
Affect Detection in Daily Life Using
Machine Learning and Wearable Devices

Jonne Antti Kristian Lohilahti

Master’s Thesis

Cognitive Science

Faculty of Arts

University of Helsinki

May 2022

Supervisor: Ilmari Määttänen

Research Project: Sisu at Work



Tiedekunta – Fakultet – Faculty
 Faculty of Arts

Koulutusohjelma – Utbildningsprogram – Degree Programme
 Cognitive science

Opintosuunta – Studieinriktning – Study Track 
 Cognitive science
Tekijä – Författare – Author
 Jonne Antti Kristian Lohilahti
Työn nimi – Arbetets titel – Title
 Affect Detection in Daily Life Using Machine Learning and Wearable Devices
Työn laji – Arbetets art – Level
 Master’s thesis

Aika – Datum – Month and year
 May 2022

Sivumäärä– Sidoantal – Number of pages
 42+13

Tiivistelmä – Referat – Abstract

Objectives. This study aims to evaluate feasibility of affect detection in daily life using wearable devices 
and machine learning models. Affective states play an important role in decision making, perception and 
behaviour, making objective detection of affective states a desirable goal both for potential applications 
and as a way to gain insight into affective phenomena. Affective states have been found to have 
measurable physiological and behavioral changes, which allows training of machine learning models for 
detecting the underlying affects. Majority of affect detection studies have been conducted in laboratory 
conditions using affect elicitation stimuli or tasks, raising the question whether results from these studies 
will generalize to daily life. Although development of wearable devices and mobile surveys have 
facilitated evaluation in the context of daily life, research here remains sparse. In this study, self-reported
affective states are predicted using machine learning models to identify which affective states can be 
detected in daily life. Additionally, model interpretation methods will be used to identify which 
relationships the models found important for their predictions.

Methods. Data for this thesis came from a study conducted as a part of Sisu at Work project between 
University of Helsinki and VTT, where 82 knowledge workers from four Finnish organizations were 
studied for a period of three weeks. During this period, the participants were queried by mobile surveys 
about their affective states thrice a day, while they also used wearable devices to record 
photoplethysmography (PPG), electrodermal activity (EDA) and accelerometry (ACC) signals. A signal 
processing pipeline was implemented to deal with movement artefacts and other issues with the data. 
Features describing heart rate (HR) and heart rate variation (HRV) were extraced from PPG, 
physiological activation from EDA and movement from ACC signals. Models were then fitted to predict 
the reported affective states using the extracted features. Model performance was compared against a 
baseline to identify which affects could be reliably detected, while permutation importance and Shapley 
additive explanations (SHAP) values were used to identify important relationships established by the 
models.

Results and conclusions. Models for affective state vigor showed improvements over baseline with 
statistical significance, while improvements were also noted for affects focused and enthusiastic. 
Permutation importance highlighted the significance of movement and HRV features, while examination 
of SHAP values indicated that low movement, low EDA and high HRV impacted model predictions the 
most. These results indicate potential for detecting high activation affective states in daily life and 
propose potential relationships for future research.

Avainsanat – Nyckelord – Keywords
 affect detection, ecological validity, machine learning, signal processing, wearable devices
Säilytyspaikka – Förvaringställe – Where deposited
 Helsinki University Library / Helda / E-thesis (opinnäytteet) ethesis.helsinki.fi
Muita tietoja – Övriga uppgifter – Additional information



Tiedekunta – Fakultet – Faculty
 Humanistinen tiedekunta

Koulutusohjelma – Utbildningsprogram – Degree Programme
 Kognitiotiede

Opintosuunta – Studieinriktning – Study Track 
 Kognitiotiede
Tekijä – Författare – Author
 Jonne Antti Kristian Lohilahti
Työn nimi – Arbetets titel – Title
 Tunteiden Havaitseminen Arkielämässä Koneoppimisen ja Puettavien Laitteiden Avulla
Työn laji – Arbetets art – Level
 Pro Gradu

Aika – Datum – Month and year
 Toukokuu 2022

Sivumäärä– Sidoantal – Number of pages
 42+13

Tiivistelmä – Referat – Abstract

Tavoitteet. Tämän tutkimuksen tavoitteena on arvioida tunteiden havaitsemisen mahdollisuutta 
arkielämässä puettavien laitteiden ja koneoppimismallien avulla. Tunnetiloilla on tärkeä rooli 
päätöksenteossa, havaitsemisessa ja käyttäytymisessä, mikä tekee objektiivisesta tunnetilojen 
havaitsemisesta arvokkaan tavoitteen, sekä mahdollisten sovellusten että tunnetiloja koskevan 
ymmärryksen syventämisen kannalta. Tunnetiloihin usein liittyy mitattavissa olevia fysiologisia ja 
käyttäymisen muutoksia, mikä mahdollistaa koneoppimismallien kouluttamisen muutoksia aiheuttaneen 
tunnetilan havaitsemiseksi. Suurin osa tunteiden havaitsemiseen liittyvästä tutkimuksesta on toteutettu 
laboratorio-olosuhteissa käyttämällä tunteita herättäviä ärsykkeitä tai tehtäviä, mikä herättää 
kysymyksen siitä että yleistyvätkö näissä olosuhteissa saadut tulokset arkielämään. Vaikka puettavien 
laitteiden ja kännykkäkyselyiden kehittyminen on helpottanut aiheen tutkimista arkielämässä, tutkimusta 
tässä ympäristössä on vielä niukasti. Tässä tutkimuksessa itseraportoituja tunnetiloja ennustetaan 
koneoppimismallien avulla arkielämässä havaittavissa olevien tunnetilojen selvittämiseksi. Lisäksi 
tutkimuksessa käytetään mallintulkintamenetelmiä mallien hyödyntämien yhteyksien tunnistamiseksi.

Metodit. Aineisto tätä tutkielmaa varten on peräisin tutkimuksesta joka suoritettiin osana Helsingin 
Yliopiston ja VTT:n Sisu at Work projektia, missä 82:ta tietotyöläistä neljästä suomalaisesta 
organisaatiosta tutkittiin kolmen viikon ajan. Osallistujilla oli jakson aikana käytettävissään mittalaitteet 
jotka mittasivat fotoplethysmografiaa (PPG), ihon sähkönjohtavuutta (EDA) ja kiihtyvyysanturi (ACC) 
signaaleita, lisäksi heille esitettiin kysymyksiä koetuista tunnetiloista kolmesti päivässä 
puhelinsovelluksen avulla. Signaalinkäsittelymenetelmiä sovellettiin signaaleissa esiintyvien 
liikeartefaktien ja muiden ongelmien korjaamiseksi. Sykettä (HR) ja sykevälinvaihtelua (HRV) kuvaavia 
piirteitä irroitettiin PPG signaalista, fysiologista aktivaatiota kuvaavia piirteitä EDA signaalista, sekä 
liikettä kuvaavia piirteitä ACC signaalista. Seuraavaksi koneoppimismalleja koulutettiin ennustamaan 
raportoituja tunnetiloja irroitetujen piirteiden avulla. Mallien suoriutumista vertailtiin suhteessa 
odotusarvoihin havaittavissa olevien tunnetilojen määrittämiseksi. Lisäksi permutaatiotärkeyttä sekä 
Shapley additive explanations (SHAP) arvoja hyödynnettiin malleille tärkeiden yhteyksien selvittämiseksi.

Tulokset ja johtopäätökset. Mallit tunnetiloille virkeä, keskittynyt ja innostunut paransivat 
suoriutumistaan yli odotusarvon, joista mallit tunnetilalle virkeä paransivat suoriutumista tilastollisesti 
merkitsevästi. Permutaatiotärkeys korosti liike- ja HRV-piirteiden merkitystä, kun SHAP arvojen 
tarkastelu nosti esiin matalan liikkeen, matalan EDA:n, sekä korkean HRV:n merkityksen mallien 
ennusteille. Nämä tulokset ovat lupaavia korkean aktivaation positiivisten tunnetilojen havaitsemiselle 
arkielämässä, sekä nostavat esiin mahdollisia yhteyksiä jatkotutkimusta varten.

Avainsanat – Nyckelord – Keywords
 ekologinen validiteetti, koneoppiminen, puettavat laitteet, signaalinkäsittely, tunteiden havaitseminen
Säilytyspaikka – Förvaringställe – Where deposited
 Helsingin Yliopiston Kirjasto / Helda / E-thesis (opinnäytteet) ethesis.helsinki.fi
Muita tietoja – Övriga uppgifter – Additional information



Contents

Introduction 1

Emotions, mood and core affect . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Psychophysiological signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

Cardiovascular activity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

Electrodermal activity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

Accelerometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

Affect detection as a machine learning problem . . . . . . . . . . . . . . . . . 7

Affect detection in daily life . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

Methods 12

Participants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

Ecological momentary assessments . . . . . . . . . . . . . . . . . . . . . 13

Wearable devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

Accelerometry autocalibration procedure . . . . . . . . . . . . . . . . . . 15

Segmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

Inter beat interval masking procedure . . . . . . . . . . . . . . . . . . . . 16

Feature extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

Final dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

Model fitting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

Statistical testing and model interpretation . . . . . . . . . . . . . . . . . . . . 22

Results 24

Model performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

Feature importance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24



Discussion 27

Model performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

Model interpretation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

Limitations and future research . . . . . . . . . . . . . . . . . . . . . . . . . . 31

Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33



i

Acronyms

ACC Accelerometry. 4, 6, 14–17, 19, 20, 24, 27, 33, 34, 43

ANS Autonomous Nervous System. 3, 4

ECG Electrocardiography. 4, 5, 10, 14, 20

EDA Electrodermal activity. 4–7, 10, 14, 15, 19, 24, 30, 32, 34, 43

EMA Ecological Momentary Assessment. 9–14, 21, 27, 30, 32, 33

EN Euclidian Norm. 15–17, 20

ENMONZ Euclidian Norm Minus One with Negatives set to Zero. 20, 21

HR Heart Rate. 4, 5, 14, 18, 19, 21, 24, 28, 31, 43

HRV Heart Rate Variation. 4, 5, 17–19, 21, 24, 25, 27–31, 33, 34, 43

IBI Inter Beat Interval. 5, 11, 14–18, 20

PNS Parasympathetic Nervous System. 4, 14, 30

PPG Photoplethysmography. 5, 7, 10, 14, 15, 19, 20, 32, 34

RF Random Forests. 21–24, 26, 44

RMSSD Root Mean Square of Successive Differences. 17, 18, 21

SCL Skin Conductance Level. 6, 14, 20, 32

SCR Skin Conductance Responses. 6, 14, 20, 25, 32

SHAP SHapley Additive exPlanations. 23–25, 27, 29–31, 34, 47

SNS Sympathetic Nervous System. 3–5, 14, 29, 32

SQE Signal Quality Estimation. 14–16, 18



ii

VMU Vector Magnitude Units. 20, 24, 25

XGBoost eXtreme Gradient Boosting. 21–25, 27, 30, 44, 47



1

Introduction

Affective computing, pioneered by Picard (2000), is a multidisciplinary field of

research spanning computer science, psychology and cognitive science. It aims to study

and develop computation that relates to affective phenomena, promising applications in

human-computer interaction, healthcare, marketing and more. A crucial subfield within

affective computing is affect detection – the detection of affective states via

measurement of physiology and other observables. Usually this mapping between

affective states and observables is established using machine learning, while the affective

states under study are induced by chosen stimuli or tasks in a laboratory setting. In

this context, classification accuracies over 90% are often observed (Bota et al., 2019). It

is however an open question how these results generalize to unconstrained daily life –

the domain of application for many potential affective computing applications.

Fortunately, developments in wearable sensor and mobile technology have facilitated the

investigation of affect detection in daily life, although research here remains sparse.

To evaluate feasibility of affect detection in daily life, physiological and inertial

signals from wearable devices will be used to train machine learning models for

predicting self-reported affective states from mobile questionnaires. A signal processing

pipeline will be presented to deal with challenges in the data and model interpretation

methods will be used to examine relationships that the models found important for

affect detection. Results of this study indicated that affect detection is possible for high

activation positive affective states with modest accuracy and that low movement, low

electrodermal activity level and high heart rate variation are predictive for these affects.

Emotions, mood and core affect

Detection of emotions, moods, affects and other affective phenomena is the

central goal of the field of affect detection. Decades of proliferation of research into

these concepts has however yielded a variety of definitions and conceptualizations for

these terms. This has lead to imprecise usage, with affects, emotions and moods used

partially or completely interchangeably while referring to substantially different
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constructs (Ekkekakis, 2013). Furthermore, no single measurement technique or

theoretical framework has emerged to dominate others. As such, these concepts can be

viewed either as discrete entities, categories or as phenomena defined by various

formulations of two or more underlying dimensions.

To bring conceptual clarity to the definitions of emotions, moods and affects, the

terminological system outlined by Ekkekakis (2013) is adopted. Here, core affect is

defined as the most elementary consciously accessible feelings that is constantly present

(Russell, 2003; Russell & Barrett, 1999). Core affect does not necessarily have to be

about any specific thing or be related to any antecedent appraisal, although it can be

experienced embedded with other affective phenomena like emotions or moods (Russell,

2005). Emotions are seen as comprising of several interconnected and coordinated

components like core affect, cognitive appraisal, bodily changes, expressive behaviour

and action tendencies (Russell & Barrett, 1999). Emotions occur rarely, are short

(duration seconds to minutes) but have comparatively high intensity and are about

some immediate and identifiable stimulus (Ekman, 1992; Scherer, 2005). Compared to

emotions, moods are longer lasting (hours to days) and present more often but with

lower intensity (Ekman, 1992). Moods include synchronized activation of the same

components as emotions, but this activation is less pronounced and distinct. In general

moods are described as "having a certain diffuseness" compared to emotions, with not

necessarily having an immediate or clearly identifiable object of appraisal or cause

(Fridja, 2009, p. 258). Based on these definitions the term affective state will be used as

an umbrella term to refer to a state that necessarily contains core affect, but can also

meet the criteria for emotions or moods, while the term affect is used to refer to

affective states in general.

Affective states have been mainly modeled as distinct entities or by a set of

underlying dimensions. In the distinct-states approach, each state is examined as being

unique and distinct from all others (Roseman et al., 1994), in order to highlight the

unique features of different emotions and moods for a deep and detailed analysis.

Examples of this approach include Ekman (1992)s efforts to identify "basic" emotions or



3

the more broad approach of describing categories of states by similarity to each other

and a prototypical example (Russell, 1991). In the dimensional view, the goal is to

determine the underlying dimensions that explain similarities and differences among

affective states. While formulations of these types of models vary widely in the number

of dimensions used and in the dimensions uni- or bipolarity, approaches from multiple

perspectives have converged on the two dimensions of valence and arousal (Ekkekakis,

2013). For example, the circumplex model proposed by Russell (1980) is one instance of

these two-dimensional models, where affective states are characterized by two

underlying orthogonal and bipolar dimensions of valence (pleasure-displeasure) and

activation (arousal). While distinct-state and dimensional models can seem

incompatible, a hierarchical synthesis of the two approaches has also been suggested

(Russell, 2003). In this view, dimensional models can be used to capture significant

amounts of variation in affective states, but are unable to differentiate between discrete

states, where distinct-state or categorical approaches would be more applicable. Thus,

the proper choice of model depends on the target of study. In this thesis, affective states

will be characterized by their placement on the axes of a two-dimensional valence

(negative to positive) - arousal (low activation to high activation) model.

Psychophysiological signals

As reviewed by Ekkekakis (2013), many theorists have paid attention to the

physiological changes, behavioral expressions and action tendencies associated with

emotions, and moods where these effects are less distinct and more diffuse. The

existence of these overt behaviours and changes, which are proposed to yield adaptive

advantages (Ekman, 1992; Picard, 2000), means they can be registered and used to

predict the presence of an underlying affective state. These psychophysiological signals

arise from the motor division of the peripheral nervous system, which can be divided to

the somatic nervous system responsible for voluntary motor activity and Autonomous

Nervous System (ANS) mainly responsible for involuntary internal homeostasis

maintenance. The ANS can be further subdivided to the Sympathetic Nervous System
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(SNS) which is often characterized as relating to "fight-or-flight" responses and

Parasympathetic Nervous System (PNS) corresponding to "rest-and-digest" types of

behaviour. The involuntary nature of ANS activity has made its measurement an

objective way of detecting affective states (Bota et al., 2019). Although there exists a

great variety of psychophysiological signals (Cowley et al., 2016, for review), the three

signal types used in this thesis will be highlighted here: cardiovascular activity,

Electrodermal activity (EDA) and Accelerometry (ACC).

Cardiovascular activity

Heart function is controlled by both the sympathetic and parasympathetic

branches of the ANS. Sympathetic activation via the adrenergically mediated

sympathetic fibers generally increases Heart Rate (HR), while parasympathetic – also

known as vagal – effects via cholinergically mediated parasympathetic fibers lower it

(Ernst, 2014, pp. 35, 40–41). This antagonistic relationship between the effects of the

SNS and PNS activation on heart function, is known as sympathovagal balance. Effects

of SNS and PNS activity can also be seen in Heart Rate Variation (HRV) which

describes how the rhythm of the heart varies. Respiration is also known to influence

HRV due to respiratory sinus arrythmia – the shortening of heart beat intervals in

inspiration and lengthening in expiration (Yasuma & Hayano, 2004). This effect is

mediated via PNS activation, which can apply effects on heart beat intervals on almost

a beat-to-beat basis, due to the quick acting cholinergic fibers (Franchini & Cowley Jr,

2004). Vasoconstrictive effects, i.e. the expansion and constriction of blood vessels, can

also be studied to gain indices of SNS and PNS activity (Vinik, 2012).

One way of measuring heart activity is using Electrocardiography (ECG). In this

method the potential differences arising from the contraction and relaxation of the

cardiac muscle are registered by electrodes attached to the skin. In laboratory and

medical contexts multiple electrodes are typically attached to the chest area, although

single lead recordings can also be used to allow recordings in ambulatory settings.

Timings of R-peaks representing the contractions of ventricles of the heart can be then

detected from the recorded waveforms. To analyze the signal, the RR-intervals
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representing the time differences of subsequent R-peaks are calculated and can be used

to extract HR and HRV features (Bota et al., 2019).

Photoplethysmography (PPG) is an alternative way to measure heart activity

via the optical measurement of blood volume variations in the body. The PPG signal is

registered by a photodiode measuring the amount of backreflected light when a light

source is shined on the skin. The amount of reflected light depends on the blood volume

in capillaries of the skin and deeper tissue vasculature, which in turn varies due to the

pumping action of the heart. Thus, by detecting local peak timings from this signal and

calculating their successive differences an Inter Beat Interval (IBI) – also known as

pulse to pulse interval – series is formed. This IBI-series can then be used for analysis

similarly to RR-interval series (Tamura et al., 2014). In addition, the raw PPG signal

can be used to measure vasoconstriction by examining the blood volume pulse waveform

amplitude changes (Bota et al., 2019).

Compared to ECG, the PPG signal is especially artefact prone. Motion artefacts

caused by gravity or subject movements can easily influence the light propagation path

through the tissue and corrupt the PPG signal. Furthermore, external light artefacts,

skin tone, structure, and temperature, as well as blood oxygen saturation level and flow

rate can cause problems and degrade the signal quality (Delgado-Gonzalo et al., 2015;

Schmidt et al., 2019). Despite these downsides, PPG-sensor devices have generally good

usability in daily life by allowing long-term cardiovascular recordings without the need

for an ECG chest strap (Heikkilä et al., 2018).

Electrodermal activity

EDA is primarily driven by eccrine sweat gland activity, which is in turn

regulated by the SNS. In more detail, sudomotor nerve fibers originating from the

sympathetic chain terminate to sudomotor cells in eccrine sweat glands, which in turn

activate the release of sweat through sweat ducts on to the skin. As stratum corneum of

the skin gets saturated by sweat, the electrical resistance is decreased and conductance

– the reciprocal of resistance – is increased. This conductance change can then be

measured, for example by passing a small fixed direct current or voltage through the
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body and measuring voltage or current between two electrode leads, from which the

conductance level can be calculated (Boucsein, 2012; Cacioppo et al., 2007). To gain

the best signal, electrodes for measuring EDA are usually placed on areas of high

eccrine sweat gland densities, such as fingers, palms or soles.

The EDA signal is characterised by a tonic baseline called Skin Conductance

Level (SCL) from which phasic variations referred as Skin Conductance Responses

(SCR) arise. SCRs can result either from orienting responses to environmental stimuli

or be non-specific in nature, corresponding for example to respiratory activity or body

movements (Cacioppo et al., 2007, p. 164). The primary signal processing associated

with EDA analyses involves separating the tonic and phasic components and detecting

the SCRs. Filtering or deconvolution techniques can be used to extract these signals for

further feature extraction (Benedek & Kaernbach, 2010).

Accelerometry

Although often not considered to be a physiological signal per se, the

measurement of body movement can be used as an informative signal in ambulatory or

in-field studies (Schmidt et al., 2019). Measurement of movement can be seen as an

index of skeletal muscle activity, which is under voluntary control by somatic nervous

system. Since many affective theories include action tendencies, expressive behaviours

and general preparation for adaptive behaviour as defining properties of emotions

(Ekman, 1992; Levenson, 2014), it can be reasoned that by measuring occurred

movement inferences can be made of an antecedent affective state. Different aspects of

movement can be measured by a variety of inertial sensors such as accelerometers,

gyroscopes and magnetometers. Three axes-accelerometer records the acceleration

forces acting on the sensor in orthogonal directions, most often in units of g denoting

the standard gravitational acceleration on Earth. The ACC signal can be then used to

quantify movement as is, or to conduct activity recognition for additional contextual

information extraction (Schmidt et al., 2019). ACC sensors have the advantage of being

small, having low power consumption, low cost and being easily integrable to wearable

devices (Godfrey et al., 2008). Additionally, the ACC signal can be used for movement
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artefact correction when integrated to a sensor platform collecting movement sensitive

signals such as PPG or EDA.

Affect detection as a machine learning problem

Affect detection is typically handled as a supervised machine learning problem.

Here, affective states measured using a chosen method (e.g. dimensional or

distinct-states model) are predicted using features extracted from physiological signals

or other observables by a chosen machine learning model, in order to generate

predictions that generalize to novel data. The predominant approach in affect detection

literature is to handle the task as a classification problem (Bota et al., 2019, for review).

Here, the models are predicting categories of states – e.g. whether an affective state is

present or not – referred as labels. These labels can be formed by discretizing a numeric

or ordinal scale by some cutoff value or by defining labels based on some external factor,

like the used stimuli. The task can also be handled as a regression problem if numeric

affect scores are collected, which allows the models to use a more fine grained error

metric compared to classification. However suitability of the chosen approach depends

on goals of the study and whether classes can be formed in a meaningful way.

It is important to gather sufficient amount of observations with a preferably

balanced distribution of target variable labels or values, in order to give models enough

examples to identify relationships between the target variable and features, and to make

sure that these predictions generalize over all target values (Domingos, 2012). To

generate informative features for the model to use, statistical transformations can be

applied on recorded signals in a process known as feature engineering. Although having

more features is often useful, high correlations and large number of redundant features

can be problematic for some model types. To correct this, a feature selection or

regularization procedures can be applied to select only the most informative features.

To train models and evaluate their performance, training and test sets need to

be specified. A popular method to do this is by using k-fold cross validation, where the

data is randomly assigned to a k-number of non-overlapping sets, referred as folds.
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Then given model will be trained on data from all folds but one and the trained models

performance is evaluated on the remaining fold using chosen error metric. When this

procedure is repeated over all folds, error measures can be averaged over the whole

dataset. Leave-one-subject-out cross-validation is an especially relevant variation of

k-fold cross-validation recommended by Schmidt et al. (2019) for the use of affect

detection. In this method, the used folds are defined based on the subject from which

the data was gathered from. This allows evaluation of subject-independent performance

measures, i.e. how well trained model would perform on a new subjects data (Bota

et al., 2019; Tohka & van Gils, 2021). Finally, some models require the selection of

hyperparameters that control the behaviour of the model. This can be done manually,

but it can also be automatized by running a hyperparameter selection procedure nested

within each training set using a method called nested cross-validation (Tohka &

van Gils, 2021).

As the primary goal of affect detection studies is studying the generalization of

the trained model to novel data, results are succinctly summarised by evaluation of

performance measures, often concluding the study. Model interpretation methods can

however also be applied to gain insight into the function of the model, instead of

treating it as a black-box. Model interpretation is desirable, since it allows identifying

which features and underlying phenomena were important for model performance,

guiding feature engineering for future studies and giving insight into the mechanisms

that generated the informative signals. In the simplest case, interpreting a model can be

done by studying the structure of the trained model itself. This however only possible

with the simpler models, such as linear regression, where the number of coefficients is

manageable. One way of organizing different interpretation methods is by considering

whether the importance measure is global or local (Lundberg et al., 2019). Global

methods assign a single importance value to every feature included in a model,

summarising overall model behaviour over entire dataset. Local methods on the other

hand assign features importance values for a single, individualized prediction, allowing

aggregation of multiple individualized importances to estimate patterns of change
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(Molnar, 2022).

Affect detection in daily life

One of the most important considerations in affect detection is establishing a

reliable ground-truth for the studied affective states. The primary method to achieve

this is by employing questionnaires in order to subjects self-report their current or

recalled affective states using a chosen measure. Self-reports are however limited by

variability in the ways different people experience and report their affective states

(Schmidt et al., 2019). Training personalized models for each subject has been found to

be a good way to combat this problem (Taylor et al., 2020; Tervonen et al., 2020), but

applying this approach requires a sufficient sample size collected from each subject.

Another way of ensuring that the measure values correspond to the affective state of

interest, is the usage of a pre-validated set of stimuli that have been found to reliably

elicit the desired affects in different subjects (Bota et al., 2019). These emotion

elicitation procedures are most often used in a controlled laboratory setting to

maximize the self-reported affective state ratings for analysis. There also exists studies

where the ground-truth is defined directly by the employed conditions or stimuli, but in

these cases it is important to verify that the desired affective states were successfully

evoked using questionnaires (Bota et al., 2019).

Affective states can also be studied nonspecifically or without a preceding

elicitation procedure in subjects daily lives by using the Ecological Momentary

Assessment (EMA) method, also known as the experience sampling method (Shiffman

et al., 2008). Using this method, questionnaires for affective states are presented to

subjects throughout their daily life, either at specific time intervals, pseudorandomly or

when associated with some event of interest. Modern EMA-based studies tend to

employ mobile platforms to do this, which also allows the collection of contextual

information. While powerful at generating large amounts of labeled data for affect

detection, care should be paid to the duration, frequency and reward structure

associated with the EMAs to keep response rates high in longer term studies (Schmidt
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et al., 2019).

Laboratory studies using affect elicitation procedures and EMA-based studies in

daily life represent a trade-off between certainty in the self-reported elicited affective

state versus generalization of the results to daily life (Bota et al., 2019). While affect

elicitation in laboratory conditions is the predominant approach in affect detection,

evaluation of the results in an ecologically valid context is of special interest for affective

computing applications, many of which are practically applied in naturalistic

environments. Differences in these two contexts of study can be also seen in signal

quality and ground-truth distributions: Devices recording physiological data in in-field

studies are practically limited by power consumption, memory constraints and general

usability in daily life. Some signal types employed in laboratory settings like

electroencephalography or eye movements are not practical for long term ambulatory

recordings, while EDA, ECG, PPG and other signal types that can be recorded in both

contexts often have their sample rates reduced in order to allow constant recording.

Also, movement artefacts and other environmental effects which can be controlled in a

laboratory can easily corrupt the signal in the wild. Even with good quality data,

upload for offline analysis is reliant on device connectivity and implementation.

Laboratory-based affect inducement procedures are selected due to their ability to elicit

desired affective states in the limited time allotted for the study. This approach is likely

to produce a much more intense and balanced distributions of affective states compared

to daily life, where positive affect levels of higher intensity and frequency are observed

over negative affects (Komulainen et al., 2014; Zelenski & Larsen, 2000).

Laboratory-based studies are also practically restricted to the study of emotions or core

affect due to their limited durations, causing the interdependencies between emotions,

moods (Ekkekakis, 2013), personality (Komulainen et al., 2014) and environmental

factors go unappreciated. These reasons indicate that the excellent performances

achieved in induced laboratory-based affect detection studies (Bota et al., 2019) are not

likely to generalize to daily life and that affective states should be examined in daily life

to capture the variability present in daily affective phenomena.
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There exists few affect detection studies using EMAs to detect affective states as

they occur in daily life as reviewed by Bota et al. (2019). Although the majority of

these studies focus on the healthcare context predicting stress or panic attacks, there

are some that focus on affective states more broadly. For example Jaques et al. (2016)

and Taylor et al. (2020) predicted self reported sad-happy classes using EMA-based

surveys in a student population, reaching 14% and 15% accuracy improvements over

expected baseline performance using the best model for single task learning. However,

in these studies the original mood scorings were collected in a 0-100 range, which were

later discretized to classes by discarding the middle 40% and 20% of affect ratings in

the respective studies to make the task easier. Zenonos et al. (2016) introduced a

system to predict a variety of office workers moods during their workday using

physiological and inertial signals. The system was able to improve accuracy by 12.4%

on average in generalized models over the baseline while predicting mood classes

discretized to 5 steps of intensity. The study however included only a small sample of 4

subjects. Zhu et al. (2016) presented the novel approach of predicting moods as angles

on Russels circumplex complex (Russell, 1980) using inertial and contextual signals. A

mean absolute error rate of 0.24π radians (out of a maximum error π) was reported,

which outperformed statistically significantly the used benchmarks. While all these

studies showed modest performance in daily mood prediction, there was significant

variation in the ground-truth definitions used, making comparison difficult. The trained

models were also treated as black boxes, with up to hundreds of inputted features,

making interpretation of the relationships found by the models very difficult.

In this thesis, the feasibility of an affect detection system for predicting a variety

of self-reported affective state scorings from EMAs using physiological and inertial

signals from wearable sensors is evaluated. A novel masking algorithm for IBI-series

data will be presented, along with a signal processing pipeline description. Model

performances will be evaluated using leave-one-subject-out cross-validation against a

baseline and modern model interpretation methods will be used to identify important

features and relationships governing model performance. Due to the exploratory nature
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of the study, no specific hypotheses are presented.

Methods

Participants

The data used in this thesis came from a study conducted as a part of Sisu at

Work-project1, by University of Helsinki and VTT. The participants (N = 82, 30 male)

were aged between 24 and 58 (M = 41.03, SD = 8.51). They were knowledge workers

recruited from four different Finnish organizations mailing lists and occupied various

positions from expert roles to managers. The study was approved by the VTT ethical

committee (27.5.2019) and University of Helsinki ethics review board. The participants

also signed a form of consent before participating.

The participants were informed that the study aimed to further the development

of digital tools for individual well-being in the workplace. As compensation for

participating, every participant received a summary report about their mental resources

and sleep quality during the experimental period. Additionally, the participants who

actively took part in the study received two movie tickets. Participants were required to

have Android phones for mobile applications used in the study. All participants passed

health criteria evaluated based on subjective health and medications and no

participants dropped out during the experimental period.

Procedure

The study analyzed in this thesis consisted of an experimental period of three

weeks, run in stages between 28.5.2019-12.12.2019. During this period, participants

answered EMA questionnaires using a mobile app developed by VTT. The EMA

questionnaires were queried thrice a day: In the morning at 10 am (9 am for the first

organization), in the afternoon at 4 pm and in the evening at 9 pm. Every questionnaire

contained questions about experienced affective states, social company and activities, as

1 Principal investigator Ilmari Määttänen, Academy of Finland decision number 313399
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well as more specific questions about sleep, sisu states and stress once a day. Each

questionnaire took around a minute to fill. All questions were given in Finnish.

The participants were also given a PulseOn (PulseOn Technologies Ltd., Espoo)

activity wristband and a Moodmetric (Vigofere Ltd., Finland) smart ring to wear for

the duration of the study period. Participants were instructed to wear the PulseOn

wristband on their non-dominant hand and to try to use the devices continuously

during the three week period. Instructions were given to charge the wristband every

day and the smart ring every week. The same application that was used for EMA

questionnaires also uploaded data from the PulseOn wristband to cloud, while data

upload from the smart ring was done using Moodmetric-application.

Materials

Ecological momentary assessments

The affective state questions queried accuracy of different affective state claims

of the form "In the last 30 minutes, I’ve felt like:" on a 7-step Likert-scale slider, with

answers ranging from 1 (not at all) to 7 (completely). Eight Finnish translations of

affective state claims were queried in this manner: angry [vihainen], anxious

[ahdistunut], enthusiastic [innostunut], focused [keskittynyt], happy [iloinen], sad

[surullinen], satisfied [tyytyväinen] and vigor [virkeä]. The affect claims were designed in

adherence to Positive and Negative Affect Schedule by Watson et al. (1988). Missing

values in the affective state answers were marked with 0. Questionnaires that were

answered within three hours of each query and that had at least one non-missing

affective state answer were included in analysis. In cases where there was multiple

answers within the three hour period, only the first one was considered. Altogether, this

yielded 3537 EMAs with at least one affective state rating.

Significant amounts of missing values was noted in answers to negative affective

state questions (angry = 79.1%, anxious = 62.0%, sad = 80.9%), compared to positive

affect states (range = 2.5 - 4.2%). The number of affective state scores with value 1

seemed to be underrepresented in negative affect scores, where the distributions where
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otherwise highly positively skewed. Examination of correlations of missing values also

indicated that the proportion of missing values in one affect was inversely related to

scores in affects of opposite valence. This indicated the possibility that participants had

used omitting an answer as a way to report the lowest value on the scale 1: not at all.

There was however no clear way of determining when omitting an answer was used in

this manner and when it was genuinely missing. For this reason, missing values in EMA

affect claim answers were excluded from further analysis.

Wearable devices

PulseOn activity wristband reported IBI-series values measured using using

green and infra-red PPG signals, as well as 12.5 Hz 3-axes ACC in a dynamic range of

±8 g. While it was also possible to record 25 Hz ACC and PPG signals using the

PulseOn wristband, this was not done in order to save recording space and to limit

device power consumption. Heart beats were detected using a proprietary algorithm by

PulseOn, with previous research indicating heart beat detection accuracy up to 99.57%

in night time recordings compared against an ECG-baseline (Parak et al., 2015). A

Signal Quality Estimation (SQE) rating calculated from PPG wave morphology and

ACC signals (‘Accuracy of Beat-to-Beat Heart Rate Estimation Using the PulseOn

Optical Heart Rate Monitor’, 2018) for masking out artefacts was also provided by the

wristband. The wristband also reported HR, predicted activity class and step counts,

which were not included in the analysis. PulseOn recordings yielded 348.0 hours of

recordings on average per participant (SD = 143.6 hr, range = 14.9-564.5 hr).

The Moodmetric smart ring recorded per-minute SCR counts, SCL, step count

and Moodmetric-index score. The Moodmetric index was calculated using a proprietary

algorithm from EDA signal. It ranged between 0 and 100, with high values indicating

high SNS activity and low values PNS activity according to Jussila et al. (2018). In

more detail, value 1 indicated deep sleep, below 30 relaxation, 50 mental activity and

100 extreme stress, excitement, anxiety or fright (Jussila et al., 2018). The

Moodmetric-index is calibrated to user specific physiological activity level, requiring a

minimum calibration period of 12 hours. While it was also possible to receive 3 hz
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EDA-signals from the Moodmetric devices, it was omitted over the simplified

per-minute recordings. Comparison of Moodmetric prototype model against a

laboratory-grade EDA sensor found a cosine similarity of .83 between extracted

EDA-features, which was deemed adequate for in field recordings (Torniainen et al.,

2015). Moodmetric recordings yielded 380.5 hours of recordings on average per

participant (SD = 94.5 hr, range = 86.4-506.4 hr).

Preprocessing

Even though Parak et al. (2015) found the beat-to-beat detection accuracy of

PulseOn to be excellent, these analyses were limited to nighttime recordings without

movement. Movement artefacts are however ubiquitous in daytime PPG recordings,

since even small movements of the sensor can affect the LED light propagation path,

and thus the resulting signal (Delgado-Gonzalo et al., 2015). Movement artefacts can be

removed from PPG signals by a variety of methods, being a popular subject of signal

processing competitions (Pankaj et al., 2021, for review), but all of these approaches

require the raw PPG signal, which was not available here. Alternatively, a masking

algorithm can be used to determine the beat to beat quality of given IBI-series.

Applying a masking procedure can however lead to significant amounts of data loss in

daytime recordings, with ‘Accuracy of Beat-to-Beat Heart Rate Estimation Using the

PulseOn Optical Heart Rate Monitor’ (2018) reporting 67.6% IBI observations being

excluded using the PulseOn SQE rating as a mask during daytime activities. When

these issues are combined with non-wear time, ectopic beats, challenges in data upload

and calibration issues in a sizeable, long-term in-field study, then the required signal

processing can be extensive.

Accelerometry autocalibration procedure

In the absence of movement, an correctly calibrated ACC signal should represent

the gravitational pull of the earth and residual noise (van Hees et al., 2013). A visual

examination of the recorded ACC signals however indicated that the Euclidian Norm

(EN)
√

a2
1 + a2

2 + a2
3 of the triaxial signals consistently did not sum to the expected
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value of 1 g during periods of low movement. This was problematic since it indicated

that EN-based ACC features would include a sensor-specific calibration bias. To correct

this, an autocalibration method for ACC signals developed by van Hees et al. (2014)

and implemented in GGIR-package (Hees et al., 2021) was used. The method first

segments the ACC signal to 10 second segments, detects ones with low movement and

then calculates the best fitting model intercepts and coefficients for the triaxial signals

using an iterative closest-point fitting process to correct the error. Before calibration

the sensor specific low-movement segments differed on average by 28.5 mg (range =

19.4-37.9 mg) from expected and after calibration by 2.7 mg on average (range =

1.4-8.4 mg).

Segmentation

Signals recorded by the PulseOn wristband and Moodmetric ring were

segmented to 30 minute windows before mobile questionnaire response times. This

yielded 2,918 PulseOn and 2,970 Moodmetric signal segments with any data present.

Missing data was found in 240 PulseOn data segments, while 521 segments of non-wear

time was noted by visual inspection. The non-wear time periods, which were

characterized by a static ACC-signal and IBI-values ranging around 400-600 ms over at

least a 1-minute period, were manually labeled in the data and removed. The resulting

IBI segments contained only 17.7 % completely reliable IBI-observations according to

the PulseOn SQE rating. For the Moodmetric-observations, 753 segments with missing

data was found. Also 112 Moodmetric signal segments that were found to fall within

the first 12 hours of recordings were excluded to allow user specific calibration of the

Moodmetric index time to function.

Inter beat interval masking procedure

While the PulseOn SQE rating was deemed quite reliable based on visual

examination of passed values, it was found to be overly conservative as a masking

algorithm. Therefore, a new masking algorithm was developed using amount of

movement and IBI-value dispersion (Algorithm 1). In this algorithm, only IBI-values
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within 250 ms of a 40 observation rolling centered median and IBI values with less than

50 mg of movement during the previous 4 seconds measured by Root Mean Square of

Successive Differences (RMSSD) of EN of calibrated ACC signal, were passed. As an

additional condition, every passed IBI observation had to belong to a continuous

sequence of at least 3 other passed IBI-observations. This was done in order to ensure

that every passed IBI-observation belonged to a continuous sequence of values that

could be used to calculate HRV-features, many of which require lagged or differenced

values. After applying the mask 44.7 % of the IBI observations passed, while visual

examination of the results indicated that the accuracy of the mask was good.

Algorithm 1: IBI masking algorithm
Input : List Di, i = 1, 2, · · · , n, with absolute differences of IBI-values to 40

observation rolling centered median and list Mi, i = 1, 2, · · · , n, with
amount of movement measured by RMSSD of EN from previous 4 seconds
of each IBI observation. Parameters Dlim and Mlim for cutoff values of
IBI dispersion and movement.

Output: IBI mask.
1 Mask = [ ]
2 prevMask = 0
3 for i← 4 to n do
4 if prevMask ̸= 0 then
5 if Dk < Dlim AND Mk < Mlim then
6 Maskk ← 1
7 else
8 Maskk ← 0
9 prevMask ← 0

10 end if
11 else
12 if ALL Dk−3...k < Dlim AND ALL Mk−3...k < Mlim then
13 Maskk−3...k ← 1
14 prevMask ← 1
15 else
16 Maskk ← 0
17 end if
18 end if
19 end for
20 return Mask
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Feature extraction

A wide variety of features was chosen to be extracted from the preprocessed

signal segments to allow models to make use of the most informative ones. Feature

abbreviations and explanations are presented in table 1. Two primary signal types were

extracted from the IBI-series segments: HR and HRV. HR features were calculated as

segments IBI-timings mean, median and percentile values. HRV features are often

divided to time-domain, frequency-domain and non-linear features (Shaffer & Ginsberg,

2017). Time-domain features included SDNN, CVNNI, IQRRR and HRVTI calculated

from IBI-values, and pNN20, pNN50, SDSD, RMSSD, CVSD and MADRR calculated

from differenced IBI-values. Non-linear features, which quantified unpredictability and

complexity of the signal included CVI, CSI, modified CSI, SD1, SD2 and

SD2/SD1-ratio calculated from lagged IBI-values (Jeppesen et al., 2014).

Frequency-domain feature calculation was done by first linearly interpolating given

IBI-value sequence to time domain at 4 Hz, centering the signal and then applying fast

Fourier transformation for frequency decomposition, yielding the VLF, LF, HF, LFNU,

HFNU and TotPow features.

After extraction, features from the IBI-signals were normalised to participant

specific nighttime values. Within-subject normalization is a method that has been

previously found to increase model performances in affect detection studies (Pettersson

et al., 2020; Tervonen et al., 2020). Although subject-specific normalization is usually

performed using the same data that is being normalized, here the abundant relatively

good quality night time recordings were able to be used as the baseline. To calculate

the normalization statistics, night time recordings of IBI-series between 1:00 AM and

6:00 AM were segmented to 30 minute, non-overlapping segments. From these

segments, the ones with over 85 % completely reliable observations according to

PulseOn SQE rating were selected and had unreliable observations excluded. This

yielded 8,112 segments in total, with 100 observations on average for each participant

(SD = 53.4, Range = 7-195). The same features as outlined previously were extracted

from these segments, from which participant specific means and standard deviations
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Table 1
Extracted features and their descriptions. Features included in the final models are
marked with bold.

Signal Feature Description
PPG HRmean, HRmed Mean and median HR

HRp05, HRp25, HRp75, HRp95 5th, 25th, 75th & 95th HR percentiles
HRmin, HRmax Minimum and maximum HR

SDNN, SDSD Std of IBIs, std of IBI differences
pNN20, pNN50 Proportion of IBI differences differing

by more than 20 & 50 ms
RMSSD Root mean square of IBI differences

CVNNI, CVSD Ratio of SDNN and mean IBI,
and RMSSD and mean IBI

VLF, LF, HF, TotPow Power in (0.0033-0.04 Hz), (0.04-0.15 Hz),
(0.15-0.4 Hz) & (0-0.4 Hz) frequency bands

LF/HF Ratio of LF and HF
LFNU, HFNU LF and HF with normalized units
LFNU, HFNU LF/(TotPow-VLF) and HF/(TotPow-VLF)

HRVTI HRV triangular index using a binwidth
of 100 ms

IQRRR Interquartile range of IBI values
MADRR Median absolute IBI difference

CVI, CSI, modified CSI Cardial vagal index, (modified) cardial
sympathetic index

SD1, SD2, SD2/SD1 Poincaré plot minor and major axis length,
ratio of major and minor axes

ACC VMUmean, VMUmed Mean and median VMU
VMUskew, VMUmax Skewness and maximum of VMU
VMUp75, VMUp95 75th and 95th percentiles of VMU

ENMONZmean, ENMONZmed Mean adn median ENMONZ
ENMONZskew, ENMONZmax Skewness and maximum of ENMONZ
ENMONZp875, ENMONZp975 87.5th and 97.5th percentiles of ENMONZ

STEPmean Mean number of steps
EDA MMmean, MMmed Mean and median MM-index

MMsd, MMtrend Std and trend of MM-index
SCRNmean, SCRNmed, Mean, median, and maximum skin

SCRNmax conductance response count
Note. Despite the multitude of features, they can be thought to summarise only four primary
signal types: HR, HRV, movement and EDA.
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were calculated and used to normalize the used features for each participant.

The features extracted from ACC signals for affective state prediction are not as

well established than in the context of ECG and PPG research. Therefore, two different

approaches in terms of gravitational component removal were chosen for ACC feature

extraction. First one was using the Euclidian Norm Minus One with Negatives set to

Zero (ENMONZ) from the calibrated ACC signal. This feature introduced by van Hees

et al. (2013) weighs vertical movements more heavily than others and has been found to

be a good daily physical energy expenditure estimation metric. Another approach was

measuring Vector Magnitude Units (VMU), also known as high frequency filtered EN.

This measure was chosen since it has been previously found to be a good predictor in a

highly similar study by Määttänen et al. (2021). It was extracted from the uncalibrated

triaxial ACC signal using a 4th order high-pass Butterworth filter with a cut-off

frequency of 0.5 Hz to keep the formulation of the feature consistent to Määttänen et al.

(2021). After these measures were transformed from the ACC signals, they were

epoched at 1 second intervals, from which statistical features were extracted.

Statistical features were extracted from Moodmetric-index and SCR counts,

while SCL measures were found to contain too many missing values to be used for

feature extraction. The average number of steps reported by Moodmetric ring was also

used as a feature.

Final dataset

Two criteria were used select the observations included in the final dataset; each

feature value had to be formed from at least 5 minutes of data, and each participant

needed to have at least 5 unique observations. These were chosen to ensure a minimum

sensibility criteria for the extracted feature reliability and to limit the variance in model

performance estimates due to participant specific observation counts. In practice, the

formation of features from differenced or lagged IBI-values limited the number of

observations the most due to the requirement of passing the mask with both values.

After applying these criteria and joining the features together, a dataset with 1642

observations was formed, containing 24 observations for each subject on average (SD =
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11.6, Range = 5-50). Missing values in EMA questionnaire affective state answers

further limited the observation counts for affect-specific models (Angry = 214, Anxious

= 552, Enthusiastic = 1,591, Focused = 1,585, Happy = 1,612, Sad = 189, Satisfied =

1,611, Vigor = 1,610).

A final sensibility check was performed based on the extracted feature

correlations. First, as noted by Ciccone et al. (2017), SD1 and SDSD were to be

identical to RMSSD, as well as CSI to SD2/SD1-ratio and were consequently removed.

A further limit of no feature having a Pearson correlation over .9 with another feature

in the data was also applied. This was done in order to reduce model training times,

increase interpretability and to control the effects of multicollinearity on feature

importance estimates (Strobl et al., 2008). To determine the features to retain, usage in

similar studies and performance in preliminary analyses was considered. As a result,

many of the ENMONZ, HR and HRV-features were excluded (see Table 1). Final

dataset feature correlations are reported in appendix A1.

Model fitting

Random Forests (RF) and eXtreme Gradient Boosting (XGBoost) models were

fitted to predict affective state scores using the extracted features. Random forests, by

Breiman (2001), is a method for training ensembles of decision trees with added

randomness to prevent overfitting. In this method, predictions are generated by

aggregating predictions over a group of trained decision trees – corresponding to

averaging in a regression context. Randomness is injected to each tree by means of

bootstrapping, or selecting a random subsample of observations with replacement,

referred as in-bag observations, for training each tree. Further randomness is then

introduced to by only considering a random subset of features at each split and selecting

the feature that provides the best split according to the used objective function. The

tree training and split selection is then continued until the desired number of trees is

reached. XGBoost models are also a class of tree ensembles, where the results from

multiple decision trees are combined using boosting instead of aggregation. Boosting
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means training each decision tree serially, with each tree trying to minimize errors of

the previous tree. This allows sequentially combining together simple decision trees to

form an overall strong learner (Chen & Guestrin, 2016; Friedman, 2001).

These two algorithms were chosen due to their ability to handle the large

number of possibly uninformative or highly redundant features included in the analysis.

While a feature selection procedure like wrapper search could have also been used, it

was omitted due to prohibitive computational requirements. The chosen models also

had the convenience factor of not requiring feature normalization and having readily

implemented feature importance methods.

Model performance was evaluated using leave-one-subject-out cross-validation.

This method was chosen to evaluate model generalization performance on a previously

unseen users data as recommended by Schmidt et al. (2019). Nested within these

subject-specific folds, a 3-fold cross-validation was run while retaining subject-specific

groupings to select model hyperparameters (Tohka & van Gils, 2021). The best

performing hyperparameter set in the inner folds was used to train the model for outer

fold predictions. Model fitting, cross-validation and hyperparameter selection was done

using the mlr3 -framework (Lang et al., 2019), with packages ranger (Wright & Ziegler,

2017) and xgboost (Chen et al., 2021) being used as model implementations. RF models

were trained using 1,000 trees, with maximum tree depth and number of features to

consider at each split selected via tuning. XGBoost models were trained with maximum

of 1,000 trees with a early stopping criterion of 5 rounds, and had maximum tree depth,

learning rate and number of features to consider for each tree tuned.

Statistical testing and model interpretation

Statistical tests were performed to see whether the models were able to improve

predictions over a baseline model predicting the training set outcome variable mean for

each fold. Paired one sided t-tests comparing fold-specific root mean square error

decrease from baseline models to RF and XGBoost models were utilized to do this.

Benjamini-Hochberg method (Benjamini & Hochberg, 1995) was used for adjusting
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p-values for multiple comparisons within each model type.

Trained model behaviour was analysed using global and individualized feature

importance methods to identify the most important features and to see how changes in

different features impacted model predictions. Permutation importance was utilized to

quantify feature importance in RF models. In this method, feature importance is

measured as the amount of performance degradation when evaluated feature values are

permuted in a given test set using the previously trained model. If the permuted feature

is important, then randomizing the feature values should cause a significant increase in

the model error (Breiman, 2001). Out of bag observations were used to calculate the

permutation importance values by the ranger package (Wright & Ziegler, 2017), with

the final importance values calculated by averaging across all trained models for a given

task/affect. Although permutation importance is often regarded as a robust feature

importance method, it should be noted that RF permutation importance measures can

be overestimated for mutually correlated features (Nicodemus et al., 2010).

SHapley Additive exPlanations (SHAP) values were used to examine XGBoost

feature importances and individualized feature attributions. SHAP values are based on

a combination of approaches from cooperative game theory and local explanations to

calculate additive feature impacts on model outputs while ensuring several desirable

properties, which are not guaranteed with other popular tree ensemble feature

importance methods (Lundberg et al., 2019; Lundberg & Lee, 2017). SHAP values

essentially describe model output changes from expected value by averaging the impacts

on a prediction when adding an evaluated feature to a model when some subset of other

features are missing, over all possible orderings of adding the evaluated feature to the

model. Feature being missing means being replaced by its expected value in this

context. Tree SHAP algorithm was used to calculate the SHAP-values using the

xgboost-package (Chen et al., 2021). SHAP summary plots were used to visualize all

SHAP-values for given task test sets, for identifying most important features for the

XGBoost models and overall patterns of changes. Since examination of SHAP summary

plots can be challenging due to the amount of visualized information, SHAP
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dependence plots were used to highlight selected patterns of SHAP value impacts on

model predictions. All analyses were done in R 4.1.3 (R Core Team, 2022).

Results

Model performance

The paired t-tests comparing fold specific performances of trained models

against baseline models found improvements in RF models for affects vigor (p = .005)

and focused (p = .013), while non-significant improvements were noted in affects

enthusiastic (p = .155) and angry (p = .621) (Table 2). XGBoost models found similar

results with a statistically significant improvement in affect vigor (p = .001) and

non-significant improvements for affects focused (p = .068) and enthusiastic (p = .431).

The magnitude of improvement was modest in general, with a 0.045 - 0.051 average

root mean square error decrease noted for vigor and 0.025 and 0.013 for affects focused

and enthusiastic respectively. Inspection of the percentage of folds/subjects that showed

improvements over baseline, indicated percentages ranging from 68.1 to 71.0 % for

affect vigor, 65.2 to 68.1 % for focused and 59.4 to 63.8 % for enthusiastic.

Inspection of predicted value distributions reported in appendices B1 and B2

indicated that model performance for affects vigor, focused and enthusiastic relied

mainly on the models ability to discern low affect scores from average and high values.

Only models for affect focused seemed to be able to discern high affect scores from low

and middle ones.

Feature importance

ACC and HRV features were found to be most significant for RF models in

terms of permutation importance (Figure 1). Especially permutation of the median and

75th percentile of VMU decreased performance heavily, followed by HRV features

pNN50, CVI, MADRR and CVSD. Minimum HR was the most important HR-derived

feature while EDA-activity described by MMmean and MMsd were found to be

important for affect vigor.
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Table 2
Model performance statistics and paired one-sided t-test results comparing performance
of trained model against baseline. imp % is the percentage of folds where performance
improved over baseline model.

Random Forests XGBoost

Task N d̄ t adj. p imp. % d̄ t adj p imp. %

Angry 22 -0.009 -0.502 0.621 50.0 0.016 0.332 0.999 50.0

Anxious 42 0.004 0.453 0.898 52.4 0.030 1.450 0.999 40.5

Enthusiastic 69 -0.013 -1.592 0.155 63.8 -0.013 -0.995 0.431 59.4

Focused 69 -0.025 -2.796 0.013 68.1 -0.025 -2.163 0.068 65.2

Happy 69 0.001 0.319 0.898 63.8 0.032 2.262 0.999 47.8

Sad 17 0.015 3.729 0.999 23.5 0.078 1.369 0.999 29.4

Satisfied 69 0.003 1.176 0.999 56.5 0.034 3.238 0.999 31.9

Vigor 69 -0.045 -3.352 0.005 68.1 -0.051 -3.754 0.001 71.0
Note. p-values are adjusted for multiple testing using Benjamini-Hochberg method within
each model type.

Examination of SHAP dependence plots for XGBoost models predicting positive

affects indicated a pattern of decreased scores when movement measured by VMUmed

and VMUp75 was under 8-16 mg, while low maximum VMU values were found to

increase affect focused scores (Figure 2). High values of minimum heart rate increased

positive affect scores, as did high short term HRV indexed by high CVSD, MADRR and

low a SD2/SD1 ratio (Figure 3). Low values of average of Moodmetric index were found

to decrease positive affect predictions, while high dispersions and trend of Moodmetric

index also decreased the scores. High number of SCRs was also found to slightly

decrease affect focused scores (Figure 4). Interestingly, many of the effects detailed in

the dependence plots could be seen in all of the examined positive affects, although the

magnitude of these relationships depended on the achieved model performance. To

inspect the SHAP value impacts of all features for each affective state, SHAP summary

plots are reported in appendices C1-C8 due to space constraints.
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Figure 1
Permutation importance results from RF models. The error bars describe 95 %
confidence intervals of the means. Note the legend at lower right corner.
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Figure 2
SHAP dependence plots for selected ACC features representing movement, and positive
affects. Feature values are in units of mg and are scaled by a base 2 logarithm on for
visualization.

Note. Empty dependence plot for feature VMUmax for affect Enthusiastic indicates that
XGBoost models found no splits using this feature.

Discussion

The aim of this thesis was to evaluate the possibility of affect detection in daily

life using wearable sensors and EMAs – a context of study that has received little

attention despite its importance for affective computing applications. In this study, a

signal processing pipeline was implemented to deal with artefacts and other problems in

data, a variety of features were extracted and machine learning models predicting

self-reported affective state scorings were trained. Model performance was evaluated

using leave-one-subject-out cross-validation, and achieved performances were compared

against a baseline. Permutation importance and SHAP values were used identify

important features and the relationships governing model performance.

The models were able to improve performance over baseline when predicting

high activation positive affective states vigor, focused and enthusiastic. Permutation

importance highlighted the significance of inertial and HRV features. Examination of
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Figure 3
SHAP dependence plots for selected HRV (CVSD, MADRR, SD2/SD1) and HR
(HRmin) features and positive affects. Feature values are in normalized units.

Figure 4
SHAP dependence plots for selected EDA-based features and positive affects. Feature
values are in original units.
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SHAP values indicated that the model performance mainly relied on connecting

sedentary periods of low movement and SNS activation with decreased positive affect

predictions, while high HRV, minimum HR and movement slightly increased positive

affect predictions. Although the achieved performances are modest and the used feature

importance analyses exploratory, these results are valuable in guiding future research in

a little investigate context of study.

Model performance

In many regards the observed results were within expectations based on previous

research. First, the observed predominance of high intensity and frequency positive

affective states over low frequency and intensity negative affects corresponded to

previous surveys in non-clinical samples (Komulainen et al., 2014; Zelenski & Larsen,

2000). This imbalanced negative affective state score distribution combined with the

issue of missing values caused significantly smaller samples sizes for negative affect

models. Together these factors likely severely limited predicting negative affective state

scores.

The achieved performance in detecting the positive affective states seemed to

reflect placement on an underlying dimension of arousal or degree of associated

physiological activation. Vigor for example could be placed highly on Russels

circumplex models (Russell, 1980) activation dimension, followed by focused or

enthusiastic, happy and satisfied. This correlation between placement on arousal axis

and performance makes sense, since both quantifiable physiological signals and arousal

can be seen arising from SNS activation (Bota et al., 2019). The affective states where

consistent improvement over baseline was noted (vigor, focused, enthusiastic) also

closely correspond to the Positive and Negative Affect Schedule subscales of active,

attentive and enthusiastic, indicating that the underlying dimension could possibly be

characterized as positive activation (Watson et al., 1988; Watson et al., 1999).

Although not straightforward, the percentage of folds where improvements were

noted over baseline model could be used as a proxy for classification accuracy (Table 2).
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Based on these values ranging from 59.4 to 71.0 % in affects vigor, focused and

enthusiastic, the achieved performance is comparable to other affect detection studies

predicting EMA-based affective states in naturalistic environments. Compared to

Jaques et al. (2016) and Taylor et al. (2020), which use the only known comparably

sized EMA-dataset for affect detection, the performance here could be interpreted as

being good since all affective state scores were used, instead of excluding ambiguous

values in the middle of the scale.

Model interpretation

Based on examination of SHAP values, the XGBoost models utilized three

primary effects to predict the affective states linked with positive activation: periods of

low movement, low EDA level and high HRV. These periods of low movement, defined

by VMUmed and VMUp75 features below 8-16 mg, could be possibly characterized as

sedentary states like sleeping or low effort activities without much associated movement

(Figure 2). Moodmetric EDA measurements impacted predictions similarly to low

movement, with MMmean values below 40 described as corresponding to states of deep

to regular relaxation (Krupić et al., 2021) lowering predicted positive affect scores.

Similar reduction of positive affect scores was noted with high dispersion and trend of

the Moodmetric index (Figure 4). This could be due to transient episodes of

sympathetic arousal over low level baseline EDA, and therefore these features could be

informative of periods of low EDA level. High HRV marked by high CVSD, MADRR

and low SD2/SD1 ratio showed increases in the predicted positive affect scores (Figure

3), although many more inconsistent effects were noted in the various other HRV

features extracted. Additionally high minimum heart rate was found to increase

positive affect predictions.

The importance of low movement and EDA level could possibly be interpreted as

behavioral and physiological manifestations of low positive activation. However the

increase in positive affect predictions in high HRV could be seen as conflicting evidence,

since HRV is mainly linked with PNS activation, often described corresponding to
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"rest-and-digest" types of activities. The relationship between positive affect and HRV

is however complicated, with high activation positive affects found to increase HRV

when examined as between subject traits, but showing the opposite effect when

examined within subjects (Papousek et al., 2010; Schwerdtfeger & Gerteis, 2014). One

possibility here is that the personalized nighttime normalization procedure didn’t

succeed in removing between subject variations in HRV measures, which the models

were able to utilize to predict higher trait positive affectivity levels. Similar

relationships of increased movement, HRV and HR related to positive affectivity in

daily life has been found by Määttänen et al. (2021). Although here positive affect was

calculated from relatively lower-activation positive affects content, happy and joyful,

and the examined HRV variable was 5 minute SDNN aggregated over 45 minute

periods. Still the used measures are closely conceptually associated and can be seen

representing the same underlying phenomena.

Finally it should be reminded that examination of SHAP values is a novel

approach in interpreting model performance and that no statistical testing procedure to

identify significant relationships is performed. The examined SHAP dependence plot

features were selected by manual inspection of SHAP summary plots and thus subject

to individual choice, although the selection of features showing the largest and most

consistent SHAP values was prioritized. Regardless, the corroboration of identified

relationships to previous research and ability visualize detailed non-linear relationships

holds great promise in guiding feature extraction for affect detection and highlighting

interesting phenomena for future study.

Limitations and future research

In many regards the issue of ground truth measurement and conceptualization is

one of the most important problems in any supervised machine learning study, which

also be noted here. For example, the issue of missing values, and their exclusion due to

the reasons outlined in introduction likely played major part in influencing the observed

results. For the negative affects which already showed a positively skewed, unipolar
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distribution this exclusion of 66 - 88 % of samples likely meant the loss of signal. The

positive affect predictions likely suffered also, since the largest prediction accuracies

were noted in the lower end of positive affect scorings. Future work is needed to identify

a method for including the missing values in analyses and to prevent responder

ambiguity between lowest value of the scale and answer omission.

Although measurement of affective states by EMAs guarantees a high degree of

ecological validity, it also introduces difficulties of measuring and interpreting the

measured phenomena. In this study affective states were queried in the form of

accuracies of affect claims of the form "In the last 30 minutes, I’ve felt like:" in Finnish.

This in principle allowed conceptualization of the measured phenomena as core affect in

the lines of Russell (1980), mood according to Watson et al. (1988) or even as sequences

of emotions, since Ekman (1992) had reported of an instance where subject reported

multiple emotions in close proximity as one. The questions also left room for

interpretation whether they queried the existence of an instance of an affective state, or

constant presence of an affect during last 30 minutes. Also some of the affects queried

might have different meanings in Finnish and English. For example the Finnish word

virkeä has a meaning of being well rested which is not so explicitly present in the

translation vigor. Additionally, interpersonal variability of experiencing and reporting

affective states further complicates the picture. These effects cause ambiguity in what

the studied phenomena is, requiring additional contextual information about the

antecedent events and timings of experienced affects to identify different components.

Presence of this ambiguity likely limits the expected performance using a supervised

machine learning approach.

The poor signal quality in this and other ambulatory affect detection studies is

currently one of the major limiting factors for performance. Low signal quality can

however be compensated by adding more signal types: First by examining raw PPG

signal amplitude measures of vasoconstriction associated with SNS activation could be

extracted. Additional features could be also extracted from EDA such as SCR

amplitudes or including the SCL which was omitted here due to missing data. There
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were also signals present in this dataset that could likely increase performance, but

which were omitted to limit the scope of the study. For example activity classification

categories were provided by the PulseOn wristband and sleep, circadian and calendar

features could be engineered from timestamps and ACC, in addition the application

used for EMA questionnaires recorded phone activity which could be analyzed. New

unobtrusive wearable sensors could also be introduced, such as skin temperature to

measure circadian effects, or gyroscopes, magnetometers, barometers and GPS to

provide more accurate activity detection and contextual data.

Another way to increase performance is by reformulating the approach. For

example personalized or multi task learning methods could be used to capture the

interpersonal variation present in affective state self-reports (Jaques et al., 2017).

However, in these cases it is important to have sufficient sample sizes from each subject

and to evaluate model performance against a personalized baseline in the lines of

Zenonos et al. (2016). The application of personalized approaches could also help to

disambiguate between within subject and between subject effects, e.g. between HRV

and positive affect. A related but broader approach would be to personalize models on

the level of clusters of subjects having similar physiological reactivity. Clustering is an

example of unsupervised machine learning approach, which could also be utilized in this

context with high potential. For example in this study the collection of EMAs

practically limited the samples sizes and model performance, while unsupervised

methods could also utilize the abundant amounts of unlabeled data. This approach has

already been used in stress detection by Tervonen et al. (2020) achieving around 60 %

accuracy using in-field data. Still another approach would be to apply semi-supervised

learning making use of the limited amount of labeled data as well as the large amount

of unlabeled data.

Conclusions

This thesis examined the possibility of affect detection in the context of daily life

using machine learning and wearable devices. Self-reported affective states from EMAs
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were predicted using three weeks of PPG, EDA and ACC recordings. A signal

processing pipeline to deal with movement artefacts and other issues in the data is

presented, a variety of features are extracted and the performance of machine learning

models predicting the self reported affective states is evaluated. Above baseline

performance is achieved in predicting affect vigor with statistical significance, while

improvements are also noted for affects focused and enthusiastic. Examination of SHAP

values is utilized to identify low movement, low EDA level and high HRV as predictive

for high activation positive affective states. These results contribute to the field of affect

detection by focusing on the sparsely investigated context of daily life, providing

ecologically valid estimates of performance outside the laboratory. Additionally, the

usage of SHAP values to examine the relationships utilized by the trained models

presents a novel and robust method for guiding feature extraction and highlighting

interesting relationships for future study.
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Appendix A

Feature correlation matrix

Figure A1
Final dataset feature correlations. Note the four primary signal types clustering along
the identity line: ACC, HR, HRV and EDA.
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Appendix B

Model predictions

The following figures visualize boxplots of predicted values for RF and XGBoost models

for affects angry, anxious, enthusiastic, focused, happy, sad, satisfied and vigor. Number

of observations belonging to each true value has been marked above x-axis tickmarks.
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Figure B1
Boxplots for RF predicted values.
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Figure B2
Boxplots for XGBoost predicted values.
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Appendix C

SHAP summary plots

The following visualizations detail complete SHAP summary plots for XGBoost models

for affects angry, anxious, enthusiastic, focused, happy, sad, satisfied and vigor. Point

placement on the x-axis measures SHAP value magnitude (impact on model output) for

a single prediction. Features have been ranked on the y-axis according to the mean

absolute SHAP value, marked on the right side of feature identifiers. Normalized

feature values are represented on a colour scale ranging from z-score of 2 and above

(dark blue) to -2 and below (bright yellow). SHAP values have been jittered on the

y-axis based on the density of values.
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Figure C1
SHAP summary plot for affect angry.
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Figure C2
SHAP summary plot for affect anxious.
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Figure C3
SHAP summary plot for affect enthusiastic.
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Figure C4
SHAP summary plot for affect focused.
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Figure C5
SHAP summary plot for affect happy.
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Figure C6
SHAP summary plot for affect sad.
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Figure C7
SHAP summary plot for affect satisfied.
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Figure C8
SHAP summary plot for affect vigor.


