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Abstract:

In recent years, advances in deep learning have made it possible to develop neural speech 
synthesizers that not only generate near natural speech but also enable us to control its acoustic 
features. This means it is possible to synthesize expressive speech with different speaking styles that
fit a given context. One way to achieve this control is by adding a reference encoder on the 
synthesizer that works as a bottleneck modeling a prosody related latent space.

The aim of this study was to analyze how the latent space of a reference encoder models diverse 
and realistic speaking styles, and what correlation there is between the phonetic features of encoded 
utterances and their latent space representations. Another aim was to analyze how the synthesizer 
output could be controlled in terms of speaking styles. The model used in the study was a Tacotron 
2 speech synthesizer with a reference encoder that was trained with read speech uttered in various 
styles by one female speaker.

The latent space was analyzed with principal component analysis on the reference encoder 
outputs for all of the utterances in order to extract salient features that differentiate the styles. 
Basing on the assumption that there are acoustic correlates to speaking styles, a possible connection 
between the principal components and measured acoustic features of the encoded utterances was 
investigated. For the synthesizer output, two evaluations were conducted: an objective evaluation 
assessing acoustic features and a subjective evaluation assessing appropriateness of synthesized 
speech in regard to the uttered sentence.

The results showed that the reference encoder modeled stylistic differences well, but the styles 
were complex with major internal variation within the styles. The principal component analysis 
disentangled the acoustic features somewhat and a statistical analysis showed a correlation between 
the latent space and prosodic features. The objective evaluation suggested that the synthesizer did 
not produce all of the acoustic features of the styles, but the subjective evaluation showed that it did
enough to affect judgments of appropriateness, i.e., speech synthesized in an informal style was 
deemed more appropriate than formal style for informal style sentences and vice versa.



Tiivistelmä

Tiedekunta: Humanistinen tiedekunta

Koulutusohjelma: Kielellisen diversiteetin ja digitaalisten ihmistieteiden koulutusohjelma

Opintosuunta: Fonetiikka

Tekijä: Tuukka Törö

Työn nimi: Latentin prosodia-avaruuden analysointi ja puhetyylien hallinta suomenkielisessä end-to-end 
puhesynteesissä

Työn laji: Maisterin tutkielma

Kuukausi ja vuosi: Toukokuu 2022

Sivumäärä: 4+40

Avainsanat: Puhesynteesi, puhetyyli, prosodia, latentti avaruus, syväoppiminen

Ohjaaja tai ohjaajat: Juraj Šimko, Martti Vainio

Säilytyspaikka: Helsingin yliopiston kirjasto

Tiivistelmä:

Viime vuosina syväoppimisen saralla tapahtunut kehitys on mahdollistanut neuroverkkoihin 
perustuvan puhesynteesin, joka lähes luonnollisen puheen tuottamisen lisäksi sallii syntetisoidun 
puheen akustisten ominaisuuksien hallinnan. Tämä merkitsee sitä, että on mahdollista tuottaa 
eloisaa puhetta eri tyyleillä, jotka sopivat kyseiseen kontekstiin. Yksi tapa, jolla tämä voidaan 
saavuttaa, on lisätä syntetisaattoriin referenssi-enkooderi, joka toimii pullonkaulana mallintaen 
prosodiaan liittyvän latentin avaruuden.

Tämän tutkimuksen päämääränä oli analysoida kuinka referenssi-enkooderin latentti avaruus 
mallintaa moninaisia ja realistisia puhetyylejä, ja miten puheennosten akustiset ominaisuudet ja 
niiden latentin avaruuden representaatiot korreloivat keskenään. Toinen päämäärä oli arvioida 
kuinka syntetisoidun puheen tyyliä voi kontrolloida. Tutkimuksessa käytettiin referenssi-
enkooderilla varustettua Tacotron 2 syntetisaattoria, joka oli koulutettu yhden naispuhujan luetulla 
puheella usealla puhetyylillä.

Latenttia avaruutta analysoitiin tekemällä pääkomponenttianalyysi puhedatan kaikista 
puheennoksista otetuille referenssivektoreille, jotta saataisiin esille puhetyylien keskeisimmät erot. 
Olettaen puhetyyleillä olevan akustisia korrelaatteja, tutkittiin pääkomponenttien ja mitattujen 
akustisten ominaisuuksien välillä olevaa mahdollista yhteyttä. Syntetisoitua puhetta analysoitiin 
kahdella tapaa: objektiivisella evaluaatiolla, joka arvioi akustisia ominaisuuksia ja subjektiivisella 
evaluaatiolla, joka arvioi syntetisoidun puheen sopivuutta liittyen puhuttuun lauseeseen.

Tulokset osoittivat, että referenssienkooderi mallinsi tyylillisiä eroja hyvin, mutta tyylit olivat 
monisyisiä ja niissä oli merkittävää sisäistä vaihtelua. Pääkomponenttianalyysi erotteli akustiset 
piirteet jossain määrin, ja tilastollinen analyysi osoitti yhteyden latentin avaruuden ja prosodisten 
ominaisuuksien välillä. Objektiivinen evaluaatio antoi ymmärtää, että syntetisaattori ei tuottanut 
tyylien kaikkia akustisia ominaisuuksia, mutta subjektiivinen evaluaatio näytti, että mallinnus riitti 
vaikuttamaan sopivuuteen liittyviin arvioihin. Toisin sanoen spontaanilla tyylillä syntetisoitua 
puhetta pidettiin formaalia sopivampana spontaaniin tekstityyliin ja päinvastoin.



Table of Contents
1 Introduction...................................................................................................................................1
2 Background...................................................................................................................................2

2.1 Articulation and Speech Acoustics........................................................................................2
2.1.1 Pitch...............................................................................................................................2
2.1.2 Intensity.........................................................................................................................3
2.1.3 Duration.........................................................................................................................3
2.1.4 Voice Quality.................................................................................................................3

2.2 Prosody..................................................................................................................................4
2.3 Defining Speaking Styles......................................................................................................4
2.4 Acoustic Correlates of Speaking Styles................................................................................9
2.5 Deep Learning.....................................................................................................................10
2.6 Related Studies....................................................................................................................12
2.7 Network Architecture..........................................................................................................13

3 Research Questions.....................................................................................................................16
4 Material and Method...................................................................................................................17

4.1 Material...............................................................................................................................17
4.2 Method................................................................................................................................18

4.2.1 Preprocessing...............................................................................................................18
4.2.2 Network Training........................................................................................................18
4.2.3 Principal Component Analysis....................................................................................18
4.2.4 Acoustic Analysis........................................................................................................19
4.2.5 Multiple Linear Regression.........................................................................................20
4.2.6 Speech Synthesis.........................................................................................................21
4.2.7 Objective Evaluation of Synthesis..............................................................................23
4.2.8 Subjective Evaluation of Synthesis.............................................................................24

5 Results.........................................................................................................................................25
5.1 Results of PCA....................................................................................................................25
5.2 Results of Objective Evaluation of Speech Synthesis.........................................................30
5.3 Results of Subjective Evaluation of Speech Synthesis.......................................................31

6 Discussion...................................................................................................................................34
7 Conclusions.................................................................................................................................35
References......................................................................................................................................37



1 Introduction

Speaking styles have been researched both within phonetics and sociolinguistics, and more 

recently, in the world of speech technology. In recent years, developments in computing power have

led to major advances in deep learning, which has broadened possibilities for controlling speech 

synthesis using latent spaces such as neural network bottlenecks. The aim of this thesis is to explore

how the reference encoder of an end-to-end speech synthesizer trained with a diversity of speaking 

styles models prosodic features of speaking styles and how those styles can be controlled.

Controlling prosody is a hot topic within speech synthesis research, but the data used tends to be 

speech in highly controlled, stereotypical styles without much ecological validity. The styles are 

usually on the lines of “angry” and “happy” instead of more subtle and realistic ones. In this thesis, 

I will analyze speech elicited from less controlled and more diverse text styles ranging from fairy 

tales and Wikipedia texts to film subtitles and YouTube captions. After the statistical analysis, I will 

synthesize speech on a stylistic continuum and evaluate the synthesizer output. The evaluation is 

done both through subjective evaluation – in the form of a listening test – as well as by taking a 

peek inside the black box and extracting information on the acoustic features the reference encoder 

models.

The study incorporates theory of speaking style research from phonetics and sociolinguistics into

practical speech synthesis and explores possibilities for controlling more ecologically valid 

speaking styles. My academic motivation for the work lies both in the implications that realistic 

synthesized speaking styles can have for accessibility and domains such as clinical speech synthesis

as well as in the potential that these kinds of speech models could be used in phonetics research, 

e.g., for typological and sociophonetic studies.

The research questions are as follows: 1) Does the reference encoder model speaking styles from

stylistically diverse speech data, and can the potential stylistic differences and their acoustic 

correlates be unearthed with statistical methods? 2) Is the synthesizer able to form utterances with 

specific speaking styles, and can this be controlled?

While the reference encoder does not model the human articulatory system per se – instead 

modeling structures in the corpus – the different acoustic features it takes as input are connected in 

the highly intertwined pathway between the lungs and the lips. Thus, we begin the background 

section with a short introduction into articulation, then proceed to acoustics, prosody, speaking 

styles, and finally to deep learning.
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2 Background

2.1 Articulation and Speech Acoustics

Most human speech is produced by air blown from the lungs through the vocal tract. In voiced 

sounds, the vocal folds in the larynx are narrowed by the arytaenoid cartilage and tensed by the 

thyroid cartilage (Aaltonen et al., 2009, p. 142; Stevens 1998). The constrained air flow makes the 

folds vibrate, creating minute, propagating changes in air pressure called sound waves. This buzz-

sound – a complex set of waves of different wavelengths – is called the source. The source sound is 

then filtered by the rest of the vocal tract, mostly by the natural resonances of the pharyngeal, oral 

and nasal cavities, as well as by the superposition of the sound waves (Benesty et al., 2008, p. 7).

Humans are able to shape parts of the vocal tract – mainly by moving their lips, tongue, lower 

jaw and velum (for opening and closing the nasal cavity) – to amplify different sound waves, 

resulting in a series of acoustic effects a listener can decode into meaningful messages (Aaltonen et 

al., 2009, pp. 65,136; Stevens 1998; Benesty et al., 2008, p. 7). While filtering gives us the qualities 

of different vowels, nasals and so on, the raw buzzing sound emanating from the vocal folds itself 

conveys many features needed for communication. It contains the information needed for the 

listener to perceive pitch, intensity and, consequently, duration.

2.1.1 Pitch

Pitch is the perceptual notion of the “highness” and “lowness” of a sound. An acoustic correlate 

of pitch is the fundamental frequency, f0. Voiced sounds such as the vowel /a/ – as opposed to noise 

like the glottal fricative /h/ – have a harmonic structure, which means that there are relatively high-

amplitude sound waves, or components, on frequencies that are integer multiplications of the f0. 

Thus, f0 denotes the lowest harmonic component in a complex sound (Rossing et al., 2007, p. 486, 

Benesty et al., 2008, p. 12).

The f0 of a human adult, i.e., the natural resonance of the vocal folds, is around 100-300Hz 

depending on the size of the folds. The resonance can be manipulated by changing the stiffness and 

mass of the vocal folds by stretching them: When the vocal folds are long and thin the f0 is higher, 

and when they are short and thick, the f0 is lower (Stevens, 1998, p. 57, 73; Benesty et al., 2008, p. 

12). An adult male can produce f0 ranging between around 80 and 400Hz whereas women are able 

to produce f0  between around 120 and 800Hz (Benesty et al., 2008, p. 12). While pitch is primarily 

tuned by stretching the vocal folds, the level of air pressure with which air is blown from the lungs 

has a secondary effect in that higher pressure tends to decrease the duration of vibration cycles in 
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the vocal folds thus increasing f0 (Aaltonen et al., pp. 64,142; Stevens, 1998, pp. 76-77; Rossing et 

al., 2007, p. 675).

2.1.2 Intensity

Intensity is for loudness what fundamental frequency is for pitch. Loudness is something we 

perceive, and the acoustic measure behind it is intensity, which is determined by the amplitude of 

the sound wave. Changes in vocal intensity are mainly produced by changing air pressure below the

glottis, i.e. the pressure of the air coming from the lungs, so much so that a doubling in the air 

pressure in the lungs increases sound pressure by fourfold, while every doubling of sound pressure 

quadruples intensity (Gick et al., 2013, p. 68; Sundberg et al., 2004; Rossing, 2014, p. 103). The 

human ear’s perception of loudness is non-linear, and thus it is convenient to use a logarithmic scale

for the perception of sound, the decibel scale, dB. The scale starts from 0dB which is determined by

the threshold for hearing a 1000Hz sound wave, while 130dB is the threshold where we start feeling

pain from the air pressure. Between the hearing and pain thresholds, intensity level increases 10 , ⁶

i.e. it becomes a million times higher (Berg, n.d.; Rossing, 2014, p. 103).

2.1.3 Duration

Apart from factors like the phonological features of a specific language – such as contrastive 

quantity – or whether the speaker reads from a paper or is having a conversation, there are intrinsic 

durational aspects to human speech production that stem from the mechanics of articulation. For 

example, the movement of an articulator from a constricted position to a vowel and back to the 

original position usually takes at least 200ms, and there can be differences between the velocity of 

movement of different parts of the same articulator. For example, the movement of the tip of the 

tongue for alveolar stops is faster than the movement of the tongue body for velar stops (Stevens, 

1998). Thus, there are constraints to how fast we can speak. We perceive duration, for example, 

from single phonemes to whole utterances as well as how long pauses there are and how often they 

occur.

2.1.4 Voice Quality

When we have accounted for pitch, intensity and duration, there is at least one important 

suprasegmental feature that is still unaccounted for, voice quality. Compared to pitch and loudness, 

voice quality is difficult to define, as it cannot be described with one acoustic characteristic such as 

fundamental frequency or intensity. Different voice qualities can be described as, for example, 
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breathy, creaky, soft or rough (Barstiers & De Bodt, 2015; Gordon & Lagdefoged, 2001), and voice 

quality also serves a role in gender identification of a speaker (Mendoza et al. 1996). One useful 

acoustic parameter for examining voice quality is spectral tilt. Spectral tilt is the measure of how 

much intensity decreases as frequency increases in the power spectrum, i.e., what amplitudes do 

sound waves have at different frequencies of a complex sound. Generally, the breathier voice, the 

more negative the tilt and creakier the voice, the more positive the tilt. Spectral tilt is computed by 

subtracting the amplitude of f0 from the amplitudes of frequencies above it, e.g., the first and second

harmonics, and comparing their difference (Gordon & Lagdefoged, 2001; Styler, 2022).

2.2 Prosody

Prosody evades a clear bordered definition, but we can think of it as a set of overlapping 

suprasegmental patterns in human speech. The most important features of prosody are intonation, 

emphasis and speaking rate (Aaltonen et al., 2009, p. 214) which are closely related to the 

aforementioned pitch, intensity, and duration.

Although we are not often aware of prosody, it has a wide variety of functions, from lexical and 

grammatical to conveying emotion and attitudes. It can help us infer information about the agenda, 

health, background, and emotional state of an interlocutor. It is used to bring focus to new 

information that is not shared by the interlocutors (Vainio & Järvikivi, 2007), to ask questions and 

imply refusal, to denote lexical differences, and to negotiate turn taking in a conversation (Aaltonen

et al., 2009, pp. 49, 142, 277-278).

Even though prosody is not something we necessarily notice on the conscious level while we 

converse, it is important to understand it as a perceptual phenomenon. However, there are no clear 

cut parameters for prosodic features. While the three primary ways to perceive prosody are 

duration, emphasis and intonation, the acoustic features behind them are intertwined: Quantity is 

not only about perceiving the durational contrast between long and short phones but also f0 chimes 

in. Similarly, emphasis is not only about intensity, but at least f0 is involved in this as well. It may 

also be that the perception of emphasis is also based on duration and on precision of articulation just

as it is about changes in intensity (Aaltonen et al., 2009, pp. 214-215). All of these prosodic 

phenomena take part in forming what we call speaking styles.

2.3 Defining Speaking Styles

Even though speaking styles have been researched in depth within both phonetics and 

sociolinguistics, neither discipline has offered a standard definition for style (Wagner et. al., 2015). 
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The different, often overlapping categories for labeling speaking styles, such as lab speech, read 

speech, spontaneous speech, and professional speech are vague and hard to delineate. After all, a 

parent reading a fable to a child and an English professor reciting Shakespeare in front of university

students are surely not uttered in the same style, let alone a radio presenter reading marine weather 

forecasts. Similarly, spontaneous speech varies between situations and can be influenced by things 

such as the relationship between the interlocutors and by their respective backgrounds. For 

example, a middle-aged male politician might be more comfortable with speaking in an informal 

manner in public than a young female one because he is not under the same gendered looking glass 

when it comes to his abilities as a leader.

Phoneticians have tended to look at styles from a binary perspective where spontaneous – or 

“natural” – speech is opposed with lab speech. The terms are not clearly defined, but they can be 

described according to the level of control in the situation by the researcher (Wagner et. al., 2015). 

In its extreme end, lab speech constitutes words in isolation or in context of carrier sentences 

outside of realistic pragmatic or communicative contexts while spontaneous speech is elicited under

more ecologically valid conditions (Llisterri, 1992; Wagner et. al., 2015). However, Wagner et. al. 

(2015) point out that in a wider sense, most research in phonetics use data that was recorded in a 

laboratory setting and could be categorized as lab speech. It is not necessarily even possible to 

achieve complete ecological validity and to get rid of all aspects of acting involved in a recording 

situation. They posit that instead of a dichotomous categorization between lab speech and “natural” 

speech, we should describe the recording context according to the level of control in the situation. 

While Wagner et al. propose a more specified terminology and methodological grounding for 

analyzing speaking styles, the continuum still operates in the same domain as the lab speech vs. 

natural speech dichotomy. They use style as “a broad cover term for speaking situations leading to 

phonetic variation where the level of control is the main descriptive factor." However, this focus on 

the level of control might miss out on some aspects of stylistic variation. Let’s look at an example 

from Wagner et al.: "a news broadcaster speaking in a conversational style would be as 

unacceptable for listeners as a friend talking to you in a news broadcasting style." Could one 

describe all the differences between these styles through level of control? Of course we might say 

that the style of a broadcaster is more controlled and follows rigid rules, but one merely needs to 

watch five minutes of the US news programmes NBC Nightly News and PBS Newshour – the 

former being on a commercial channel and the latter on a publicly owned one – to see that strikingly

different speaking styles may be elicited between almost identical contexts.

Thus, if we are to analyze speaking styles that have the same level of control, e.g., read 

paragraphs from different types of work of fiction, we might want to look toward the social aspects 
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of recording events. Joos (1968) – speaking of English – says that if we are ever to define speaking 

styles, “the several styles will be found to be correlated to an equal or greater number of 

sociologically definable occasions.” Labov (1972) describes speaking styles by the situational 

contexts they can be elicited in. He differentiates between reading style (e.g. monologues, word 

lists, and minimal pairs), careful speech, spontaneous speech, and casual speech, which are set in a 

continuum with reading style on one end, and casual speech that occurs in informal situations on the

other. Labov posits that casual and spontaneous speech styles cannot be elicited in the “social 

constraints of the interview situation” (1972, p. 79). Thus, he shares a similar dichotomy between 

lab speech and “natural” speech with phoneticians. According to Labov, casual speech is spoken in 

situations where no attention is given to the speech act itself while spontaneous speech is “excited, 

emotionally charged speech when the constraints of a formal situation are overridden” (1972, p. 86)

. Compared to the binary opposition traditionally found in phonetics, Labov’s styles are more 

nuanced. “Natural” speech can encompass at least Labov’s careful, casual, and spontaneous styles 

and perhaps even more controlled styles, while reading style, with word lists and minimal pairs, 

best correspond to lab speech. Labov goes on to define five contexts where the aforementioned 

social constraints of the interview situation could be overcome: speech outside the interview, e.g. 

the participant chatting with the researcher before the interview begins, speech with a third person, 

speech not in direct response to questions, childhood rhymes and customs, and danger of death 

where the subject gives a subjective account of a near death experience.

While this thesis is not about sociolinguistics nor about eliciting speech without the constraints 

of the recording event, the “sociologically definable occasions” – as Joos puts it – will affect the 

styles, even if they are acted. For example, some differences, such as, between read speech and 

scripted “spontaneous” speech, might be connected with what Gregory and Carroll (1978) call “the 

relationship between speaker and the medium of transmission”, i.e. whether you are reading from a 

paper or improvising. Others, for example, the possible acoustic differences between reading adult 

prose, a fairy tale, or Wikipedia, will be connected to social expectations. According to Joos (1968),

the social occasion and corresponding style correlate in two ways: “the speaker uses the style that 

suits the occasion” and simultaneously “defines the occasion for the listener (and for himself (sic.)) 

by his ‘choice’ of style” (p. 189).

The neural network architecture used in this study may not be able to model and disentangle 

minute variation between speaking styles, but if it can extract significant differences between, e.g., 

lab speech, prose style read speech and scripted spontaneous speech, there might be potential for 

developing these tools not only for speech synthesis but also for phonetic analysis. This could 

remedy the issue of using less controlled, more ecologically valid, data which are difficult to 
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analyze with traditional measurements. This is especially true for situations where lab recorded read

speech is difficult to produce. These include studying children’s speech, languages without a 

standardized orthography, and speakers who lack the ability to read fluently. In fact, as Wagner et al.

(2015) state, if we only use those who are used to reading aloud, i.e., read fluently, it will lead to 

many groups of people being excluded from such studies.

For categorizing speaking styles, Gregory and Carroll (2019) have posited three main 

dimensions for stylistic variation: fields of discourse, modes of discourse, and tenors of discourse. 

The field of discourse entails what the speech act is about, such as topic and subject matter, while 

mode is concerned with the relationship between the speaker and the “medium of transmission”, 

e.g., reading from a paper versus speaking spontaneously. The tenor of discourse covers both the 

personal tenor, the relationship between the speaker and her audience, and the functional tenor – the

speakers agenda – such as whether she is trying to persuade the audience, to make them laugh, or to

teach them (Gregory & Caroll, 2019, p. 8). These three dimensions can be combined into registers: 

expectations of style that stem from their repeated association to a specific situation type (Gregory 

& Caroll, 2019, p.72). A stereotypical example could be drawn from a hierarchical social system 

like the military where the expected style of speaking is derived from the topic of conversation, the 

formal expectations to dialogue within the ranks, and both the personal relationship between the 

interlocutors, and what is the speaker attempting to “do” to the audience, e.g., control them.

These three extralinguistic situational dimensions seem useful for accounting for more complex 

stylistic variation than a single continuum based on the level of control. Speech is always affected 

by a set of social variables which would imply that there are more than one dimension of continua 

involved. For example, to elicit ecologically valid speech, one might add some background noise, 

such as pub chatter, on the speaker’s headphones, or build a recording studio that looks like a living 

room. As soon as you create an environment for a speech act, there are social variables that affect 

the way we speak, even if the environment is an anechoic chamber with zero ecological validity. 

When it comes to ecological validity, one might question whether on not different styles of read 

speech are sufficient for modeling speaking styles. Here we encounter the general limitations to lab 

speech as well as the importance of contextual appropriateness.

When we recreate real life contexts in a laboratory, such as giving directions on a map, the 

participants’ motivation is to solve the problem not because they are lost in the city, but because the 

researcher asked them to (Wagner et. al., 2015). Thus, Wagner et. al. argue that these types of data 

should be described as “mimicking a target speaking style” based on the assumption that they will 

always differ from data gathered in real life situations. This assumption is supported by evidence 

that there are differences in voice quality and f0 contours which listeners can distinguish between 
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real and acted emotion (Jürgens, Hammerschmidt, & Fischer, 2011), and between read and 

spontaneous speech (Laan, 1997; Dellwo et. al. 2015). However, in the case of read vs. spontaneous

speech this is a bit more complicated, as read speech can be very difficult to distinguish from 

spontaneous speech if the material is written in a conversational style and the subjects act as if they 

are conversing spontaneously (Mixdorff & Pfitzinger, 2004).

It has been argued that – outside of eavesdropping – there is no way to record completely 

authentic data (see “observer’s paradox” in Labov, 1972).  If we look at Labov’s “danger of death” 

context which is used to elicit spontaneous speech: Asking someone to tell their account of a near 

death experience elicits a kind of simulation of those emotions in a controlled environment. 

Similarly, we can think that an actor reading a fairy tale simulates a relationship between the reader 

and audience – an adult and a child – even though she is reading the story in a laboratory 

environment. Instead of looking at authenticity, it might be better to judge styles by their contextual 

appropriateness. A casual spontaneous style does not have an innate “natural” quality compared to 

stylized read speech, but instead is more or less appropriate for a specific situation or useful for 

answering a specific research question (Wagner et al., 2015).

Even if we come to terms with not being able to create a perfect environment where the subjects 

speak like they would if there was no one recording, there are other issues to eliciting speaking 

styles in a laboratory setting. If the scenario is not controlled clearly enough, let’s say the subject is 

merely asked to speak in a conversational style, we will not know all the contextual variables 

involved, such as who is she speaking to, or what she is trying to achieve? However, while it is in 

the scope of this study to analyze the differences between styles, the main motivation is not to find 

the best way to elicit the most “natural” styles but primarily to explore how realistic and diverse 

stylistic variation can be controlled in speech synthesis.

The data used in this study without a doubt is of the less-than-authentic kind, as it is scripted. 

However, if it is to yield positive results, the method could well be used for actual spontaneous 

speech. Furthermore, there are domains – such as human-machine interaction – in which real 

authenticity is not necessarily something to strive for. One might not want to train a computer to 

convey “real” emotion but instead a speaking style that is authentic enough that one can suspend 

their disbelief but is recognizable as acted might be more suitable. However, there are applications 

in clinical speech synthesis – such as creating voices for people with motor disorders – where it 

would be useful to convey as-real-as-possible spontaneous speech with expressiveness and emotion.

Here, actual spontaneous speech would be the most appropriate source of data.

8



2.4 Acoustic Correlates of Speaking Styles

Within the domain of phonetics, speaking styles can be studied both from the perspective of 

segmental and suprasegmental features. Segmental features include things like vowel quality, 

coarticulation, and vowel reduction, which can be analyzed both through their acoustic and 

articulatory correlates. Suprasegmentals – which are in the center of this thesis – can be uncovered 

mainly by analyzing f0, intensity, and duration. Duration can be extracted from phonemes, syllables,

and words to whole utterances and analyzed, e.g., in terms of pauses and articulation rate. 

Analyzable aspects of f0 include its mean, minimum and maximum, range, SD (standard deviation), 

and slope. Many of these phenomena may be intertwined, for example, articulation rate is likely to 

affect the slope, as faster articulation will also lead to steeper changes in f0.

The connection between suprasegmental patterns and different speaking styles have been studied

extensively, at least in the case of widely spoken Indo-European languages. Previous studies have 

found that compared to spontaneous speech, read speech has a lower speech rate (Laan, 1996; 

Koopmans & van Beinum, 1991), higher f0 median (Koopmans & van Beinum, 1991), wider f0 

range (Blaauw, 1991; Wagner & Windman, 2015), and lower f0 minimum (Wagner & Windmann, 

2015). These findings, however, may not represent the “whole truth”. According to Toivola and 

Lennes (2013) read speech is faster than spontaneous speech, and Wagner and Windmann (2015) 

also found in their study that read speech was faster than spontaneous speech. It seems there may be

differences between languages or other factors than read vs. spontaneous speech involved in 

speaking rate.

When it comes to pitch patterns, there might not be a difference between read and spontaneous 

speech (Bruce & Touati,1991), but a study found a difference both in melodic patterns and in f0 

range between different styles of spontaneous speech (Bhatt & Leon, 1991). A study on Portuguese 

(Delgado-Martins & Freitas, 1991) found that there are differences in the relationship of pauses and 

spoken sequences between read, spontaneous and professional speaking styles. While these results 

cannot be expected to be transferable to Finnish, it shows there are distinguishable prosodic patterns

at least between read and spontaneous speech as well as between different unscripted styles. It may 

also be that the function of prosody in read speech is different from spontaneous speech as there is 

less need to negotiate turn taking and to establish common ground between speakers. This could 

explain the lower f0 minimum and wider f0 range of read speech compared to spontaneous speech 

(Wagner & Windmann, 2015).
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2.5 Deep Learning

If we want to use computers to model complex real-world phenomena, hard-coded “if-else” type

systems quickly become insufficient. Instead, we need machine learning approaches where 

computers autonomously extract patterns from raw data through experience. Machine learning 

covers methods from simple naïve Bayesian algorithms that can assign data into categories, such as 

whether an email is spam or legitimate (Jurafsky & Martin, 2020, p. 55), to complex architectures 

of deep neural networks that can generate speech so natural that it is near indistinguishable from the

real thing. Computers can achieve this by learning to “understand the world in terms of a hierarchy 

of concepts, with each concept defined through its relation to simpler concepts” (Goodfellow et al., 

2016, p.1).

One way to train a machine learning algorithm is to give it a representation of the data as a set of

features engineered by a human, which works well for tasks where features are easily identifiable. 

Another way is to use machine learning on raw data to find out those features. This is called 

representation learning, and it becomes handy in situations where questions become too complex 

for humans to know which features to extract (Goodfellow et al., 2016). It may be, for example, 

feasible to give an algorithm the main features that contribute to the likelihood of developing a 

certain disease, but it is harder to extract features that differentiate between a picture of a cat and 

one of a dog. The building blocks of representation learning are called factors of variation. They are

the different – often unobserved – factors, or even abstract concepts, that influence the data we see 

(Goodfellow et al., 2016, p. 5). When researching speaking styles, there are factors we need to 

analyze to understand variation – such as whether the person is speaking spontaneously or reading 

from a paper – as well as factors we might want to disregard, such as gender, age, or accent. Thus, 

we need to be able to disentangle them; to extract features that are contributing to a specific 

concept. Goodfellow et al. (2016) say, to learn these representations, deep neural networks represent

complex and abstract concepts by combining them from simple features. In an image recognition 

task – which can also be a graphical representation of sound such as a spectrogram – the first layer 

may recognize small patterns such as edges. As the data propagates through the layers, the patterns 

begin combining into more complex ones until finally a layer recognizes, e.g., a nose, eyes and ears,

and the next one combines these features to recognize a human face (Goodfellow et al., 2016, p.5; 

Jurafsky and Martin, 2020, p. 127). This serves as an example of how neural networks understand 

the world as a “hierarchy of concepts”.
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A feed-forward deep neural network consists of layers of interconnected nodes that takes a 

vector of input values on its visible layer, followed by hidden layers, and outputs some new value(s)

(Jurafsky & Martin, 2020). An individual node takes the weighted sum of the outputs, or 

activations, from the nodes on the previous layer, applies an activation function on the value, and 

outputs it for the nodes on the next layer to take as input. The connections between the nodes assign

weights on the outputs which determine how much of an effect the signal has on the next node. The 

weights are adjusted to adapt to the data at hand as the network learns from experience. The 

weighted sum z can be represented as z = w · x + b, where w is the weight, x the input and b a scalar

bias. A non-linear activation function is then applied to z that maps the output to a range, such as x 

is x when it is positive and otherwise it is 0, as is the case with the ReLU function (Kröse et al., 

1993, pp. 15-17, Jurafsky & Martin, 2020, pp. 128-129). Traditional fully connected networks are 

computationally heavy: the parameters rapidly proliferate as the amount of neurons and layers grow.

They are also prone to overfitting, i.e., to learn idiosyncracies from the data that are not 

generalizable. A more suitable neural network architecture for time-series and image data is the 

convolutional neural network (CNN). CNNs are otherwise similar to fully connected neural 

networks but instead of connecting all of the neurons between layers and computing a matrix 

multiplication, neurons only connect to a small number of corresponding neurons on the previous 

layer, using convolution as a filter that recognizes features from the input. The output of the layer 

will then be pooled, i.e., downsampled to reduce the parameters needed to represent the data 

(O’Shea & Nash, 2015).

The way that a neural network can learn from experience, is by adjusting the weights and biases 

that determine the strength of the signal that a node outputs. When we train a feed-forward network 

we have a gold output, the correct result that the network should give, which the actual output of the

network can be compared with. As the network is trained, its weights are adjusted so that the 
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network will approximate the gold output as close as possible. To be able to do this, a loss function 

is used to calculate the distance between the gold and the actual output. We want to find the optimal

weights to minimize this distance. This can be done by iteratively updating them by gradient 

descent, which means finding “a minimum of a function by figuring out in which direction [weights

as its parameters] ... the function’s slope is rising the most steeply, and moving in the opposite 

direction” (Jurafsky & Martin, 2020, p. 137). To find this direction not only on the last layer, but 

through the network, we must calculate the gradient, θJ(θ),∇  of the loss function in relation to 

weights by backpropagation. Backpropagation, aptly named, is an algorithm that lets the 

information from the loss function to propagate backward through the hidden layers of the network, 

so that a gradient can be calculated and weights tuned accordingly (Goodfellow et al., 2016, p. 200; 

Jurafsky & Martin, 2020, p. 84, 137-139).

One type of deep learning concerns itself with dimensionality reduction. An example of these 

kinds of networks are autoencoders. They are encoder-decoder networks that have a bottleneck 

layer with a considerably lower dimensionality than the input and output layers. This forces them to

prioritize what they copy by finding the most important patterns in the data. In an autoencoder, the 

input and target – or gold – output are the same. Thus, often it is not the output of the autoencoder 

that we are interested in but the bottleneck as we want to store the information in a dimensionally 

reduced representation. The output of the bottleneck, also called the latent space, is a vector that 

should contain the most salient structural information of the input signal. Autoencoders have been 

used in, for example, dimensionality reduction, feature learning, denoising, and image compression 

(Goodfellow et al., 2016, Spinner et al., 2018). This takes us to current research in speech synthesis.

2.6 Related Studies

As computing power and new innovations have made more complex phenomena possible to be 

modeled by neural networks, controlling prosody has become a hot topic in neural speech synthesis.

Wang et al. (2018) proposed global style tokens, a speaking style and prosody related latent space 

trained together with Tacotron in “Style Tokens: Unsupervised Style Modeling, Control and 

Transfer in End-to-End Speech Synthesis.” A similar approach was taken with a simpler reference 

encoder in Skerry-Ryan et al. (2018) in “Towards End-to-End Prosody Transfer for Expressive 

Speech Synthesis with Tacotron.”

What comes to research using these kinds of methods, there are at least a few different focus 

points: some studies have focused on disentangling and controlling specific prosodic features such 

as Mohan et al. (2021), Shechtman & Sorin (2019) and Raitio et al. (2020); some on prosody 
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transfer from an unseen speaker such as Klimkov et al. (2019); and some controlling a continuous 

emotion space such as Sivaprasad et al., 2021. Another theme has been to use dimensionality 

reduction algorithms to disentangle the prosody space, such as Tits et al. (2019a & 2019b). In Tits et

al. the styles disentangled well on the continuous latent space. However, the styles used were clear 

cut and highly controlled, as the same set of sentences were uttered in eight acted styles: neutral, 

happy, sad, bad guy, from afar, proxy, whisper, and old man.

Recently, a paper (Šimko et.al, submitted) I co-authored on controlling speech synthesis – using 

the same model and corpus as this thesis – shows the model can disentangle some prosodic features 

for controlling synthesis. This was done by fitting linear models between the reference vector 

outputs and phonetic features of the encoded utterances. Adjusting the reference encoder vector 

using the estimate coefficients from the linear models, we could control phonetic features. The 

method concentrated on controlling specific acoustic features such as f0 mean or speaking rate and 

disentangling them from other features through orthogonalization. Anecdotally, this method can be 

coupled together with the method in this thesis, e.g., one can start with a specific speaking style and 

then generate that style with a slower speaking rate or a higher pitch. However, analyzing this was 

not in the scope of this study as it is focused on controlling the speaking styles themselves.

Looking at speaking styles from the perspective of, on one hand speech synthesis and on the 

other, phonetics and sociolinguistics, the different disciplines are talking about distinctively 

different things. However, in order to create speech synthesis that is close to the real thing and 

appropriate for domains such as clinical speech synthesis, tools from phonetics and sociolinguistics 

can prove useful for the speech synthesis field as well.

2.7 Network Architecture

Tacotron 2 is a neural network architecture used for speech synthesis proposed in “Natural TTS 

Synthesis by Conditioning Wavenet on Mel Spectrogram Predictions” by Shen et al. (2018). The 

network can be trained unsupervised and solely on data which means that instead of engineered 

features, it takes audio samples with their corresponding texts without labels as input. It works by 

aligning characters from a text input with acoustic features of the accompanying sound signal (in 

the form of mel-spectrograms) and generates hidden representations of said character sequences 

(Jurafsky & Martin, 2020, p. 567). The spectrogram – essentially a visual depiction of frequencies 

and amplitudes of a sound – as an 80 dimensional vector enables the network to extract these 

hidden representations that reflect salient features and patterns in the sequence. This teaches the 
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network, not only how words should be pronounced, but can also model prosodic features (Shen et 

al., 2018).

The original Tacotron 2 architecture consists of two parts: the first is a recurrent sequence-to-

sequence network that predicts spectrogram frames from character sequences, while the second part

is a vocoder that produces the waveform. The prediction network first creates 512-dimensional 

character embeddings of all the input characters. The three convolutional layers, present in figure 2, 

model a five character spanning context for the current character within the input sequence. Then 

the bi-directional LSTM produces the encoding that is fed to an attention network. Location based 

attention takes a weighted sum of all the encoder hidden states and the attention weights from its 

previous time-state (Jurafsky & Martin, 2020, p. 213). These weights allow the network to focus on 

the correct part of the spectrogram for a given character and to generate it into a fixed-length 

context vector of the whole character sequence for the decoder. The decoder, which is represented 

on the right-hand side of figure 2, takes the output of the encoder network and predicts the next 

frame in the mel-spectrogram. The decoder is an autoregressive recurrent neural network, meaning 

it generates its outputs by conditioning them by its own earlier output. In Tacotron 2 this is done by 

feeding the decoder its previous predicted mel-spectrum which together with the context vector 

from the attention layer are used to predict a new 80-dimensional spectrogram frame of 50 

milliseconds with 12.5 millisecond frame hop (Shen et al., 2017, Jurafsky & Martin, 2020, pp. 176-

181, 567).

The problem with the original Tacotron 2 is that it generates near natural speech but it generates 

a kind of median style of the corpus, rid of any expressiveness. In order to control that the 

synthesizer models prosody – and as such, speaking styles – I am using a Tacotron 2 
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implementation1 based on Skerry-Ryan et al.’s (2018) “Towards End-to-End Prosody Transfer for 

Expressive Speech Synthesis with Tacotron.” The implementation includes a reference encoder, a 

text encoder, and a speaker encoder. The text encoder models the given input text and its relation to 

the acoustic signal, the speaker encoder takes into account speaker specific features. This leaves the 

reference encoder to deal with “the unexplained variation in the signal, i.e. the prosody and 

recording environment” (Skerry-Ryan et al., 2018). The reference encoder output is of relatively 

low dimensionality compared to the 512-dimensional vector of the text encoder, it does not use 

attention, and it has to be constant through the utterance. In essence, it works as a bottleneck 

similarly to an autoencoder (Skerry-Ryan et al., 2018).

The reference encoder consists of a 6-layer convolutional neural network with 3x3 filters and 

2x2 stride, SAME padding, ReLU activation and batch normalization. To create the low 

dimensional output vector, the encoder uses a recurrent neural network with a Gated Recurrent Unit

layer with 128 dimensions. This resulting embedding vector is called the prosody space (Skerry-

Ryan et al., 2018).

The reference encoder may be able to learn disentangled factors, i.e., specific dimensions of the 

vector will be responsible for certain variation and only that variation from the corpus. This would 

mean that, in addition to successfully copying the prosody of a given utterance and being able to 

recreate it, specific acoustic phenomena could be controlled by adjusting values in the prosody 

space. Often the problem with using deep neural networks is that they are essentially black boxes, 

and it is difficult to extract what acoustic features the network models. If the reference encoder 

disentangles them, the underlying acoustic features could be derived from the vector 

representations. Thus, we could both visualize how speaking styles position on the latent prosody 

1 The synthesizer model was provided by Antti Suni.
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 Figure 3: Architecture of Tacotron 2 with a reference encoder



space and find out what acoustic features contribute to the differences, say, between formal speech 

and informal speech.

If the reference encoder is able to learn continuous latent representations of speaking styles that 

have relatively subtle differences, e.g., read formal speech and acted spontaneous speech, it could 

both be useful for speech synthesis but also for giving more scientifically reproducible results for 

speaking style research.

3 Research Questions

The aim of the thesis is to analyze how the reference encoder models speaking styles and how 

those styles can be controlled, as well as to evaluate how this control carries over to the output of 

the network architecture, the synthesized speech. The research questions are:

• Research question 1: Does the reference encoder model speaking styles from stylistically 

diverse speech data, and can the potential stylistic differences and their acoustic correlates 

be unearthed with statistical methods?

This will be answered by a principal component analysis on the reference encoder output for

encoded utterances spoken in different speaking styles. Also, basing on the assumption that 

speaking styles correlate with specific phonetic features, I will investigate a possible 

correspondence between the representations extracted from the reference encoder and 

phonetic characteristics of the encoded utterances.

• Research question 2: Is the synthesizer able to form utterances with specific speaking 

styles, and can this be controlled?

This will be answered by synthesizing speech with styles derived from the encoded 

utterances. An objective evaluation is conducted by analyzing possible correspondence 

between the reference encoder representations and acoustic characteristics of the synthesized

speech. The same analysis will also be done on the original utterances from the speech 

corpus, and the two results will be compared. A subjective evaluation will also be conducted

with participants judging synthesized speech produced with different styles on its 

appropriateness given the contents of the synthesized sentence.
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4 Material and Method

4.1 Material

The material used is from one female native Finnish professional speakers. It was recorded 

during the autumn of 2021 at the University of Helsinki for a national project for developing 

Finnish AI and speech synthesis.

The speaker was recorded in a highly treated recording booth for a total of 25-30 hours. The 

texts were read in 12 – 35 min sessions, and she was allowed to adjust her speaking to match the 

text style. The microphone used was an AKG C414 XLS with omni pattern and no pad or hi-pass 

filter on. The speaker wore Sennheiser HD250 Linear II closed back headphones when recording 

primary material to monitor her own speech.

The corpus contains read material spoken in several different styles. The speaker was given a 

text, and she chose the appropriate speaking style according to the contents of the text.

The text styles were as follows:

• YouTube captions from videos with different themes, e.g., an interview about social media 

and a talk about illegal nightclubs

• Rich text, e.g., news headlines and film subtitles

• Parliamentary speeches

• Discussion forum posts

• Prose texts from novels by writers such as Dumas, Gogol and Chekhov

• Children’s prose and fairy tales

• Wikipedia articles

• Blog texts

• Other fact texts

In addition to these, I am using a smaller reference data set of utterances from the same speaker 

that the synthesizer was not trained with for evaluating how the reference encoder models styles. 

This data set consists of 320 sentences spoken in five styles for a total of 1613 utterances (a few 

sentences were uttered a couple of times if the speaker or recorder were not satisfied with the 

resulting style). The elicited styles were loud, soft, negative, positive, and neutral, and the sentences

were taken from “Developing a speech intelligibility test based on measuring speech reception 

thresholds in noise for English and Finnish” (Vainio et al., 2005).
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4.2 Method

4.2.1 Preprocessing

The recordings were split so that every sentence was considered its own utterance while very 

long sentences were cut into multiple utterances at silence. The audio and transcripts were forced 

aligned and then manually checked and fine tuned. Repetitions and disfluencies were cut, apart 

from those scripted in the spontaneous style texts. The audio was loudness normalized to -21 LUFS 

and run through a high-pass filter at 60Hz, 24dB in Audacity (Audacity Team, 2021).

4.2.2 Network Training

The synthesizer used in the thesis was an implementation based on NVIDIA’s Mellotron (Valle 

et al., 2020). The reference encoder and synthesizer were trained in an unsupervised manner, 

meaning that the utterances fed to the network were not accompanied by labels that would tell the 

network the expected speaking style. It was given the full signal of the 12910 utterances as 80 

dimensional mel-spectrograms. The reference encoder output was set at 128 dimensions. After 

training, any sound file containing speech could be fed to the synthesizer which would output a 

reference vector for the utterance.

4.2.3 Principal Component Analysis

Principal component analysis (PCA) is a linear transformation technique that can be used for 

dimensionality reduction. The idea behind PCA is that often the number of variables in the data we 

aim to analyze is high but the underlying structures may be simple (Shlens, 2014). Thus, we want to

reduce the dimensionality of the data, keeping as much statistical information intact as possible 

(Jolliffe & Cadima, 2016).

PCA is derived using linear algebra. We want to find variables that are linear functions of the 

original ones that maximize variance and are uncorrelated, so that the first components represent 

most of the variation in the original data (Jolliffe, 2002; Jolliffe & Cadima, 2016). This is similar to 

neural networks that use bottlenecks – in that we want to find a low-dimensional representation of 

the data – but we can also use PCA on the latent space of a neural network to extract its most 

important (i.e. principal) components.

PCA is computed by transforming space through the linear transformation of a zero-centered 

vector based on its covariances (the relationship between vector measurements in how they vary 

from the mean). By multiplying the vector measurements by their covariance, we find eigenvectors 
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that are perpendicular to the other vectors and only scale in length from the origin as they are 

multiplied. The idea of the eigenvector is that it fits a line that best represents the data at hand. The 

amount that the eigenvectors are scaled by the matrix tells us which of the vectors best describes the

data, giving us the 1st, 2nd … nth principal component (PC). We take, e.g., the first two eigenvectors 

and multiply their transpose by the transpose of the original zero-centered vector. This transforms 

the original data from its dimensions into two dimensions in terms of the eigenvectors (Smith, 

2002). Thus, we now space where x and y axes are based on PC1 and PC2 instead of a Cartesian 

plane. We hope that the first few PCs explain as much as possible of the variation of the data, so we 

are able to use just two or three of them and visualize how the data points (individual utterances) 

plot on a plane.

In this study, after the synthesizer was trained with all of the 12910 utterances, and 128 

dimensional latent space vectors were extracted from the reference encoder, I used the PCA module 

from the Python Scikit-Learn (Pedregosa et al., 2011) library to derive the most salient features of 

the latent space. As the styles are diverse and multiple unknown variables are expected to affect 

them, I wanted to first establish that the reference encoder is able to model stylistic variation in 

general. This was done by extracting reference encoder vectors from the reference set that consists 

of the 320 controlled sentences and 5 speaking styles. After analyzing the reference set I proceeded 

to analyze the main data set.

In the results section, I will use the PCs to analyze and visualize differences between the text 

styles. Using only the first three PCs, the utterances can be visualized both on a one dimensional 

histogram and as data points in a three dimensional scatter plot. Then, I can both use the original 

text styles as color coding as well as categories I have derived by the level of formality and 

spontaneity.

However, the PCs themselves do not tell us anything about the acoustic correlates of the latent 

space. To connect these two domains, I needed to analyze the utterances with traditional acoustic 

measurements as well.

4.2.4 Acoustic Analysis

I extracted f0 mean, f0 SD, f0 range, f0 minimum, f0 maximum, f0 slope, spectral tilt, onset time, 

articulation rate, and pauses-to-speech-ratio from the 12910 utterances. These acoustic analyses 

can then be correlated with PC values to find out which PC is connected to which acoustic 

phenomenon. Onset time – when speaking starts in the audio file – has nothing to do with speaking 
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style, but it was extracted because the reference encoder will most likely model it, and thus it will 

affect the latent space.

I took the f0 measurements and spectral tilt by calling Praat (Boersma & Weenick, 2022) with 

Python’s Parselmouth (Jadoul, Thompson & de Boer, 2018) library:

• f0 mean, f0 SD, f0 slope (the mean of absolute change in semitones/second), f0 range, f0 

minimum, and f0 maximum were extracted in semitones with the pitch floor at 75 Hz, ceiling 

at 400 Hz and a time step of 0.1.

• Spectral tilt was computed by analyzing the power spectrum to Long-Term Average 

Spectrum with a bandwidth of 100 Hz and computing its slope with the low band between 0 

and 1 kHz and the high band between 1 and 4 kHz, using energy as the averaging method.

Temporal features were extracted by first running Aalto University’s automatic forced aligner for

Finnish (Leinonen, Virpoja & Kurimo, 2021) to obtain time information for words within the 

utterances:

• Onset was calculated by extracting time when the first transcribed word of the utterance 

begins.

• Articulation rate was calculated by taking the duration of the spoken sections and dividing it

by the orthographic length of the utterance – which works well for Finnish with its highly 

phonetic orthography. Thus, higher the value faster the articulation rate, disregarding pauses 

between words. 

• Pauses-to-speech-ratio was calculated by dividing the duration of pauses between words by 

the duration of the spoken sections. Higher the value, the more pause time there is in the 

utterance.

Finally, I ran a cross-correlation between all the measurements in R (R Core Team, 2022). f0 

maximum and range correlated almost one-to-one (~0.97), so I omitted the f0 maximum variable 

from the study. All the other variables correlated less than 0.65 with each other.

4.2.5 Multiple Linear Regression

Linear regression is a statistical model that describes relationships between observations by 

assuming a linear relationship between them and finds the best possible straight line to represent it. 
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It predicts the response of the explained (dependent) variable to the value of the explanatory 

(independent) variables (Ross, 2017).

The equation for multiple linear regression is

Y = β0 + β1 x1 + β2x2 + · · · + βkxk + e

where Y represents the expected value of the dependent variable, β0  is Y when the independent 

variables are zero, i.e. the intercept, X1 to Xk are the independent variables, and β1 to βk are the 

estimated coefficients – that is, how many steps does Y move when an independent variable moves 

(LaMorte, 2016). While the coefficient gives us the strength of the relationship, p-value gives us its 

statistical significance; telling us the probability of the null hypothesis being true. The null 

hypothesis is the status quo that expects there to be no linear relationship between a dependent 

variable and independent variables. The alternative hypothesis, then, is that there is a linear 

relationship between them. A p-value of 0.05 means there is a 5% chance that we would get the 

result if the null hypothesis were true. Thus, if we are satisfied with the significance level of 0.05, 

we can reject the null hypothesis if the p-value is <0.05. Common levels of significance used are 

0.1, 0.05, and 0.01 (Ross, 2017).

4.2.6 Speech Synthesis

The material used in this study is quite different from the ones cited in the background section. 

The text styles are diverse, and features modeled by the reference encoder are probably more 

nuanced than lab speech vs. natural speech or a continuum based on the level of control or 

ecological validity. For speech synthesis, these distinctions are not necessarily even a fruitful 

approach, but instead the appropriateness of style for a given context is important.

To evaluate how the synthesizer can emulate speaking styles, I conducted both an objective 

evaluation where I analyzed the acoustic features of synthesized sentences and a subjective 

evaluation that focused on the appropriateness of synthesized stimuli given the content of the 

synthesized sentences. I chose two styles that would serve as opposites on a read/formal vs. 

spontaneous/informal axis. In this case read/formal means read factual texts in “kirjakieli”, the 

standard variety of Finnish used in written texts, and spontaneous/informal means a casual style 

written with a conversational voice and non-standard orthography.

On the read/formal end I derived the style from Wikipedia texts on geography, and on the 

informal/spontaneous end I chose Youtube captions on social media. There would have been pure 
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lab speech available as well, but for practical speech synthesis use, reading Wikipedia text is much 

more valid than sentences uttered without any context. For these two styles, the field of discourse, 

mode of discourse and the tenor of discourse are all different: one consists of factual texts read to no

one while the other – though scripted and acted – is based on a spontaneous text style on an 

informal subject in a casual interview situation.

I computed reference encoder vectors for the styles by taking the vector measurements from all 

of the utterances of both text styles and calculated their means. I now had two 128 dimensional 

embedding vectors, one for each style. To get a “mean style” embedding, i.e. a style midway 

between the two styles, I calculated the mean of these two vectors. I also wanted to synthesize 

extreme points of the two styles. Instead of extrapolating linearly from the two vectors, I computed 

extremes from the two style vectors separately, multiplying both style vectors by 1.3 (anything 

higher would create unwanted features, like mumbling at the end of the utterance). This means the 

extremity is in regards to the origin (when all the reference encoder dimensions would be set at 

zero) instead of the other style. This resulted in 5 embedding vectors corresponding to extra-formal,

formal, mean style, spontaneous, and extra-spontaneous speaking styles.

For the stimuli, I came up with 9 sentences with varying text styles that the synthesizer had 

never seen: 3 in a formal style, 3 in a neutral style, and 3 in a spontaneous style. I then synthesized 

all of these sentences with all of the 5 speaking styles resulting in 45 synthesized stimuli. The 

synthesizer is non-deterministic, meaning that every time it synthesizes a sentence – even with the 

same reference encoder vector – the iteration will be different. Thus, by chance, one sentence 

synthesized in a specific style might sound better than another. To control this, I synthesized five 

iterations of all the 45 stimuli, meaning that I would have 5 versions of the same sentence in the 

same style. I then randomized them so a participant could get different iterations of the same stimuli

during the subjective test.

The sentences used for synthesis were as follows, English translations in brackets:

Spontaneous:

• Me oltiin tavallaan sit niinku työkavereita, ja hän kerto myöski jostain taustastaan ja silleen 

(We were then kinda like colleagues, and she told me also some stuff about her background and 

what not).

• Joo – siis joku salaattihan olis ihana – siis rakentaa kunnon niinku ruokaisa salaatti. Mut en 

mä jaksa. (Yeah – like some salad would be wonderful – like to build like a proper nutritious salad. 

But I can’t be bothered.)
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• Mä en nyt enää muista sen yhen naisen nimee, joka muutaman kerran kävi siinä. Se on 

niinku kirjottanu jonku kirjanki. (I can’t remember that one woman’s name right now, who visited a 

few times. She’s like written some book too.)

Neutral:

• Arvoisat kolleegat - olen seurannut huolella viimeaikaisia keskusteluja. (Dear colleagues, 

I’ve followed recent conversations with concern.)

• Raastepöydästä voi aloittaa, ja ruokajuomiin kuuluvat: vesi, maito ja kotikalja. (You can 

start with the grated root vegetable buffet, and beverages include: water, milk and kvass)

• Mökille pääsee omalla autolla - tai taksilla Ivalon lentoasemalta. (The cabin can be reacher 

by car – or with a taxi from the Ivalo airport.)

Formal:

• Tunturipöllön latinankielinen nimi on Bubo scandiacus. (Snowy owl’s Latin name is Bubo 

Scandiacus.)

• Antilooppi on nimitys, jota käytetään monista erilaisista onttosarvisten heimoon kuuluvista 

sorkkaeläinlajeista. (The term antilope is used to refer to many species of even-toed bovidae.)

• Palvelusektori tuottaa seitsemänkymmentä yksi prosenttia bruttokansantuotteesta, ja 

työllistää seitsemänkymmentä prosenttia työvoimasta. (The service sector produces seventy one 

percent of the gross domestic product, and employs seventy one percent of the workforce.)

The synthesized stimuli can be listened at: https://tuukkaot.github.io/styleTTSdemo

4.2.7 Objective Evaluation of Synthesis

After synthesizing the sentences, I ran the same acoustic measurements on the resulting 225 

utterances as I had for the whole corpus. These were f0 mean, f0 SD, f0 range, f0 minimum, f0 

maximum, f0 slope, spectral tilt, articulation rate, and pauses-to-speech-ratio. I fitted a linear model 

with speaking style as a numeric value between -1.3 and 1.3 as the dependent variable and the 

aforementioned acoustic measurements as independent variables. The model would show if there 

was a linear relationship between the continuum and acoustic variables.
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4.2.8 Subjective Evaluation of Synthesis

While the objective evaluation will show us how controlling the synthesizer on the axis affects 

the acoustic measurements, it does not really tell us if the synthesizer can produce appropriate styles

for given texts. Furthermore, the acoustic features involved in human speech are quite complex 

while traditional acoustic measures are rather simple. One cannot assume all stylistic variation to be

grasped with measures such as average pitch, the rate it changes, or how much pause time there is. 

Thus, to really know how the prosody space models style, we need a subjective evaluation.

The aim of the subjective evaluation was to test the appropriateness of the utterances produced 

in different styles, as modeled by the latent space. This was done by giving participants pairs of 

audio stimuli with the same sentence synthesized in two styles and asking them which of the stimuli

was more appropriate for the textual content of the sentence. If the participants would deem the 

synthesized speech in a formal style more appropriate for the formal texts and spontaneous style for 

the spontaneous texts, it would suggest that the latent space models stylistic variation and is able to 

produce appropriate styles.

To conduct the evaluation, I created a listening test on the Web Audio Evaluation Tool (Jillings 

et al., 2015) for which I recruited 10 adult native Finnish speakers as participants. The evaluation 

consisted of a short preliminary test measuring mean opinion score (MOS), while the main 

evaluation was conducted as a forced choice AB test. In the former, the participants listened to 

seven versions of the same utterance and scored them from 1 to 5 on quality of the synthesis, 5 

being the highest quality. The utterances consisted of the sentence: “Kotiin pitää mennä kaupan 

kautta” (One must to go home via the shop). The sentence was synthesized with the five speaking 

style values on the formality/spontaneity axis, while the remaining two versions were actual 

utterances from the corpus, one in a positive style and one in a neutral style. Again, five iterations 

were synthesized of all the versions and the participants were given random iterations of the 

utterance.

Even though the synthesizer does produce near natural speech, testing the quality of synthesis in 

and of itself was not in the scope of this study; instead the MOS serves to give us an inkling on 

whether or not synthesizing with the extreme values has a clear effect on the quality that would 

skew the results of the AB test. To assess quality itself, the MOS test would have needed to consist 

of a range of sentences with different kinds of phonetic phenomena involved instead of a single 

sentence.

The AB test consisted of all possible pairs of matching sentences from the 45 synthesized 

utterances in three different styles (total of 90 pairs) in random order. The samples were randomly 

selected from the 5 iterations as explained in section 3.2.7, so the participant would not listen to the 
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exact same utterance every time when, say, the value 1.3 of a sentence was compared to another 

value. For every pair, the participants were asked not to focus on the quality of the utterances but 

instead to choose which of the two was more appropriate for the given sentence. After the test, I 

asked the participants to rate the style of each sentence as formal, neutral or informal.

5 Results

5.1 Results of PCA

As the unexplained variance left for the reference encoder by the speaker encoder and text 

encoder includes the recording environment and settings, I wanted to make sure they are not a 

major source of variation on the prosody space. The speaker, recording setting and equipment were 

the same throughout the recordings. Thus, I needed to take into account the specific times of the 

recording events. I extracted the dates for all of the recorded utterances and whether they were 

recorded before or after 12pm and ran a cross-correlation with all of the PCs. The highest 

correlations with recording date were with PC3 (0.26), PC16 (0.2), and PC9 (0.19), while none of 

the components had more than a 0.2 correlation with the time of day – PC9 being the highest (0.18).

There is some correlation especially with the date but it is not particularly strong, so we can ignore 

them.

I also wanted to see if there is some relationship between the PCs and the orthographic length of 

the spoken sentences. On figure 3, the values of PC1 (y-axis) are plotted against the text length (x-

axis). I ran a cross correlation between text

length and the PCs. PC1 and text length

correlate by -0.82. Thus, there is a very strong

relationship between them. This may have an

effect on the synthesis output. More on that

later.

Next, I proceeded to analyze reference

encoder outputs for the reference set utterances

the synthesizer had not been trained with. These

were the 320 sentences uttered in five styles for

a total of 1613 utterances.
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Figure 4: A scatterplot with PC1 and text length,
showing a clear negative relationship.



Figures 5, 6 and 7 have the principal component on x-axis and kernel density estimate inferred from

the data points on y-axis. As we can see, the styles separate on PC1, and there is little internal 

variation. Neutral and positive almost completely overlap, while all of the other styles are clearly 

different from one another. On PC2, loud and soft, seemingly opposite styles, overlap while all the 

others group on the other side. On PC3, negative is on its own while the other styles flock together. 

The scatter plot in figure 8 shows there are almost no data points mixed in with another group apart 

from neutral and positive overlapping. The differences between styles become almost nonexistent 

after the first three PCs, and the are no discernible differences after the first eight PCs.

These utterances were controlled for clear cut, even stereotypical, styles and with the same 

sentences for all styles similarly to Tits et al. (2019). Next, I analyzed the reference embeddings for 

the whole data set which the synthesizer was trained with. The scatter plot in figure 9 below shows 

that the data points do group somewhat, e.g., parliament text in turquoise seems to group as its own 
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Figure 5: Reference data set. Text styles on PC1. 
Neutral and positive overlap with each other, 
while other styles are clearly distinguished. 

Figure 7: Reference data set. Text styles on PC3 
are spread more evenly and the only one that 
clearly separates is negative.

Figure 6: Reference data set. Text styles on PC2 
are divided into two groups: loud and soft on one
end, and the rest on the other end.

Figure 8: Reference data set. The 3d scatter plot 
with PC1, PC2, and PC3 shows the individual 
utterances are mostly in their respective areas, 
apart from the neutral and positive styles.



cluster on bottom-left and captions in orange are mainly in bottom-right corner. However, there are 

a lot of data points outside their group and the styles overlap all over.

The histograms in figures 10, 11, and 12 above show that the story with the more realistic 

speaking styles is much more complex. While the styles do separate somewhat on the three first 
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Figure 12: Full data set. On PC3 there are 
multiple peaks within the styles, showing internal
variation. Wikipedia, captions and fact are 
defined peaks, i.e., there is not much internal 
variation for them on PC3, while blog has two 
distinct peaks.

Figure 11: Full data set. The styles differentiate 
somewhat on PC2, but there is also a lot of 
overlap between styles. Captions are on the 
extreme left and Wikipedia and parliament are 
its opposites. Forum, blog, rich and prose are in 
between.

Figure 10: Full data set. The styles overlap and 
are all spread  wide over the PC1 axis. 
Wikipedia, fact and parliament are on the left 
while rich text is on the opposite end.

Figure 9: Full data set. The individual 
utterances overlap all over even though some 
concentrations are observable.



components, there is a lot of internal variation; all of the text styles have utterances that set on both 

extremes of the components and everything in between. Figure 12 on PC3 also shows interesting 

internal variation, e.g., blog style has two clear peaks.

Thus, it seems the styles have more nuanced 

sub-styles within them. To make sense of the 

variation, I proceeded to divide the utterances 

based on perceived formality and (mimicked) 

medium of transmission instead of the text 

styles.

Figures 13, 14, and 15 show the specific 

sub-styles, e.g., “YouTube captions on social 

media” and “Wikipedia texts on geography”, 

divided by their formality and medium of 

transmission. Prose and children’s fairy tales 

are in their own groups as there will be different

styles within them that cannot be separated, 

e.g., narration and dialogue.
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Figure 13: Full data set. The styles overlap on 
PC1. Spoken formal is centered the most and 
fairy tales are slightly to the right from the other 
styles.

Figure 14: Full data set. Written informal and 
spoken informal congregate the most on PC2. 
Spoken informal is the leftmost peak while the 
others are positioned more or less toward the 
right from it. Spoken formal has two peaks: one 
on the left and one one the right.

Figure 15: Full data set. Spoken formal is the 
most concentrated speaking style on PC3. Prose,
spoken informal, and written formal are mostly 
on the left from it. Fairy tales peak on the 
opposite side with some written informal texts.



Looking at figures 13, 14, and 15, the styles do not separate almost at all on PC1 and PC2, 

except that spoken informal and spoken formal are on the opposite ends on PC2. On PC3, “fairy 

tales” and “written informal” group together somewhat, although fairy tales are more clearly 

positioned on the PC. Spoken formal is the clearest peak on both PC1 and PC2 showing the least 

internal variation.

While in the reference data set, the first three PCs explain 40.97% (PC1 explains 27.69%) of the 

variation, in the main data set, they only explain 21.27% (PC1 explains 8.86%). It is expected, then,

that there are PCs later on that account for important features in the corpus. Furthermore, as the PCs

are arranged in descending order based on how much variance they explain, we must remember that

the latent space does not model human articulation but features of the corpus. As such, if there are 

features that only exhibit themselves in a small number of utterances, while they might be important

features for human verbal communication, the PC that explains them might not be among the first 

ones.

To take this into account, I extracted f0 mean, f0 SD, f0 minimum, f0 range, f0 slope, spectral tilt, 

articulation rate, pauses-to-speech-ratio, and onset time from the all of the 12910 utterances. I then 

cross-correlated the acoustic features and the 128 PCs to determine which PCs correlate the most 

with which acoustic features. The first 23 PCs explain over 70% of the variation (71.31%) and the 
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Table 1: Cross-correlation of acoustic features and PCs; color-coded by correlation with the top 
three correlates for every acoustic feature emphasized with borders.



top three correlates for every acoustic feature are within them. Thus, they should give us a sufficient

picture into how the PCs disentangle acoustic features. Table 1 above shows the first 23 PCs color 

coded by how much they correlate with a given acoustic feature and top three correlations for a 

given acoustic feature are emphasized with borders.

Looking at the top three highest correlating PCs for every feature, PC1 has an effect on the f0 

minimum, range, and slope, as well as on articulation rate, pauses-to-speech-ratio, and onset time. 

PC2 is mostly responsible for onset and disentangled from other features. Having onset time on one 

of the first PCs is expected as the synthesizer needs to know when to start and stop generating 

sound for every utterance. PC 3 is quite disentangled as well, and it seems to have a connection to 

pauses in the utterances.  PCs 6, 7, 8 and 10 are connected to f0 but not temporal features. Spectral 

tilt, which corresponds to voice quality, is somewhat disentangled. Its main linear relationships are 

with PCs 16, 18 and 23. PC 18 it shares with f0 SD, f0 range and f0 slope. The three f0 measurements 

can be expected to overlap with each other as all have to do with the amount or rate of change in f0. 

5.2 Results of Objective Evaluation of Speech Synthesis

I fitted a linear model with the 225 synthesized utterances with value – between -1.3 and 1.3 on 

a formal/read vs. informal/spontaneous axis – as the dependent variable, and the acoustic 

measurements (except onset time) as independent variables without interactions. Table, 2, below 

shows the linear relationships.

In this data set, f0 slope, spectral tilt, articulation rate and pause-to-speech ratio all have a 

statistically significant linear relationships with the formality axis with a p-value below 0.05. 
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Table 2: Results of the multiple linear model with the formal – spontaneous axis as the dependent 
variable and acoustic values extracted from the synthesizer utterances as independent variables.

Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.563001 1.184615 -0.475 0.6351
F0 mean 0.090989 0.105541 0.862 0.3896
F0 SD -0.047675 0.156434 -0.305 0.7608
F0 minimum -0.03457 0.032934 -1.05 0.2951
F0 range -0.002172 0.028821 -0.075 0.94

-0.04135 0.01737 -2.38 0.0182 *
Spectral tilt 0.107736 0.026481 4.069 6.65E-05 ***
Articulation rate 0.272871 0.033077 8.25 1.61E-14 ***
Pauses-to-speech -3.496852 1.483406 -2.357 0.0193 *
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1  ‘ ’  1 

F0 slope



To compare this with the original utterances from the two sets, I fitted a binomial regression 

model with the Wikipedia utterances and social media captions – total of 534 utterances – as values 

0 and 1, respectively, and acoustic measurements of the utterances as independent variables.

 Table 3 shows statistically significant relationships with f0 mean, f0 SD, f0 range, spectral tilt, and

articulation rate. The statistical relationships in the synthesized data set that do not show in the 

original utterances are f0 slope and pauses-to-speech ratio. Also articulation rate has a stronger 

relationship with style in the synthesized utterances than in the original data. f0 slope is probably a 

by product of the faster articulation rate. As the synthesized style is more spontaneous, articulation 

rate rises, and thus the same changes in f0 are bound to happen on a steeper slope.

On the other side, the significant relationships in the original utterances that are not there on the 

synthesized data set, are f0 mean, f0  SD, and f0  range. It seems from the acoustic features that the 

reference encoder has modeled voice quality well but less so with the temporal and f0 features. One 

explanation could be that I derived the reference embeddings for the extreme styles by moving 

away from the origin instead of the other style. To make sure this was not the case, I fitted the same 

linear model for the synthesized sentences but this time omitting the -1.3 and 1.3 values and merely 

keeping the two styles and a mean style. The results followed suit with the model in table 2. Next, 

the subjective evaluation tells us how these styles are judged by human listeners.

5.3 Results of Subjective Evaluation of Speech Synthesis

In the first part of the listening test, the participants were asked to assess the quality of an 

utterance on a scale from 1 to 5, and the means of their answers were computed into a mean opinion

score. Table 4 shows that, as expected, the hidden references (real recordings) fare better than the 

31

Table 3: Results of the binomial logistic regression model with "Wikipedia texts on geography" (0) 
and "YouTube captions on social media" (1) as the binary dependent variable and acoustic values 
extracted from the corresponding utterances as independent variables.

Estimate Std. Error z value Pr(>|z|)
(Intercept) -5.155672 1.356608 -3.8 0.000144 ***
F0 mean 0.714672 0.098556 7.251 4.12E-13 ***
F0 SD 0.545971 0.157361 3.47 0.000521 ***
F0 minimum 0.034921 0.06263 0.558 0.577131
F0 range -0.116227 0.040259 -2.887 0.003889 **
F0 slope -0.001787 0.0131 -0.136 0.8915
Spectral tilt 0.170286 0.048136 3.538 0.000404 ***
Articulation rate 0.189866 0.052465 3.619 0.000296 ***
Pauses-to-speech 0.120751 2.101178 0.057 0.954172
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘  ’  1 



synthesized versions, and that there is no apparent link

between the extremity of the reference embedding values

and quality of the synthesis, i.e., the synthesis does not

seem to break even on the -1.3 and 1.3 values. However, a

proper MOS test with multiple sentences would be needed

to verify this.

The second part of the subjective evaluation consisted

of a forced choice AB test. One of the participants notified

me after the test that they had not understood the

instructions correctly and had evaluated something else than what was asked. Thus, the results from

participant number 6 were omitted before analysis.

As explained in section 3.2.7, the participants were given 90 pairs of audio stimuli with the same

sentence in both stimuli. The participants were asked to choose which stimulus was more 

appropriate for the given text. After I received the results from the tests, I fitted a linear model with 

the value of the chosen stimuli – formality/spontaneity between -1.3 and 1.3 – as the dependent 

variable choice and formality of the text style as the independent variable text style. The formality 

was rated according to the participants judgments and set for every stimulus pair as -1, 0 or 1 on the

text style variable.

Table 5 shows a highly significant positive relationship between the text style and stimulus 

choice, i.e., the more informal and spontaneous the text style, the more spontaneous stimulus 

participants tended to pick – and vice versa. The coefficient of the positive relationship is quite 

strong, ~0.35. However, as we see from the intercept, the participants tended to prefer more formal 

sentences in general in a statistically highly significant manner.

Next, I looked at linear models with the same variables, fitted for each participant separately.
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Table 5: Summary of the linear model with choice on the read/formal – spontaneous/informal axis 
as the dependent variable and text style as the independent variable explaining it.

Choice ~ text style Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.08636 0.03419 -2.526 0.0117 *

text style 0.36804 0.04042 9.106 <2E-016 ***

Table 4: MOS scores of seven 
versions of the utterance: "Kotiin 
pitää mennä kaupan kautta."

Stimulus MOS
true neutral 4.3
true positive 3.5

-1.3 2.8
-1 2.7
0 2.6
1 2.35

1.3 2.6



Shown on table 6, all participants apart from participant 1 have some statistically significant 

tendency for choice, either without the explaining variable, with it, or both. Participant 1 shows no 

statistical significance either way, and the coefficients are in the opposite direction compared to 

almost all other participants. The intercept (choice without the explaining variable text style) is 

towards informality, and when text style becomes more informal, choice moves toward formality. 

However, as there is no statistical significance, we cannot derive anything from participant 1’s 

choice variable.

Two of the participants, 3 and 4, have a general preference that is statistically significant: they 

both lean toward formality. All participants apart from 1 and 3 have significant relationships 

between choice and text style, all of them positive.
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Table 6: Linear models fitted for each participant separately.

Choice ~ text style Estimate Std. Error t value Pr(>|t|)
Participant 1
(Intercept) 0.13358 0.11307 1.181 0.241
text style -0.08005 0.15448 -0.518 0.606
Participant 2 
(Intercept) -0.12623 0.09689 -1.303 0.196098
text style 0.46566 0.11901 3.913 0.000181 ***
Participant 3
(Intercept) -0.36111 0.09824 -3.676 0.000407 ***
text style 0.175 0.12032 1.454 0.149374
Participant 4
(Intercept) -0.27 0.1047 -2.578 0.0116 *
text style 0.2683 0.1283 2.092 0.0393 *
Participant 5
(Intercept) 0.1644 0.1037 1.585 0.1165
text style 0.3692 0.1176 3.141 0.0023 **
Participant 6
(Intercept) -0.03585 0.09772 -0.367 0.715
text style 0.50956 0.12001 4.246 5.43E-05 ***
Participant 7
(Intercept) -0.1575 0.1016 -1.549 0.125
text style 0.4275 0.1016 4.206 6.24E-05 ***
Participant 8
(Intercept) 0.04045 0.0985 0.411 0.682
text style 0.51333 0.11996 4.279 4.81E-05 ***
Participant 9
(Intercept) -0.06855 0.10182 -0.673 0.503
text style 0.48306 0.11545 4.184 6.76E-05 ***



6 Discussion

The reference encoder models speech styles quite well, however realistic speaking styles are 

much more complex than the acted stereotypical ones. These styles are hard to delineate and they 

may have significant internal variation. This variation can take place within, say, one conversation, 

or within a whole style with internal variation depending on topic and context. This pinpoints the 

complex character of speaking styles.

PCA does not completely disentangle the different acoustic features in the realistic speaking 

styles. Especially PC1 explains a variety of acoustic features. This was somewhat expected as there 

probably is a diverse set of hidden variables involved, which I attempted to unearth by correlating 

the PCs with simplistic acoustic measurements. It is also likely that some features cannot be 

disentangled from the latent space: acoustic and articulatory phenomena are so intertwined that they

might be impossible to completely separate as the network will never see such data where they are 

not related. For example, there are mechanical constraints to the speed of human articulation, and a 

higher articulation rate may also lead to a steeper f0 slope even if the style is not any more 

expressive than another. Faster speech than what the network has been trained with would require it 

to extrapolate to unseen space, which in the scope of this study is not interesting as it aimed to 

produce realistic styles – even though it may be interesting for AI researchers.

The objective evaluation yielded some promising results. The acoustic features the reference 

encoder seemed to grasp were articulation rate and tilt. The increased articulation rate, however, 

could be due to how the vector was computed instead of the reference encoder modeling 

articulation rate correctly. There are many short utterances in the corpus for the spontaneous style, 

e.g., filled pauses or short agreement words such as “joo” (yes). Because PC1 is heavily connected 

to text length (as established in the results section), there are latent embedding dimensions that 

correspond to it. I created the styles for synthesis by computing the means of all the embeddings 

from the two styles. As such, the synthesizer may have tried to squeeze the sentences into the 

average length of utterances from the spontaneous style data set. Thus, articulation rate increases as 

the spontaneity of the synthesis increases, even though there might not be such a strong connection 

to this in the data set itself. On the practical side, this heightened articulation rate also lead to the 

synthesizer sometimes omitting words and articulating in a less clear manner. If the manner of 

computing the vectors explains the articulation rate variable, then the only measured acoustic 

feature that the reference encoder modeled is spectral tilt. As the subjective evaluation showed us 

that there are discernible differences between the styles, either the acoustic measurements are too 
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simple for analyzing stylistic variation or spectral tilt itself was enough to deem an utterance more 

appropriate than another.

In terms of the latent space, another way of calculating the extreme styles would have been to 

linearly extrapolate them from the two embedding vectors. While the formality and informality axis

worked in a practical sense, extrapolation would have created a linear continuum between the 

styles, instead of having the extreme values in relation to the origin. This would have benefited the 

objective evaluation as the statistical method fits a linear model, but it might have been detrimental 

for the subjective evaluation. Computing the extreme styles as stronger versions of the styles 

themselves will give us more formal or more spontaneous compared to a neutral style, while linear 

extrapolation would have given us a more opposite style in terms of the other style.

The subjective evaluation showed that the participants preferred a more formal speaking style 

for the formal sentences and a spontaneous speaking style for the spontaneous sentences. This 

suggests that the reference encoder models the styles at least somewhat and the synthesizer can be 

controlled on a read/formal-spontaneous/informal axis. In general, the participants tended to prefer 

more formal speaking styles. Reasons behind this may be numerous, from expectations on 

synthesized speech and quality of the synthesis to social attitudes towards women speaking in an 

informal voice. Anecdotally, the extremely informal voice often included distinct creaky voice and a

rising tone at the end of some utterances, which at least in the anglophone context are seen as 

gendered female traits and often frowned upon (Habasque, 2021). Creaky voice is connected to 

spectral tilt, so spectral tilt may be enough to affect the evaluation of appropriateness. Also, the 

rising tone would not necessarily show in the acoustic measurements used in this thesis.

7 Conclusions

There are some obvious limitations to analyzing and synthesizing speaking styles with this 

method. Phenomena that are rare in the corpus may still be significant in regards to human 

communication, as the neural architecture does not model articulation but a specific corpus with its 

limitations. Furthermore, controlling all of the important variables present may be difficult and the 

network may model unintended features. To remedy this, one could analyze and disentangle 

unwanted variation from other features. For example, for this method, text length related embedding

dimensions would need to be extracted and adjusted according to the length of the given sentence 

instead of using an average value from the style. In general, it is important to account for as many 

unwanted variables as possible, from recording and pre-processing to when we analyze the latent 
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space. In the future, it would be interesting to use more diverse data such as actual spontaneous 

speech or a multi-speaker corpus. Using a multi-speaker corpus with people of different genders, 

ages, and dialects could enable highly adaptable speech style synthesis with different dialects and 

even more realistic styles. Then, the method could also be more useful for phonetics research, as the

data would be more varied and the prosody space more diverse. However, as the network is a black 

box, there are an unknown number of hidden variables that can affect the output, and getting 

reliable and analyzable results from the reference encoder may turn out to be a difficult task.

Outside of practical applications, style controlled speech synthesis could be interesting for 

sociolinguistics research, for example, regarding language attitudes. It is difficult to control styles 

with real human speakers if the text style is discongruent with the speaking style. With synthesized 

speech, one could control these aspects when producing stimuli for listening tests.

Based on this study, it would be interesting to continue researching speech synthesis from the 

point of view of appropriateness. Appropriateness is a socially loaded question and as such may 

signify different things for different people. Also, while the stylistic differences were somewhat 

hazy in the objective evaluation, they were clear in the subjective evaluation. It would be interesting

to go deeper into what are the specific acoustic correlates for appropriateness for a given text. As 

stated in the background section, we used this same model for disentangling and controlling 

phonetic features for synthesis. A similar subjective evaluation could be done where instead of 

interpolating between styles, we could adjust specific acoustic values, such as spectral tilt or f0 

mean, and analyze if there are specific phonetic features that affect the judgment of appropriateness.

This could also have a practical relevance as we look into what types of synthesized speech will 

become mainstream.
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