., [?] and [?]) is that variables are not requantified:

– A sentence ϕ is regular if no quantifier (Qv/V ) occurs in the scope of another
quantifier (Q′v/W ) over the same variable v.

More generally, an IF formula ϕ is regular if the condition above holds, and further-
more Free(ϕ)∩Bound(ϕ) = /0. Note that this definition allows several quantifications
of variable v as long as they are on different branches in the syntactical tree of ϕ .

We denote IF logic with this regularity restriction by IFr; by IFp the set of prenex
IF sentences; and by IFp,r the set of IF sentences that satisfy both regularity and
prenex form. We will at first restrict our studies to IFr, but in Sections 4, 7.2, 8 and 9
we will also consider irregular sentences.

2.2 Game-Theoretical Semantics

Game-Theoretical Semantics (GTS) associates a 2-player win-lose extensive game of
imperfect information G(ϕ,M,s) to each triple (ϕ,M,s), where ϕ is an IF formula,
M is a structure, and s ∈ As(V,M) for a set V of variables such that Free(ϕ)⊆V . In
case ϕ is a sentence and s = /0, we simply write G(ϕ,M). The two players, usually
called Eloise and Abelard, can be thought of as trying to verify, respectively falsify,
the sentence ϕ on the structure M. Their moves are triggered by the most external
logical operator of ϕ:

– in G(ψ1∨ψ2,M,s), Eloise chooses a disjunct ψi, and then G(ψi,M,s) is played;
– in G(ψ1∧ψ2,M,s), the same kind of move is performed by Abelard;
– in G((∃v/V )ψ,M,s), Eloise picks an element a ∈M and then G(ψ,M,s(a/v)) is

played;
– in G((∀v/V )ψ,M,s) the same kind of move is performed by Abelard;
– in G(α,M,s), with α a literal (i.e., an atomic formula or the negation of an atomic

formula), the winner is decided: it is Eloise in case M,s |= α (in the usual first-
order sense), and Abelard otherwise.

In the recursive definition above, the semantical game G(ϕ,M,s) defined by us-
ing “subgames” G(ψ,M,s′), where ψ is a subformula of ϕ . Provided we treat the
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G(ψ,M,s′) corresponding to distinct occurrences of ψ in ϕ as distinct games, we
can see these subgames as positions within the original game G(ϕ,M,s). We will
often use this terminology and write “position (ψ,M,s′)” (corresponding to the oc-
currence ψ) instead of “subgame G(ψ,M,s′)”. A history of a game G(ϕ,M,s) is any
tuple h := p1, . . . , pn of positions6 starting from the initial position (ϕ,M,s) so that
each position pi+1 can be reached from pi by the rules of the game.

Imperfect information manifests itself in that some histories of the game are con-
sidered indistinguishable for the player who has the turn to move at the end of them.
If two histories h and h′ both end with the choice of a subgame associated with the
same occurrence of a subformula (Qv/V )ψ and with assignments sh,sh′ ∈ As(W,M)
such that sh(w) = sh′(w) for every w ∈W \V , then we say that h and h′ are indis-
tinguishable for the player associated to (Qv/V ), and we write h ∼V h′. If instead
h,h′ end in the same occurrence of ψ1 ◦ψ2, where ◦ ∈ {∨,∧}, with assignments
sh,sh′ ∈ As(W,M) such that sh = sh′ we write h ∼ /0 h′. (Note that here h and h′ may
differ on choices for the values of those variables which have been requantified before
reaching ψ1 ◦ψ2; this situation does not arise in regular sentences.)

A strategy for Eloise in game G(ϕ,M,s) is a function associating, to each history
ending in a subgame G((∃v/V )ψ,M,s′), an element a ∈ M; and, to every history
ending in a subgame G(ψ1 ∨ψ2,M,s′), either ψ1 or ψ2. Strategies for Abelard can
be defined similarly. A strategy of Eloise is winning if, playing according to it, Eloise
wins, whatever moves Abelard makes. Winning strategies for Abelard are defined
dually. A strategy σ is uniform if, whenever two histories h,h′ are in its domain and
h∼V h′ (for the only appropriate V ), then σ(h) = σ(h′).

Remark 1 As usually done with IF logic, strategies are defined above as mappings
on the set of histories of the semantic game. An alternative way would be to define
strategies as mappings on the set of positions of the game instead. As several histories
can lead to the same position, the former approach is more general. However, in the
context of IF-logic, these two definitions give rise to the same uniform strategies as
the moves given by such strategies are determined by the last position (i.e. “current
position”) of the history. Indeed, for a quantifier (Qv/V ), the V -equivalence of histo-
ries h and h′ is defined in terms of the assignments and formula occurrences which
appear in the last positions on h and h′; and likewise for the equivalence of histories
ending in a disjunctive formula. So the definition of uniform strategy can be in turn
expressed in terms of last positions. In this paper we assume uniform strategies to be
defined in this alternative way when it is more convenient.

With this game-theoretical apparatus, it is possible to define the notions of truth
and falsity for IF sentences as the existence of appropriate strategies:

M |= ϕ if Eloise has a uniform winning strategy in G(ϕ,M)

M |=− ϕ if Abelard has a uniform winning strategy in G(ϕ,M).

6 Note that also all the moves made by the players can be read from the positions (ψ,M,s) in the history
as earlier moves for quantifiers are recorded by the assingments s and earlier moves for connectives can be
read from the formulae ψ (as they refer to occurrences of formulae).
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There is also a third possibility: it may happen that neither player has a uniform win-
ning strategy (consider, e.g., the sentence ∀x(∃y/{x})x= y). In that case, the game
and the truth value of the sentence on M are said to be undetermined. In this pa-
per, we only focus on the truth/nontruth distinction. Accordingly, we say that two IF
sentences ϕ,θ are (truth-)equivalent if, for all structures M,

M |= ϕ ⇐⇒ M |= θ ;

and we say that a class K of structures is definable in IF logic if there is an IF sentence
ϕ such that, for all structures M,

M ∈ K ⇐⇒ M |= ϕ.

As was already shown in [?], IF logic has the same expressive power as existential
second-order logic ESO: a class of structures is definable in IF logic if and only if it
is definable in ESO.

2.3 Skolemization

Any IF sentence ϕ can be translated into an equivalent ESO sentence SK(ϕ) by
means of a process of (inside-out) Skolemization which generalizes the Skolemiza-
tion procedure of first-order logic (see [?]). As an intermediate step, we can define
the first-order Skolemization Sk(ϕ) of an IF sentence ϕ , or more generally the first-
order Skolemization SkU (ψ) of an IF formula ψ , relativized to a set of variables
U ⊇ Free(ψ).

Given a regular IF formula ψ with occurrences (∃v1/V1), . . . ,(∃vn/Vn) of exis-
tential quantifiers, let h1, . . . ,hn be fresh and distinct function symbols (the correct
arities can be deduced from the inductive definition below). Given a set of variables
U ⊇ Free(ψ), define

SkU (ψ) = ψ (if ψ is a literal)
SkU (ψ ∨ψ ′) = SkU (ψ)∨SkU (ψ

′)
SkU (ψ ∧ψ ′) = SkU (ψ)∧SkU (ψ

′)
SkU ((∃vi/Vi)ψ) = Subt(SkU∪{vi}(ψ),vi,hi(y1, ...,ym))
SkU ((∀v/V )ψ) = ∀vSkU∪{v}(ψ)

where y1, ...,ym is a list of the variables in U \Vi. Then, the (unrelativized) Skolem-
ization of a sentence ϕ is defined as Sk(ϕ) := Sk∅(ϕ). It can be proved that, for any
regular IF sentence ϕ of bound variables v1, . . . ,vn, and any suitable structure M,

M |= ϕ ⇐⇒ (M, f1, . . . fn) |= Sk(ϕ) for some interpretations f1, . . . fn
of the function symbols h1, . . .hn.

On the right hand side, the symbol |= denotes the usual notion of first-order truth.
The (second-order) Skolemization SK(ϕ) of a regular IF sentence ϕ with occur-

rences (∃v1/V1), . . . ,(∃vn/Vn) of existential quantifiers is the existential second-order
sentence ∃h1 . . .∃hn Sk(ϕ). SK(ϕ) is equivalent to ϕ in the sense that, for any M,

M |= ϕ ⇐⇒ M |= SK(ϕ).
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In [?] (Theorem 4.13) it is claimed that the procedure just described works cor-
rectly also on irregular IF formulas. However, one of the anonymous reviewers of
this paper pointed out a counterexample to this claim. It turns out that one can even
find counterexamples among irregular first-order sentences. Consider the sentence
∀x∃y∀x(x = y); it is obviously equivalent to ∃y∀x(x = y), which is non-true on struc-
tures with at least two elements. However, we have:

Sk(∀x∃y∀x(x = y)) = ∀xSk{x}(∃y∀x(x = y))

= ∀xSubt(Sk{x,y}(∀x(x = y)),y, f∃y(x))

= ∀xSubt(∀x(x = y),y, f∃y(x))

= ∀x∀x(x = f∃y(x)),

so that we may take SK(∀x∃y∀x(x = y)) to be ∃ f∀x∀x(x = f (x)). This formula
is valid (just take f to be the identity function), therefore it is not equivalent to
∀x∃y∀x(x = y). We will see how to define Skolemization correctly for irregular sen-
tences in section 8.1 (Remark 6).

2.4 IF prefixes

For clarity, some of the notions that apply to formulas are extended here to quantifier
prefixes (i.e. tuples of the form (Q1v1/V1) . . .(Qnvn/Vn), where Qi ∈ {∃,∀}). For a
quantifier prefix Q, the set of free variables of Q, denoted by Free(Q), is defined
recursively as follows:

– Free((∃v/V )) = Free((∀v/V )) =V
– Free((∃v/V )Q) = Free((∀v/V )Q) = (Free(Q)\{v})∪V .

If Free(Q) = /0, then the prefix Q is said to be sentential. Notice that, if a prefix is sen-
tential, then the obviously defined set Bound(Q) of bound variables of Q coincides
with the set of all variables occurring in Q.

Let Q and Q′ be sentential prefixes and let U be a set of variables for which
U ⊆ Bound(Q)∩Bound(Q′). We say that Q is equivalent to Q′ over U , if Qψ is
equivalent to Q′ψ for any quantifier-free formula ψ for which Free(ψ) ⊆U . In the
special case when U = Bound(Q) = Bound(Q′), if Q and Q′ are equivalent over U ,
we simply say that Q and Q′ are equivalent.

Let Q be a sentential prefix for which U ⊆ BoundQ. We say that Q is first order
over U if Qψ is equivalent to a first-order sentence for every quantifier-free formula ψ

for which Free(ψ)⊆U . And we say that Q is NP-hard over U if there is a quantifier-
free formula ψ such that Free(ψ) ⊆ U and the sentence Qψ defines an NP-hard
problem. 7 In the special case when U = Bound(Q) we may simply say that Q is first
order or that Q is NP-hard. Note here that when Q is first order, it is not necessarily
syntactically a first-order prefix as it may contain nonempty slash sets.

7 We remark that, since IF sentences are translatable into ESO sentences, by a well-known result of
Fagin ([?]) all the problems definable in IF logic are in NP. Therefore, in this context an NP-hard problem
is, more exactly, an NP-complete problem.
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It is worth noting that in the earlier literature the notions above have only been
defined in the special case when U = Bound(Q). The generalization of these notions
“relatively” to a given set U of variables will be useful when we study irregular
prefixes and their regular counterparts in Section 9.

3 Signalling and Henkin patterns

We have been talking informally of Henkin and signalling patterns of quantifiers.
Exact definitions were given in [?] for the prenex regular fragment IFp,r and extended
to IFr in [?]. We further generalize these definitions, so that they may cover also the
case of irregular IF formulae.

3.1 Effective scopes and linear patterns

In the definitions of this section we consider occurences of quantifiers in any (fixed)
IF formula. This more general definition can naturally be applied to IF sentences and
to the quantifier prefixes of IF formulae.

– In an IF formula (resp. in a quantifier prefix), we say that a quantifier (Qv/V ) is in
the effective scope of (Q′u/U), denoted by (Qv/V )∈ Es(Q′u/U), if the following
conditions hold:

– (Qv/V ) is in the scope of (Q′u/U),
– there is no quantifier (Q′′u/W ) in the scope of (Q′u/U) such that (Qv/V ) is

in the scope of (Q′′u/W ).

When the quantifier (Qv/V ) is in the effective scope of (Q′u/U), it intuitively
means that the value of the variable u, quantified by (Q′u/U), is “available” when the
variable v is quantified by (Qv/V ).

Example 1 Consider the following IF formula:

δ := ∀x∃y(∃y/{x})∃zψ.

Here ∃z is not in the effective scope of ∃y as the variable y is requantified before
the quantification of z. However, (∃y/{x}) ∈ Es(∃y) as the “old value” of y is still
available when y is about to be requantified. Moreover, ∃y,(∃y/{x}),∃z ∈ Es(∀x) as
the requantification of any other variables in δ does not “block” the effective scope
of ∀x.

Note that if a formula does not contain any requantification of variables, then
the effective scope simply means scope. Hence, in the case of regular formulae, the
effective scopes may be replaced with scopes in the following definitions.

– In an IF formula (resp. in a quantifier prefix), we say that a quantifier (Qv/V )
depends on a quantifier (Q′u/U) if (Qv/V ) ∈ Es(Q′u/U) and u /∈V .
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If (Qv/V ) is not in the effective scope of (Q′u/U), then the value of v intuitively
cannot depend on the value of u (quantified by (Q′u/U)) as it is not available. But
all the quantifiers (Qv/V ) in the effective scope of (Q′u/U) intuitively may depend
on the value of u unless this dependence is explicitly forbidden by including u in the
slash set V . From the perspective of semantical games, (Qv/V ) depends on (Q′u/U)
if and only if the value that was chosen by (Q′u/U) “can be seen” by the player who
makes a move for (Qv/V ).

– Suppose that the quantifiers (Q1v1/V1), . . . ,(Qnvn/Vn) occur in an IF formula
(resp. in a quantifier prefix).

– If (Q jv j/Vj) is in the effective scope of (Qivi/Vi), whenever i < j, we say that
(Q1v1/V1), . . . ,(Qnvn/Vn) form a linear pattern (in the given order).

– If the condition above holds for scopes (but not necessarily effective scopes),
we say that (Q1v1/V1), . . . ,(Qnvn/Vn) form a weakly linear pattern.

The requirement of the above guarantees that quantifiers forming a (weakly) lin-
ear pattern all occur on the same branch in the syntactical tree. Also note that quan-
tifiers in a prefix always form a weakly linear pattern, but not necessarily a linear
pattern. Also non-weakly linear patterns in which quantifiers occur on several differ-
ent branches have been studied in the literature (cf. Remark 2 after the definition of a
Henkin pattern).

Note that the last variable that is quantified in a linear pattern may be identical
to some earlier variable in the pattern. For example the quantifiers ∀x, ∃y, (∃y/{x})
form a linear pattern in the formula δ in Example 1. However, it is easy to see that
no other variables, except for the last one, can be repeated in a linear pattern. For
example the quantifiers ∃y, (∃y/{x}), ∃z form a weakly linear pattern in δ which is
not a linear pattern because ∃z /∈ Es(∃y). For the same reason ∀x, ∃y, ∃z is not a linear
pattern in δ . Note, however, that the pair ∀x, ∃z and also the triple ∀x, (∃y/{x}), ∃z
form a linear pattern in δ .

3.2 Signalling and Henkin patterns as linear patterns

We are now ready to define signalling and Henkin patterns as linear patterns of certain
quantifiers that have specific dependencies between each other.

– A signalling pattern in an IF formula (resp. in a quantifier prefix) is a linear
pattern formed by three quantifiers (∀x/X), (∃y/Y ), (∃z/Z) in such a way that
the following dependency conditions hold:

– (∃y/Y ) depends on (∀x/X);
– (∃z/Z) depends on (∃y/Y ), but not on (∀x/X).

In a signalling pattern the dependency relation between the quantifiers is not tran-
sitive as the quantifier (∃y/Y ) depends on (∀x/X) and (∃z/Z) depends on (∃y/Y ), but
(∃z/Z) does not depend (directly) on (∀x/X). However, the variable z may depend
on x “indirectly” as the value of y may be used for “signalling” information on the
value of x.
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Example 2 The IF sentence χ := ∀x∃y(∃z/{x})(P(y)∧z = x) contains the most sim-
ple signalling pattern ∀x∃y(∃z/{x}). By observing the Skolemization

∃ fy∃ fz∀x(P( fy(x))∧ fz( fy(x)) = x)

of χ , we see that χ is true in a model M if and only if the interpretation of P in M has
the same cardinality as the domain of M. This property is not FO-definable (not even
relative to the class of infinite structures; we will use this observation in Section 9).

– A Henkin pattern in an IF formula (resp. in a quantifier prefix) is a linear pattern
formed by four distinct quantifiers (∀x/X), (∃y/Y ), (∀z/Z), (∃w/W ) in such a
way that the following dependency conditions hold:

– (∃y/Y ) depends on (∀x/X), but neither on (∀z/Z) nor (∃w/W );
– (∃w/W ) depends on (∀z/Z), but neither on (∀x/X) nor (∃y/Y ).

In order to see the idea behind this definition, recall the simplest (nontrivial)
Henkin quantifier H1

2 : (
∀x ∃y
∀z ∃w

)
.

Here y depends on x but neither on z nor w, and likewise w depends on z but neither
on x nor y. Note that exactly the same dependency requirement is given for the four
quantifiers in the definition of a Henkin pattern.

The Henkin quantifier H1
2 can be translated into an IF prefix in the following three

distinct ways:

A1 : ∀x∀z(∃y/{z})(∃w/{x,y})
A2 : ∀x∀z(∃w/{x})(∃y/{z,w})
A3 : ∀x∃y∀z(∃w/{x,y}).

Further equivalent prefixes can be obtained by renaming the variables or permuting
quantifiers; these further prefixes do not differ in any essential way from the three
forms listed above.

Remark 2 In this paper, we require Henkin patterns to be linear, but one could also
consider “non-weakly linear Henkin patterns” which satisfy the given dependency
conditions, but need not be linear. The paper [?] considers such patterns in the context
of regular IF logic (see also Section 3.3). The signalling patterns on the other hand
need to be linear as otherwise the given dependency conditions could not be satisfied.

If a quantifier prefix contains a signalling (resp. Henkin) pattern, we say that the
prefix is signalling (resp. Henkin). More generally we say that a syntactical tree is
signalling or Henkin if it contains such a pattern. It is known that a regular prefix
has second-order expressive power if and only if it signalling or Henkin, as in the
following theorem.

Theorem 1 (Sevenster’s dichotomy, [?]) Let Q be a regular, sentential prefix.
1. If Q is signalling or Henkin, then Q is NP-hard.
2. Otherwise, Q is first order.

Irregular signalling/Henkin prefixes have quite different properties than the regular
ones. We will discuss these differences in Section 9.1 in more detail.
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3.3 Signalling by disjunction.

We have used the word “signalling”, until now, to refer to the transmission of informa-
tion that is forbidden by slash sets by means of an intermediary existential quantifier.
However, in the literature (e.g. [?], [?], [?], [?]) an alternative form of signalling has
been discussed, in which disjunctions are used as a way to encode binary signals. A
typical example from [?] is as follows. Observe first that the formula ∀x(∃y/{x})x 6= y
is undetermined (in particular: not true) over any structure M with at least 2 elements
in the domain. However, the seemingly redundant formula

∀x((∃y/{x})x 6= y∨ (∃y/{x})x 6= y)

is valid for models where |M| ≥ 2. Indeed, Eloise can abide to the following winning
strategy: pick a fixed element a for y in the left disjunct; pick a distinct element b in
the right disjunct; choose the left disjunct if Abelard picked an element c 6= a, and
the right disjunct otherwise. In this strategy, the disjunction is used to store a bit of
information, the answer to the question “is c distinct from a”?

We can use the notation ∀x((∃y/{x})[ ]∨ (∃y/{x})[ ]) in order to isolate the
purely logical part of the syntactical tree of the formula above; the gaps [ ] should be
thought of as placeholders for quantifier-free formulas with appropriate sets of free
variables. These syntactical constructs are the natural analogues of quantifier prefixes
outside the realm of prenex logic; they have been studied in relation to IF logic in [?]
under the name of “tree prefixes”.

Despite the interest of the example above, the tree ∀x((∃y/{x})[ ]∨ (∃y/{x})[ ])
is provably inadequate to express statements beyond first order. Analogously, the
tree prefix ∀x(∃y[ ]∨∀z(∃w/{x})[ ]) can be shown to be first order, as is the case
for many tree prefixes using conjunctions, such as ∀x(∃y[ ]∧∀z(∃w/{x})[ ]) and
∀x∀z((∃y/{z})[ ]∧ (∃w/{x})[ ]). But in [?] it was demonstrated that it is possible
to strengthen in various ways the “signalling by disjunction” patterns in order to ob-
tain constructs that can express NP-complete problems; one such example is the tree
prefix ∀x∀z((∃y/{z})[ ]∨ (∃w/{x})[ ]). These stronger forms of signalling by dis-
junction contain further universal quantifications with respect to our initial example,
but they do not contain (linear) signalling or Henkin patterns, as defined above. We
will return on this in Section 7.

With some care, it is possible to extend the notions of “being first order” and
“being NP-hard” to tree prefixes. We point out that it is an open problem whether
there exist (even regular) tree prefixes which are neither first order nor NP-hard.

4 IF fragments induced by memory properties of games

Even though many different games are associated to each single sentence (one game
for each sentence-structure pair), some interesting properties of the games are charac-
terized by syntactical properties of the associated sentences; they are invariants of the
sentence alone. As a consequence, such game-theoretical properties define associated
fragments of IF logic. In particular, in the literature ([?],[?],[?] Sect. 6.4, [?]) there
has been some interest in properties that limit the “ability” of players to forget. We
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first describe these properties generally for an arbitrary (not necessarily semantical)
game.

– A player has action recall (AR) if (s)he remembers all of the moves (s)he has
made earlier in the game.

– A player has knowledge memory (KM) if (s)he remembers all the information that
was available to her/him in earlier positions of the game.

– A player has perfect recall (PR) if (s)he remembers the whole history8 of the
game which was visible to her/him.

Generally these properties depend on the formal definition of the given game. In par-
ticular, (KM) is very sensitive to the information that is “encoded” into the positions
of the game and which part of that information is available to the players.

From now on we will concentrate on these properties in the case of the semanti-
cal games of IF logic. We only consider them from Eloise’s perspective, but similar
considerations can be done dually for Abelard. Under the assumption of regularity,
each of these properties has been given a syntactical characterization in the litera-
ture (see e.g. [?], [?]). We will examine these properties in more detail in order to
check under which assumptions these earlier syntactical characterizations are cor-
rect. Moreover, we generalize these syntactical characterizations also to the case of
irregular sentences.

The analysis of memory properties in semantical games of IF logic is based on the
implicit assumption that the players are following uniform strategies. As discussed in
Remark 1, the moves given by uniform strategies only depend on the last position
in the history. Therefore the analysis of the information that is available to Eloise in
different phases of the game can be restricted to the information that is encoded in
the positions.

We first make some general remarks on semantical games of IF logic – in par-
ticular, on the information that is available to the players. A position of the form
(ψ1∨ψ2,M,s) encodes information on an occurrence of the subformula ψ1∨ψ2, on
the structure M and on the current assignment s; here Eloise may use all the infor-
mation that is available in the position when choosing a disjunct.9 On the contrary,
in a position of the form ((∃x/V )ψ,M,s) the move of Eloise cannot depend on the
values of the variables in V ; hence we may assume that Eloise only “sees” the part
of s that is restricted to the variables that are not in V . In the positions where Eloise
does not need to make any move, we assume that Eloise does not perceive any of the
information in the position (this assumption is relevant for KM and PR).

We now briefly discuss the case of perfect recall. Clearly, if Eloise has PR, she
also has AR and KM. In the semantic games of IF logic, apart from Eloise’s own
moves (covered by AR) and visible information in the earlier positions (covered by
KM), the only remaining information in a play of the game are the moves made by

8 In this paper we have defined a history to be a sequence of earlier positions in a semantical game.
Alternatively, also the moves made by the players could be included in histories (although, in the case of
regular IF sentences, all the previous moves can simply be “read” from the latest position).

9 In the variant of IF logic where also disjunctions may have slash sets (see [?] or [?]), the information
on s would be restricted as in the case of existential quantifiers. The definitions of AR, KM and PR could
naturally be generalized for this variant of IF logic.
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Abelard. But if Eloise were also allowed to see those moves, the whole semantical
game would become a perfect information game for Eloise and thus it would simply
correspond to a semantical game of first-order logic. Hence, we assume that Eloise
cannot see the moves of Abelard (unless she is allowed read them from the assign-
ment s in some of her later positions) whence PR simply becomes the combination
of AR and KM.

4.1 Action recall

In the semantical games for IF logic Eloise only needs to make a move in positions of
the form ((∃x/U)ψ,M,s) or (ψ1∨ψ2,M,s). We first consider the latter case, where
Eloise chooses one of the disjuncts. In the present paper we have assumed (as usual
in the earlier literature) that the formulae in the positions of the game are actually
occurrences of formulae (that is, nodes in the syntactical tree). Therefore the players
can indirectly see, from the current position of the game, which choices were made
for the disjunctions – and for the conjunctions. Hence, with this approach, both play-
ers have action recall “by default” for all the choices that correspond to disjunctions
and conjunctions.

Remark 3 If the formulae in the positions of the game were to be just subformulae
(and not occurrences of them), then the truth values of some formulae would change.
Consider e.g. the sentence ∀x((∃y/{x})x 6= y∨(∃y/{x})x 6= y) from Section 3.3. This
formula is valid for all models that have at least two elements as Eloise can use the
disjunction for signalling. However, if Eloise, in the next position, were only able
to see what subformula has been reached, and not which specific occurrence, then
such signalling would be impossible and therefore Eloise would not have a winning
strategy.

By the observations above, supposing that the occurrences of the subformulae are
part of the positions, Eloise automatically remembers her choices for disjunctions.
Therefore, in order to have action recall, it suffices that Eloise remembers her choices
for existential quantifiers. We first consider the case of regular formulae, where the
values of existentially quantified variables never change. Suppose that a position of
the form ((∃x/U)ψ,M,s) is reached in the game. After Eloise makes her move, the
value chosen for x is recorded in the assignment s. In order to access the value of
x in her later moves, it suffices that x is not included in any of the slash sets of the
existential quantifiers. Syntactically this amounts to the following condition: a regular
sentence ϕ has AR if the following holds

AR1: If an existential quantifier (∃y/V ) occurs in the effective scope of another
existential quantifier (∃x/U) in ϕ , then x /∈V .

We could have simply referred to the scope of (∃x/U), since scope and effective
scope coincide in regular sentences; but the present formulation is more natural in
the general case.

Let us then consider the case of irregular sentences. Here the condition AR1 does
not guarantee action recall for Eloise. For example, ∃x∃x∃y(x = y) violates action
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recall: in her third move, Eloise forgets the value chosen in the first move because it
has been overwritten by the second move.

Let ϕ be an irregular IF sentence in which a variable x is quantified two times. If
x is first universally quantified, this requantification does not violate action recall for
Eloise, since the first value for x is chosen by Abelard. But if x is first existentially
quantified, then there is a play of the semantic game for ϕ in which Eloise chooses
the value for x and then forgets that value when x is requantified, and thus she does
not have action recall – supposing that she has to perform at least one action in the
game after x has been requantified10.

By the observations above, we obtain the following syntactical characterization:
an irregular sentence ϕ has AR if the condition AR1 holds and moreover the follow-
ing holds

AR2: If some operator O for Eloise (either a disjunction or an existential quantifier)
is in the scope of a quantifier (∃x/U) then it is in its effective scope.

Example 3 Let ψ be a quantifier-free sentence such that Free(ψ) ⊆ {x,y}. Let us
also assume ψ has no occurrences of ∨. Eloise does not have AR for the sentence
∃x∀x∃yψ since she no longer remembers the first value that she chose for x when
choosing a value for y. But she has AR for the sentence ∃x∀x∀yψ because she has no
move to make after x has been requantified by Abelard. Likewise she has AR for the
sentence ∃x∀y∃xψ because she still remembers the first value of x when choosing a
second value for x.

4.2 Knowledge memory

We first consider KM in the case of regular sentences. Since the values of the quan-
tified variables are here permanently stored in the assignment s, knowledge memory
can be violated only if the value of some variable x is available to Eloise at some po-
sition p1 and it becomes unavailable in some later position p2. Since we assume that
Eloise needs to make a move at p1 and p2, the formula in these positions has either
an existential quantifier or a disjunction as its main operator. Since disjunctions do
not have slash sets (in the current paper), KM cannot be violated if the move in posi-
tion p2 is for a disjunction; so we may assume that the move in p2 is for a quantifier
(∃z/W ). The value of x is available for Eloise in p1 if it is quantified before p1 and
the move in p1 is either for a disjunction, or for an existential quantifier (∃y/V ) such
that x /∈ V . In both cases KM is violated if x is not available at p2, which is the case
when x ∈W .

By the observations above, we get the following syntactical characterization: a
regular sentence ϕ has KM if the following holds11

– Suppose that (Qx/U) and (∃z/W ) occur in ϕ so that (∃z/W ) ∈ Es(Qx/U). Then

10 We have added this last condition since we have assumed (as in earlier literature) that Eloise can
“perceive” the position of the game only when she has a move to make.

11 In the case of regular sentences the effective scopes could simply be replaced with scopes. However,
in order to generalize this definition to irregular sentences, we need to use effective scopes.
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KM1: If there is a quantifier (∃y/V ) such that (∃y/V )∈ Es(Qx/U) and (∃z/W )
is in the scope of (∃y/V ), then x ∈W implies that x ∈V .

KM2: If there is a disjunction ∨ such that ∨ ∈ Es(Qx/U) and (∃z/W ) is in the
scope of ∨, then x /∈W .12

Note that the condition KM1 prohibits all signalling patterns and KM2 essentially
prohibits all useful signalling with disjunctions.

Let us then consider the case of irregular sentences. Here KM can be violated
also because the value of some variable is erased by a requantification. Suppose that
some variable x is first quantified by (Qx/U) and then again by (Q′x/U ′). In order
for Eloise to observe the first value given for x, there needs to be a position p1, where
Eloise needs to make a move, that is “in between” the quantifications of x. Eloise can
see x in p1 if the move there is either a disjunction or a quantifier (∃y/V ) for which
x /∈ V . KM is now violated if there is also a position p2 where Eloise needs to make
a move after the requantification of x.

By the observations above, we obtain the following syntactical characterization:
a (possibly irregular) sentence ϕ has KM if both KM1 and KM2 hold and moreover
the following holds

– Suppose that (Qx/U) occurs in ϕ so that some operator O for Eloise is in the
scope, but not in the effective scope of (Qx/U). Then

KM3: There is no quantifier (∃y/V ) such that x /∈ V , (∃y/V ) ∈ Es(Qx/U) and
O is in the scope of (∃y/V ).

KM4: There is no disjunction ∨ such that ∨ ∈ Es(Qx/U) and O is in the scope
of ∨.

Example 4 Let ψ be a quantifier-free sentence such that Free(ψ) ⊆ {x,y,z}. Eloise
does not have KM for ∀x∃y∀x∃zψ since she sees the first value of x when choosing
a value for y, but she no longer sees it when choosing a value for z. But she has KM
for ∀x∀y∀x∃zψ because she does not see the first value of x at any position of the
game. Likewise, provided ψ has no occurrences of ∨, Eloise has KM for ∀x∃y∀x∀zψ

because she does not have any move to make after x has been requantified by Abelard.

In the case of the semantical games for IF logic, KM does not imply AR. For
example Eloise does not have AR for the sentence ∃x(∃y/{x})(x = y), but she has
KM (since the value of x is not available to her in any position). Also AR does not
imply KM, as seen by the signalling sentence ∀x∃y(∃z/{x})R(x,y,z).

4.3 Expressive power of the corresponding syntactical fragments

Let P∈ {∃,∀} denote Eloise (∃) or Abelard (∀) and let MP∈ {AR,KM,PR} be one of
the “memory properties” defined above. By IFMP(P) we denote the fragment of IF logic
consisting of all, including irregular, sentences that satisfy the syntactic condition of

12 “Being in the effective scope of (an occurrence of) a quantifier” is defined for a connective similarly as
it is for a quantifier. Secondly, a logical operator is in the scope of a disjunction if it occurs in a subformula
of either of the disjuncts (and similarly for conjunctions).
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the property MP for the player P. As before, we may add a superscript “p” or “r” to
denote the corresponding prenex or regular subfragments, respectively.

Note that it is impossible to form any Henkin pattern in IFr
AR(∃); therefore the

fragment IFr
AR(∃) will be one of the main objects of study in this paper. However, note

that the lack of Henkin patterns does not imply action recall for Eloise as e.g. for
η := ∃x(∃y/{x})(x = y) we have η /∈ IFr

AR(∃) even though η has no Henkin patterns.
We will also be interested in the fragments IFp,r

AR(∃) (Section 6) and IFKM(∃) (Section 8).
The regular fragments of perfect recall and knowledge memory are relatively

well-understood; truth, in both of them, can only capture first-order concepts (for
the former fragment, the result was anticipated in [?], [?] and adequately proved in
[?]; the latter fragment was addressed in [?]). We will extend this result to irregular
sentences in Section 8.1.

The regular action recall fragment IFr
AR(∃) is by far less understood; some exam-

ples in the literature show that it is capable of expressing higher-order concepts, such
as infinity over the empty signature, and some NP-complete problems (see Section 5).
But a general understanding of its expressive power is lacking, and will be addressed
in the present paper.

5 Defining NP-complete problems in IFp,r
AR(∃): examples

The main result that will be proved in Section 6 implies that any ESO concept can
be expressed by some regular, prenex action recall formula (therefore, by means of
signalling). However, the defining sentences provided by the theorem are often un-
necessarily complicated. We give here some examples of NP-complete problems that
can be expressed by relatively simple sentences of IFp,r

AR(∃).

Example 5 In [?], it was shown that the EXACT COVER BY 3-SETS problem can
be defined by an IFp,r

AR(∃) sentence. This problem consists in deciding, given a set U of
3k elements and a family C of 3-element subsets of U , whether there is a subfamily
of C which is a partition of U . It is defined by the sentence

∀x∃y(∃z/{x})(U(x)→ (K(y)∧E(x,z)))

on finite structures M of domain U ∪C (where U ∩C = /0), such that UM = U ,
Card(KM) = k and EM = {〈a,B〉 | a ∈ U,B ∈ C,a ∈ B}. We wish to point out that,
if we restrict, w.l.o.g., the class of structures by the additional constraint that KM ⊆
M \UM , then the condition above can be shown to be equivalent to an ESO sentence
of prefix ∃ f∀x:

ϕ
∗ := ∃ f∀x(U(x)→ (K(f (x))∧E(x, f (f (x))))).

In order to prove this, we first apply Skolemization to ∀x∃y(∃z/{x})(U(x)→
(K(y)∧E(x,z))), obtaining an equivalent ESO sentence

ϕ := ∃h∃g∀x(U(x)→ (K(h(x))∧E(x,g(h(x))))).

A proof that this ESO sentence defines the problem EXACT COVER BY 3-SETS
on appropriate structures can be found in [?]. Instead, we prove here that ϕ and ϕ∗
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are equivalent relative to the class of adequate structures which satisfy the additional
constraint KM ⊆M \UM . (Note that this additional constraint does not decrease the
generality of the problem.)

In one direction, it is apparent that ϕ∗ logically implies ϕ . Suppose instead that
ϕ holds in an appropriate structure M. Let g,h : M→M be two functions that satisfy
ψ . Define

f (x) =
{

h(x) if x ∈UM

g(x) if x ∈M \UM

Then, for all a ∈ UM , we have f (a) = h(a) and so from h(a) ∈ KM we obtain
f (a) ∈ KM; from our assumption that KM ⊆ M \UM we get f (a) ∈ M \UM; so,
g(h(a)) = g( f (a)) = f ( f (a)); then, from the fact that (a,g(h(a))) ∈ EM we deduce
(a, f ( f (a))) ∈ EM . Therefore M |= ϕ∗.

∃ f∀x is the simplest non-trivial prefix of functional ESO. The fact that it can
capture NP-complete problems was shown by Grandjean ([?]); he applied this prefix
to a conjunction of twenty-one clauses to define the HAMILTON PATH problem.

Example 6 We consider another NP-complete problem, DOMINATING SET: the
problem of deciding, given an integer k and a graph G = (V,EG) as input, whether
there is a set D⊆V of vertices of size at most k such that for every vertex x∈V : either
x ∈ D or (y,x) ∈ EG for some y ∈ D. Assuming that the intended structures encode k
by an interpreted unary predicate PG of cardinality k, the problem is described by the
IFp,r

AR(∃) sentence
∀x∃z(∃y/{x})((E(y,x)∨ y = x)∧P(z)).

This description is based on an analogous result for Dependence logic ([?]).
By using Skolemization, it suffices to prove our claim for the ESO sentence

ζ := ∃ f∃g∀x((E(g( f (x)),x)∨g( f (x)) = x)∧P( f (x))).

Fix an integer k. Let G= (V,EG,PG) be any structure such that (V,EG) is a graph,
and such that PG = {d1, . . . ,dk} is a subset of V of cardinality k. Suppose first that
G has a dominating set D of cardinality k. Enumerate D as {c1, . . . ,ck}. Since D is a
dominating set, to each a ∈V we can associate a ba ∈D such that either (ba,a) ∈ EG

or ba = a. Now, define f : V → PG as follows: if ba = ci, then set f (a) := di. Define
g : V → V as follows: g(di) = ci; for a ∈ V \PG, g(a) takes an arbitrary value. Note
then that, by the definitions, for every a ∈ V , g( f (a)) = ba. Therefore, (G, f ,g) |=
E(g( f (x)),x)∨g( f (x)) = x. And the definition of f implies that (G, f ,g) |= P( f (x)).

Suppose instead that G |= ζ . Then, there are functions f : V → PG and g : V →V
such that, for every a ∈ V , either (g( f (a)),a) ∈ EG or g( f (a)) = a. Define D :=
g[PG] = {g(a) | a ∈ PG}. Clearly Card(D) ≤ Card(PG) = k, and since g( f (a)) ∈ D
for every a ∈V , D is a dominating set.

Example 7 Also the problem SAT is expressible by means of signalling. SAT is stated
as follows: given a propositional formula π in conjunctive normal form, is π sat-
isfiable? The problem can be modeled over structures M of signature P,N,C,0,1,
with 0M,1M distinct constants; CM ⊆ M representing the set of clauses; PM,NM ⊆
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(M \CM)×CM , representing the fact that the first argument (a propositional letter)
occurs positively, respectively negatively, in the second argument (a clause). In this
class of structures, SAT is described by the following IFp,r

AR(∃) sentence:

∀x∃y(∃z/{x})(C(x)→ ((P(y,x)∧ z = 1)∨ (N(y,x)∧ z = 0))).

In order to prove that this sentence captures SAT, we apply Skolemization again
and prove the claim for the ESO sentence ξ := ∃ f∃gψ , where

ψ := ∀x(C(x)→((P( f (x),x)∧g( f (x)) = 1)∨ (N( f (x),x)∧g( f (x)) = 0))).

Let M be an appropriate structure, and π the propositional formula encoded by it.
Suppose first that M is a “yes” instance of SAT; then there is a truth assignment T
such that each clause c of π contains a literal αc for which we have T (αc) = 1. A
literal αc can either be of the form pc or ¬pc, with pc a proposition symbol. In the
first case, we then have T (pc) = 1, while in the second T (pc) = 0. Let f : M→M be
the function that maps c to pc (define it arbitrarily on elements that are not clauses); let
g : M→M be defined by g(p) := T (p) if p is a proposition symbol, and an arbitrary
constant otherwise. With these f and g, (M, f ,g) |= ψ .

Vice versa, suppose M |= ξ . Let f ,g be two functions that satisfy ψ . Let T be a
truth assignment such that T (p) = g(p) for all the proposition symbols in π . Now for
any c∈CM , either ( f (c),c)∈PM and g( f (c)) = 1, or ( f (c),c)∈NM and g( f (c)) = 0.
In the former case f (c) is a proposition symbol occurring positively in c, to which
T assigns truth value 1. Similarly, in the second case f (c) is a proposition symbol
which occurs negatively in c, to which T assigns truth value 0. These remarks show
that T satisfies π .

Since this specific form of SAT is known to be NP-complete under quantifier-free
reductions ([?]), we could give an argument based on standard tools to show that
IFp,r

AR(∃) captures NP. The general idea is that, if K is any NP problem, then it has
a quantifier-free reduction S to SAT. Given that SAT is definable by the sentence ξ

above, it is then possible to define (in the spirit of [?], ch. 3.2) a sentence Ŝ(ξ ) in
IFp,r

AR(∃) such that

S(M) |= ξ ⇐⇒ M |= Ŝ(ξ ).

The sentence Ŝ(ξ ) then characterizes problem K.
In principle, we could extend this argument to show that an “infinite” version

of SAT is complete for ESO under quantifier-free reductions, and thus IFp,r
AR(∃) cap-

tures ESO. However, we will prove this result in the next section with a more direct
argument.

6 Explicit definition of Henkin quantifiers by signalling

In this section we show that the prenex action recall fragment IFp,r
AR(∃) has the same

expressive power as the full IF logic. In the proof of this result we exploit the fact
that existential second-order logic is captured by Henkin quantifiers with two rows:
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Theorem 2 ([?]) For any ESO sentence there is an equivalent sentence of the form(
∀x1 . . .∀xn ∃u
∀y1 . . .∀yn ∃v

)
ψ,

where ψ is a quantifier-free formula.

By this result, it suffices to prove that, for any n, any sentence that is obtained
by applying the Henkin quantifier Hn

2 to a quantifier-free formula, is expressible in
IFp,r

AR(∃). Since IFp,r
AR(∃) is a fragment of IF, and IF is expressively equivalent to ESO,

it follows then that the expressive powers of all the three logics IFp,r
AR(∃), IF and ESO

coincide.
Thus, we consider a sentence starting with the Henkin quantifier Hn

2; let

ϕ :=
(
∀x1 . . .∀xn ∃u
∀y1 . . .∀yn ∃v

)
ψ(x1, . . . ,xn,u,y1, . . . ,yn,v),

where ψ is a quantifier-free formula. In order to make the argument below more
transparent, we formulate the truth condition of ϕ in a slightly non-standard way
([?]): M |= ϕ if and only if there are relations Fa,Fb ⊆Mn+1 such that

(a) (M,Fa) |= ∀z∃wFa(z,w),
(b) (M,Fb) |= ∀z∃wFb(z,w),
(c) (M,Fa,Fb) |= ∀x∀u∀y∀v(¬Fa(x,u)∨¬Fb(y,v)∨ψ(x,u,y,v)).

Here, and in the sequel, z denotes a tuple (z1, . . . ,zn) of distinct variables; similarly,
x = (x1, . . . ,xn) and y = (y1, . . . ,yn).

We will now build a sentence θ of IFp,r
AR(∃) that expresses the three conditions

above. The idea is to use the variables z and w for expressing conditions (a) and
(b), and the variables x, u, y and v for expressing (c). In addition we use an “index
variable” i that Abelard will use in the game G(θ ,M) to separate the conditions (a),
(b) and (c) from each other, and another “index variable” j that Eloise uses either to
signal the value of i, or to choose a disjunct of the quantifier-free part in (c).

To simplify the presentation, we assume first that the signature contains three
constants, a, b and c, and consider only structures in which they are interpreted by
distinct elements. In this case, the sentence θ is defined as follows13:

θ := ∀x∀u∀y∀v∀i∃ j∀z(∃w/X)η ,

where X is the set {x1, . . . ,xn,u,y1, . . . ,yn,v, i} and η is the following quantifier-free
formula

(i = a→ j = a) (1)
∧(i = b→ j = b) (2)
∧(i = c∧ z = x∧ j = a→ w 6= u) (3)
∧(i = c∧ z = y∧ j = b→ w 6= v) (4)
∧(i = c∧ j = c→ ψ(x,u,y,v)) (5)
∧(i = c→ ( j = a∨ j = b∨ j = c)) (6)

13 The formula θ has been slightly modified compared to the proceedings version of this paper ([?]);
now it only has a single slash set.
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Lemma 1 Let ϕ and θ be as defined above. Let M be a structure such that a 6= b 6=
c 6= a, where a = aM , b = bM and c = cM . Then M |= ϕ ⇐⇒ M |= θ .

Proof Assume first that M |= ϕ . Let Fa and Fb be relations satisfying the conditions
(a), (b) and (c) above. Without loss of generality, we can assume that Fa and Fb are
actually functions. We describe a winning strategy σ for Eloise in the semantic game
G(θ ,M). In the first 2n+ 3 moves of the game, Abelard chooses interpretations for
the variables x,u,y,v and i; let s be the assignment formed during these moves. Then
Eloise answers by choosing a value ds for the variable j as follows:

– If s(i) = a, then Eloise sets ds = a,
– If s(i) = b, then Eloise sets ds = b,
– Assume then that s(i) = c. By condition (c), one of the following holds:

(i) s(u) 6= Fa(s(x)), (ii) s(v) 6= Fb(s(y)), or (iii) M,s |= ψ .
In case (i), Eloise sets ds = a; in case (ii), Eloise sets ds = b; in case (iii), Eloise
sets ds = c.

Note that we can assume that s(i)∈ {a,b,c}, as otherwise M, t |= η for any extension
t ∈ As(X ∪{ j,z1, . . . ,zn,w}) of s, whence Eloise has an easy winning strategy.

In the next n moves, Abelard chooses interpretations for the variables z. Let t
be the corresponding extension of s(ds/ j) by these interpretations. In the last quan-
tifier move, Eloise chooses a value et for the variable w. If ds ∈ {a,b}, she sets
et = Fds(t(z)); in case ds = c, she chooses an arbitrary et ∈M.

Note that the choice of et is independent of t(x), t(u), t(y), t(v) and t(i). Thus,
the strategy of Eloise described above is uniform. Furthermore, it is straightforward
to verify that M, t ′ |= η , for t ′ = t(et/w), whence Eloise has a winning strategy in
G(η ,M, t ′). Thus, we see that M |= θ .

Assume then for the other direction that M |= θ . Then, given any assignment
s∈As(X ,M), Eloise can choose a value ds for the variable j, and given any extension
t ∈ As(X ∪{ j,z1, . . . ,zn},M) of s(ds/ j), she can choose a value et for w such that et
does not depend on t(x) for any x ∈ X (but may depend on t( j) = ds), and Eloise has
a winning strategy in the game G(η ,M, t(es/w)).

We define now relations Fa,Fb ⊆Mn+1 as follows:

Fa := {(t(z),et) | t ∈ As(Y,M), t( j) = ds = a},
Fb := {(t(z),et) | t ∈ As(Y,M), t( j) = ds = b},

where Y = X ∪{ j,z1, . . . ,zn} and s = t � X (the restriction of t to X). It suffices to
show that conditions (a), (b) and (c) hold for these relations. In order to prove (a), let
m = (m1, . . . ,mn) ∈Mn, and consider an assignment t ∈As(Y,M) such that t(z) = m,
t(i) = a, and t( j) = ds, where s = t � X . Then, t( j) is necessarily a, since otherwise
Eloise would lose the game G(η ,M, t(et/w)) if Abelard chooses the first conjunct
i = a→ j = a of η . Thus, by the definition above, (m,et) ∈ Fa. Condition (b) is
proved symmetrically by using the conjunct (2) of η . Note that since the choice of et
depends only on t(z) and t( j), the relations Fa and Fb are actually functions Mn→M.

To prove (c), let s0 be an assignment with domain X \{i}. We need to show that
Fa(s0(x)) 6= s0(u), Fb(s0(y)) 6= s0(v) or M,s0 |= ψ . Let s = s0(c/i). Then necessar-
ily ds ∈ {a,b,c}, since otherwise Eloise would lose the game G(η ,M, t ′), for any
extension t ′ ∈ As(Y ∪{w},M) of s, if Abelard chooses the last conjunct (6) of η .
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Assume first that ds = a. Consider the assignment t = s(a/ j,s0(x)/z)∈As(Y,M).
Then by the definition of Fa, we have et = Fa(t(z)) = Fa(s0(x)). On the other hand,
it must be the case that et 6= t(u) = s0(u), since otherwise Eloise would lose the
game G(η ,M, t(et/w)) if Abelard chooses the conjunct (3) of η . Thus, we see that
Fa(s0(x)) 6= s0(u). In the case ds = b, we can prove in the same way that Fb(s0(y)) 6=
s0(v), by using the conjunct (4) of η . Assume finally, that ds = c. Then it follows
immediately that M,s0 |= ψ . This is because otherwise Eloise would lose the game
G(η ,M, t(et/w)) if Abelard chooses the conjunct (5) of η . ut

We will next eliminate the assumption of three constants with distinct interpreta-
tions. On structures with at least two different elements, this is done by replacing the
quantifiers ∀i and ∃ j in θ by the sequences ∀i∀i′∀i′′ and ∃ j∃ j′∃ j′′, respectively. Fur-
thermore, the subformulae i = a, i = b and i = c of η are replaced by i = i′∧ i 6= i′′,
i = i′′ ∧ i 6= i′ and i′ = i′′ ∧ i 6= i′, and similarly for the subformulae j = a, j = b
and j = c. Let θ ′ be the formula obtained from θ by performing these changes. By a
straightforward modification of the proof of Lemma 1, we see that M |=ϕ ⇔ M |= θ ′

holds for all structures M with at least two elements.
If M has only one element, then clearly M |= ϕ ⇔ M |= ∀x∀u∀y∀vψ . Further-

more, the implication M |= ∀x∀u∀y∀vψ ⇒ M |= ϕ holds for all structures. Thus,
we see that ϕ is equivalent to θ ∗ on all structures, where θ ∗ is obtained from θ ′ by
adding (in the end of the prefix) the sequence ∀x′∀u′∀y′∀v′ of universal quantifiers
and the disjunct ψ(x′,u′,y′,v′) to the quantifier-free part, for some fresh variables
x′ = (x′1, . . . ,x

′
n),y

′ = (y′1, . . . ,y
′
n),u

′ and v′. This completes the proof of the main re-
sult in this section:

Theorem 3 IFp,r
AR(∃) has the same expressive power as ESO. In particular, any class

definable in IF is already definable in IFp,r
AR(∃).

Note that the length of the IFr
AR(∃) translation θ ∗ given in the proof of Theorem 3 is

only linear with respect to the length of the original Hn
2 formula ϕ . Another interest-

ing observation that follows from the proof is that there is no hierarchy of expressive
power based on the number of existential quantifiers used in signalling: each sig-
nalling pattern in θ ∗ consists of one universal quantifier from the prefix ∀x∀u∀y∀v∀i,
one of the three existential quantifiers from ∃ j∃ j′∃ j′′ (used as a signal), and the ex-
istential quantifier (∃w/X). Note further that in the semantical sense, the sequence
∃ j∃ j′∃ j′′ forms a single three valued signal for the existential quantifier (∃w/X).
Moreover, the proof of Theorem 3 shows that it suffices to use sentences with only a
single nonempty slash set in order to capture the whole ESO.

7 Capturing ESO using only signalling by disjunction

The results of [?] tell us that Henkin and signalling prefixes constitute the totality of
sources of second-order expressive power of IFp,r. We abandon here the requirement
of prenex form, and show that the whole ESO can then be captured without using
any signalling or Henkin patterns. This can be achieved by using only “signalling
by disjunction” instead (c.f. Section 3.3). In Section 7.1 we prove this result for the
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fragment IFr and in Section 7.2 we present an alternative proof method by using
irregular IF sentences.

7.1 Explicit definition of Henkin quantifiers in non-prenex, signalling-free, regular
IF logic of action recall

In this section we investigate the expressive resources of IFr. It was shown in [?] that
there are syntactical constructs in this fragment, based on the idea of signalling by
disjunction, that capture NP-complete problems, even though these constructs con-
tain neither (weakly linear) Henkin nor signalling patterns. We show here that it is
possible to translate each sentence of the form Hn

2ψ , with ψ quantifier free, into a
sentence of IFr

AR(∃) without signalling patterns. It immediately follows from this and
Theorem 2 that the fragment IFr

AR(∃) without signalling patterns captures ESO.
Let ψ(x,u,y,v) be a quantifier-free formula, with x,y n-tuples of variables, and

let ϕ be the IF sentence

∀x∃u∀y(∃v/{x,u})ψ(x,u,y,v)

corresponding to Hn
2 quantification applied to ψ .

Let ξ be the IF sentence

∀x∀u∀y∀v((∃z/{u,y,v})z 6= u∨ ((∃w/{x,u,v})w 6= v∨ψ(x,u,y,v))).

It may help to visualize the syntactical structure of ξ as a tree T :

∀x∀u∀y∀v

∨

(∃z/{u,y,v})

[ ]

∨

(∃w/{x,u,v})

[ ]

[ ]

We will show the equivalence of ϕ and ξ .

Theorem 4 For any structure M, we have M |= ϕ ⇐⇒ M |= ξ .

Proof By using Skolemization on ξ , we obtain the equivalent sentence

SK(ξ ) := ∃ f ∃g∀x∀u∀y∀v( f (x) 6= u∨ (g(y) 6= v∨ψ(x,u,y,v))).

On the other hand, the Skolemized form of the sentence ϕ is

SK(ϕ) := ∃ f ∃g∀x∀yψ(x, f (x),y,g(y)),

which is clearly equivalent with SK(ξ ). ut
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Theorem 4 could also be proven by a similar game-theoretical argument as used
for the sentence θ ∗ in the proof of Theorem 3, but Skolemization makes the proof
much shorter. However, the proof of Theorem 3 cannot be shortened by the same
method, which is why we decided to give the more illustrative game-theoretical proof
instead. By comparing the two translations, one can see an interesting link by observ-
ing that the constants a, b and c in θ in Lemma 1 are intuitively used to “simulate”
the three disjuncts in the sentence ξ above.

It is interesting to note that the quantifier-free formula ψ in sentence ϕ is not in
the scope of any existential quantifier in the sentence ξ equivalent to ϕ . Signalling
by disjunction can be used in this manner to “change the role” of universal quantifiers
∀u and ∀v essentially into existential quantifiers ∃u and ∃v.

The syntactical tree of our sentence ξ belongs to a category that was called gener-
alized Henkin in [?]. In [?], a second class of expressive syntactical trees was isolated,
under the name of coordinated class. These syntactical constructs more markedly dif-
fer from Henkin patterns than the generalized Henkin trees do. We remark that our
definitory sentence ξ does not contain coordinated patterns.

Coordinated trees are seemingly weaker than the generalized Henkin trees; how-
ever, Reijo Jaakkola has shown14 that an appropriate class of coordinated syntactical
trees (devoid of Henkin, signalling and generalized Henkin patterns) is sufficient to
simulate the Hn

2 quantifiers, and thus to capture ESO.

7.2 Eliminating Henkin and signalling patterns by requantification

Here we present an alternative method for expressing the whole ESO in non-prenex
IF logic without using signalling or Henkin patterns. Here we abandon the require-
ment of regularity and show how both Henkin and signalling patterns can then be
eliminated from any IF formula by a very straightforward translation. By using re-
quantification, we can change all second-order quantifier patterns into patterns that
use signalling by disjunction.

For creating a Henkin or a signalling pattern, we need to have two existential
quantifiers that have certain dependencies to each other. In order to eliminate these
patterns, we now attempt to replace existential quantifiers with universal quantifiers
that have essentially the same role in the semantical game. This can be done by a
simple trick if we allow requantification of variables.

Let ϕ be a regular IF formula and let y be a fresh variable. Suppose that ϕ has a
subformula of the form (∃x/V )ψ . Now (∃x/V )ψ is equivalent to the irregular IF for-
mula (∃y/V )∀x(x 6=y∨∀yψ). The correctness of this equivalence can be seen by the
following game-theoretical reasoning15: after the quantification for (∃y/V ), Abelard
has to choose the same value for x as Eloise chose for y, since else he loses the
game (when Eloise chooses the left disjunct). Hence we see that Eloise can indirectly
“force” Abelard to choose a value for x in any (V -independent) way she wishes. And
since Abelard may then choose a new value for y, Eloise cannot use the older value
(as a signal) later in the game.

14 Private communication.
15 A precise formal proof can be found in the proceedings version of this paper, [?].
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We now generalize the idea above to modify all existential quantifications in ϕ .
Let {x1, . . . ,xk} be the set of the occurrences of variables in existential quantifiers
of ϕ . Let {y1, . . . ,yk} be a set of distinct variables that do not occur in ϕ . We define
the formula ϕ ′ recursively as follows:

ϕ
′ = ϕ, if ϕ is a literal

(ψ ∨θ)′ = ψ
′∨θ

′,

(ψ ∧θ)′ = ψ
′∧θ

′,

((∀x/V )ψ)′ = (∀x/V )ψ ′,

((∃xi/V )ψ)′ = (∃yi/V )∀xi(xi 6=yi∨∀yiψ
′).

By the observations above, it is easy to see that ϕ ′ is equivalent to ϕ . Since no exis-
tential quantifier in ϕ ′ is in the effective scope of any other existential quantifier, ϕ ′

has no signalling nor Henkin patterns.
As we observed about the proof of Theorem 4, the role of existential quantifiers

can be changed essentially into that of universal quantifiers by using signalling by
disjunction. This trick is even more explicit in the translation above, where Abelard
is forced to give the same value for xi as Eloise chose for yi, or otherwise he will
immediately lose the game.

Note that the translation above can be directly applied to any IF formula – in-
cluding non-prenex and irregular formulae. Furthermore, this translation increases
the length of a given formula only by a small constant for each existential quantifier
in it. If a sentence ϕ in prenex form is translated to ϕ ′ as above, the prenex form
is lost. However, ϕ ′ is still “almost prenex” since only disjunctions with a literal as
the left disjunct are created within the quantifier prefix. See the following example
for explicitly expressing the Henkin prefix H1

2 without using Henkin or signalling
patterns.

Example 8 Consider an IF sentence ∀x∃y∀z(∃w/{x,y})ψ , where ψ is quantifier free,
and suppose that y′ does not occur in ψ . By applying our translation procedure to
the most external occurrence of an existential quantifier, ∃y, we obtain the formula
χ := ∀x∃y′∀y(y 6= y′ ∨∀y′∀z(∃w/{x,y})ψ). Note here that there is no need to apply
the translation procedure to the innermost existential quantifier (∃w/{x,y}). What
happens to the flow of information in χ? In the right disjunct, the variables y and y′

carry the same value; as a signal, y is blocked by the slash set of ∃w and, as a signal,
y′ is blocked by ∀y′; but the value of y (equal to the value of y′) can still be used
within ψ .

Remark 4 We want to analyze more carefully what memory properties are violated
in the various translations of Sections 6, 7.1 and 7.2, to pin down what is needed
to achieve ESO expressive power. We first note that the sentences θ ∗ and ξ used in
Theorems 3 and 4, respectively, both have action recall (conditions AR1–AR2) for
Eloise. However, θ ∗ does not satisfy the condition KM1 of knowledge memory due
to signalling (with existential quantifiers) and similarly ξ does not satisfy KM2 due
to the use of signalling with disjunctions. The translation presented in this section
typically violates AR2 and KM4, but it cannot violate AR1 as no existential quantifier
is in the effective scope of another existential quantifier.
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In the last two sections we will study the properties of irregular IF sentences and
prefixes in more detail.

8 Regularization

In this section we study irregular IF logic and demonstrate its correspondence to
regular IF logic. In Section 8.1 we present a regularization procedure which can be
used for translating irregular sentences into equivalent regular ones in a natural way;
it will be very useful for the results in Section 2.4. Furthermore, in Section 8.2 we
present an alternative regularization method that can be applied to special fragments
of IF logic, and in particular to sentences with knowledge memory. We use it to show
that the fragment of knowledge memory (including irregular sentences) is first order
and also to identify another first-order fragment of IF logic.

8.1 General regularization procedure

Any IF sentence can be regularized by renaming the variables that are requantified
and by making additions to certain slash sets. We present here a regularization pro-
cedure that is slightly different from the one that has been presented earlier in the
literature (cf. Remark 5). Suppose that a quantifier (Q′x/W ) occurs in the effective
scope of a quantifier (Qx/V ) in an IF sentence. In order to eliminate this requantifica-
tion, we now replace the quantifier (Qx/V ) with (Qy/V ), where y is a fresh variable.
Moreover, we substitute x with y everywhere within the effective scope of (Qx/V ).
Furthermore, since the requantification of x removes the information on the old value
of x, we also need to “hide” the information on the value of y within the effective
scope of (Q′x/W ). This can be done simply by adding y to all slash sets that are in
the scope of (Q′x/W ).16 The formal definition of this regularization procedure now
follows.

Let ϕ be an IF sentence, where quantifier (Qx/V ) occurs so that there is no quan-
tifier (Q′x/V ′) for which (Qx/V ) ∈ Es(Q′x/V ′); if there are several such quantifiers
that quantify x in ϕ , we fix any one of them. We call such a quantifier an outermost
quantification of x in ϕ . Let (Qx/V )µ be the corresponding subformula of ϕ and let y
be a fresh variable. Let then ϕy/x be the sentence that is obtained from ϕ by replacing
the subformula (Qx/V )µ with (Qy/V )µ ′, where µ ′ is obtained by modifying µ as
follows:

1. every free occurrence of x in µ (including occurrences in slash sets) is substituted
by y; and

2. y is added to the slash set of every quantifier in µ which is not in Es(Qx/V ).

16 Note that in order the hide the information on y completely, y should also be added to the slash sets
of all connectives (disjunctions and conjunctions) that are in the effective scope of (Q′x/W ). However, we
will see that there is no need to add y to the slash sets of any connectives, if they initially had empty slash
sets. Intuitively this is because in a position with move for a disjunction (resp. conjunction), Eloise (resp.
Abelard) can already see the values of all the free variables occurring in disjuncts (resp. conjuncts) and
thus the value of y does not give any new information as a signal.
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We next prove that the elimination of the requantification of x, as described above,
preserves logical equivalence.

Lemma 2 Let ϕ be an IF sentence in which x is requantified and let ϕy/x be the
sentence that is obtained by replacing an outermost quantification (Qx/V ) of x in ϕ

with (Qy/V ) as described above. Now we have M |= ϕ ⇐⇒ M |= ϕy/x.

Proof The translation from ϕ to ϕy/x only changes certain occurrences of x to y
and adds y to certain slash sets. As the syntactical trees of ϕ and ϕy/x are otherwise
identical, there is a canonical one-to-one correspondence between them; for any ψ ∈
Sf(ϕ), let ψ ′ denote the corresponding subformula in ϕy/x. We illustrate this below:

ϕ

(Qx/V )µ

(Q′x/W )η

ψ

ϕy/x

(Qy/V )µ ′

(Q′x/W ′)η ′

ψ ′

free occurrences of x replaced with y

y added to all slash sets

We next extend this correspondence for the positions of the semantical games
G(ϕ,M) and G(ϕy/x,M) with respect to subformulas ψ of ϕ:

(1) If ψ is not in the scope of (Qx/V ) and ψ 6= (Qx/V )µ , then any position of the
form (ψ,M,s) in G(ϕ,M) corresponds to the position (ψ ′,M,s) in G(ϕy/x,M).

(2) If ψ = (Qx/V )µ , then any position of the form (ψ,M,s) in G(ϕ,M) corresponds
to the position ((Qy/V )µ ′,M,s) in G(ϕy/x,M).

(3) If ψ ∈ Es(Qx/V ), then any position of the form (ψ,M,s) in G(ϕ,M) corresponds
to the position (ψ ′,M,s′) in G(ϕy/x,M), where s and s′ are otherwise identical
except for that y /∈ dom(s), x /∈ dom(s′) and s(x) = s′(y).

(4) If ψ is in the scope, but not in the effective scope, of (Qx/V ), then any posi-
tion of the form (ψ,M,s) in G(ϕ,M) corresponds to each position of the form
(ψ ′,M,s(a/y)) in G(ϕy/x,M), where a ∈M.

We observe that in cases (1) – (3) this correspondence is indeed bijective. However,
in the case (4), a position in G(ϕ,M) corresponds to several positions in G(ϕy/x,M)
– the only difference between them being that the assignment in the position has a
different value for y.

As discussed in Remark 1, uniform strategies could be alternatively defined over
the set of positions, instead of histories, of the game. For technical convenience, we
assume uniform winning strategies to be defined here in this way. The main idea in
the proof below is to always follow moves in the corresponding positions in the other
game where a uniform winning strategy is given by the assumption. Thus the proof
is quite straightforward for positions of type (1) – (3), but the case (4) requires more
attention as there this correspondence is not bijective.

Suppose first that Eloise has a uniform winning strategy σ in G(ϕ,M). We define
a strategy σ ′ for Eloise in G(ϕy/x,M) so that, in any position p, the strategy σ ′ simply
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assigns the same move as σ does in the corresponding position in G(ϕ,M). Note that
here each position p in G(ϕy/x,M) has a unique corresponding position in G(ϕ,M)
(even in the case (4)). Now for any literal ψ ′ in ϕy/x, if a position for ψ ′ can be
reached with σ ′, then the corresponding position for ψ can be reached with σ . Since
for literals ψ ′ = ψ and y does not occur in ψ , it is thus easy to see that σ ′ is a winning
strategy. The uniformity of σ ′ also clearly follows from the uniformity of σ .

Suppose then that Eloise has a uniform winning strategy σ ′ in (M,ϕy/x). For posi-
tions of the form (1) – (3) we may again define σ to do the same as in the (unique) cor-
responding position in G(ϕy/x,M). Consider next a position p = ((∃z/U)ψ,M,s) of
the form (4). Such a position corresponds to several pa =((∃z/U∪{y})ψ ′,M,s(a/y))
in G(ϕy/x,M) – with different values a for y. However, since y is in the slash set of the
quantifier for z, the strategy σ ′ assigns the same move for each pa. We thus define σ

to assign this particular move for p as well. Finally we need to define σ for a position
p = (ψ ∨θ ,M,s) of the form (4). This corresponds to each pa = (ψ ′∨θ ′,M,s(a/y))
in G(ϕy/x,M), for a ranging in M. If there is at least one such a for which σ ′ can
reach pa and σ ′ chooses ψ ′ in pa, we define also σ to select ψ in p. Else we define
σ to select θ in p.

By the definition of σ , if some literal can be reached by σ , then a corresponding
literal can be reached by σ ′. Thus, since σ ′ is a winning strategy, also σ is a winning
strategy. The uniformity of σ is clear for all the positions of types (1) – (3), but we
need to check the positions of the type (4) more carefully as there the value of y is
available as additional information in G(ϕy/x,M). However, as y is in the slash sets
of all existential quantifiers in positions of type (4) in G(ϕy/x,M), the uniformity of
σ follows from the uniformity of σ ′. Moreover, the uniformity of σ is also clear for
positions with disjunctions: as we have defined σ on positions of the game (instead
of histories), σ prescribes the same move for histories h,h′ that differ only in the
choices of values for variables that have been requantified. ut

If the variable x is requantified in ϕ , then ϕy/x has one less requantification of x
than ϕ . Hence, this translation can be iterated until no variable is requantified any-
more, and we have a regular sentence that is equivalent to ϕ . We call the sentence
obtained by this procedure the regularization of ϕ and denote it by reg(ϕ).

Theorem 5 Any IF sentence ϕ is equivalent to its regularization reg(ϕ).

Since the regularization procedure acts in the same way on both kinds of quantifiers,
it is easy to see that actually ϕ is strongly equivalent to reg(ϕ) (that is, M |= ϕ iff
M |= reg(ϕ) and also M |=− ϕ iff M |=− reg(ϕ)). Moreover, it can be shown that,
apart from the names chosen for the new fresh variables y, the sentence reg(ϕ) is
constructed in a unique way.

Example 9 Consider the following sentence:

ϕ = ∀x(∃y/{x})
(
R(x,y)∧ (∀y/{y})(∃x/{x,y})R(x,y)

)
.

By replacing the first quantification of x with a fresh variable v and the first quan-
tification of y with a fresh variable w, we obtain an equivalent regularized sentence
reg(ϕ) = ∀v(∃w/{v})

(
R(v,w)∧ (∀y/{w})(∃x/{v,y,w})R(x,y)

)
.
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We make the following important observation on the regularization process de-
scribed above:

– For any IF sentence ϕ , reg(ϕ) has the same quantifier-free part as ϕ .

Let Q be an irregular sentential IF prefix. By the observation above, it makes sense
to write reg(Q) for the regular prefix of any sentence of the form reg(Qψ) – where ψ

is any quantifier-free formula with Free(ψ)⊆ Bound(Q).17 Then, any such sentence
reg(Qψ) can be written as reg(Q)ψ . By this observation it could seem that every
irregular prefix is equivalent to a regular one. However, this equivalence holds only
“relatively” to the set Bound(Q) which is a proper subset of Bound(reg(Q)). We get
back to this topic in Section 9.2.

Remark 5 There is a similar regularization procedure described in [?], Theorem 9.3.
However, our regularization proceeds “outside-in” while the one in [?] proceeds
“inside-out”. For an example, consider the sentence ϕ := ∃x(∀x/{x})∃zψ , where
ψ is quantifier free. By our approach

reg(ϕ) = ∃y(∀x/{y})(∃z/{y})ψ.

In contrast, the approach in [?] produces an alternative regularization

reg′(ϕ) = ∃x(∀y/{x})∃z Subv(ψ,x,y)

where x is not added to the slash set of ∃z only because such set is empty. An advan-
tage of our approach is that reg does not modify the quantifier-free part of ψ; as we
mentioned, this turns out to be particularly useful for the study of irregular quantifier
prefixes. On the other hand, our regularization procedure may turn first-order quanti-
fiers into slashed ones, as with the quantifier ∃z above; reg′, instead, always preserves
the empty slash sets.

Remark 6 As we have already pointed out, the Skolemization procedure described
in Section 2.3 works correctly only for regular formulas. We are now in the position
to define a correct Skolemization of any IF sentence: just let SK(ϕ) := SK(reg(ϕ)).
Notice that if ϕ is regular, we have reg(ϕ) =ϕ , and thus this definition coincides with
that given in Section 2.3 for regular formulas. As an example, consider a formula ϕ

of the form ∀x∃x∀z(∃w/{x})ψ(x,z,w), with ψ(x,z,w) quantifier-free. We have

SK(ϕ) = SK(reg(ϕ)) = SK(∀y∃x(∀z/{y})(∃w/{x,y})ψ(x,z,w))

= ∃ f∃g∀y∀zψ( f (y),z,g(z)).

The regularization procedure allows us to analyse irregular sentences by examin-
ing the corresponding regular sentences instead. Also the semantic games related to
an irregular sentence ϕ and its regularization reg(ϕ) are very similar to each other.
However, regularization does not preserve all memory properties of the game. For
example, a sentence of the form ϕ = ∀x∀x(ψ ∨ ∃zψ), with ψ quantifier-free, has

17 Note here that reg(Q) is not uniquely defined as we allow any fresh variables to be used to eliminate
requantifications in the regularization process. However, this fact – which fresh variables are chosen to
form reg(Q) – is irrelevant for all of the results in this paper.
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knowledge memory for Eloise, while reg(ϕ) = ∀y∀x(ψ ∨ (∃z/{y})ψ) violates the
condition KM2. Moreover, violations of KM3 turn into violations of KM1 as demon-
strated by the sentence ∀x∃x∃zψ and its regularization ∀y∃x(∃z/{y})ψ . Similarly,
regularization turns any violation of KM4 into a violation of KM2. In the next section
we will present an alternative regularization procedure which preserves the properties
KM1–KM2 and use it to identify first order fragments of IF logic.18

8.2 Regularization procedure for sentences with knowledge memory

In the regularization procedure defined in the previous section we eliminated the re-
quantification of a variable x by renaming its initial quantification with a fresh vari-
able y; and by also adding y to all the slash sets that were not in the effective scope
of the original quantifier. The latter modification was made in order to simulate the
loss of information on the old value of x due to requantification. We will show in this
section that such additions to slash sets are unnecessary if the original sentence has
knowledge memory, and thus we may use an alternative regularization process which
does not hide the value y anywhere beyond the effective scope of of the initial quan-
tification of x. Intuively this means that, when Eloise has knowledge memory, she
would not gain any benefit even if she were able to see the old values of those vari-
ables which have been requantified. We also give examples which show that these old
values may carry useful information in games where Eloise does not have knowledge
memory.

Let ϕ be an IF sentence satisfying the same assumptions as given in the definition
of ϕy/x in Section 8.1. We define the sentence ϕ∗y/x as the sentence ϕy/x, except that
the clause 2 in the definition of µ ′ is omitted. That is, the introduced fresh variable y
is not added to any of the slash sets which are not in Es(Qx/V ). When all the requan-
tifications in ϕ are eliminated by this translation, we finally obtain a regular sentence
that is denoted by reg∗(ϕ). Note that in reg∗(ϕ) the renamed variables correspond to
those variables which will be requantified in ϕ – the only essential difference being
that they are not hidden via requantification. So the semantical games for reg∗(ϕ)
can, in a sense, be seen as variants of the corresponding games for ϕ with the al-
ternative rule that the players can see the old values of the variables even after the
requantification.

Example 10 Recall ϕ = ∀x(∃y/{x})
(
R(x,y)∧(∀y/{y})(∃x/{x,y})R(x,y)

)
from Ex-

ample 9. We again regularize ϕ by replacing the first quantification of x with v and
the first quantification of y with w:

reg∗(ϕ) = ∀v(∃w/{v})
(
R(v,w)∧ (∀y/{w})(∃x/{v,y})R(x,y)

)
.

The only difference between the regularizations reg(ϕ) and reg∗(ϕ) is that w is not
added to the slash set of the rightmost existential quantifier in reg∗(ϕ). As ϕ has
knowledge memory for Eloise, it will follow from Theorem 6 that ϕ and reg∗(ϕ) are
indeed equivalent.

18 Without going into details, we mention that all of the memory properties could alternatively be main-
tained in a natural way by adding fresh variables y also to the slash sets of the connectives which are in the
scope – but not in the effective scope – of the quantifier for (Qx/V ) which is replaced by (Qy/V ) in ϕy/x.
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Next we will show that a sentence ϕ is equivalent to ϕ∗y/x when certain condi-
tions of knowledge memory hold in ϕ . We consider separately the case where the
variable x, replaced with y, is universally quantified and the case where it is existen-
tially quantified. The necessary assumptions in these two cases are quite different.
We begin with the case where the replaced quantification of x is universal.

Lemma 3 Let ϕ be an IF sentence, where (∀x/V ) is an outermost quantification
of x. Let ϕ∗y/x be the sentence that is obtained by replacing (∀x/V ) with (∀y/V ) as
described above. Moreover, assume that KM3 and KM4 hold for ϕ . Now we have
M |= ϕ ⇐⇒ M |= ϕ∗y/x.

Proof We first note that there is a natural correspondence between the positions of
games G(ϕ,M) and G(ϕ∗y/x,M). This correspondence is defined for cases (1) – (4)
here exactly in the same way as in the proof of Lemma 2. (Indeed, the only difference
between G(ϕy/x,M) and G(ϕ∗y/x,M) is that y is not added to the slash sets of quan-
tifiers in positions of type (4).) As in the proof of Lemma 2, we assume the uniform
winning strategies to be defined on positions of the games (instead of histories), and
also here the main idea in the proof is to always follow moves in the corresponding
positions in the other game. The implication from left to right can be proven ex-
actly as in the proof of Lemma 2. (Note here that G(ϕ∗y/x,M) is an easier version of
G(ϕy/x,M) for Eloise since she has a bit more information available in the former
game).

Suppose that Eloise has a uniform winning strategy σ ′ in (M,ϕ∗y/x). First for
positions of the form (1) – (3) we define σ to do the same move as σ ′ does in the
corresponding position in G(M,ϕ∗y/x). Next, for positions of type (4), we first fix some
value a0 ∈M and then define σ at any position p(s) of type (4) to use the choice of
σ ′ for p(s(a0/y)), where p(s) denotes the position p with a given assignment s as a
parameter.

Before showing that σ is a winning strategy, we make some observations. Let p†

be a position of type (4) in G(M,ϕ) such that the position immediately preceding it is
still of type (3). Now p† is (ψ,M,s) for some ψ preceded by a quantifier (Q′x/W ), i.e.
p† is a position that occurs immediately after a requantification of x. We first consider
the special case when no operator for Eloise occurs in the scope of (Q′x/W ). Then,
since Eloise does not have a move to make at any position p reachable from p†,
it is clear that if such a position p can be reached with σ , then also some position
corresponding to p can be reached with σ ′.

Suppose then that some operator for Eloise is in the scope of (Q′x/W ). Then,
by conditions KM3 and KM4, Eloise cannot see the initial value of x (quantified by
(∀x/V )) in any position of the type (3) which precedes p† in G(M,ϕ). Therefore she
also cannot see the value of y in any position of type (3) which precedes a position
corresponding to p† in G(M,ϕ∗y/x). Since corresponding assignments in correspond-
ing positions differ only on y, then, the uniformity of σ ′ forces Eloise to pick the same
moves independently of what value a Abelard chooses for y. It is thus clear that:

If p†(s) can be reached with σ , then a corresponding position p†(s(a/y))
can be reached with σ

′ for each a ∈M.
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By the definition of σ and by the condition above, it is also easy to see that whenever
some later position p(s) of type (4) can be reached with σ , then also the correspond-
ing position p(s(a0/y)) can be reached with σ ′.19

By the observations above, we conclude that if a position p in G(M,ϕ) can be
reached with σ , then a position corresponding to p in G(M,ϕ∗y/x) can be reached
with σ ′. Since y does not occur in any of the literals of type (4) in G(M,ϕ∗y/x), it is
thus easy to see that σ is a winning strategy.

For checking the uniformity of σ in positions of the form ((∃z/U)ψ,M,s) of type
(4), let s1 and s2 be assignments that can occur in such position and that only differ
for the variables in U . For these assignments σ follows the choices of σ ′ for s1(a0/y)
and s2(a0/y), respectively. As s1(a0/y) and s2(a0/y) only differ on the values in U , it
follows from the uniformity of σ ′ that σ assigns the same value for the positions with
s1 and s2. For all other positions of the game the uniformity of σ can be proven as in
the proof of Lemma 2. We thus conclude that σ is a uniform winning strategy. ut

The assumptions KM3 and KM4 are both necessary for proving the claim of
Lemma 3. See the example below.

Example 11 Consider the sentence ψ = ∀x∃u(u = x∧∀x(∃z/{u})z = u) for which
ψ∗y/x = ∀y∃u(u = y∧∀x(∃z/{u})z = u). We first note that ψ does not satisfy KM3 as
∃u can see the “first value of x” while it is hidden from (∃z/{u}) due to requantifica-
tion. The sentence ψ is not true in any model with at least two elements as Eloise has
to copy the value of x to u and thus she cannot match the value of z with the value
of u when she cannot see the value of u nor the “old value of x”. However, ψ∗y/x is
clearly valid since Eloise wins simply by copying the value of y to both u and z.

Consider then the sentence θ = ∀x∀u(u 6= x∨∀x(∃z/{u})z = u) for which we
have θ ∗y/x = ∀y∀u(u 6= y∨∀x(∃z/{u})z = u). Note that θ does not satisfy KM4 as ∨
can see the first value of x while it is hidden from (∃z/{u}). The sentence θ is not
true in any model with at least two elements as Eloise has to choose the right disjunct
always when u and x have the same value and thus she cannot match the values of
z and u when she cannot see the value of u nor the old value of x. However, θ ∗y/x is
clearly valid since Eloise wins by choosing the right disjunct whenever u and y have
the same value and then copying the value of y to z.

Note that in both ψ∗y/x and θ ∗y/x the universally quantified variable y can signal
something useful for (∃z/{u}) even though it has already become a dummy variable
(by not occurring in any of the literals that can be reached). Hence, in the correspond-
ing games for ψ and θ , it would be useful for Eloise if she could see the old value of
x when selecting a value for u.

Next we prove a claim that gives necessary conditions for the equivalence of ϕ

and ϕ∗y/x in the case when the replaced quantification of x is existential. From the
assumptions given below it follows that all the information that Eloise can see when

19 Note however that for later positions p(s) of type (4), the position p(s(a/y)) is not necessarily reached
with σ ′ for all elements a ∈ dom(M). This is because σ ′ may indeed choose different moves depending
on the value a for y. Nevertheless, since σ ′ is a winning strategy and y is a dummy variable for positions
of type (4), it is irrelevant which fixed value a0 for y Eloise “follows” when copying σ ′ to σ .
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quantifying y is available to her also later in the game. Therefore, intuitively, any
information that the dummy variable y can potentially signal to Eloise is useless for
her, since she already knows it.

Lemma 4 Let ϕ be an IF sentence, where (∃x/V ) is an outermost quantification
of x. Let ϕ∗y/x be the sentence that is obtained by replacing (∃x/V ) with (∃y/V ) as
described above. Moreover, we assume that the condition KM1 and the following
condition (?) hold for ϕ:

(?) (∃x/V ) is not in the scope of any quantifier (Qz/U) such that z is requantified
after (∃x/V ) in ϕ .

Now we have M |= ϕ ⇐⇒ M |= ϕ∗y/x.

Proof We use also here the same correspondence between the games G(ϕ,M) and
G(ϕ∗y/x,M) as in the proof of Lemma 2. Moreover, the implication from left to right
can be proven as in the proof of Lemma 2.

Suppose that Eloise has a uniform winning strategy σ ′ in (M,ϕ∗y/x). We now
define a strategy σ for Eloise in G(ϕ,M) so that, in a position p, the strategy σ

assigns the same move as σ ′ does in some position p′ which corresponds to p and
which can be reached with σ ′ in G(ϕ∗y/x,M). In case p is of type (4) there can be
several positions which correspond to p, but at most one of them can be reached
with σ ′. This holds because the value of y chosen by σ ′ is determined by the values
of the variables that are stored in the assignment when quantifying y, and none of
these variables is requantified after y in ϕ∗y/x by the condition (?). Moreover, it is not
relevant to consider the case when no position corresponding to p can be reached
with σ ′, as such positions p are not reachable with σ either.20 For the same reasons
as in the proof of Lemma 2, it is now easy to see that σ is a winning strategy and that
its uniformity condition holds for positions of types (1) – (3) and positions of type
(4) with disjunctions.

For checking the uniformity of σ in positions of the form ((∃z/U)ψ,M,s) of type
(4), let s1 and s2 be assignments that can occur in such position and that only differ for
the variables in U . Let s′1 and s′2 be the respective assignments in the corresponding
positions that are reachable by σ ′. We first show that these positions agree on the
value of y. Suppose that s′1(y) 6= s′2(y). Let s∗1 and s∗2 be the assignments preceding
s′1 and s′2, respectively, in the corresponding histories such that s∗1 and s∗2 occur in a
position for the quantifier (∃y/V ) in G(ϕ∗y/x,M). Since σ ′ assigns different values
of y for s∗1 and s∗2, there must be some other variable w for which s∗1(w) 6= s∗2(w).
Let (Q′′w/T ) be the quantifier for which (∃y/V ) ∈ Es(Q′′w/T ). See the order of the
relevant quantifiers in ϕ∗x/y below for illustration:

(Q′′w/T ) . . .(∃y/V ) . . .(Q′x/W ′) . . .(∃z/U)

20 Towards σ being a winning strategy, it is irrelevant how it is defined for positions that are not reachable
by it. It is also obvious that when the uniformity condition is not violated by reachable positions, we can
define σ for non-reachable positions in such a way that uniformity still holds. Moreover, the fact that σ

does not reach such positions for which no corresponding position is reachable by σ ′ can be proven by a
simple induction argument using the fact that σ is defined by copying the moves of σ ′.
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Since the choice of σ ′ for the value of y is independent of V , we may assume that
w /∈V . By the assumption (?), w is not requantified in ϕ∗x/y after y and hence we must
have s′1(w) 6= s′2(w) and thus also s1(w) 6= s2(w). We next apply the assumption KM1
for the quantifiers (Q′′w/T ), (∃x/V ) and (∃z/U) in ϕ . Because w /∈V , by KM1, it has
to be that w /∈U . But this is impossible since s1 and s2 were supposed to differ only for
the variables in U . Hence s′1(y) = s′2(y) and thus, by the uniformity of σ ′, the strategy
σ assigns the same value for positions ((∃z/U)ψ,M,s1) and ((∃z/U)ψ,M,s2). We
thus conclude that σ is a uniform winning strategy for Eloise. ut

The assumptions KM1 and (?) are both necessary for the claim of Lemma 4. See
the example below.

Example 12 Consider the sentence ψ = ∀z∃x∀x(∃u/{z})u = z for which we have
ψ∗y/x = ∀z∃y∀x(∃u/{z})u = z. We first note that ψ does not satisfy KM1 as ∃x can
see the value of z while it is hidden from (∃u/{z}). The sentence ψ is not true in
models with at least two elements as Eloise cannot match the value of u with the
value of z when she cannot see the value of z nor the first value of x. However, ψ∗y/x
is valid since Eloise wins by copying the value of z to y which signals it to u.

Consider then the sentence θ = ∀z∃x∃w(x = z∧w = z∧∀z∀x(∃u/{w})u = w) for
which θ ∗y/x = ∀z∃y∃w(y = z∧w = z∧∀z∀x(∃u/{w})u = w). Now θ satisfies KM1,
but it does not satisfy the condition (?) as ∃x is in the scope of ∀z which is requantified
in θ after ∃x. The sentence θ is not true in any model with at least two elements as
Eloise has to copy the value of z to both x and w, and thus she cannot match the value
of u with the value of w when she cannot see the value of w nor the old values of x
or z. However, θ ∗y/x is clearly valid since Eloise wins simply by copying the value of
z to y and w, and then copying y to u.

In the following theorem we give various sufficient conditions under which the
sentence reg∗(ϕ), given by the alternative regularization process, is equivalent to ϕ .

Theorem 6 An IF sentence ϕ is equivalent to its alternative regularization reg∗(ϕ)
if at least one of the conditions below holds:

(1) ϕ satisfies KM3, KM4 and all the replaced quantifiers in reg∗(ϕ) are universal.21

(2) ϕ satisfies KM1 and all the replaced quantifiers in reg∗(ϕ) are existential.
(3) ϕ satisfies KM1, KM3 and KM4.

Proof The first case is proven by applying Lemma 3 for every requantification in ϕ .
Similarly, the second case is proven by applying Lemma 4 for every requantification
in ϕ – in such an order that the additional assumption (?) is maintained in the transla-
tion. Finally the third case is obtained by combining the earlier two translations. ut

Theorem 6 isolates three fragments of IF logic on which reg∗ is correct, i.e., it pro-
duces equivalent sentences. It is worth pointing out that these are all “large” frag-
ments that can define second-order properties, as each of them allows either signalling

21 Note that this holds if and only if we have: (Q′x/U) ∈ Es(Qx/V )⇒ Q = ∀ for all quantifiers in ϕ .
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or signalling by disjunction; thus reg∗ is correct on a significant part of IF logic. By
contrast, in the rest of the section we will use reg∗ to isolate a first-order fragment.

As demonstrated in the end of Section 8.1, our standard regularization reg does
not necessarily preserve the conditions KM1 and KM2. However the alternative reg-
ularization procedure reg∗ preserves these properties and thus it follows that reg∗

preserves the condition of knowledge memory.

Lemma 5 Let ϕ be an IF sentence where (Qx/X) is an outermost quantification of x;
let y be a variable that does not occur in ϕ .

(1) If ϕ has KM1, then ϕ∗y/x has KM1.
(2) If ϕ has KM2, then ϕ∗y/x has KM2.

Proof We prove only (1), as the proof of (2) is similar. Suppose for the sake of con-
tradiction that ϕ∗y/x does not have KM1. We first note that all quantifications, with the
exception of (Qx/X) and the corresponding (Qy/X) in ϕ∗y/x, are visible to other quan-
tifiers in ϕ if and only if they are visible to other quantifiers in ϕ∗y/x. Hence the reason
why KM1 fails in ϕ∗y/x is that there are quantifiers (∃u/U ′),(∃v/V ′) in ϕ∗y/x such that
(∃u/U ′),(∃v/V ′)∈Es(Qy/X), y /∈U ′, y∈V ′, and (∃v/V ′) is in the scope of (∃u/U ′).
Let (∃u/U),(∃v/V ) be the corresponding quantifiers in ϕ . By the definition of the al-
ternative regularization procedure, y ∈V ′ implies that, in ϕ , (∃v/V ) ∈ Es(Qx/X) and
x∈V . Now since (∃v/V )∈Es(Qx/X) and (∃v/V ) is in the scope of (∃u/U), we must
have (∃u/U)∈ Es(Qx/X). But then again, by the definition of the regularization pro-
cedure, from y /∈U ′ we conclude x /∈U . But then, since (∃u/U),(∃v/V )∈Es(Qx/X),
x ∈V and x /∈U , and (∃v/V ) is in the scope of (∃u/U), we conclude that ϕ does not
have KM1: a contradiction. ut

Since the alternative regularization process reg∗ is correct for sentences with
knowledge memory and reg∗ preserves knowledge memory for Eloise, we now can
generalize a result of [?] – stating that the regular fragment of knowledge memory is
first order – to the case of irregular sentences.

Theorem 7 (Cf. [?]) If Eloise has knowledge memory for a (possibly irregular) IF
sentence ϕ , then ϕ is equivalent to a first-order sentence.

Proof Let ϕ be an IF sentence for which KM1–KM4 hold. By Theorem 6(3), ϕ is
equivalent to reg∗(ϕ). By repeated applications of Lemma 5, we see that also reg∗(ϕ)
has the properties KM1–KM2; being regular, then, reg∗(ϕ) has KM. Thus reg∗(ϕ) is
equivalent to a first-order sentence by Theorem 8.10 in [?]. ut

We can also use reg∗ to identify a different kind of first order fragment.

Theorem 8 A (possibly irregular) IF sentence ϕ is equivalent to a first order sen-
tence if ϕ satisfies the conditions KM1 and KM2 of knowledge memory, and the
following condition holds for ϕ: for every quantifier (Qx/U) which has a quantifier
(Q′x/V ) in its scope, we have Q = ∃.



Independence-friendly logic without Henkin quantification 37

Proof By Theorem 6(2), ϕ is equivalent to reg∗(ϕ). By similar reasoning as in the
proof above, reg∗(ϕ) also has KM and thus it is equivalent to a first order sentence.

ut

Note that the theorem above does not follow from Theorem 7 as we do not need
to assume the conditions KM3 and KM4 of knowledge memory. For example, any
sentence ϕ = ∀x∃y∃z∀y(∃w/{z})ψ , where ψ is quantifier free, is equivalent to a
first-order sentence by the theorem above even though ϕ does not have knowledge
memory for Eloise because it violates the property KM3.

9 Irregular IF prefixes

In this section we make a number of observations on irregular prefixes. First in Sec-
tion 9.1 we study properties of irregular Henkin and signalling prefixes. In Section 9.2
we show how the study of irregular prefixes can be reduced to the study of regular pre-
fixes by using the regularization procedure from Section 8.1. Finally in Sections 9.3
and 9.4 we show how irregular prefixes behave quite differently in infinite and finite
models.

9.1 Irregular signalling and Henkin prefixes

In this section we compare the irregular signalling and Henkin prefixes to the regular
ones. In the case of regular prefixes, a so-called Extension Lemma ([?], section 4)
ensures that the expressive power of a prefix Q does not decrease if it is appropriately
embedded in a longer prefix Q′ (“appropriately” means, roughly, that the dependen-
cies in Q are preserved). Consequently, for a regular prefix to have second-order ex-
pressive power it suffices that a second-order prefix be embeddable in it; that is, it is
sufficient that the prefix contains certain specific patterns. The Extension Lemma fails
for irregular prefixes. For example, the signalling pattern ∀x∃y(∃z/{x}) is NP-hard,
but its extension ∀x∃y(∃z/{x})∀x∀y∀z is equivalent to the first-order prefix ∀x∀y∀z.
Requantification may inhibit an expressive quantification pattern.

Remember that by the dichotomy result (Theorem 1) every regular (sentential)
IF prefix is either first order or can express NP-complete problems; and the NP-hard
prefixes are exactly those that contain a signalling or a Henkin pattern as a subprefix.
It is not known whether a similar dichotomy result holds for irregular IF prefixes. We
will get back to this question in Sections 9.2, 9.3 and 9.4, where we study irregular
prefixes as compared to regular ones.

Recall that our definition of a linear pattern requires that the relation of “be-
ing in the effective scope” forms a linear order among the quantifiers in the pattern.
Hence the requirement that signalling and Henkin patterns be linear patterns excludes
many prefixes that resemble signalling/Henkin prefixes, but have repetitions of vari-
ables. For example, the prefix ∀x∃x∃y is not signalling because ∃y is not in the ef-
fective scope of ∀x; and similarly, the prefixes ∀x∃x∀z(∃w/{x}), ∀x∃y∀x(∃w/{y}),
∀x∃y∀y(∃w/{x}) are not classified as Henkin. By observing the Skolemizations of
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these sentences (see Remark 6), it is easy to show that these specific prefixes are actu-
ally first order. For example, consider a sentence ∀x∃x∀z(∃w/{x})ψ(x,z,w) (where ψ

is quantifier-free), which has the first of the prefixes above. We have already seen (Re-
mark 6) that its Skolemization is ∃ f∃g∀y∀zψ( f (y),z,g(z)), which is easily proved to
be equivalent to ∃c∃g∀zψ(c,z,g(z)) as y does not occur in ψ . By “reversing” the
Skolemization process (see [?]), this is seen to be equivalent to the first-order sen-
tence ∃u∀z∃wψ(u,z,w).

As observed earlier, our definitions do not enforce that the variables in a signalling
or Henkin pattern are all distinct. For example, the prefix ∀x∃y(∃y/{x}) is signalling,
and the prefixes ∀x∀z(∃y/{z})(∃y/{x,y}) and ∀x∃y∀z(∃z/{x}) are Henkin. Using the
Skolemizations as above, it is easy to show that these specific prefixes are actually
first order – in contrast with the case of regular Henkin and signalling prefixes, which
can all express second-order properties. However, we will see in Section 9.4 that the
signalling prefix ∀x∃y(∃y/{x}) can be extended to a second-order prefix by adding
two additional universal quantifiers.

We end the discussion with some notes on signalling in irregular prefixes. We
first consider long signalling sequences or “chained signalling patterns”. The regular
prefix ∀x∃y(∃z/{x})(∃w/{x,y}) is an example of a long signalling sequence as the
value of x may be signalled via y to z and then via to z to w. In the case of regu-
lar prefixes long signalling sequences are not so interesting as any long signalling
sequence contains a signalling pattern (essentially of the form ∀x∃y(∃z/{x}) which
can already express NP-hard problems ([?]). However, in the irregular case, there are
long signalling sequences that are beyond first order, but such that all the signalling
patterns occurring as subprefixes are first order. The simplest example is the prefix
∀x∃y(∃y/{x})(∃z/{x}). By observing the Skolemizations, it is easy to show that this
prefix is equivalent to the standard (NP-hard) signalling pattern ∀x∃y(∃z/{x}). But,
according to our definitions, the only signalling pattern that occurs within this prefix
is ∀x∃y(∃y/{x}) which is first order, as stated above.

9.2 Regularizing irregular prefixes

As shown in Section 8.1, irregular IF sentences in prenex form can be regularized by
only modifying the quantifier prefix without changing the quantifier-free part. Thus
irregular prefixes are equivalent to regular prefixes in a “relative sense” stated by the
following theorem. (Recall Section 2.4 for the definition of equivalence of prefixes
over a given set of variables.)

Theorem 9 Any irregular prefix Q is equivalent to reg(Q) over Bound(Q).

Proof Let ψ be a quantifier-free formula for which Free(ψ)⊆ Bound(Q). As stated
in Section 8.1, Qψ is equivalent to its regularization reg(Qψ) = reg(Q)ψ . As the
sentences Qψ and reg(Q)ψ are equivalent for each such ψ , we have shown that the
prefixes Q and reg(Q) are equivalent over the set Bound(Q). ut

However, since requantifications in Q are replaced with fresh variables in reg(Q),
we have Bound(Q) ( Bound(reg(Q)). Therefore Q is not equivalent to reg(Q) in
general. See the following example for illustration.
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Example 13 Consider the irregular quantifier prefix Q := ∀x∃z(∃z/{x}). As we have
stated before, this prefix is first order. However, reg(Q) = ∀x∃y(∃z/{x}) is NP-hard
as a regular signalling prefix. This seeming contradiction is explained by the fact that
Qψ ≡ (reg(Q))ψ for all ψ with Free(ψ)⊆ {x,z}. Hence the prefix ∀x∃y(∃z/{x}) is
indeed first order over the set {x,z}.

By Theorem 9, when studying the expressive power of an irregular prefix Q, we
may equivalently study the corresponding regular prefix reg(Q) applied to quantifier-
free formulae ψ for which Free(ψ) ⊆ Bound(Q). Since the “dummy variables” in
Bound(reg(Q)) do not occur in ψ , their only role in the semantical game can be as
signals for the other quantifiers22. It is thus natural to ask whether we could remove
all these dummy quantifiers from reg(Q) by doing suitable modifications to the slash
sets in reg(Q).

We first show that the dummy universal quantifiers (∀x/V ) cannot signal anything
useful for Eloise. Indeed, they can be removed from reg(Q) simply by removing
the quantified variable x from all the slash sets as well. This result holds also more
generally for non-prenex sentences that have dummy universal quantifications. An
intuitive idea for the truth of this claim is that when Abelard can choose any value
for the dummy variable x, the quantifier (∀x/V ) does not signal anything useful for
Eloise.

Lemma 6 Let ϕ be a regular sentence, where x is quantified by (∀x/V ), but x does
not occur in any literal in ϕ . Let ϕ|∀x denote the sentence which is obtained by

1. removing the quantifier (∀x/V ) from ϕ; and
2. removing x from all the slash sets in the scope of (∀x/V ).

Now we have M |= ϕ ⇐⇒ M |= ϕ|∀x.

Proof Similarly as in the proof of Lemma 2, there is a natural correspondence be-
tween the syntactical trees of ϕ and ϕ|∀x. Here the subformula (∀x/V )µ does not
correspond to any subformula in ϕ|∀x, but for any ψ ∈ Sf(ϕ) \ {(∀x/V )µ}, the cor-
responding subformula in ϕ|∀x is denoted by ψ ′. This correspondence is extended to
positions of semantic games by defining that a position of the form (ψ,M,s), where
ψ 6= (∀x/V )µ , corresponds to the position (ψ ′,M,s′), where (i) s′ = s if ψ is not in
the scope of (∀x/V ); and (ii) s′ = s−x if ψ is in the scope of (∀x/V ). (The assignment
s−x is obtained by removing x from the domain of s.)

As in the proof of Lemma 2, the general idea is to copy the moves made by the
winning strategy in the corresponding positions. Again we may assume for technical
convenience that the winning strategies are defined over positions of the game instead
of histories (cf. Remark 1).

Suppose first that Eloise has a uniform winning strategy σ ′ in G(ϕ|∀x,M). Now
every position where Eloise needs to make a choice in G(ϕ,M) has a unique corre-
sponding position in G(ϕ|∀x,M) (note here that in positions for (∀x/V )µ Eloise does
not need to make a choice). We may thus define a strategy σ for G(M,ϕ) by simply

22 It is intuitively clear that the dummy variables cannot signal anything useful for disjunctions in ψ as
Eloise is allowed to see the values of all relevant variables when choosing a disjunct.
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copying σ ′ in corresponding positions. As x does not occur in any literals in ϕ , it is
clear that σ is a winning strategy. Moreover, the uniformity of σ follows from the
uniformity of σ ′.

Suppose next that Eloise has a uniform winning strategy σ in G(ϕ,M). As posi-
tions for those formulas ψ ′, for which ψ not in the scope of (∀x/V ), have a unique
corresponding position, we may there define σ ′ to follow σ in the corresponding po-
sition. For the other positions we proceed as in the proof of Lemma 3. That is, we
fix any value a0 ∈M and define σ ′ at (ψ ′,M,s′) to follow σ at (ψ,M,s′(a0/x)). As
(ψ ′,M,s′) can be reached with σ ′ only when (ψ,M,s′(a0/x)) can be reached with σ ,
it is easy to see that σ ′ is a winning strategy. Moreover, also the uniformity of σ ′

now follows from the uniformity of σ (cf. the corresponding part in the proof of
Lemma 3.) ut

The next natural question is whether also the dummy existential quantifiers could
be removed from sentences by making suitable modifications to slash sets. It turns
out that this can indeed be done – when we consider only infinite models.

9.3 Irregular prefixes in infinite models

When considering the effectiveness of signalling, there is a big difference between
finite and infinite models. Since in an infinite model finite tuples can be injectively
mapped to the domain, we can use the value of a single variable as a signal encoding
all the information that is produced by any (finite) number of quantifiers. This obser-
vation will be the key for showing that, in infinite models, the expressive power of
irregular IF prefixes amounts to the expressive power of regular IF prefixes.

Suppose that an IF sentence ϕ contains a dummy variable x, quantified by an exis-
tential quantifier (∃x/V ), such that x does not occur in any of the literals and therefore
its role can be relevant only for signalling. We then eliminate the quantification of x
from ϕ and modify the slash sets of other existential quantifiers in such a way that:

– The quantifiers that could “see” the value of x (as a signal) are now allowed to see
the values of all the variables that (∃x/V ) can “see”.

– The quantifiers that cannot see the value of x do not need any essential modifica-
tions. We may simply remove x from their slash set as the value of x is no longer
available.

As a result we obtain a sentence ϕ|∃x in which the value of the dummy variable x
can no longer be used as a signal, but all the quantifiers that were allowed to depend
on x in ϕ are now allowed to depend on all the values that x was allowed to depend
on. Hence the existential quantifiers in ϕ|∃x intuitively can use the signal given by the
dummy variable x “in its maximal potential”. A formal definition of ϕ|∃x now follows.

Let ϕ be a regular IF sentence in which the variable x occurs in the quantifier
(∃x/V ), but it does not occur in any literal in ϕ . The set of those variables that are
quantified before (∃x/V ) in ϕ , but which do not occur in V , is denoted by V . Let then
ϕ|∃x be the sentence that is obtained from ϕ by replacing the subformula (∃x/V )µ
with µ ′ (omitting (∃x/V )), where µ ′ is obtained by modifying µ so that every exis-
tential quantifier (∃y/U) in µ is replaced with (∃y/U ′), where
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1. U ′ :=U \V if x /∈U ; and
2. U ′ :=U \{x} else.

Note that since ϕ is a sentence and x does not occur in any literal of ϕ , also ϕ|∃x is a
sentence. Moreover, ϕ|∃x has exactly the same quantifier-free part as ϕ .

Example 14 Let ψ1,ψ2,ψ3 be quantifier-free formulae whose free variables are from
the set {x1,x2,x3,v1,v2,v3}. Consider the following sentence

ϕ := ∀x1∀x2∀x3(∃w/{x1})(
(∃v1/{x1,x2})ψ1∨ (∃v2/{x2,x3})ψ2∨ (∃v3/{w,x2,x3})ψ3

)
.

Now we have

ϕ|∃w = ∀x1∀x2∀x3
(
(∃v1/{x1})ψ1∨∃v2ψ2∨ (∃v3/{x2,x3})ψ3

)
.

The intuition behind this translation is that because v1 can see w and w can see x2,
also v1 becomes able to see x2. However, v1 cannot see x1 since w cannot see x1 either.
Likewise v2 can see both x2 and x3 since w can see them. But v3 cannot see x2 nor x3
since it cannot see w.

The following example demonstrates how ϕ|∃x becomes equivalent to ϕ in all
infinite models. (The general result will be proven in Lemma 7.)

Example 15 Consider the sentence

η := ∀x∀y∃u(∃v/{x,y})(∃w/{x,y})(v = x∧w = y).

Here both (∃v/{x,y}) and (∃w/{x,y}) can only see the value of u. But if the model
is infinite, it is possible to map each pair of values for (x,y) to a different value
of u and thus signal the value of both x and y to the quantifiers (∃v/{x,y}) and
(∃w/{x,y}). Hence, in all infinite models, η becomes equivalent to the sentence
η|∃u = ∀x∀y∃v∃w(v = x∧w = y) which is trivially valid.

The idea in the example above can be used to prove the following Lemma which
intuitively states that signalling by dummy variables can be used maximally in infinite
models.

Lemma 7 Let ϕ be a regular IF sentence in which x is once existentially quantified
by the quantifier (∃x/V ), but x does not occur in any literal. Let ϕ|∃x be the sentence
that is obtained from ϕ by eliminating all the occurrences of x as described above.
Now for any infinite model M we have: M |= ϕ ⇐⇒ M |= ϕ|∃x.

Proof As in the proof of Lemma 6, there is a natural correspondence between the
subformulas of ϕ and ϕ|∃x: for any ψ ∈ Sf(ϕ)\{(∃x/V )µ}, let ψ ′ denote the corre-
sponding subformula in ϕ|∃x. This correspondence is again extended to positions of
semantic games so that any position (ψ,M,s), where ψ 6= (∃x/V )µ , corresponds to
(ψ ′,M,s′), where s′ = s if ψ is not in the scope of (∃x/V ); and else s′ = s−x. (The
assignment s−x is obtained by removing x from the domain of s.) We assume again
that winning strategies are defined over positions of the game.
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Suppose first that Eloise has a uniform winning strategy σ in G(ϕ,M). We then
formulate a strategy σ ′ for Eloise so that, in every position p in G(M,ϕ|∃x), the strat-
egy σ ′ assigns the same move as σ does in some corresponding position that can be
reached with σ in G(ϕ,M). Note here that there can be several positions in G(ϕ,M)
that correspond to p (with different values for x), but at most one of them can be
reached with σ because the value chosen for x by σ is determined by the values
of the other variables. We do not need to consider the case when no position cor-
responding to p can be reached with σ as such positions are not reachable by σ ′

either. Now, for any literal ψ ∈ Sf(ϕ), if a position (ψ ′,M,s′) can be reached with
σ ′ in G(M,ϕ|∃x), then a corresponding position (ψ,M,s) can be reached with σ in
G(M,ϕ). Since ψ ′ = ψ and x does not occur in ψ , the strategy σ ′ is thus clearly a
winning strategy in G(ϕ|∃x,M).

For checking the uniformity of σ ′, consider a position ((∃y/(U \V ))ψ ′,M,s′)
which correspond to positions ((∃y/U)ψ,M,s), where x /∈U , for such s for which
s−x = s′. Let s′1 and s′2 be assignments that only differ on U \V . Let s1 and s2 be
the respective assignments in the corresponding positions that are reachable by σ .
Now s1 and s2 can only differ on (U \V )∪{x}. Since s1 and s2 agree on all variables
vi /∈V that are quantified before x in ϕ and since the choice of σ for the value of x is
independent of V , it must be that s1(x) = s2(x). Thus s1 and s2 agree on all variables
that are not in U . Since the choice of σ for the value of y is independent of U , the
strategy σ must thus assign the same choice of y for positions with s1 and s2. Thus
σ ′ assigns the same move for the corresponding positions with s′1 and s′2. For all the
other positions, the uniformity of σ ′ clearly follows from the uniformity of σ . We
thus conclude that σ ′ is a uniform winning strategy Eloise in G(ϕ|∃x,M).

Suppose then that Eloise has a uniform winning strategy σ ′ in G(M,ϕ|∃x). We
define a strategy σ for Eloise in G(ϕ,M) as follows. Consider first a position of
the form ((∃x/V )ψ,M,s) and let V = {v1, . . . ,vn}. Since M is infinite, there is an
injection f : Mn → M. We now define σ to assign the value f (s(v1), . . .s(vn)) for
((∃x/V )ψ,M,s); note that this choice is clearly independent of V . In any other po-
sition p in G(ϕ,M), the strategy σ picks the same move as σ ′ does in the (unique)
corresponding position in (ϕ|∃x,M). As in the other direction of the proof, it is now
easy to see that σ is a winning strategy.

For checking the uniformity of σ , consider first a position ((∃y/U)ψ,M,s) such
that (∃y/U) is in the scope of (∃x/V ) and x /∈U . This corresponds to the position
((∃y/(U \V ))ψ ′,M,s−x) in G(ϕ|∃x,M). Let s1 and s2 be assignments that differ only
on U . Suppose first that s1 and s2 also agree on all variables in V . Now (s1)−x and
(s2)−x only differ on U \V and thus σ ′ must assign the same move for (s1)−x and
(s2)−x; and hence σ assigns the same move for s1 and s2. Suppose then that s1 and
s2 differ for some variable vi ∈V . Since the value of x is given by the injection f and
vi ∈ dom( f ), it must now be that s1(x) 6= s2(x). But since x /∈U , this is impossible as
we assumed s1 and s2 to only differ on U . Consider then a position ((∃y/U)ψ,M,s)
such that (∃y/U) is in the scope of (∃x/V ) and x∈U . This corresponds to the position
((∃y/(U \{x}))ψ ′,M,s−x). Even though x is not included in the slash set U \{x}, the
value chosen by σ ′ is here trivially independent of the value of x as x is not in the
domain of s−x. Also for all the other types of positions the uniformity of σ follows
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directly from the uniformity of σ ′. We thus conclude that σ is a uniform winning
strategy Eloise in G(ϕ,M). ut

By applying Lemmas 6 and 7 in the particular case of the regularizations of IF-
sentences in prenex form, we can prove the following theorem.

Theorem 10 In infinite models every irregular sentential prefix Q is equivalent to a
regular prefix Q′ such that Bound(Q) = Bound(Q′).

Proof Let Q be an irregular prefix and Qψ be a sentence, where ψ is quantifier
free. Next, by regularizing Qψ , we obtain the sentence reg(Q)ψ . Note that the prefix
reg(Q) may now contain variables which do not occur in Q nor in any literal in ψ .
By applying Lemmas 6 and 7 repeatedly we can eliminate all such variables from
reg(Q)ψ and obtain a sentence Q′ψ which is equivalent to Qψ in all infinite models.
Moreover, Q′ is a regular prefix which contains exactly the same variables as Q. We
conclude that Q and Q′ are equivalent over infinite models. ut

We will also show that it is easy to check which irregular prefixes are first order
and which second order in infinite models. For this we will also use the following
dichotomy result (cf. Theorem 1) for infinite models.

Theorem 11 A regular sentential quantifier prefix Q is second order over infinite
models if and only if it contains either a Henkin pattern or a signalling pattern.

Proof As observed in Example 2, the most simple signalling prefix ∀x∃y(∃z/{x})
is beyond first order in infinite models. Likewise, the most simple Henkin prefix
can express second-order properties on infinite models (for example, the sentence
∀x∃y∀z(∃w/{x,y})(P(y)∧ (x = z↔ y = w)) expresses equicardinality of a structure
M with its subset PM). Since all (regular, sentential) signalling and Henkin prefixes
are extensions of these smallest ones23, by the Extension lemma (in the form given
in [?]) all (regular, sentential) signalling and Henkin prefixes can express second-
order properties on infinite models. The claim thus follows from Theorem 1. ut

In order to check if a given irregular prefix Q is second order in infinite models,
we first translate it to a corresponding regular prefix Q′ as in the proof of Theorem 10
(note that this translation is a straightforward procedure). Then, by Theorem 11, we
can simply check whether Q′ contains any Henkin/signalling pattern to determine
whether Q is second order on infinite models. The following example demonstrates
how this procedure is applied in practice.

Example 16 Consider the irregular prefix Q := ∀x∃y(∃z/{x})(∃y/{x,y}). By regu-
larizing Q, we obtain reg(Q) = ∀x∃w(∃z/{x})(∃y/{x,w}). Since the new fresh vari-
able w does not occur in Bound(Q), we may eliminate its quantification by modifying
the slash sets to obtain the prefix Q′ = ∀x∃z(∃y/{x}) which is equivalent to Q in in-
finite models (cf. the proof of Theorem 10). Since Q′ contains a signalling pattern, it
is second order in infinite models. Therefore, also Q is second order (in particular, it
is such on infinite models).

23 This includes the alternative forms for the Henkin prefixes described in Section 3.2. It is easy to
provide similar descriptions of second-order properties using these prefixes.
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In finite models the dummy variables cannot always be removed in the same way
as in infinite models. The reason for this is that in a finite model there might not
be enough elements to “encode” all the information that is available to a dummy
quantifier into a single signal. See the following example.

Example 17 Recall the sentence η = ∀x∀y∃u(∃v/{x,y})(∃w/{x,y})(v = x∧w = y)
from Example 15 and let M be a finite model over the empty signature. Now the pair
(x,y) may get |M|2 different values, but u may get only |M| different values. Hence,
by using u, it is impossible to signal all the information about x and y to (∃v/{x,y})
and (∃w/{x,y}). Thus it is easy to see that η is true in M only when |M|= 1.

9.4 Irregular prefixes in finite models

It is natural to ask if there are irregular IF prefixes that are not equivalent to any regu-
lar IF prefix. By the results of the previous section (Theorem 10), this nonequivalence
can manifest itself only in finite models.

In this section we consider the following irregular signalling prefix, which has
some interesting properties:

Q∗ := ∀x∀y∃u∀z(∃u/{x,y}).

We make two preliminary observations on Q∗:
1. By the proof of Theorem 10, in infinite models, Q∗ is equivalent to the regular

prefix ∀x∀y∀z∃u which is first order. Note that, as seen by comparing Theorem 1
and 11, all regular prefixes that are beyond first order are also beyond first order
in infinite models.

2. Q∗ contains only a single variable that is existentially quantified (although it is
quantified two times). However, all the regular prefixes that are beyond first order
contain at least two existentially quantified variables. This follows from the di-
chotomy result of IF prefixes (Theorem 1) as both Henkin and signalling patterns
always contain at least two existentially quantified variables.

These two points suggest that Q∗ should also be first order. However, it turns out to
be second order, as shown by Theorem 12 below.

In the prefix Q∗ Eloise can use the first quantification of u to signal: (1) the value
of x; (2) the value of y; or (3) some information about the relationship between the
values of x and y. The third case, which is the most interesting one, is demonstrated
by the proof below, where Eloise uses u to signal the “distance” between x and y.

Lemma 8 Let R be a binary relation symbol. Let M be a finite model over vocabulary
{R} such that RM is the disjoint union of directed cycles that contain all the elements
of M. We write

θ := ∀x∀y∃u∀z(∃u/{x,y})(ψ1∧ψ2), where

{
ψ1 := (x = z→ y = u)
ψ2 := (R(x,z)→ R(y,u)).

Now Eloise has a winning strategy in the semantic game G(θ ,M) if and only if all
the cycles in M have the same length.
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Proof Suppose first that M is the disjoint union of cycles C0, . . . ,Cm−1 and each Ci is
of length n. Thus, we can enumerate the elements of M as {ai, j | i < m, j < n} in such
a way that (ai, j,ai,k)∈ RM ⇐⇒ k = j+1 (modn). We define natural summation and
subtraction operations on M as follows:

ai, j +ak,l := ap,q, where p := i+ k (modm) and q := j+ l (modn),
ai, j−ak,l := ap,q, where p := i− k (modm) and q := j− l (modn).

Observe now that the sum + is associative, and (b− a) + a = b for all a,b ∈ M.
Furthermore, denoting 1 := a0,1, we have RM = {(a,a+1) | a ∈M}.

We formulate a strategy σ for Eloise in G(θ ,M) as follows. Suppose that Abelard
chooses a for the value of x and b for the value of y. Then Eloise chooses b− a for
the value of u. Assume next that Abelard chooses c for the value of z. Then Eloise
answers by choosing the value of (the second) u to be (b−a)+ c.

Since the new value of u only depends on the old value of u and the value of z, this
strategy is uniform. Thus, it suffices to show that M,s |= ψ1∧ψ2 for the assignment
s defined by the values a,b,c,(b−a)+c for x,y,z,u, respectively, chosen by Abelard
and Eloise. Assume first that M,s |= x = z, i.e., a = c. Then

s(y) = b = (b−a)+a = (b−a)+ c = s(u),

whence M,s |= y= u and thus we see that M,s |=ψ1. Assume then that M,s |=R(x,z).
As observed above, this means that c = a+1. Then

s(u) = (b−a)+ c = (b−a)+(a+1) = ((b−a)+a)+1 = b+1,

whence M,s |= R(y,u), and we conclude that M,s |= ψ2.
Suppose then that Eloise has a winning strategy σ in the game G(θ ,M). Then for

each a ∈ M, there is a function fa : M → M such that for each b ∈ M, fa(b) is the
value for the variable u given by σ after Abelard has chosen the values a and b for
the variables x and y. Furthermore, for each e ∈ M, there is a function ge : M→ M
such that if e is the old value of u and Abelard chooses the value c for z, then σ gives
ge(c) as the new value for u. Since σ is a winning strategy, in case e = fa(b) we have
M,s |= ψ1∧ψ2 for the assignment s = {(x,a),(y,b),(z,c),(u,ge(c))}.

We make the following observations on the functions fa and ge:

(i) If e = fa(b), then ge(a) = b.

Indeed, if s is the assignment arising in the game G(θ ,M) when Abelard’s choices
for the variables x,y,z are a,b,a, respectively, and Eloise uses σ , then M,s |= x= z
and M,s |= ψ1, whence M,s |= y = u and thus

b = s(y) = s(u) = ge(c) = ge(s(z)) = ge(s(x)) = ge(a).

(ii) For any a ∈M, fa is a bijection.

Since M is finite, it suffices to show that fa is an injection. Suppose that fa(b) =
fa(b′) = e for some b,b′ ∈M. By observation (i), we see that b = ge(a) = b′.
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(iii) For any e ∈M, ge is a homomorphism of M:

∀a,a′ ∈M : (a,a′) ∈ RM ⇒ (ge(a),ge(a′)) ∈ RM.

Assume that a,a′ ∈M, b = ge(a), b′ = ge(a′), and (a,a′) ∈ RM . Since, by obser-
vation (ii), fa is a surjection, there exists b′′ ∈M such that e= fa(b′′). By observa-
tion (i), we have b′′ = ge(a) = b, whence e = fa(b). Let s be the assignment aris-
ing in the game G(θ ,M) when Abelard’s choices for the variables x,y,z are a,b,a′

and Eloise uses σ . Now M,s |= R(x,z) and M,s |= ψ2, whence M,s |= R(y,u). By
the above, Eloise picks e as the first choice for u, and thus her second choice of u
is made using function ge. Thus we see that

(ge(a),ge(a′)) = (b,ge(s(z))) = (s(y),s(u)) ∈ RM.

To complete the proof, let C and D be any two cycles in M. We need to show
that C and D are of the same length. Pick arbitrary elements a from C and b from
D, and let e = fa(b). Then by observation (iii), ge is a homomorphism of M, and by
observation (i), it maps a to b. Let h be the restriction of ge to the cycle C. We claim
that h(c) ∈ D for every c ∈ C. Otherwise there are c,c′ ∈ C such that (c,c′) ∈ RM ,
h(c) ∈D and h(c′) 6∈D. But then (h(c),h(c′)) 6∈ RM , which contradicts the fact that h
is a homomorphism. Thus, h is a homomorphism C→ D.

Finally, we show that h is surjective, and consequently C contains at least as
many elements as D. By reversing the roles of C and D, we see that the converse is
also true, whence we conclude that C and D are of the same length. Assume towards
contradiction that h is not surjective. Then there are d,d′ ∈ D such that (d,d′) ∈ RM ,
d ∈ h[C] and d′ 6∈ h[C] (here h[C] is the image of C under h). Thus, d = h(c) for
some c ∈ C. Let c′ be the unique element of C such that (c,c′) ∈ RM . Since h is a
homomorphism, we have (d,h(c′))∈ RM . On the other hand, d′ is the unique element
of D such that (d,d′) ∈ RM , whence d′ = h(c′), in contradiction with the assumption
that d′ 6∈ h[C]. ut

Note that in infinite models the sentence θ is equivalent to ∀x∀y∀z∃u(ψ1 ∧ψ2)
(as shown by the proof of Theorem 10). This sentence is clearly true if the model is a
disjoint union of directed cycles of length at least two even if some of the cycles are
of different length. Thus, the assumption of finiteness was crucial in the proof above.
It was indeed used in observation (ii) for proving that fa is surjective by showing that
it is injective.

Theorem 12 The irregular prefix Q∗ can define a property in LOGSPACE which is
not first-order definable.

Proof Let P be the following property of finite {R}-models M:

The relation RM is either empty or a disjoint union of directed cycles of the
same length such that all the elements of M are on those cycles.

Note first that RM is a disjoint union of directed cycles containing all the elements of
M if and only if M |= ∀y∃uR(y,u)∧∀x∀y∀zψ0, where

ψ0 := (R(x,y)∧R(x,z)→ y = z)∧ (R(x,z)∧R(y,z)→ x = y).
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Let θ be as in Lemma 8, and let η be the sentence that is obtained from θ by adding
ψ0 as a conjunct to its quantifier-free part. Our aim is to show that η defines the
property P . Before proving this, we make the following two observations:
1. η is equivalent to the conjunction ∀x∀y∀zψ0∧θ . Indeed if M |=η , then obviously

M |= ∀x∀y∀zψ0, and Eloise wins the game G(θ ,M) by using exactly the same
strategy as she uses for winning G(η ,M). Similarly, if M |= ∀x∀y∀zψ0∧θ , Eloise
can use in G(η ,M) the same strategy as she uses in G(θ ,M). This guarantees a
win for her, since ψ0 is true irrespective of the the values chosen for x,y and z.

2. If M |= θ and RM 6= /0, then M |= ∀y∃uR(y,u). Assume that Abelard chooses
in G(θ ,M) values a,b,c for the variables x,y,z in such a way that (a,c) ∈ RM .
Then Eloise has to choose a value e for the (second) u such that (b,e) ∈ RM ,
since otherwise M,s 6|= ψ2 for the corresponding assignment s. Clearly this is not
possible unless M |= ∀y∃uR(y,u).
Suppose first that M has property P . If RM = /0, then is it straightforward to ver-

ify that M |= η . If, instead, M is a disjoint union of finitely many cycles of equal
length, then M |= ∀x∀y∀zψ0, and by Lemma 8, M |= θ , whence by the first observa-
tion above, M |= η . For the other direction, assume that RM 6= /0, and M |= η . Then by
observation 1, we have M |= ∀x∀y∀zψ0∧θ . Furthermore, by observation 2, we have
M |= ∀y∃uR(y,u), whence RM is a disjoint union of cycles containing all the elements
of M. It follows now from Lemma 8 that all the cycles are of the same length.

It is easy to see that the property P is in LOGSPACE.24 Finally, we can use
Ehrenfeucht-Fraı̈ssé games to show that P is not expressible in first-order logic (see,
e.g., [?] for techniques proving similar results with Ehrenfeucht-Fraı̈ssé games). ut

We leave it open whether the prefix Q∗ is NP-hard or not. Both positive and
negative answer to this question would be interesting: if Q∗ were NP-hard, then we
would have an example of an NP-hard prefix which is first order in all infinite models
and which contains only a single existentially quantified variable. On the other hand,
if Q∗ were not NP-hard, then the dichotomy result (Theorem 1), which holds for
regular IF prefixes, would fail for irregular IF prefixes.

Remark 7 By Theorem 9, the study of the expressive power of irregular prefixes
amounts to the study of the expressive power of regular prefixes relative to variable
sets. That is, instead of considering the expressive power of an irregular prefix Q we
may equivalently consider the expressive power of a regular prefix reg(Q) over the
variable set Bound(Q). For example, in the case of Q∗, we can equivalently study its
regularization ∀x∀y∃w∀z(∃u/{x,y}) over the set {x,y,z,u}.

However, we conjecture that the expressive power of a regular prefix Q over a
set U ⊆ Bound(Q) is a more general problem than the (unrelativized) expressive
power of irregular prefixes.25 There might indeed be regular prefixes Q and sets U ⊆

24 To verify that a model M has property P it suffices to check that the in-degree and out-degree of
every element is one, and for each pair a,b ∈M chase the paths starting from a and b by moving markers
along the RM-edges in synchronous steps, and check that the markers come back to a and b at the same
time. During the chase it suffices to store in memory only the starting points a and b, and the marked
points.

25 We also note that this problem cannot be generalized any further even if we also allow irregular
prefixes. This is because the expressive power of an irregular prefix Q over U ⊆Bound(Q) always amounts
to the expressive power of reg(Q) over U .
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Bound(Q) such that no Q′ with Bound(Q′) =U is equivalent (relative to U) with Q.
This possibility is supported by the observation that, for some choices of Q and U ⊆
Bound(Q), there is no Q′ of bound variables U such that Q = reg(Q′), as shown in
the example below.

Consider a (first-order) regular prefix of the form Q = Q1xQ2yQ3z. We can show
that there is no prefix Q′ such that reg(Q′) = Q and Bound(Q′) = {z}. To see this, we
try to apply the regularization procedure (Sec. 8.1) backwards, starting from the vari-
able y. We see that Q = reg(Q1xQ2zQ3z). However, given any quantifier-free ψ with
Free(ψ) = {z}, we have (Q1zQ2zQ3zψ)x/z = Q1xQ2z(Q3z/{x})ψ 6= Q1xQ2zQ3zψ .
As a less trivial example, by the same kind of reasoning one can see that a quantifier
prefix of the form Q1xQ2yQ3z(Q4u/{z})(Q5v/{y}) is not the regularization of any
irregular prefix Q′ with Bound(Q′) = {u,v}. We leave the deeper analysis of regular
prefixes over variable sets for future work.

10 Conclusions

We have shown that full IF (i.e., ESO) expressive power can be achieved, without
the use of Henkin prefixes, already within each of the two following fragments of
IF logic: (1) prenex, regular IF logic with action recall (IFr

AR(∃)), and (2) non-prenex,
regular IF logic without Henkin and signalling patterns. The proof of the first result
shows that the Hn

2 Henkin prefixes are explicitly definable by means of signalling
prefixes with a constant number of signalling variables and with only one existential
quantifier with a nonempty slash set. Consequently, there are no hierarchies of ex-
pressive power based on the number of existential quantifiers in IFr

AR(∃). As a related
approach to (2), we gave a general method for translating IF sentences into irregular
sentences without Henkin nor signalling patterns.

We deepened the analysis of irregular sentences and prefixes, firstly by identify-
ing syntactical clauses that characterize action recall and knowledge memory without
the restriction of regularity; secondly, by extending the definitions of Henkin and sig-
nalling patterns to the irregular case; thirdly, by producing two outside-in translation
procedures of IF sentences into regular sentences. Both procedures have the advan-
tage, over the usual regularization procedure, that they leave the quantifier-free matrix
of prenex sentences unaltered. Because of this our procedures allow us to analyse ir-
regular quantifier prefixes by analysing the corresponding regular ones. The first of
these regularization procedures applies to all IF sentences, but it has the disadvan-
tage of failing to preserve the property of knowledge memory. The second of these
regularization procedures is correct when applied to sentences that satisfy knowledge
memory, and can be extended to three larger (and non-first-order) fragments, which
are listed in Theorem 6. While its range of applicability is more limited, this proce-
dure does preserve the property of knowledge memory. This allows us to extend the
result that the fragment of KM is first order to irregular sentences. We also used this
procedure to prove an alternative first-orderness criterion: a (possibly irregular) IF
sentence is first-order if it has the properties KM1 and KM2 of knowledge memory,
and only existentially quantified variables are requantified in it.
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We also showed that, over infinite structures, each irregular prefix can be trans-
lated into a regular one, with the same set of bounded variables; this yields a cri-
terion for distinguishing first-order prefixes from second-order prefixes on infinite
structures. We then identified a specific irregular prefix Q∗, containing only a single
existentially quantified variable, such that Q∗ is first order over infinite structures,
but on finite structures it can express a LOGSPACE problem that is not definable in
first-order logic. We leave it as an open problem whether this prefix is in LOGSPACE
(thus violating the FO/NPC dichotomy that holds for regular prefixes, [?]) or whether
it can express problems of higher complexity.

These results extend the analysis of the expressive resources of IF logic which was
initiated in [?] and [?], and they raise a number of questions to be further investigated:

– When considering irregular prenex sentences, are there other sources of second-
order expressive power, besides Henkin and signalling patterns? What we can say,
for now, is that long signalling sequences should be considered as basic second-
order patterns.

– Are there other interesting hierarchies of signalling prefixes? For example, do
hierarchies based on the length of signalling sequences (recall Section 9.1) arise
if the number of universal quantifiers is kept fixed?

– In order to capture ESO within IFr
AR(∃) without making use of Henkin and sig-

nalling patterns, we used syntactical constructs which contained two disjunctions.
Can the same result be obtained using only one disjunction?

– As discussed in Remark 7, the expressive power of irregular prefixes can be seen
as a specific case of a plausibly more general problem: given a regular prefix Q
and a set U ⊆ Bound(Q), what is the expressive power of Q over U? Moreover,
which complexity classes can be captured by different Q and U?
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