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Objective. Empathy is essential for successful collaboration. Empathic mechanisms

partly rely on receiving sensory socioemotional information during social interactions,

such as facial expressions. Today, computer-mediated communication (CMC) covers a

large part of daily social environments. However, socioemotional information during

CMC is restricted, which directly impacts social processes and therefore, di↵erent

empathic skills may become beneficial in CMC environments compared to face-to-face

interactions. The impacts of CMC on social processes are insu�ciently understood

and studies provide mixed results. Physiological synchrony is a useful tool to study

underlying aspects of social interactions. In psychophysiology, physiological states can

be evaluated according to physiological responses, such as changes in electrodermal

activity (EDA), which is a measure of sympathic nervous system activity. EDA

synchrony is connected to empathy and collaboration in several studies. The purpose

of this study is to reveal connections between empathic skills, collaborative task

performance and EDA synchrony in CMC environment.

Methods. EDA signals of twenty-nine pairs were recorded during collaborative task

performance in VR environment. Participants were unfamiliar with each other and

could not see each other during performance. Before the experiment, they conducted

two empathy tests: Interpersonal Reactivity Index (IRI) and Reading the Mind in the

Eyes (RME). The performance was measured and connected with empathic abilities

using statistical methods. EDA synchrony indices were calculated for each pair, and

were statistically connected with empathy and task performance.

Results and Conclusions. The results surprisingly showed that IRI subscale ’personal

distress’ predicts collaborative task performance in VR environment. Personal distress

reflects emotional sensitivity and is conneceted to social avoidance and maladaptive

emotion regulation strategies. This result indicates that di↵erent social skills become

beneficial in CMC environment, where participants cannot see each other, as in face-

to-face collaboration. In addition, RME, which reflect skills in complex emotion

recognition, was connected to performance on a trend level, which is supported by

previous findings. EDA synchrony occured, but was not connected with either empathic

skills or collaboration.
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1 Introduction

Throughout evolutionary history, human social abilities have evolved to support face-

to-face interaction. However, the rapid digitalization during the past decades has

changed daily social environments enormously, which impacts natural human social

processes. Computer-mediated communication (CMC) platforms o↵er novel tools for

self-expression and interaction, yet CMC di↵ers from face-to-face interactions in several

ways, which directly impact the quality and dynamics of social interactions (Liu et al.,

2019; Järvelä et al., 2019). Human empathy and collaboration are social abilities which

facilitate everyday social wellbeing and functioning society. Although CMC covers a large

part of daily social interactions, its impact on these emergent social processes remains

insu�ciently understood. A range of study exists, yet a comprehensive theory is still

missing. Without detailed understanding of how these processes emerge, it is hard to

design technology to support empathic and collaborative actions.

Empathy is a set of skills that enable smooth interaction. Empathic abilities support

bonding, mutual understanding, and engagement in social situations (Chartrand and

Bargh, 1999; Decety and Jackson, 2004; Lakin and Chartrand, 2003). Empathic

mechanisms transfer embodied states between individuals and emergence of empathy

partly relies on receiving sensory information of others’ behavior and emotional states

(Kret, 2015). However, embodied, socioemotional communication is restricted in CMC

environments, and studies indicate that empathic mechanisms function di↵erently during

CMC compared to face-to-face interaction (Carrier et al., 2015; Powell and Roberts,

2017). In addition, CMC may a↵ect the quality and outcomes of collaboration, which

highly depend on interaction quality (Curşeu et al., 2015; Meslec et al., 2016). Finally,

because interactions di↵er from face-to-face, di↵erent social skills may become beneficial

in CMC environments.

Emotions are accompanied by physiological states. In psychophysiology, psychological

states are evaluated according to physiological responses, such as heart rate or facial

muscle activity. Due to empathic abilities, physiological states tend to assimilate

interpersonally during interactions, which may cause physiological synchrony (Cacioppo

et al., 2001). The study of physiological synchrony aims to provide information, for

example, about empathic processes by detecting concurrent changes in physiological

signals of interacting individuals (Järvelä et al., 2021). Electrodermal activity (EDA)

is a physiological measure of sympathetic arousal indexed by the conductivity of the skin.

EDA has been connected to empathic experiences and outcomes of collaboration in several

studies (Kazi et al., 2021; Marci and Orr, 2006; Messina et al., 2013). However, according

to previous findings, EDA synchrony is sensitive to context and may not emerge when
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socioemotional information is restricted, as in CMC (Järvelä et al., 2021; Salminen et al.,

2019).

This thesis aims to uncover underlying aspects of successful collaboration in CMC

environments. Connections between dyadic collaboration, empathic skills, and EDA

synchrony are studied with statistical methods. We evaluate whether di↵erent empathic

skills impact collaborative success, whether empathy a↵ects emergence of physiological

synchrony, and whether EDA synchrony is associated with collaborative success in a

virtual environment. In addition, We ask whether EDA synchrony emerges during

interaction in VR during a collaborative task.

In the following chapters, I will first review prior literature on empathy, collaboration, and

physiology of interaction. This review also covers interconnections between these social

phenomena, and recent understanding of how CMC impacts on empathy, collaboration,

and physiological synchrony, and lastly our research questions are framed. In Chapter

2, I will present our experimental design and tools to study the questions of interest. In

Chapter 3, I will present our results and finally, in Chapter 4, provide a discussion of how

these findings are reflected by the current understanding.

1.1 Empathy

Empathy is a complex, multidimensional phenomenon. In a broad sense empathy can

be defined as an individual’s a↵ective response to a perceived or imagined emotional

state (Cu↵ et al., 2016). Empathy is a deeply embedded and innate capacity of

human nature which plays a critical role in social behaviors (Prochazkova and Kret,

2017). Empathic abilities are necessary for successful interaction and forming and

maintaining meaningful interpersonal relationships (Leiberg and Anders, 2006). Babies

show emotional responsiveness already in their first days of life, and children display

empathic concern before they can verbally express such understanding (Meltzo↵ and

Decety, 2003; Zahn-Waxler et al., 1992). Regard for others is essential for psychosocial

development and mental health, whereas deficits in empathy markedly characterize social

and emotional problems (Zahn-Waxler and Radke-Yarrow, 1990).

Human empathy has long evolutionary roots, answering to demands of group living and

supported by parental attachment relationships (Decety and Svetlova, 2012; Waal, 2008).

It is suggested that the complex social environment of primates has generated a unique

evolutionary driving force which has pushed relative brain size to increase enormously

(Dunbar and Shultz, 2007). According to this hypothesis, social cognition is the cause

rather than a consequence of human intelligence. However, empathy does not only

characterize human social life, but empathic behavior is a common trait in other group-

living animals as well (Waal and Preston, 2017).



8
Besides a longstanding research tradition, the concept of empathy lacks a precise

definition, and many authors accommodate related processes into the concept of empathy,

such as sympathy and empathic behavior (Cu↵ et al., 2016). Empathy evokes a subject to

feel as another, which is basically the same emotion between the subject and the target.

In contrast, sympathy refers to feeling for another and provokes di↵erent emotion, such as

pity or compassion. Empathic behavior, also termed as altruistic or prosocial behavior,

refers to an action to relieve distress of the target, such as consolation (Cu↵ et al., 2016).

Despite their typical coexistence, they are regarded as distinct phenomena. Empathic

response may be accompanied with sympathy and sympathy may give rise to helping

behavior, yet not necessarily so (FeldmanHall et al., 2015; Preston and Hofelich, 2012).

Unfortunately, the lack of conceptual consensus has led to the misuse of the term, which

in turn has consequently yielded mixed results and biased clinical findings (Cu↵ et al.,

2016).

Despite the conceptual confusion, the most prominent and accepted view is that human

empathy includes two distinct yet interconnected components: cognitive empathy and

a↵ective empathy. Additionally, it is broadly accepted that human empathy has

three primary constituents: a↵ective response to another person, cognitive capacity to

understand other’s perspective, and regulatory mechanisms to di↵erentiate self and other

originated feelings (Decety and Jackson, 2004). In this thesis, the term empathy is defined

to consist of two interactive components, a↵ective empathy and cognitive empathy, which

are examined in detail below.

1.1.1 A↵ective Empathy

A↵ective empathy refers to interpersonal, automatic processes which provide a↵ective

state matching between individuals during interaction. In order to resonate, people

tend to pick up emotional cues unintentionally and unconsciously in social situations

(Chartrand and van Baaren, 2009). Facial expressions, bodily gestures, tone of the

voice, speech tempo and gaze direction are all socioemotional information which indicates

a person’s a↵ective state. Expressing as well as reading these cues is natural and

spontaneous during social interaction.

Interestingly, people do not merely understand the message behind socioemotional cues

but tend to behaviorally mimic them in social situations (Chartrand and van Baaren,

2009). For example, a person might unconsciously copy their friend’s body position,

speech tempo and tone of voice while having a conversation. (e.g., Chartrand and

Bargh (1999)). Simultaneously their bodily states converge, and the person engages in

an emotional state similar to that of their friend (Prochazkova and Kret, 2017). This

unconscious and automatic mimicry has a fundamental role in human social life: it



9
allows adaptation to the emotional state of the other, and thus increases social bonding,

fosters empathy and liking, and improves smooth interaction (Chartrand and Bargh,

1999; Decety and Jackson, 2004; Lakin and Chartrand, 2003).

According to neuroscientific findings experiencing and observing emotions as well as

retrieving emotional memories all share highly overlapping neural resources (Niedenthal,

2007; Hein and Singer, 2008; Wood et al., 2016). The underlying component which

connects internal and external states is called the perception-action mechanism (de Waal

and Ferrari, 2010). Through the perception-action link, perceiving another’s facial

expression automatically activates observer’s behavioral and autonomic systems associated

with the same emotion, and thus, enables a↵ective sharing (Kret, 2015).

Accordingly, a tendency to unconsciously mimic others is associated with a tendency to

empathize (Chartrand and Bargh, 1999). The mirror neuron system provides a neural

link between observed and performed activity (Rizzolatti and Craighero, 2004). As mirror

neurons fire, they transform observed activity into similar motor responses in observer’s

nervous system (Rizzolatti and Craighero, 2004). Mirror neuron system is not specific to

empathy alone, yet it has been argued to be a core mechanism of the a↵ective empathic

response (Iacoboni, 2009).

Extensive scientific evidence shows that a↵ective coupling is a commonplace ability in

group living animals and has a clear evolutionary adaptive advantage in, for example,

predator avoidance (Waal and Preston, 2017; Decety and Svetlova, 2012). Simple a↵ective

coupling and human a↵ective empathy are mostly di↵erent due to the intensity of

shared emotions, and due to attentional targeting, i.e., whether one is self-focused or

concentrated on the state of the other (Preston and Hofelich, 2012). In addition, a↵ective

empathy includes conscious self-other awareness (de Vignemont and Singer, 2006). In

addition, without functioning regulatory capacity, a↵ective empathy may lead to personal

distress, e.g., feelings of anxiety, and aversive behavior (Eisenberg and Eggum, 2013).

1.1.2 Cognitive Empathy

Cognitive empathy refers to understanding another’s emotional state at a conscious

level. Cognitive empathy plays a role in explaining socioemotional cues and providing

situational, context-related understanding in each situation. Whereas bottom-up,

sensory- based mechanisms characterize a↵ective empathy, cognitive empathy relies

mainly on cognition- based, top-down mechanisms. In contrast with a↵ective empathy,

cognitive empathy is not dependent on external socioemotional cues. For example, people

can empathize with an imaginary character without any external stimuli. High-level

cognitive processes can, in turn, activate downstream bodily representations, and hence,

elicit embodied a↵ective states (Eisenberg and Eggum, 2013).
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Understanding of others’ emotional states requires an ability to make conscious distinctions

between self- and other-originated emotions (Gallup and Platek, 2002). Empathy is not an

all-or-nothing function, and despite its cognitive demands, empathic perspective-taking

is not only a human ability (Waal and Preston, 2017). Some animal species are clearly

able to di↵erentiate others’ intentions and needs from their own, thus, have some level

of self-other awareness, and many perform prosocial behaviors, such as targeted helping

(Waal and Preston, 2017). Some social species with high levels of encephalization (e.g.,

apes, elephants, and dolphins) express clear understanding of others’ personal, specific

needs and can flexibly behave accordingly (Waal and Preston, 2017).

Even though other species express relatively complex forms of empathy, according to

current understanding, human empathy is uniquely flexible and advanced (Decety and

Jackson, 2004; Decety and Svetlova, 2012). This is argued to be explained by the high-

level cognitive capabilities: advanced perspective-taking ability, executive functions (e.g.,

attentional and inhibitory control, cognitive flexibility, working memory), and symbolic

language.

Cognitive empathy and theory of mind (TOM) are closely related concepts. TOM

is an ability to infer motivations, beliefs, intentions, and emotional states of others,

which partly shares the same cognitive and neural resources as cognitive empathy

(Frith and Frith, 1999; Schnell et al., 2011). Similarly with the most complex forms

of cognitive empathy, TOM is almost without exception restricted to human cognition

(Gallagher and Frith, 2003; Decety and Svetlova, 2012; Schnell et al., 2011). TOM

skills, a↵ective coupling and regulatory mechanisms function as a dynamic whole, which

enables people to shift attention from personal distress towards concern for others, adopt

another’s subjective perspective with emotional distance, and regulate their own behavior

accordingly in social situations Schnell et al. (2011); Decety and Svetlova (2012).

1.1.3 Models of Empathy

Social factors, such as liking, social closeness or group membership modulate empathic

responding (Oveis et al., 2010; Stel et al., 2010; Stürmer et al., 2006). Motivation enhances

socioemotional mimicry and people tend to unconsciously mimic those they wish to

a�liate with (Carr and Winkielman, 2014; Lakin and Chartrand, 2003). Interestingly,

situational and motivational factors impact even the most primitive forms of interpersonal

a↵ective coupling (Carr and Winkielman, 2014). Although a↵ective sharing mechanisms

are considered primitive and automatic, situational adaptation happens automatically,

seamlessly, and often unconsciously (Carr and Winkielman, 2014).

Shamay-Tsoory et al. (2019) propose a model for selective a↵ective alignment, which is

a results from a primitive but nuanced learning process. According to their approach,
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people continuously monitor their social position in relation to others, and unconsciously

aim at minimizing a social gap between self and others. During interaction, the

brain creates top-down predictions of a↵ective alignments. If the top-down prediction

matches with bottom-up sensory feedback, the reward-system activates. In case of

a detected misalignment, the perception-action link activates, consequently activating

behavioral and a↵ective coupling mechanisms. Social behavioral, emotional, and

cognitive components function within the same system, constantly providing reciprocal

information. Therefore, the impact of social factors may reach all levels of a↵ective

coupling comprehensively. Shamay-Tsoory et al. (2019).

Cognitive empathic response is generated by experience-based information processing

mechanisms and people vary in empathic understanding. According to Preston and

Hofelich (2012), empathic understanding results from top-down activation of one’s own

emotional and contextual representational network, which relates to subject’s particular

situation. In this way, activation of associative network yields neural state matching

between subject and object, which is necessary, yet not su�cient for state matching.

Empathic understanding may not occur if a subject lacks similar experience, or the

memory is too distant to simulate re-experiencing. Moreover, although bottom-up

a↵ective sharing emerges, personal and situational attributes, such as lack of motivation

or saliency of socioemotional cues, may prevent an empathic response. Thus, according

to the model, empathic understanding requires a subject’s attention and experience of a

similar event. Preston and Hofelich (2012).

1.1.4 Empathy Measurements

Ability to experience empathy varies across individuals. Empathy is typically measured

either on a trait or a state level. Trait empathy refers to an individual’s innate

empathic skills, which are thought to remain stable over time, whereas state empathy

is a momentary experienced empathy met in a particular situation (Leiberg and Anders,

2006). Most experiments studying trait empathy rely on validated psychometric

self-assessment questionnaires. Questionnaires often cover di↵erent subcomponents of

empathy, such as a↵ective and cognitive empathy, or empathic accuracy, which refers to

correct judgement of another’s emotional state. State level empathic experience can be

assessed by using post-experiment self-assessment methods.

Most self-assessment questionnaires are multidimensional, and thus, divide empathic

abilities into subscales to capture the complex nature of human empathy. In this study

we use Interpersonal Reactivity Index (IRI), which is the most prominent and widely used

trait empathy measurement (Davis, 1983; Chrysikou and Thompson, 2015). IRI consists

of four subscales which reflect distinct but interconnected aspects of empathy. During the
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last decades due to lack of precise definitions of empathy and its subcomponents, IRI has

been uniformly used as a two-factor model. Four factors are recombined into two, simply

to represent cognitive and emotional empathy. However, as popular as the two-factor

model of IRI has become, it does not rely on validated metrics, and therefore has yielded

controversial results (Chrysikou and Thompson, 2015). Consequently, in this study we

emphasize the initial four-factor model of IRI.

1.2 Computer-Mediated Communication (CMC)

CMC refers to human interaction which takes place on digital software platforms,

including text-, audio- and video-based mediums, and virtual reality (VR). As opposed

to composing a uniform construct, CMC environments vary widely in temporal and

spatial dimension, modality, degree of user control and context. Therefore, support for

interaction quality is di↵erent in each medium. Defining separate interactive aspects can

help to understand, assess, and augment filtering e↵ects.

First, each type of CMC media can be represented in scale of medium richness, which

refers to the interface’s general capacity to transmit verbal, vocal, and behavioral

information. For example, text-based platforms represent the low end of the scale,

whereas augmented VR is rated high. Second, di↵erent mediums vary in immediacy

of feedback; they can allow either synchronous or asynchronous communication, which

a↵ects the development of reciprocal socioemotional processes (Praszkier, 2014). The

third component is the quality of transmission, such as poor online connections, which can

disturb synchrony and the flow of communication. Fourth, the communication content

may provide specific attributions, such as symbols, emojis, avatars or webcam angles.

These applications allow users to alter and enrich self-expression and create medium-

specific cultural aspects during interactions.

1.2.1 Empathy in CMC

Previous studies show that people can experience empathy in CMC environments (Carrier

et al., 2015; Powell and Roberts, 2017). Although CMC mediums often lack perceptible

socioemotional cues, people create intimate, meaningful relationships online and solely

text-based mediums are shown to be viable to evoke a↵ective coupling (Kramer et al.,

2014; Ferrara and Yang, 2015). However, the appearance of empathy in CMC di↵ers from

face-to-face interactions in both quality and quantity. CMC environments are reported to

reduce empathy levels significantly compared to face-to-face interactions (Carrier et al.,

2015). Forms of cognitive empathy appear prevalent in CMC environments, whereas

empathic behavior remains rather scarce (Powell and Roberts, 2017). Findings indicate

that despite the fact that empathic experiences can arise in CMC environments, empathy
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may emerge through atypical routes, such as overweighting the role of top-down networks,

which can prospectively influence formation of interpersonal relationships and group

level processes (Kim, 2000). In the following, two opposing theoretical approaches into

the emergence of empathy in CMC environments are presented (Kim, 2000; Powell and

Roberts, 2017).

First, “cues filtered out theories” state that compared to face-to-face interactions, CMC

mediums always restrict exchange of nonverbal socioemotional cues at some level, thus,

resulting in impersonality and disrupted empathy. For example, facial expressions,

bodily gestures, and prosody, are partly or completely filtered out from text- or

voice-based communication. Direct eye contact provides attentional and emotional

information to a perceiver, however, the possibility is prevented even in most video-

based communication platforms, therefore reducing a↵ective arousal during interaction

(Syrjämäki et al., 2020). A↵ective empathy is especially dependent on the direct exchange

of sensory socioemotional cues, and temporal asynchrony in CMC may disturb dynamical

a↵ective coupling processes during interactions (Nummenmaa et al., 2008). Consequently,

emergence of empathic processes in CMC environments may have particular emphasis on

individual’s abilities in cognitive empathy, personal experiences, and motivation (D’Urso

and Rains, 2008).

Second, “social information processing” theory proposes that people adapt to new

communication channels in order to a�liate and create social bonds (Walther, 1992).

Even though forms of interaction di↵er significantly from natural embodied signals,

people create meanings, develop personalized impressions and form intimate relationships

via CMC (Walther, 1992). Interestingly, several studies indicate that textual emotional

contents are directly processed in emotion-related ancient subcortical brain areas (Ziegler

et al., 2018). Moreover, reading emotion -related words can elicit implicit, embodied

a↵ective responses, such as facial muscle activity (Ziegler et al., 2018). This direct link

between a↵ective sensory and high-level cognitive processing enables emotional contagion

through artificial channels such as CMC (Kramer et al., 2014; Ferrara and Yang, 2015).

Interestingly, social information processing approach endorses that depending on contextual

factors, CMC environments may have not only proportional, but increased potential for

interpersonal bonding and empathic experiences (Tidwell and Walther, 2002). Due to

the lack of sensory exchange and temporal demands, CMC mediums are proposed to

release the individual from the distress of immediate social feedback, and therefore, enable

more thoughtful and accurate self-expression (Bargh et al., 2002). In addition, due to

anonymity some CMC environments are free from expectations and norms of real-life

interactions, and enable selective self-disclosure (Jiang et al., 2013). Finally, anonymity

contributes to group formation, increases the sense of closeness and belonging, as hidden
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individual di↵erences tend to strengthen the salience of both interpersonal and ingroup

similarities (Michinov et al., 2004; Bargh et al., 2002).

However, despite its plausible prospects, ubiquitous use of CMC has generated unfortunate

consequences. Concurrently, as CMC entails potential to foster group formation, online

groups have increased tendency for ingroup favoritism, such as depersonalization and

stereotyping of outgroup members, and outgroup discrimination (Michinov et al., 2004).

Hence, due to CMC’s expanding influence on everyday life, there is a growing pressure to

understand precursory processes triggering spontaneous empathic responses. Preston and

Hofelich (2012) theoretical framework proposes that top-down empathic understanding

requires personal experience of similar events, and indicates that situational factors, such

as reduced saliency of socioemotional cues and lack of personal motivation, can prevent

empathic response. Findings indicate that online empathy relies on individuals’ cognitive

processes to a large extent, and little is known how downstream routes in emergence of

empathy could be augmented (Bargh et al., 2002; Powell and Roberts, 2017). Thus, it is

not understood how absence or saliency of any specific information type a↵ects emotional

convergence. In order to foster empathy in CMC environments, socioemotional processes

need to be understood in more detail.

1.2.2 VR Environments

From the perspective of CMC, VR technologies bring novel tools to study social

interactions. Technological solutions determine the quality of interactions, and thus have

the potential to improve or distract social processes. Immersive technologies, such as VR

environments are stretching the boundaries of interaction beyond typical forms, providing

versatile possibilities to selectively include, exclude and modify interactive aspects.

According to recent studies, socioemotional processes in CMC can be augmented by

providing socially relevant feedback during interactions (Järvelä et al., 2021; Salminen

et al., 2019). Biofeedback of interactive partner’s concurrent physiological state (e.g.,

visualized heartbeats) during CMC impacts emotions, social presence, and inter-personal

attraction (Chanel et al., 2010). For example, deploying biofeedback in VR is shown to

increase experienced empathy and physiological coupling between participants (Järvelä

et al., 2021; Salminen et al., 2019). In addition, VR can be used to motivate empathy

towards unfamiliar groups, such as animals, through immersive simulations where one

can experience reality from other’s position (Hannans et al., 2021; Shin, 2018; Ventura

et al., 2021).

In this study, we use VR to provide rich, engaging task environment and to control the

exchange of visual a↵ective cues during the experiment.
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1.3 Collaborative Task Performance

An ability to work e↵ectively in dynamic groups has always been a fundamental part of

human behavior. Prehistoric human populations survived because they could hunt, raise

children, and protect their communities in collaborative groups (McLoone and Smead,

2014; Tomasello et al., 2012). In modern life, cooperation skills are still relevant; successful

achievement of shared goals touches everyday life from work life to political activities,

mass transit, and team sports.

Underlying determinants of group performance have been an interest of both scholars

and practitioners for over 70 years (Kozlowski and Ilgen, 2006). According to current

understanding, collaborative actions rely on emergent group processes, and include

cognitive, a↵ective/motivational, and behavioral aspects (Kozlowski and Ilgen, 2006).

Although groups consist of individuals and their skills, collaborative performance is

influenced by group level aspects rather than being a direct sum of individual skills

and investments. For instance, a wide range of studies has connected collaborative task

performance with group cohesion and group level satisfaction (Venkatesh and Windeler,

2012).

Work groups can be understood as emergent information processing units, where

individuals share and combine their cognitive competences into a group level performance

during interpersonal interactions. Quality of these interactions is crucial to perform

e↵ectively as a group. Indeed, according to a recent study, social skills of group members

are important for collaborative success (Meslec et al., 2016). Some studies claim that

instead of being significantly a↵ected by team members’ IQ, success in group- level

performance is better explained by group members’ social sensitivity, diverse group

composition, and turn-taking equality (Chikersal et al., 2017; Engel et al., 2014; Woolley

et al., 2010, 2015). In addition, Meslec et al. (2016) suggest that emergent group

performance is a fragile process, and an individual, socially maladaptive group member

can disrupt group coordination, thus negatively a↵ecting the performance.

1.3.1 Empathy and Collaborative Task Performance

Collaborative actions require similar skills to those that enable people to behave

empathically. Successful cooperation requires coordinated action, and therefore, an ability

to interpret others’ intentions, behavioral adaptation and self-regulation. Literature

indicates that both bottom-up and top-down mechanisms have a prevalent role in

cooperative success Tomprou et al. (2021).

A↵ective empathy enables e�cient and smooth interaction, because behavioral and

a↵ective coupling provide a fast and spontaneous way to adapt to other’s mental state
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(Wood et al., 2016). Recent studies indicate that rather than forming slowly with trust

and attachment, underlying dynamics of group performance emerge quickly (Tomprou

et al., 2021; Woolley et al., 2010). A↵ective coupling is found to emerge spontaneously

during cooperative task performance and cooperative success is related to the richness of

interactions (Behrens et al., 2020; Mønster et al., 2015).

Behavioral mimicry has been consistently shown to promote cooperative action (Behrens

et al., 2020; Chikersal et al., 2017; Gordon et al., 2020; Wiltermuth and Heath, 2009).

Synchronic behavior and smiling predict group cohesion (Gordon et al., 2020; Mønster

et al., 2015) and perceived a↵ective sharing enhances individual’s group alignment (Knight

and Eisenkraft, 2015). Group- level a↵ective states are important mediators of group

functioning (Knight and Eisenkraft, 2015; Páez et al., 2015). Behaviorally shared positive

feelings promote social integration, cooperation, formation of social identity and collective

self-esteem, improve group cohesion and collaborative task performance, and decrease

conflict (Barsade, 2002; Gordon et al., 2020; Knight and Eisenkraft, 2015; Páez et al.,

2015). To conclude, important underlying aspects of group processes emerge partly

through fast, subconscious neural routes.

Considering top-down mechanisms, TOM, a widely acknowledged component of cognitive

empathy, is connected to group-level task performance in several studies (Engel et al.,

2014; Woolley et al., 2010). An ability to correctly recognize and respond to each

other’s emotional states is understood to help group members to coordinate and regulate

their behavior during performance (Meslec et al., 2016). It is suggested that groups

with socially- talented members tend to develop group synergy, which may ease group

coordination and task adjustment (Curşeu et al., 2015; Meslec et al., 2016). In addition,

group-level TOM skills are connected to group cohesiveness and e↵ectiveness, and

decreased conflict (Curşeu et al., 2015).

1.3.2 CMC and Collaborative Task Performance

At present, collaborative teams often work in online environments. Despite the convincing

line of research in group performance, understanding how technology impacts quality

and outcomes of collaboration remains poor (Venkatesh and Windeler, 2012). As already

discussed, interaction quality is crucial for successful, emergent group performance, and

interaction is di↵erent via CMC versus face-to-face. Group members’ social abilities are

important for smooth interactions, and TOM skills are found to equally benefit group

performance in online environments as in face-to-face collaboration (Engel et al., 2014).

Technology has the potential to support performance, however, it is not clear how

performance could be modulated. Some findings suggest that successful collaboration

is related to the increased richness of interaction (Behrens et al., 2020)). By facilitating
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the richness of interactions, team cohesion, and thus, team performance can be improved

(Venkatesh and Windeler, 2012). However, studies have yielded controversial results

related to richness. Tomprou et al. (2021) showed that lack of visual cues enabled

team members to synchronize their vocal cues and speaking turns more e↵ectively, and

improved team performance. If emergent group processes were understood in more detail,

systems could be designed to support interaction and formation of group dynamics, for

example, optimizing task relevant information, or regulating influence of a dominating or

maladaptive team member.

1.4 Psychophysiology of Interaction

Psychophysiology uses one or more physiological measurements to assess psychological

states (Cacioppo et al., 2001). Physiological processes are an important prerequisite

to emotions, cognition and behavior, and therefore changing bodily signals can be

measured and connected to psychological events (Levenson, 2014). Psychophysiological

methods enable continuous data collection, and most provide high temporal resolution.

Physiological data detects activity that occurs before conscious appraisal, such as

minute deviations in autonomic nervous system, and compared to traditional self-report

measurements, lacks introspective bias. Without need for verbal report, psychophysiological

methods can be used to study, for example, babies or non-human species (Feldman et al.,

2011).

Physiological synchrony aims to identify systematic co-dependency of physiological

activity between two or more individuals. This approach has brought novel tools

to understand social phenomena, especially unconscious aspects of interaction. In

addition, technological development has enabled recording outside the lab, providing

eligible ecological validity. In the following chapter, the main focus is on electrodermal

activity (EDA) synchrony, however, interesesting insightgs to other forms of physiological

synchrony are also presented.

1.4.1 Autonomic Nervous System

Autonomic nervous system (ANS) consists of two main branches: sympathetic nervous

system (SNS) and parasympathetic nervous system (PNS). Whereas PNS is more

activated during the resting state, SNS responds to quick changes in external and internal

environments, yet both branches function simultaneously. The main purposes of ANS are

to maintain homeostatic balance in the body, and concurrently supply adaptive short-term

deviations respective to environmental challenges and opportunities (Levenson, 2014).
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In addition, the ANS coordinates connections between emotions and cognitive processes,

hence, generation, expression, experiencing and recognizing emotions are all densely tied

into ANS activity (Levenson, 2014). During the last decades research has tried to specify

autonomic signatures of discrete emotions (Kreibig, 2010; Levenson, 2014; Mauss and

Robinson, 2009). At present, the existence of emotion specific ANS patterns remain

unclear, however emotion related arousal (intensity) and valence (approach/avoid) are

associated with di↵erent ANS measures (Kreibig, 2010; Mauss and Robinson, 2009).

Psychophysiology o↵ers a variety of techniques to measure complex interaction of SNS and

PNS activity, such as heart rate, respiratory rate, electrodermal activity, and electrical

activity of the brain. Each of these signals have their own characteristics with respect to

ANS overall activity (Kreibig, 2010; Levenson, 2014; Palumbo et al., 2017). For example,

electrodermal measures reflect SNS activation alone, whereas cardiac measures, such as

interbeat interval (IBI) and heart rate variability (HRV) detect activation of both SNS

and PNS branches.

Electrodermal Activity (EDA) EDA is a common psychophysiological measure of SNS

activation. It is an indirect measure of eccrine sweat gland activation, which are

innervated purely by the SNS, hence, EDA is not influenced by PNS activity (Cacioppo

et al., 2001). SNS activation coordinates deviations from resting state, and changes

in EDA signal reflect emotional arousal and reactivity (Kreibig, 2010). Consequently,

increase is associated with emotions related to action preparation, which accompanies

cognitive or emotional load. These emotions include fear, anger, disgust, embarrassment,

amusement, pride, surprise, and suspense (Kreibig, 2010). Decrease in EDA occurs

concurrently with passive motivational state, which characterizes emotions of sadness,

contentment, and relief (Kreibig, 2010).

Skin Conductance (SC) signal is a physiological measurement which detects changes in

EDA. SC is recorded between two sensors attached directly on the skin surface, commonly

placed on palms or fingers. SC increases when eccrine sweat pores open and moisturize the

skin, and decreases as sweat evaporates. SC signal consists of two subcomponents which

can be extracted from raw data and analyzed independently: tonic skin conductance

level (SCL) and phasic skin conductance response (SCR). These subcomponents vary in

their signal shape and emotional dimension they reflect: SCL signal reflects long- term,

slow variation in SNS activity and increases during arousal, whereas SCR signal detects

fast, spike-like changes, and reflects emotional valence (Cacioppo et al., 2001). Typical

values of SCL vary between 2 and 20 µS and the signal changes between 1 and 3 µS.
The common size of SCR is between .1 and 1.0 µS. SCR signal provides high temporal

responsiveness and a typial latency between stimulus onset and SCR initiation is 1-3 S,

and 1-3 S from the initiation to its peak. Half-recovery time is between 2 and 10 S.
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(Cacioppo et al., 2001). According to the current literature, emotion-specific increases in

SCR and SCL are interdependent, changes in signals are either co-directional, or neutral

across the experiments (Kreibig, 2010).

1.4.2 Interpersonal Autonomic Synchrony

ANS synchrony of peoples’ autonomic states is shown to be a common social phenomenon

which has been studied in various populations, including parent-child relations, psychotherapy,

teammates, and romantic couples (Golland et al., 2015; Levenson, 2014; Palumbo et al.,

2017). Findings indicate that ANS synchrony emerges independently, regardless of

behavioral and situational factors, sensory modality, valence, or relationship type, and

even mere co-presence causes ANS state matching (Golland et al., 2015; Palumbo et al.,

2017). However, other studies show that ANS synchrony is highly context dependent, and

as contrary to emerging automatically between any individuals, synchrony is a complex,

relational phenomenon which can be regulated by cognitive processes (Danyluck and

Page-Gould, 2019).

Theoretical controversies are partly due to the large methodological variety in the field.

Even though the study of interpersonal physiological dynamics is growing, the field

still lacks scientific standards, and therefore comparison of di↵erent studies and theory

building remain complex (Kazi et al., 2021; Palumbo et al., 2017; Schneider et al.,

2020). Data analysis methods, terminology and experimental setups vary from study

to study, and patterns of synchrony have not been carefully studied. Recently, Schneider

et al. (2020) tested four existing methods to calculate EDA synchrony during a dyadic

collaborative learning task and found that di↵erent methods were associated with learning

outcomes di↵erently.

1.4.3 Psychophysiology of Empathy

A number of social phenomena are connected to ANS synchrony, including empathy

(Palumbo et al., 2017). People involved in social interactions will constantly observe ANS-

originated emotional signals, such as pupil diameter, blushing, heart rate and breathing

rhythm, which are transformed into similar activity in observer’s ANS (Kret, 2015).

Perception-action coupling mechanisms recruit both motor and autonomic synchrony,

and thus enable a↵ective coupling across the nervous system (Hatfield et al., 1993; Kret,

2015; Rizzolatti and Craighero, 2004).

Some researchers have suggested a↵ective empathy to be an underlying explanation for

interpersonal ANS convergence (Palumbo et al., 2017)). However, ANS synchrony occurs

independently from empathy, and some aspects of empathy may predict synchrony more
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than others (Palumbo et al., 2017). Di↵erent components of empathy partly rely on

separate neurological mechanisms and therefore may be expressed di↵erently in ANS. The

role of mirroring activity is emphasized in a↵ective empathy, and it may produce ANS

coupling more than cognitive empathy (Nummenmaa et al., 2008). Cognitive empathy

may support interpersonal, co-regulatory activities,; this, in some situations, may imply

interpersonal asynchrony in ANS activation (Coutinho et al., 2019; Feldman, 2012).

According to existing findings, ANS signals reflect empathic responses independent

of context. Oliveira-Silva and Gonçalves (2011) found associations between empathic

responding and intrapersonal IBI, and Järvelä et al. (2014) associated interpersonal IBI

synchrony with both trait tendency to empathize and state empathy during gaming

activity. Yet neither of the studies found connections between EDA and empathy (Järvelä

et al., 2014; Oliveira-Silva and Gonçalves, 2011). Salminen et al. (2019) connected

cortical activity synchrony (EEG frontal asymmetry) to perceived empathy during

interactive VR environment meditation task. In their study, biofeedback enhanced the

subjective empathic experience and cortical synchrony between participants (Salminen

et al., 2019). In line with other findings, EDA synchrony measured during this experiment

was non-significant, and not associated with either empathic experience, or richness of

communication (Järvelä et al., 2021).

However, contradictory to these findings, the study of therapist-client interaction has

repeatedly connected empathic experience with increased EDA synchrony (Marci and

Orr, 2006; Messina et al., 2013). In addition, moments of high EDA synchrony has

occurred simultaneously with an increased number of socioemotional cues (Marci et al.,

2007). Coutinho et al. (2019), studied romantic couples and found that empathic skills

and interaction valence determined the occurrence of EDA synchrony. Synchrony was

increased during negative interactions, and synchrony during positive interactions was

modulated with male partners’ trait empathy (Coutinho et al., 2019). Additionally,

Levenson and Ruef (1992) found that EDA synchrony, but none of the PNS measures, was

connected to empathic accuracy, which refers to accurate judgements of other’s emotional

state (Levenson and Ruef, 1992).

Although research of neurobiological mechanisms of empathy is abundant, connections

between ANS synchrony and trait empathy remain rather underexplored, and studies

have yielded mixed results. (Coutinho et al., 2019), for example, found no significant

connection between IRI subscales and EDA synchrony. These findings suggest that EDA

synchrony has context dependent connection to empathic experience, yet association can

reflect more general phenomena, such as social presence (Chanel et al., 2012; Järvelä

et al., 2014).
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1.4.4 Psychophysiology of Collaborative Task Performance

During collaboration, group dynamics change over time, and synchrony analysis of group

members’ physiology may help to capture dynamical, emergent processes between team

inputs and outcomes. Indeed, several studies have connected physiological synchrony

with group performance (Kazi et al., 2021). Behavioral and ANS synchrony is associated

with group cohesion and performance outcomes (Elkins et al., 2009; Gordon et al., 2020;

Henning et al., 2001), collaborative problem solving (Elkins et al., 2009), collaborative

learning, teamwork e↵ectiveness (Henning et al., 2001), and group-level self-regulation

ability (Malmberg et al., 2019). However, despite the repeatedly found connections to

positive outcomes, ANS synchrony is shown to increase during conflicting interactions,

and strengthen during competitive gaming compared to cooperative condition (Chanel

et al., 2012). These results imply that synchrony patterns need more fine-grained

definitions to provide clear theoretical implications.

Similarly, EDA synchrony is associated with both positive and negative aspects in

collaboration, and it remains unsure what construct EDA synchrony reflects in collaboration,

and whether di↵erent synchrony methods detect the same construct. EDA synchrony is

related to co-operative success (Behrens et al., 2020), task completion time, improved

group performance (Henning et al., 2001; Montague et al., 2014), and group satisfaction

(Chikersal et al., 2017). Yet, it also relates to negative a↵ect and group tension

(Mønster et al., 2015). Dindar et al. (2020) failed to associate EDA synchrony with

task performance, but synchrony periods indicated group-level collective mental e↵ort.

In addition, richness of interaction is suggested to impact outcomes of synchrony; Behrens

et al. (2020) found that EDA synchrony predicts cooperation when participants could see

each other, but in face-blocked condition the e↵ect was dampened.

1.4.5 Physiological Synchrony During CMC

CMC environments engender special challenges in emergence of physiological synchrony

because interactive partners are dislocated, and interaction often lacks direct socioemotional

cues. Embodied synchrony is at least partly dependent on sensory information and

studies consistently show that ANS synchrony increases due to richness of interactions

(Chanel et al., 2012; Salminen et al., 2019). Additionally, ANS synchrony is significantly

stronger among physically present interactive partners and can occur during mere physical

co-presence without direct interaction (Golland et al., 2015; Palumbo et al., 2017).

Hence, synchrony during CMC may emerge through atypical routes and the extent to

which co-presence or interaction based on socioemotional cues is necessary, is yet largely

unexplored.
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As already discussed in Chapter 1.2., some forms of interpersonal synchrony, such as

a↵ective coupling, and vocal synchrony can take place in CMC environments (Kramer

et al., 2014; Tomprou et al., 2021). Even though increased synchrony relates to the

richness of information, synchrony is found during interactions with restricted sensory

modalities. For example, Mønster et al. (2015) found EDA and facial “smiling” muscle

activity synchrony in absence of vocal cues during a cooperative task. Behrens et al.

(2020) found dyadic EDA synchrony in face-blocked condition during cooperative task,

yet synchrony predicted cooperative success only during face-to-face contact. Järvelä

et al. (2021)) found cortical activity synchrony, but no significant EDA synchrony, during

a VR meditation task where only artificial visualizations of ANS activity were shown to

subjects.

However, autonomic synchrony can occur independently from co-presence and across

modalities (Palumbo et al., 2017). According to Shamay-Tsoory et al. (2019) (presented

in Chapter 1.1.3.) a↵ective, behavioral and cognitive processes align within the nervous

system, and the activation spreads across a↵ective and cognitive systems spontaneously.

Following Shamay-Tsoory et al. (2019) framework, each form of information has potential

to evoke an overall socio-emotional system, and VR environments provide interesting

settings to determine the role of di↵erent modalities in the emergence of ANS synchrony.

EDA Synchrony and Task Performance During CMC Formation of team dynamics is

a sensitive, context dependent process, and remains is unclear whether EDA synchrony

predicts similar outcomes in CMC as in real life.

According to cues filtered out framework, reduced richness may harm social processes

in CMC, such as social bonding, group performance and group dynamics. Behrens

et al. (2020) found that EDA synchrony predicted cooperative task performance only

in face-to-face conditions, and absence of visual cues dampened the e↵ect. On the other

hand, social information processing theory proposes that people spontaneously adapt

into new communication channels in order to a�liate. Tomprou et al. (2021) found that

reduction of nonverbal cues helped team members to synchronize vocal cues during video

conferencing.

So far, there is only a little evidence that ANS synchrony predicts collaborative

performance in CMC environments. However, due to abundant connections during face-

to-face collaboration, it may be expected that EDA synchrony is connected to better task

performance in VR environment.



23
1.5 Research Questions

Concluding from the literature presented, we have defined three research questions. In

attempts to seek new insights to the gaps in the current understanding, this work is framed

to study the connections between empathic skills and EDA synchrony, EDA synchrony

and dyadic collaboration, and empathic skills and collaborative task performance in VR

environment. In addition, we explore whether dyadic EDA synchrony occurs in a VR

environment during a collaborative task.

Research Question 1: a) Does trait empathy predict EDA synchrony in VR environment?

b) Does trait empathy predict collaborative task performance in VR environment?

Research Question 2: Is EDA synchrony associated with collaborative task performance

in VR environment?

Research Question 3: Does EDA synchrony occur during a joint problem-solving task in

VR environment without the exchange of visual cues?

2 Methods

2.1 The Study

2.1.1 Subjects

Sixty-six participants (33 pairs) were recruited via mailing lists of student unions of

University of Helsinki and social media. All participants were right-handed and Finnish-

speaking and had normal or corrected-to-normal vision.

Participants were recruited individually, paired randomly and met their collaborative

partner for the first time in the VR environment. Experimental setup was symmetric

within and between dyads: all participants had similar roles in task performance, and

there were no separating grouping factors between dyads. Participants’ and dyadic

descriptive statistics are reported in the Results section.

The study protocol was approved by The University of Helsinki Ethical Review Board

in the Humanities and Social and Behavioural Sciences, and all participants signed an

informed consent form.

2.1.2 Psychometric Tests

Interpersonal Reactivity Index (IRI) IRI is a common psychometric tool in the study

of human empathy Davis (1983). It’s a 28-item self-report questionnaire which divides
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empathy into four 7-item subscales: perspective taking (PT), fantasy (FT), empathic

concern (EC) and personal distress (PD). PT scale assesses individual’s spontaneous

tendency to reach other’s psychological point of view; FS ability to imaginatively

transpose oneself with fictitious character; EC other-oriented sympathy and concern;

PD self-oriented distress in emotional interpersonal settings. PT and FS are regarded to

reflect cognitive aspects of empathy, whereas EC and PD are aspects of a↵ective empathy.

Reading the Mind in the Eyes (RME) RME is a simple and most widely used test

of emotion recognition and is considered to reflect TOM skills (Baron-Cohen et al.,

2001). RME consists of 36 still pictures of eye regions, some accompanied with emotional

cues and others emotionally neutral. Respondents need to match the pictures with the

correct semantic definition of the mental state. RME is a close-ended question survey and

respondents are expected to use rapid, unconscious and automatic understanding during

the task.

Wechsler Adult Intelligence Scale-III (WAIS-III) WAIS-III is a test pattern to assess

cognitive abilities of adults (Wechsler, 1955). It contains 11 subtests, from which a

block design subtest was used to assess individual performance in this study. The

block design subtest represents a valid measurement of individual visuo-spatial task

performance, which correlates highly with overall performance in the collaborative block

design (Wikström et al., 2020). Scores of the block design subtest were used in the

analyses to control the impact of individual skills in collaborative performance.

2.1.3 Collaborative Block Design

Recently, Wikström et al. (2020) developed a novel method to assess and quantify dyadic

task performance. The Collaborative Block Design is a visuo-spatial joint problem-solving

task, where participants need to cooperatively finish a series of 3D puzzles in a VR

environment. The task roles are symmetric, and two-way cooperative information sharing

is required to complete the task. When individual skills are controlled, Collaborative

Block Design can be used to study interpersonal and environmental aspects of pair

performance (Wikström et al., 2020).

The task procedure begins with both dyad participants having a two-dimensional view

of a three-dimensional block configuration, each from a di↵erent angle. To figure out the

3D configuration of the blocks, dyad participants need to share information of their view

either verbally or visually by placing the blocks during the task. The shapes include cube,

cylinder, sphere, pyramid, cone, long cuboid and long cylinder, and each shape resembles

at least one other shape in 2D side projection. There were seven di↵erent shapes in two
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colors, which makes 14 blocks in total. These blocks were organized into configurations

in varying levels of di�culty. For more detailed information, see (Wikström et al., 2020).

2.1.4 The Procedure

First, participants filled the background questionnaire and the self-assessment empathy

pretests. Then the block design subtask of the WAIS-III test battery was completed

together with the researcher. After that the participants were instructed how to do the

collaborative block design task and familiarized with both the 2D and 3D view of the

blocks and the experimental VR environment. EDA recording devices were placed, and

participants were supplied with a VR headset, headphones, microphone and handheld

controllers. Before the actual task the baseline recordings were performed, where

participants sat and walked in a neutral VR environment for 10 minutes. Participants

were in separate rooms throughout the experiment.

The VR environment contained a space where participants had a set of all seven di↵erent

3D blocks and 2D view of the task solution (see Figure 1). Participants could freely

grab, move and rotate blocks with handheld controllers. They could place the blocks on

a virtual table for suggestions of the solution, which was viewed by their collaborative

partner, and each participant could only see the 2D version of the other’s suggestions.

They communicated through a microphone and headphones during the task. After they

agreed on a configuration solution, participants reported the task as completed. The

environment returned automatically to its initial settings, and the next task could begin.
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Figure 1: Screen capture from the VR task environment.

The tasks were performed in two sets of five puzzles, ranging from easy to more challenging

within each set. The research assistant monitored the experiment and the data recordings

during the experiment, and took notes on any interferences which could impact the

following data analyses.

2.1.5 Performance Scoring

The task performance measurement followed the scoring system developed by Wikström

et al. (2020), where dyadic performance scores are based on completion times but also

takes into account the order of the tasks.

The two sets of puzzles were half-split balanced in the sample to control the learning

e↵ect. Trial time and success/failure to find correct solution of each task were recorded.

Maximum time was set to 15 minutes and if exceeded, the task was marked as failed.

Pairs were divided into tertiles according to their performance time on each task, where

a pair gained 3 points if in the fastest tertile, 2 points in the second, and 1 point in the

third tertile. Pairs with incorrect solution or performance time over 15 mins were assigned

0 points. The scores were summed for each pair to represent their overall performance

across all tasks.
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2.1.6 EDA Recordings

Participants’ SC was measured during task performance in VR environment. The

electrodes were placed on the middle and the ring fingers of the left hand of each

participant. The recording equipment was Nexus 10 Mark II and the data was collected

with BioTrace+ software.

2.1.7 Preprocessing

SC data was preprocessed with the Ledalab toolbox v3.4.9 in Matlab (r2019). First,

artefacts were detected by visual inspection and interpolated with Ledalab curve fitting

tool. Data sections which clearly di↵ered from typical SC signal amplitude change and

exceeded 0.05µS minimum amplitude criteria, were corrected. Following the literature,

the data was low-pass filtered with 1st order Butterworth low-pass filter with cut-o↵

criterion of 5 Hz. Signals were downsampled to 8 Hz according to closest value of Nyquist

Rate: minimum SCR from initiation to the peak is 0.5 s (2 Hz) and recovery time 2 s

(0.5 Hz) (Cacioppo et al., 2001), and therefore calculated Nyquist rate is (2 + 0.5) ⇤ 2 =

5Hz < 8Hz. Then, SC signals were extracted into SCL and SCR components using

continuous decomposition analysis, which was based on-negative deconvolution method

(Benedek 2010) Four optimization cycles were run, and finally the data was exported

from Ledalab. The following signal analyses were run with Matlab r2019 software.

2.2 EDA Synchrony Indices

Schneider et al. (2020) recent findings propose that di↵erent synchrony methods are

associated collaborative learning outcomes di↵erently, and therefore, may partly reflect

separate phenomena. For this reason we have decided to study two previously used

methods to measure synchrony, and test whether they are codirectional.

2.2.1 SC Concordance Index

Concordance index is a correlational EDA synchrony method, which detects moment-to-

moment directional agreement of participants signal changes. The procedure is originally

introduced by Marci et al. (2007) and has been mainly used to study physiological

synchrony during therapy sessions (Karvonen et al., 2016; Messina et al., 2013). SC

concordance index was calculated for each dyad.

First, preprocessed SC signal was transformed into average slopes by calculating the

di↵erence of amplitude means of two overlapping 5 s windows in 1 s step [(x(t)�x(t�1)].

Second, Pearson correlation coe�cients were calculated between participant’s average
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slopes throughout the data in 15 s successive time-locked windows. Third, the dyadic

concordance indices were created by dividing the sum of overall positive correlations by

the sum of all negative correlations across the session. Finally a natural logarithm was

applied to the resulting value.

In previous analyses, the original study used fixed lag-zero, whereas others have tested

lags ranging from 0 to 4 and 7 s (Karvonen et al., 2016; Marci et al., 2007; Messina et al.,

2013). However, due to symmetric experimental design we did not expect that consistent

lag to occur and therefore chose to use fixed lag-zero as the original analysis using this

method.

2.2.2 SCR Correlation Analysis

SCR correlation is correlational sliding window approach, which follows the method used

in Järvelä et al. (2021) experiment. It is a modified frequency domain analysis, where

SCR signal spike frequencies are exchanged with standard deviations of continuous SRC

signal, which can likewise be understood as an increase of signal spiking.

First, standard deviations of continuous SCR signals were calculated in 40 s sliding

windows and 20 s overlap for each participant. Then dyadic Pearson correlation

coe�cients were calculated between obtained standard deviation values throughout the

data. Järvelä et al. (2021) used permutation analysis to test the significance of synchrony

values. However, due to high variation in the task performance times in our data,

permutation tests could not be applied, and significance was tested with the Monte Carlo

procedure.

2.2.3 Statistical Testing

Monte Carlo approximation was used to control for autocorrelation and to evaluate the

statistical significance of synchrony values. The same procedure was used by Karvonen

et al. (2016). Monte Carlo procedure consists in generation of 100 pairwise shu✏ed values

and using 95th value as significance criteria to real synchrony value. Monte Carlo values

were calculated similarly as the real synchrony values in both analyses, with the di↵erence

that participant 1 data were in correct order but connected with randomly chosen time

windows of participant 2 across the data. The shu✏ed values were then set in ascending

order, and if the real synchrony value proceeded 95th value, it was considered to reach

.05 significance. The statistical detail for this method is presented and further discussed

in a book ’Statistical Identification of Synchronous Spiking‘ (Victor and Dilorenzo, 2013).
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2.3 Statistical Analyses

To see whether the SC Concordance and SCR correlation indices reflect similar

psychological construct, dyadic Pearson correlation was calculated between the two dyadic

indices across all dyads. Regression analyses were used to study whether the synchrony

indices were related to overall task performance and whether an average dyadic empathy

predicted the emergence of synchrony.

The first regression analyses were performed with synchrony values as an independent

variable, and performance as a dependent variable. In the second series of analyses

four IRI subfactors and RME values were independent and synchrony values dependent

variables. In the third series the empathy measurements were independent variables

and task performance a dependent variable. To avoid autocorrelation variables were

studied independently in all analyses. Average points of WAIS-III subtest were

controlled as independent variables in analyses where empathic skills were predicting

task performance.

3 Results

3.1 Background Factors

Synchrony indices were successfully calculated for 29 dyads out of 33, and included in

the final analyses (58 participants, 24 males, 33 females, 1 other). One of the pairs were

excluded for knowing each other beforehand, and three pairs had insu�cient data quality

to proceed into the further analyses. Descriptive statistics of the sample and individual

empathy scores can be seen in Table 1. Females scored higher in PD scale (t(66)=2.47,

p<.016), and no other gender di↵erences were found in RME and IRI subscales (P -

values>.097).
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3.2 EDA Synchrony

Monte Carlo tests showed significance of 17.0% of the measured SC concordance indices

and 31.0% of the SCR correlation indices. Overall ranges and statistical indicators of

indices are presented in Table 2. Significant Pearson correlation between the indices was

found (r(27)=.42, p=.024).
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3.3 Regression Analyses

No significant connections were found between EDA synchrony indices and IRI and RME,

or EDA synchrony and task performance. RME scores and SCR correlation were weakly

associated, however the connection did not reach statistical significance (t=1.76, p<.09).

Associations between empathy and task performance can be found in Table 3. Positive

connection was found between the PD scale and the performance points (t(26)=2.818,

p<.009). In addition, connection with RME and performance was close to statistical

significance (t(26)=1.895, p<.068).



32

4 Discussion

The aim of this thesis was to investigate relations between empathic skills and

collaboration in VR environment. Despite the increasing role of CMC in daily lives, the

recent literature provides controversial picture of how reduced socioemotional richness

impacts on interaction on social processes. In addition, we studied whether EDA

synchrony emerged during collaborative performance, whether synchrony was influenced

by empathic skills, and whether synchrony predicted pair performance in these settings.

Our first research question was to evaluate connections between trait empathy and EDA

synchrony, and trait empathy and task performance in the VR environment. A positive

trend was observed between RME and task performance. Although the connection was

nonsignificant, it gains support from previous findings that TOM skills are beneficial in

collaborative task performance equally online as in face-to-face collaboration (Engel et al.,

2014). Interestingly, a significant positive connection was found between PD and task

performance. According to previous understanding, the PD scale is related to tendency of

social avoidance and maladaptive emotion regulation strategies, thus, it is not expected

to enhance e↵ective collaboration (Grynberg and López-Pérez, 2018; Curşeu et al., 2015).
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However, CMC di↵ers from face-to-face interaction and therefore may change the role of

social abilities.

One interesting explanation for our findings is that CMC environments may o↵er ‘a

bu↵er’ against a↵ective coupling for individuals who tend to resonate with others with a

low threshold. A↵ective coupling occurs spontaneously during interaction, and those who

score high in the PD scale are regarded as more sensitive for subconscious, unvoluntary

coupling, and lower in their emotion regulation capacities. Social information processing

theory proposes that certain forms of CMC release individuals from distress of immediate

social feedback, and therefore help to direct cognitive resources to relevant information.

In CMC environments, as proposed by cues filtered out framework, subtle a↵ective

cues may not be salient enough to trigger coupling mechanisms of individuals with low

emotional sensitivity, and consequently, empathic responses can be damped due to lack

of stimulation, decreasing the quality of interaction (Grynberg and López-Pérez, 2018).

However, emotionally sensitive people may benefit from their high tendency to resonate,

and therefore experience empathy and social engagement during online interactions.

Although people adapt to communicate in CMC environments, empathic processes

may rely increasingly on individual motivations and experiences. Group process

theories indicate that due to reduced socioemotional information, ingroup similarities

and between-group di↵erences tend to become more salient, thus increasing risks of

stereotyping, ingroup favoritism and misunderstanding on CMC platforms. However,

recent work suggests that sensitivity to socioemotional signals may help to balance

negative e↵ects of reduced socioemotional richness in CMC. In a recent study, Bonfils

et al. (2018) found that high scores in PD helped people to gain empathic understanding.

Whereas well-functioning emotion regulation eases one’s own distress, it tends to suppress

overall emotional experience, and thus, an ability to understand others in distress (Bonfils

et al., 2018). Their findings are in line with Preston and Hofelich (2012)’s framework

of cognitive empathy, which states that to achieve true empathic understanding, an

individual needs to have similar personal experiences.

This finding together with previous research reveal relations between the two opposing

theories of how CMC impacts empathy. The framework presented here suggests that

di↵erent social skills may become beneficial during CMC compared to face-to-face

interaction and collaboration. While o↵ering poor quality of socioemotional interaction,

CMC environments may provide a bu↵er which allows emotionally-sensitive people to

regulate their a↵ective states and benefit from their rich internal experiences. To

understand how CMC environments impact on collaboration and the role of empathy,

there is a need for further study.

Second, we studied whether EDA synchrony is associated with collaborative problem-

solving task performance in the VR environment. Even though EDA synchrony was
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present during the task, this study failed to find connections between synchrony and

performance outcomes. This result is in line with Behrens et al. (2020) findings that

EDA synchrony indicates task performance only when visual cues are available.

It remains unclear what is the influence of EDA synchrony in collaborative performance

outcomes and recent literature provides mixed results. One possible explanation is

that EDA synchrony supports task adjustment and motivation. Behavioral synchrony,

which is associated with ANS synchrony, is connected to group alignment, positive group

a↵ect and group identity in real-life. In addition, Järvelä et al. (2021) connected EDA

synchrony with social presence in VR environment, indicating that synchrony could

support participants’ personal task involvement. In this study, collaborative partners

were newly introduced, and tasks were relatively short. Hence, the experimental situation

in the VR environment may have been stimulating enough to keep up participants’

motivation during a short period of task performance time. It would be interesting to

study whether EDA synchrony has long term e↵ect on engaging participants with the

task by supporting motivation.

Lastly, we studied whether EDA synchrony occurs during a joint problem-solving task

in VR environment without exchange of visual cues. Although the sample in this study

was relatively small, both synchrony indices captured significant EDA synchrony in VR

environment. This finding indicates that physiological synchrony can occur between

dislocated participants in CMC environment and emergence of synchrony is not dependent

on visual cues. In addition, although the two synchrony indices stand for markedly

disparate methodological approaches, they were codirectional. This finding shows that

despite their di↵erences, synchrony could be detected with both methods. It further

suggests that despite the fact that synchrony indices used in the field vary to a large

extent, the results from di↵erent studies are at least partly comparable. However, to build

consistent theories, there is an urgent need for standardized ANS synchrony methods

4.1 Limitations and Future Directions

The results of this study reflected the theoretical frameworks, which were built by

comparing findings from di↵erent experiments. To draw more straightforward conclusions

of di↵erences between CMC and face-to-face interactions, the two situations should be

studied in the same experiment so that most of the experimental and methodological

variation could be controlled. There is a physical, face-to-face version of the collaborative

block task used in this experiment, and thus a possibility to study between-group

di↵erences during the same tasks exists.

In addition, the analyses of this study were performed using dyadic average empathy,

yet there are other ways to indicate group level empathy. For example, our approach



35
does not reveal whether pairwise similarity in empathic skills impact performance.

Interestingly, Meslec et al. (2016) evaluated di↵erent ways to assess group level RME

during collaboration and found that in their study, the lowest individual scores predicted

group performance most accurately. In addition, by using linear mixed model methods,

group and individual level empathy could be evaluated separately, however conducting

these analyses requires a larger sample size than used in this study.

According to previous literature ANS synchrony has been found to emerge independently

from context (Palumbo et al., 2017). In this experiment, however, it cannot be fully

controlled that physiological synchrony reflects social processes rather than the demands

of the shared environment. However, even though ANS synchrony would not be caused

by interaction per se, synchrony can reflect shared level of involvement, which may also

reveal intriguing aspects of social task engagement. EDA synchrony metrics in this study

reflected linear correlational synchrony interpreting that higher synchrony levels provide

positive outcomes. Schneider et al. (2020) recently found that EDA synchrony may have

time varying components during task performance. Interestingly, they detected moments

of high and low synchrony and found that synchrony occurred in cycles, and that cyclic

patterns were the most relevant indicators for learning performance and the quality of

interaction. Additionally, moments of high synchrony occurred when collaborators were

focusing on external events, such as receiving instructions, oscillations in synchrony while

interacting, and low synchrony when participants focused on independent work, or were

confused.

For support of these findings, Mayo and Gordon (2020) recently introduced a dynamic

model which suggests that successful, adaptive interactions consist of moments of

synchrony and asynchrony. Group coordination requires an ability to flexibly move in

and out of synchrony depending on the task and social context. In addition, their model

indicates that during successful interactions, the relation between behavioral and ANS

synchrony is adaptively regulated, and therefore di↵erent forms of synchrony should be

studied independently. The task procedure used in this study di↵ers from Schneider

et al. (2020) in task type and duration, and interaction requirements for proceeding in

the task. Yet, despite that, to understand the role of EDA synchrony in team dynamics

and collaborative success, it would be interesting to study time-varying components of

EDA synchrony in more detail.

Studying team physiological dynamics provides potential to advance team theories and

create technological design opportunities to support group performance (Kazi et al., 2021).

Until recently, ANS synchrony has been studied mostly in a one-dimensional manner,

where more synchrony is considered better, and therefore important dynamical aspects of

social interaction may yet be fully uncovered. Studies of Schneider et al. (2020) Schneider

(2020) and Mayo and Gordon (2020) are another evidence supporting an urgent call
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for recognizing, contextualizing and specifying patterns of interpersonal synchrony in

attempts to understand dynamical, emergent properties of human interaction.
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