
https://helda.helsinki.fi

MultiCategory: multi-model query processing meets category

theory and functional programming

Uotila, Valter Johan Edvard

2021-08-20

Uotila , V J E , Lu , J , Gawlick , D , Liu , Z H , Das , S & Pogossiants , G 2021 , '

MultiCategory: multi-model query processing meets category theory and functional

þÿ�p�r�o�g�r�a�m�m�i�n�g� �'� �,� �P�r�o�c�e�e�d�i�n�g�s� �o�f� �t�h�e� �V�L�D�B� �E�n�d�o�w�m�e�n�t� �,� �v�o�l�.� �1�4� �,� �n�o�.� �1�2� �,� �p�p�.� �2�6�6�3 ��2�6�6�6� �.� �h�t�t�p�s�:�/�/�d�o�i�.�o�r�g�/�1�0�.�1�4�7�7�8�/�3�4�7�6�3�1�1�.�3�4�7�6�3�1�4

http://hdl.handle.net/10138/344802

https://doi.org/10.14778/3476311.3476314

cc_by_nc_nd

publishedVersion

Downloaded from Helda, University of Helsinki institutional repository.

This is an electronic reprint of the original article.

This reprint may differ from the original in pagination and typographic detail.

Please cite the original version.



MultiCategory: Multi-modelQuery Processing Meets Category
Theory and Functional Programming

Valter Uotila
Jiaheng Lu

University of Helsinki
first.last@helsinki.fi

Dieter Gawlick
Zhen Hua Liu
Souripriya Das
Oracle Corporation
first.last@oracle.com

Gregory Pogossiants
SATS Technologies

gregp_21@yahoo.com

ABSTRACT
The variety of data is one of the important issues in the era of Big
Data. The data are naturally organized in different formats and mod-
els, including structured data, semi-structured data, and unstruc-
tured data. Prior research has envisioned an approach to abstract
multi-model data with a schema category and an instance category
by using category theory. In this paper, we demonstrate a system,
called MultiCategory, which processes multi-model queries based
on category theory and functional programming. This demo is
centered around four main scenarios to show a tangible system.
First, we show how to build a schema category and an instance
category by loading different models of data, including relational,
XML, key-value, and graph data. Second, we show a few examples
of query processing by using the functional programming language
Haskell. Third, we demo the flexible outputs with different models
of data for the same input query. Fourth, to better understand the
category theoretical structure behind the queries, we offer a variety
of graphical hooks to explore and visualize queries as graphs with
respect to the schema category, as well as the query processing
procedure with Haskell.

PVLDB Reference Format:
Valter Uotila, Jiaheng Lu, Dieter Gawlick, Zhen Hua Liu, Souripriya Das,
and Gregory Pogossiants. MultiCategory: Multi-model Query Processing
Meets Category Theory and Functional Programming. PVLDB, 14(12): 2663
- 2666, 2021.
doi:10.14778/3476311.3476314

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://multicategory.github.io/.

1 INTRODUCTION
The variety of data is one of the most important issues in modern
data management systems to cope with the challenge of Big Data.
In many applications, data sources are naturally organized in differ-
ent formats and models, including structured data, semi-structured
data, and unstructured data. To address the challenge of variety,
multi-model databases have begun to emerge with a single data-
base platform to manage multi-model data together, with a fully

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 14, No. 12 ISSN 2150-8097.
doi:10.14778/3476311.3476314

name: Mary
creditLimit: 5000

location: 10

name: Erica
creditLimit: 8000

location: 10

name: Bob
creditLimit: 4000

location: 11

Graph data: customers

knows

knows knows

XML data: orders

and products
<Orders>
<Order>
	<OrderNo>34e5e79</OrderNo>
	<Product>
		<ProductNo>2343f</ProductNo>
		<ProductName>Toy</ProductName>
		<Price>10</Price>
	</Product>
...
	</Order>
...
</Orders>

Key value data

ordered: 
Order Customer

Key value data

CustomerOrder
orderedBy:

locationId cityName country

10 Helsinki Finland

11 Beijing China

Relational data:

locations

Key value data

Location Customer
located:

Figure 1: A multi-model data environment

integrated backend to handle the demands for performance and
scalability [3].

Let us consider an example of a multi-model data environment.
Figure 1 illustrates an application of E-commerce, which contains
customers, a social network, and orders information with four
distinct data models. The property graph data bear information
about mutual relationships between the customers, i.e. who knows
whom, and some customer properties such as name and credit limit.
The geographic location of customers is stored in a relational table.
In XML documents, each order has an ID and a sequence of ordered
products, each of which includes product number, name, and price.
The fourth type of data, key/value pairs, contains the relations
between different data sets. In a typical application like customer-
360-view, users of databases demand to analyze the information
from these four different data sources together to enable a holistic
analysis of customer behaviors.

Category theory was developed by mathematicians in the 1940s
and has been successfully applied in many areas of science in-
cluding computer science. Recent research initiatives have applied
category theory for the database area. In particular, Spivak [6, 7]
used a schema category and an instance functor to model relational
databases. Liu et al. [2] promoted category theory to play the role
of the new mathematical foundation to reason about declarative
constructions and transformations between various data models.

While the previous works have envisioned the theoretical signif-
icance to model and manage data with category theory, this demon-
stration shows our initiative to showcase a proof-of-concept im-
plementation of MultiCategory, a system to support multi-model
query processing based on category theory. The core parts of the
system have been coded with the functional programming language

2663

https://doi.org/10.14778/3476311.3476314
https://multicategory.github.io/
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3476311.3476314


Haskell, which is widely recognized to have a strong connection to
category theory. The data storing framework of MultiCategory
is established on the concepts of schema and instance categories
[6], and the query processing structure is based on catamorphism
and foldable data structures [1]. With these key properties, we can
create a system that has a consistent integration with relational,
hierarchical, and graph data models and we show how category
theory can be used to achieve valuable perspectives for multi-model
query representation and processing.

In brief, the demonstration of MultiCategory offers the follow-
ing to the audience:

• category theoretical and functional programming oriented
methods of querying and accessing multi-model data with a
unified schema;

• a unified query language endowed with Haskell’s lambda
expressions allowing the users to submit one query to access
different models of data seamlessly;

• the flexibility of output the same result with different models,
which provides the users an opportunity to exploit the same
data with different representations;

• to better understand the theoretical structure behind the
queries, this demo also provides an interactive visualizer to
understand the schema and instance categories, as well as
the query processing procedure.

In our demo, attendees are welcome to compose their queries that
follow the syntax of our query language to search the multi-model
datasets. The source code of this system is available in GitHub [8]
and the demo video can be watched online on YouTube [9].

2 PRELIMINARIES
In this section, we first review the mathematical definition of a
category [4], followed by the descriptions of schema and instance
categories which are influenced by [6, 7].

Definition 2.1. A category C consists of a collection of objects
denoted by 𝑂𝑏 𝑗 (C) and a collection of morphisms denoted by
𝐻𝑜𝑚(C). For each morphism 𝑓 ∈ 𝐻𝑜𝑚(C) there exists an object
𝐴 ∈ 𝑂𝑏 𝑗 (C) that is a domain of 𝑓 and an object 𝐵 ∈ 𝑂𝑏 𝑗 (C)
that is a target of 𝑓 . In this case we denote 𝑓 : 𝐴 → 𝐵. We re-
quire that all the defined compositions of morphisms are included
in C: if 𝑓 : 𝐴 → 𝐵 ∈ 𝐻𝑜𝑚(C) and 𝑔 : 𝐵 → 𝐶 ∈ 𝐻𝑜𝑚(C), then
𝑔 ◦ 𝑓 : 𝐴 → 𝐶 ∈ 𝐻𝑜𝑚(C). We assume that the composition op-
eration is associative and that for every object 𝐴 ∈ 𝑂𝑏 𝑗 (C) there
exists an identity morphism id𝐴 : 𝐴 → 𝐴 so that 𝑓 ◦ id𝐴 = 𝑓 and
id𝐴 ◦ 𝑓 = 𝑓 whenever the composition is defined.

Informally speaking, we can understand a category as a graph
endowed with the composition rule.

Figure 2 constructs a unified schema category, which represents
the schema information of a multi-model data environment in
Figure 1. Conceptually, an object in a schema category includes two
kinds of data types: (1) the first collection of data types consists of a
string, integer, rational, boolean, etc., called predefined data types;
and (2) the second collection of data types includes entities, such
as customers and products. Morphisms are defined to be the typed
functions between the data types, such as a customer is located in a
certain location and an order is ordered by a customer. Furthermore,
it is important to note that a schema category presents a single

Customer

Integer

creditLimit,
customerId

contains(order, product)

customerName

city, address,
country

orderedBy

located

productName, 
productId

productPrice

orderId

Set of Product
instances

Set of
Integers

productPrice

Hierarchical
instance of

Orders creditLimit,
customerIdorderedBy

Graph of
Customer
instances

customerName
city, address,

countryproductName, 
productId

contains(order, product)

orderId

knows(customer1, customer 2)

Set of
Strings

LocationProduct

String

Schema category

Order

Instance category

Set of Location
instances

located{ True,
False }

knows(customer1, customer2)

contains(order, product)

Boolean

Instance functor

Hierarchical
instance of

Orders

Graph of
Customer
instances Set of

Integers
{ True,
False }

Order Customer Integer BooleanString

Set of
Strings

Collection constructor functors

Set of
Product

instances

Product

Set of
Location
instances

Location

contains(order, product)

zipCode, locationId

zipCode, locationId

Figure 2: An example of a category theoretical construction

unified view for different models of data. Based on this view, we
develop a unified query mechanism to process different models of
data seamlessly.

An instance category models how the concrete data instances
are stored. Each object of the schema category is mapped to the
corresponding typed Haskell data structure in the instance category
(see Figure 2). Each morphism in the schema category is mapped to
a concrete Haskell function in the instance category. The mapping
between these categories is called an instance functor which is
defined on objects by collection constructor functors [1]. As shown
in our demo, queries are formulated based on the schema category
and the answers are retrieved from the instance category based on
the instance functor and the collection constructor functors.

In schema and instance categories, we can follow any path to
form a well-defined function between the start node and the end
node of the path thanks to the composition rule in Definition 2.1.
For example, there is a morphism (edge) in the instance category
that gives us that the customer 𝐴 makes the order 𝐵 and another
morphism that gives us that the order 𝐵 includes the product 𝐶 .
Based on the composition rule of these morphisms there is a well-
defined morphism that gives us that the customer 𝐴 buys the prod-
uct𝐶 . This compositionality property is important to guarantee the
correctness of programs to traverse through multiple data models.

3 SYSTEM OVERVIEW
In this section, we provide an overview of MultiCategory’s ar-
chitecture, query language, and query processing mechanism. For

2664



Query

Chain of
FoldsResult

Result

B
ac
ke
nd

Java Spring Framework Server

Haskell program with category theoretical models, query
processing and data stuctures

UI with React
Fr

on
te

nd Data and category theory visualization with D3.js

Query tokenizer,
parser & translator

Directed and
undirected

multigraphs
Hierarchical view

to data
Table view to

data

Query evaluation

Property graphs,
RDFXML, JSONRelational

Figure 3: The architecture of MultiCategory

more details about technical solutions, a tutorial, and an installation
guide you can find from MultiCategory’s documentation and in
Github [8].

Figure 3 depicts the architecture of MultiCategory that con-
sists of the frontend and the backend. In particular, the frontend
creates a web interface and data visualizations for relational data,
hierarchical documents, and graphs. The backend is responsible for
query processing and the implementation of category theoretical
constructions.

3.1 Multi-model query language
We have developed a multi-model query language that encapsulates
Haskell functions and expressions. For example, the following query
finds those customers whose credit limit is greater than a threshold,
say 3000.

Example 3.1. QUERY (\x -> if creditLimit x > 3000

then cons x else nil)

FROM customers

TO graph/xml/relational

Every query block starts with QUERY keyword, which is fol-
lowed by a function defined with Haskell’s lambda notation. In
Example 3.1, x is a variable that represents a customer in the graph,
and the query returns the graph of the customers with credit limit
> 3000. The FROM keyword specifies the source collection of the
data. The TO keyword configures the data model of the result.
Note that in the above example the returned model can be either
graph, relational or XML. Figure 5 demonstrates the three different
representation models for the answers of the query in Example 3.1.

Example 3.2. LET t BE

QUERY (\x xs -> if elem "Book" (map productName (

orderProducts x)) then cons x xs else xs)

FROM orders TO relational IN

QUERY (\x -> if any (\y -> orderedBy y customers == x

) t then cons (customerName x, countryName(

located x locations)) else nil)

FROM customers TO algebraic graph/relational/xml

Schema
information

Schema category

Scanning,
tokenization,

parsing

Fold function

Sequence of folds

Fold function

Execution

Translate
query

Multi-model
query

Query result

...

Lazy
evalution &
Referential

transparency

Instance category

Instance
functor

Data structure
information

Instances

Figure 4: The workflow diagram of query processing

The query in Example 3.2 returns a graph that contains names
and locations of the customers who ordered a book, which involves
relation, XML, and key/value data types. Figure 6 shows the result
of this query. There are two QUERY clauses in this query that
correspond to the two fold functions. The clauses are connected
with LET BE IN structure which works in the same way as the
correspondingmechanism in Haskell. The LET keyword introduces
a variable (i.e. 𝑡 ) that connects fold functions together. In particular,
the firstQUERY clause finds any order which contains a book. The
second QUERY clause finds customers who made such orders. The
results contain the customer’s name and location information (i.e.
countryName).

3.2 Query processing mechanism
Figure 4 depicts the main workflow of query processing in Multi-
Category. When a user inputs a query to the system, it is parsed
into a sequence of fold-functions with respect to the schema infor-
mation from the schema category. The sequence of folds is sent to
the Haskell program running in the backend. The Haskell program
accesses the instance category and executes the sequence of fold
functions that is just pure Haskell code. Note that we do not require
all data structures to be instances of Haskell’s foldable type class as
we can use generalizations of folds to query more complex algebraic
data types. For example, we use the function foldg to query the
algebraic graphs of the package Algebra.Graph [5]. Finally, the
result is returned to the frontend, where it is visualized depending
on the model the user defined in the query.

4 DEMONSTRATION SCENARIOS
4.1 Using schema and instance categories
We first introduce our system by inviting attendees to view the
schema and instance categories of varied data sets through the
graphical interface. This demo will use six different synthetic and

2665



(a) Graph (b) Tree (c) Relation

Figure 5: Three different representations of the same query result of Example 3.1

Figure 6: The result in graph and relational models for the
query in Example 3.2

real datasets. Each data set includes different models, such as rela-
tional, XML, JSON, RDF, and property graph data. Attendees can
select a data set, view the related schema and instance categories,
and examine the nodes and edges of any graph to find more in-
formation. For example, one may find that customer data type has
an attribute customerName which is considered as a function from
Customer to String.

4.2 Querying multi-model data
In MultiCategory we have created a collection of example queries
that can query different data models together. For example, an E-
commerce data set includes all the seven possible combinations of
multi-model queries combining relational, XML, and graph models.
This demo allows attendees to formulate their queries with guid-
ance and observe results in different output models. Currently, the
system does not support large-scale data processing due to imple-
mentational reasons but generally category theory-based frame-
works scale well.

4.3 Visualizing multi-model queries
For obtaining a better understanding of the theoretical structure be-
hind the queries, MultiCategory provides an automatic visualizer
for the fold function-based queries. This feature visualizes queries
as graphs with respect to the instance category. In particular, after
the execution of a query, the query is visualized as a graph that ex-
hibits a composition of Haskell fold functions. Every fold function
has at least one lambda expression which the user can click to see
the detailed information in the graphical interface.

5 COMPARISON TO EXISTING SYSTEMS
The existing multi-model databases, for example, ArangoDB and
OrientDB are implemented based on a single dominant model so
that they cannot be called “native” concerning all models they are
supporting. In contrast, we developed MultiCategory in such a
way that each data model is equal and each instance is stored in
its native data structure. No specific transformation operations are
required when the data is uploaded. A unified view is generated
to accommodate different models of data together. Besides, there
are very few systems that would support as many models (rela-
tional, XML, JSON, RDF, and property graphs) as MultiCategory
supports.

6 CONCLUSION AND FUTUREWORK
MultiCategory is a tangible system that is applying category the-
ory to model and query multi-model data. We implement a query
language with a functional programming language. We visualize
the category theoretical constructions, i.e. schema and instance cat-
egories, and query processing to show connections between theory
and applications. Note that MultiCategory is not yet a full-fledged
database system and due to its implementation it is also not a big
data system.

The schema category and instance category are fixed and prede-
fined manually. In the future, we consider automatically generating
this unified category view based on input data sets. We have been
developing the theoretical framework so that it can define multi-
model joins and data, schema, and query transformations.

REFERENCES
[1] Torsten Grust. 1999. Comprehending Queries. Ph.D. Dissertation. Universitaet

Konstanz, Konstanz.
[2] Zhen Hua Liu, Jiaheng Lu, Dieter Gawlick, Heli Helskyaho, Gregory Pogossiants,

and ZheWu. 2018. Multi-model Database Management Systems - A Look Forward.
In Polystores VLDB 2018 Workshops. 16–29.

[3] Jiaheng Lu and Irena Holubová. 2019. Multi-model Databases: A New Journey to
Handle the Variety of Data. ACM Comput. Surv. 52, 3 (2019), 55:1–55:38.

[4] Saunders MacLane. 1971. Categories for the working mathematician. Springer, New
York, NY. https://doi.org/10.1007/978-1-4612-9839-7

[5] Andrey Mokhov. 2017. Algebraic Graphs with Class (Functional Pearl). In Proceed-
ings of the 10th ACM SIGPLAN International Symposium on Haskell (Oxford, UK)
(Haskell 2017). New York, NY, USA, 2–13. https://doi.org/10.1145/3122955.3122956

[6] David Spivak. 2014. Category Theory for the Sciences. (2014).
[7] David I. Spivak. 2010. Functorial Data Migration. CoRR abs/1009.1166 (2010).

arXiv:1009.1166 http://arxiv.org/abs/1009.1166
[8] Valter Uotila. 2021. MultiCategory Documentation and System Codes. https:

//multicategory.github.io/, https://git.io/JvPqM. Accessed Jul. 19, 2021.
[9] Valter Uotila and Jiaheng Lu. 2021. MultiCategory demo video. https://youtu.be/

uceIi91AGsg. Accessed Jul. 19, 2021.

2666

https://doi.org/10.1007/978-1-4612-9839-7
https://doi.org/10.1145/3122955.3122956
https://arxiv.org/abs/1009.1166
http://arxiv.org/abs/1009.1166
https://multicategory.github.io/
https://multicategory.github.io/
https://git.io/JvPqM
https://youtu.be/uceIi91AGsg
https://youtu.be/uceIi91AGsg

