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Over the last thirty years more than five thousand exoplanets have been discovered around a wide
variety of stellar objects. Most exoplanets have been discovered using the transit method, which
relies on observing the periodic brightness changes of stars as their planet transits in front of them.
The discovery efficiency of these planets has been strongly enhanced with the advent of space
telescopes dedicated to the discovery of planets using the transit method.

Planetary signals in the photometric data of active stars can be challenging to find, as the sur-
face features of the stars combined with their rotation might produce signals which are orders of
magnitude stronger than those caused by the planetary transit.

The question of what statistical methods should be applied to account for the innate variability
of stars in order to identify the transits of exoplanets in the lightcurves of active stars is being
investigated in this thesis.

I test a number of statistical methods in order to combat stellar activity and to identify planetary
transit signals. The rotation period of the star is investigated using the Lomb-Scargle and likelihood
ratio periodograms. Starspot induced variability is approximated with a number of sinusoids,
with periods based on the star’s rotation period. Additional stellar activity is filtered out using
autoregressive and moving average models.

Model fittings are performed with least squares fitting, and using samples generated by the Adaptive
Metropolis algorithm. After the lightcurve has been detrended for stellar activity, the likelihoods of
planetary transit signals are assessed with a box-fitting algorithm. Models are compared with the
Bayesian and Akaike information criteria. Planetary characteristics are then estimated by modeling
the shape of the transit lightcurve.

These methods are tested and performed on the lightcurve of HD 110082, a highly active young star
with one confirmed planetary companion, based on the observations of the TESS space telescope.
I find that stellar activity is sufficiently filtered out with a model containing four sinusoid signals.
The signal corresponding to the planet is confirmed by the box fitting algorithm, agreeing with
results available in scientific literature.
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1. Introduction

1.1 Exoplanets

Planets outside our Solar System are called exoplanets. The first two exoplanets were
discovered by Wolszczan and Frail (1992) around the pulsar PSR B1257+12. Three
years later, the first exoplanet around a main-sequence star, 51 Pegasi has been found
by Mayor and Queloz (1995). The latter discovery was rewarded in 2019 with a Nobel
Prize in Physics.

Since the first discoveries, the number of confirmed exoplanets has been steadily
increasing, reaching 5 059 by the first half of 2022†. These planets show a great diversity
in their characteristics. Their orbital periods range from well below an hour (e.g., K2-
137 b) to over 22 000 years (Oph 98 b). Their radii are between that of Mercury
(e.g., Kepler-391 b) and more than twice that of Jupiter (e.g., ROXs 42B (AB) b).
Exoplanets have also been found to orbit a wide variety of objects. They have been
found around main-sequence stars, binary stars (the first planet found to orbit two
main-sequence stars, Kepler-16b was discovered by Doyle et al. 2011), pulsars, and in
some instances orbiting no star at all (e.g., PSO J318.522). This last type of planets,
the so-called rogue planets are theorized to have been ejected from their planetary
system through two body interactions at the time when their planetary system was
forming.

The study of exoplanets has several applications. Observations of exoplanetary
systems can be used to test theories about the formation and evolution of planetary
systems. This also helps in developing a better understanding of the formation of our
own Solar System and Earth.

Many exoplanets have been found in the habitable zones around their stars. These
are regions where planets are able to sustain liquid water on their surfaces over geologi-
cal timescales. The discovery of such planets sparked a renewed interest in astrobiology
and the search of extraterrestrial life.

A variety of methods exists for the detection of exoplanets. Some of the most

†exoplanet.eu, accessed on May 29, 2022.
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2 Chapter 1. Introduction

successful methods of exoplanet detection are:

• Transit method: The transit of a planet in front of its host star reduces the
amount of light coming from the star to the observer. The periodic dimmings of
the star can therefore be used to detect exoplanets.

• Radial velocity: A star’s radial velocity can be measured from the Doppler shift
of its spectral lines. If a star’s radial velocity changes periodically, it is a sign
that the star orbits a common center of mass with another object.

• Microlensing: As a foreground star moves in front of a background star, the
background star becomes brighter due to the gravitational lensing effect of the
foreground star. If a planet orbits the foreground star, an other brightening of
the background star can be observed due to the gravitational lensing effect of the
planet, close in time (typically within days) to the lensing event of the foreground
star.

• Direct imaging: An image is taken of the host star and its environment, including
possible planets.

• Timing measurements: If multiple planets are present in a system that has at
least one transiting planet, the transit of a planet in front of its star does not
occur strictly periodically, due to the perturbing effect of an other planet. Transit
time variations can therefore be used to detect planets that would not necessarily
transit their host star.

1.2 Transiting exoplanets

1.2.1 Transit method

As of the publication of this thesis, the most effective method for detecting exoplanets
(with 3 552 discoveries) has been the transit method.

A schematic plot of the flux F coming from a star–planet system at different
orbital phases of the planet is shown on Fig. 1.1. The brightness variations of an
object as a function of time is an object’s lightcurve. The amount of relative dimming
when the planet is in front of its star δ = ∆F/F , the length of the transit event T , the
mid-transit time (the time at which the planet is the closest to the center of the star)
tc, and the ingress time (the time in which the planet’s disk is only partially over the
stellar disk) τ can be measured directly from the shape of the system’s lightcurve.

The amount of dimming in the star’s lightcurve can be used to estimate the size
of the planet, as a larger planet will cover a bigger fraction of the stellar disk. This
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Abstract. By observing the transits of exoplanets, one may determine many fundamental sys-
tem parameters. I review current techniques and results for the parameters that can be measured
with the greatest precision, specifically, the transit times, the planetary mass and radius, and
the projected spin-orbit angle.

Keywords. planetary systems — eclipses — occultations — methods: data analysis

1. Introduction

Henry Norris Russell (1948) once delivered a lecture here in Cambridge entitled “The
royal road of eclipses,” about the determination of accurate parameters for eclipsing
binary stars, and the promise that such systems held for progress in stellar astrophysics.
Given the rapid progress on display at this meeting, it is clear that exoplanetary science
too has its royal road: the royal road of transits. Figure 1 illustrates the happy situation
in which the planet’s orbit is viewed nearly edge-on, and the planet undergoes transits
and occultations.

τ

δ

c

Flux

Time

occultation

transit

T

t

Figure 1. Illustration of transits and occultations. During a transit, the planet blocks a fraction
of the starlight. Afterwards, the planet’s brighter dayside comes into view and the total flux
rises. The total flux drops again when the planet is occulted by the star.

1

Figure 1.1: The lightcurve of a star with a transiting exoplanet. As the planet covers a part of the
star’s surface, the star’s observed brightness decreases (primary transit). The incoming flux is not
constant during the time the planet’s disk is fully on the disk of the star, because the star shows some
limb darkening. When the planet is closer to the edge of the stellar disk it covers parts from the star
with lower surface brightness. This leads to a smaller decrease in brightness compared to when it is
at the middle of the stellar disk, in front of high surface brightness parts. A secondary dimming can
be observed at occultation, when the planet disappears behind the stellar disk (secondary transit).
(Image credit: Winn, 2009)

leads to an increased level of dimming during the transit event. It follows from here
that there is a bias in transit-method-based discoveries towards planets with larger
radii.

If transit based radius measurements are combined with planetary mass data,
which is calculated from radial velocity measurements, a density estimate can be made
for the planet. Based on density, it is possible to approximate the composition, and
put constraints on the habitability of the planet and the formation of the planetary
system.

The orbit of a planet around its star on an elliptic orbit is described by six orbital
elements. These elements are the 1) semi-major axis a, 2) eccentricity e, 3) inclination
i, 4) longitude of the ascending node Ω, 5) argument of periapsis ω, and 6) true anomaly
at epoch t0, ν.

A requirement for the transit method to work is that we observe the orbital plane
of the planet nearly from edge on. In other words, the planet’s inclination (the angle
between its orbital plane and the plane of the sky) must be close to 90◦, otherwise
its transit would not be observable from Earth. This is a considerable disadvantage
of the transit method, since the probability of seeing a planetary system at the right
inclination angle is relatively low. The transit probability of a planet on a circular
orbit is given by the transit probability equation p = R∗/a, where R∗ is the radius of
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the star and a is the semi-major axis of the planet. This translates to a hot Jupiter (an
exoplanet with a radius similar to Jupiter on an a ≈ 0.05 au orbit) having a ∼ 10%
transit probability in front of a Sun-sized star.

When estimating the occurrence rate of different exoplanet populations in an
observed sample of stars, geometrical considerations, such as the one proposed by the
transit probability equation, have to be taken into account. This correction was, for
example used by Howard et al. (2012), who report an occurrence rate of 0.005 ± 0.001
of hot Jupiters around G and K spectral class stars with Kepler magnitude Kp < 16
(Brown et al., 2011) in the sample of stars originally observed by the Kepler space
telescope (the occurrence rate was also corrected for the instrumental capacities of the
telescope).

A consequence of the transit probability equation is a bias towards smaller semi-
major axes among the planets discovered with the transit method. This bias is further
strengthened by the fact that planets with smaller semi-major axes have shorter orbital
periods. Planets with shorter orbital periods transit their stars more frequently. This
makes the transits more likely to be observed by a telescope at a random time. Fig. 1.2
shows the distribution of exoplanets with known semi-major axes and radii in terms of
these two parameters. The planets are separated into two classes based on whether or
not they were discovered with the transit method. The preference of the transit method
towards smaller semi-major axes is demonstrated by the clustering of transiting planets
at lower a values. Another consequence of the transit probabilities is that the presence

10 2 10 1 100 101 102 103 104

a (au)

10 1

100

101

R
(R

Ju
p)

Transit method
Other methods

Figure 1.2: Semi-major axes and radii of planets where both parameters are known. Detection
methods are marked with different colors. A clear bias towards smaller semi-major axes is visible
among planets discovered with the transit method. Data from exoplanet.eu.

exoplanet.eu


1.2. Transiting exoplanets 5

of planets around a star, especially on wider orbits cannot be ruled out by a lack of
planetary transit observations.

As a planet transits the stellar disk, it might go in front of regions that have
different surface brightnesses than what is expected from a featureless stellar disk
(e.g., starspots). When this happens, the lightcurve changes its shape during the transit
compared to the lightcurve model shown on Fig. 1.1, as the planet covers regions with
a different brightness. The change in lightcurve shapes can be used to probe the star’s
surface for spots or other features. This technique is called transit mapping, and has
been used for over a decade (e.g., Pont et al., 2007).

Exoplanet discoveries made with the transit method are particularly prone to
false positives. Several phenomena are known that cause dimmings in the lightcurves
of the stars similar to a planetary transit. One reason is, if the star falls close enough
on the plane of the sky to an eclipsing binary, their lights are blended together. Due to
the presence of the eclipsing binary, the star may show planetary transit-like variations.
Another reason is, the star can itself also be part of a binary system. If the binary
counterpart only grazes the stellar disk when it eclipses, it only covers a small fraction
of the star’s disk during its transit. This produces a lightcurve similar to a planetary
transit. Finally, the binary partner can be a white or a brown dwarf. Both types of
these celestial bodies have similar radii to planets. Even if these objects go in front of
the disk of the primary star, the relative change in brightness will be similar to that
caused by a planet.

Due to these many opportunities for a false detection, a planetary transit signal
either has to be observed three times, or the planet has to be detected using an other
detection method before the discovery is confirmed.

A considerable advantage of the transit method over radial velocity measurement
lies in the number of stars that can be simultaneously observed. Surveys relying on the
transit method can monitor several thousands of stars at the same time, the number
is only restricted by the sensitivity of the telescope’s sensor and field of view. Radial
velocity surveys, in contrast are usually designed to observe one star at a time.

1.2.2 History

The first exoplanet to be observed using the transit method was HD 209458 b in 1999
at Fairborn Observatory in Arizona (Henry et al., 2000). This was a known object,
discovered previously from radial velocity measurements.

The first planet to be discovered with the transit method was OGLE-TR-56b
(Konacki et al., 2003) whose transit has first been observed at the Las Campanas
Observatory in Chile. In the following years, several transiting exoplanets have been
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discovered by ground-based surveys (e.g., SuperWasp, HATNet, Collier Cameron et al.,
2007, Bakos et al., 2007).

The breakthrough in discovering transiting planets came with the advent of high-
precision space-based photometry. Unlike Earth-based telescopes, space telescopes are
not limited by daytime and nighttime variations. This allows for a long, continuous
time series of observations. Furthermore, space based observations have much higher
photometric precision than those based on the Earth. The most precise telescopes on
Earth can detect a fractional brightness change of δ ∼ 0.1%, whereas space telescopes
can usually detect a fractional brightness change of δ ∼ 10−4. The reason behind this
difference in sensitivity is the lack of atmospheric effects for space based observations.

Using higher precision photometry, smaller brightness variations, caused by plan-
ets with smaller radii become visible and so space telescopes are more sensitive to
smaller planets than Earth based telescopes. The discovery of Earth-size and smaller
planets became feasible with space based programs. This shift towards smaller planets
is illustrated on Fig. 1.3, which shows the radius distribution of planets discovered from
the Earth and by the space telescopes CoRoT, Kepler, and TESS.
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Figure 1.3: Radii of planets discovered by Earth based telescopes, and space telescopes CoRoT,
Kepler, and TESS using the transit method. Observe the scaling and the units of measurements used
for the individual histograms (The correspondence between Jupiter’s and Earth’s radius is RJup ≈
11.2 RE). Space based observatories have a higher photometric precision and so are able to discover
planets with smaller radii in greater numbers.

An overview of these space telescopes and their surveys is presented in the fol-
lowing paragraphs.

The first space based observatory dedicated to the discovery of exoplanets using
the transit method was CoRoT (Convection, Rotation and planetary Transits) space
telescope. The mission’s other aim was to measure solar-like oscillations in stars.
It was launched in 2006 by the French Space Agency (CNES) and ESA, and was
decommissioned in 2014. CoRoT was observing two areas on the sky, switching between
them every 150 days. The telescope discovered a total of 34 exoplanets. One notable
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discovery is CoRoT-7b, the first terrestrial exoplanet to be discovered (Léger et al.,
2009).

CoRoT was followed by the Kepler space telescope, launched by NASA in 2009.
The telescope was designed to discover Earth-size exoplanets. Between 2009 and 2013
it was aimed at a single area in the sky, observing about 150 000 main-sequence stars
in the constellations Cygnus, Lyra, and Draco. In 2013, two of Kepler’s four reaction
wheels broke. These wheels were responsible for stabilizing the telescope, allowing it
to point at the same area on the sky. This failure made it impossible to keep the
telescope’s field of view on its original target area. From 2014 until its deactivation
in 2018, Kepler observed different parts of the sky along the ecliptic, for roughly 90
days at a time. The official designation of this second observing mission was K2. Over
its nine year long operation, Kepler made 2 865 confirmed exoplanet discoveries – an
overwhelming majority of all discovered exoplanets.

The latest, currently operational space telescope dedicated to the discovery of
exoplanets with the transit method is called TESS (Transiting Exoplanet Survey Satel-
lite). The space telescope was launched in 2018 and is operated by NASA. In the first
two years of its operation, TESS observed 24◦ × 96◦ regions on the sky in 27-day-long
observing runs, covering 85 percent of the sky in total. These observations were mostly
done with 30 minute cadences. Due to overlaps between different observed regions,
areas closer to the ecliptic poles were observed for longer intervals. The observation
pattern of the first two years of TESS is shown on Fig. 1.4. Regions missed in the first
two years of TESS observations were partially covered in later observing sectors. As
of May 2022, TESS has made 217 confirmed exoplanet discoveries.∗

1.3 Stellar variability

Stars that show variations in their observed brightness are called variable stars. If the
observations are done with high enough precision, all stars show brightness variations.
When doing observations in visible light (the surveys described in the last section all
operate in this range), we usually detect the brightness changes in the photosphere of
stars. The photosphere is the innermost layer of stars that we can observe with optical
measurements. One particularity of this layer is limb darkening, which is responsible
for the stars having a lower apparent surface brightness closer to the edge of their disk.
To quantify limb darkening, in this thesis, I adapt the linear limb darkening coefficient
u (Milne, 1921). The stellar disk is u times brighter at its edge than at its center. It
follows from this that when we describe the limb darkening of a star u has to be less

∗https://exoplanetarchive.ipac.caltech.edu/docs/counts_detail.html accessed on
May 29, 2022.

https://exoplanetarchive.ipac.caltech.edu/docs/counts_detail.html
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Figure 1.4: Observing pattern of the TESS space telescope in the first two years of its operation.
Left: The telescope observed 24◦ × 96◦ “Sectors” for 27 days, covering most of the sky save for the
areas falling close to the ecliptic. Right: Observation arcs of different regions on the sky. The color
coding corresponds to how long certain regions were monitored. Areas closer to the ecliptic poles have
been observed for more than 27 days, due to the overlap between individual sectors. In the regions
around the ecliptic poles, TESS obtained a quasi-continuous time series of 351 days (Image credit:
NASA, MIT).

than one.
Variable stars are divided into intrinsic or extrinsic variable stars, based on the

source of brightness variations.
When the observed brightness of an intrinsic variable star changes, the luminosity

(the amount of energy radiated by star the star over time) of the star itself changes.
Extrinsic variable stars change their brightness without significant variation in

their luminosity, as a result of some external or geometric effect. This thesis deals with
the brightness variations of this second class of variable stars.

Extrinsic variable stars change their brightness for two reasons. Firstly a star
might have a non-uniform surface flux from the presence of some features in the photo-
sphere. As the star rotates, these features appear at different angles for the observer, or
get behind the stellar disc completely. Secondly, if the star is in a binary or planetary
system, its brightness periodically fluctuates as other bodies within those systems orbit
in front of it.

The following few sections contain short explanations for the causes behind the
uneven surface brightnesses of stars. Combined with stellar rotation, these phenomena
are responsible for a significant amount of stellar variability in the case of extrinsic
stars.
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Starspots

Similarly to our Sun (Fig. 1.5), other stars have been observed to show starspots. These
spots are created at places where the magnetic field lines enter the surface of the stars.
Regions with strong, complex magnetic fields are referred to as active regions. As
the magnetic field lines enter the stellar surface, they hinder convection and essentially
block hotter material from within the star from reaching the surface. As a consequence,
these regions have lower temperatures (temperature differences typically range between
500 K and 2 000 K) and surface fluxes and appear darker than the rest of the stellar
surface.

The number of spots to be observed on the Sun follows the solar activity cycle.
Around the maximum of the solar cycle, the number of spots is more, around the
minimum of the solar cycle, the number of spots is less.

When observed over an extended period of time, the sunspots closer to the equa-
tor seem to rotate faster around the axis of the Sun than those closer to its poles.
The phenomenon whereby different latitudes rotate with different angular velocities is
known as the differential rotation and has been observed in several stars (e.g., Lanza
et al., 2014).

Starspots observed on other stars can cover up to 40% of the stellar disk at the
same time (Strassmeier, 1999). The lifetimes of starspots can vary greatly. Based on
the example of the Sun, the lifetime of smaller starspots, such as those on the sun is on
the order of magnitude of days to weeks. Larger spots can have lifetimes up to several
years (Berdyugina, 2005).

Figure 1.5: Starspots on the surface of the Sun around the peak of its last activity cycle in 2014.
Limb darkening is observable close to the edge of the solar disk (Image credit: NASA/SDO).
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Flares

Flares are sudden, localized bursts of electromagnetic radiation on the stellar surface.
They occur due to the interaction of highly accelerated charged particles with the
plasma in the stellar atmosphere. The source of acceleration is the recombination of
that star’s magnetic field lines. For this reason, flares are inherently linked to active
regions. The lowest energy flares can typically be observed in X-ray bands. The highest
energy flares are also observable in optical bands and so affect the measurements of
exoplanet-hunting space telescopes. These are the so-called white flares. The first
observed example of a white flare is referred to as the Carrington Event, after its
observer (Carrington, 1859). Flares have typical lifetimes on the scale of minutes.
Owing to their short lifetimes, they can be safely ignored when the lightcurve fitting
is performed with the aim of looking for or fitting exoplanetary transits, which have
timescales on the order of hours.

Stellar flares are especially important with regards to the question of the habit-
ability of planets (Yamashiki et al., 2019, and references therein). Stars release vast
amounts of energy in the form of flares, which might affect the atmosphere and habit-
ability of stars that show frequent flaring activity. The subject is further complicated
by the fact that the most common types of stars, namely M dwarfs, show particularly
strong stellar activity with frequent flares (e.g., West et al., 2008). These stars have
effective temperatures between 2 400 K and 3 700 K. This places their habitable zones
to 10−2 au ≲ a ≲ −10−1 au, where the effects of flares may be more severe than at
greater orbital distances.

Granulation

Granulation is the result of the convective heat transfer in the outer layers of solar-
type stars. In the photosphere, it shows as a network of brighter regions. These
bright regions are called granules and they correspond to the convection cells in the
photosphere of stars, through which hot plasma from the inner regions of the stars
reach their surface. There are approximately two million granules on the surface of
the Sun with diameters around 2 000 km at any given time (Fig. 1.6). The size of
granules is predicted to be several orders of magnitude (∼ 104) larger on the surfaces
of giant and supergiant stars, due to their low surface gravity (Schwarzschild, 1975).
The lifetime of one granule is around ten minutes on the Sun, but is less known for
stars with higher radii (Paladini et al., 2018).

The effect of granulation per se does not prevent a planetary transit from being
observed. However, if one aims to derive planetary parameters from the shape of the
lightcurve, granulation has a non-negligible effect in the case of G and K spectral class
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Figure 1.6: Granulation on the surface of the Sun captured with the Swedish Vacuum Solar Tele-
scope. (Image credit Müller et al., 2001)

stars (Chiavassa et al., 2017).

Faculae

Faculae are bright formations in the photosphere that follow a string-like shape
(Fig. 1.7). They are produced by magnetic field lines entering the photosphere, yet
these field lines have lower magnetic fluxes than those causing starspots. The plasma
within faculae is hotter than the temperature of the photosphere. Faculae make a sig-
nificant contribution to the total solar irradiance per unit area (a quantity also referred
to as the solar constant). Their number density, similarly to that of sunspots, follows
the solar cycle. The number of faculae peaks around solar maximum. Even though the
amount of sunspots is the highest around the solar maximum, the increased amount
of bright faculae is able to compensate for the dimming effect of sunspots.

Faculae have typical lifetimes on the order of minutes.

Stellar activity cycles

Similarly to the 11 year long cycle of the Sun, other stars also have been observed to
show activity cycles (e.g., Baliunas and Vaughan, 1985). These variations, however,
happen on a timescale so long (from years to decades) that for the purposes of this
thesis they can safely be ignored.

The typical lifetimes of different phenomena are summarized in Table 1.1.



12 Chapter 1. Introduction

Figure 1.7: Active region at the edge of the Sun’s disk. Faculae are the brighter string-like formations
around the sunspots (Image credit: NASA/SDO).

Table 1.1: Lifetimes of the most common phenomena responsible for variations in the lightcurves of
extrinsic variable stars.

Phenomenon Lifetime

Starspots days – years
Flares minutes
Granulation ∼ 10 minutes
Faculae minutes
Stellar activity cycles years – decades

1.4 Aims of this thesis

In this thesis, I examine different models that serve to filter out variations in a star’s
lightcurve that happen on different timescales than planetary transits.

I do this with the aim of finding an optimal model that removes the effects
of stellar variability whose source is not the presence of a transiting exoplanet. These
models are then assessed based on how strong the planetary transit’s signal is after they
are applied to the original observations, and how closely they follow the observations.

In Chapter 2, I investigate what models are generally used to describe stellar
lightcurves. Since observations contain some variations that change from one measure-
ment to the next, I include autoregression models that have the possibility to account
for these random fluctuations. Subsequently, I take a look at how the lightcurve changes
when a planet transits its star.

Once these models are introduced, Chapter 3 explains the different methods to
fit these models to observed data (least squares method, Monte Carlo Markov chains).
The chapter then shows the equipment to be used to assess the efficiency of the fitted
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models in describing the observed data (periodograms and information criteria).
All models and methods described in previous chapters are put into practice in

Chapter 4. In this chapter, I use the variability models on the lightcurve of the star
HD 110082, observed by TESS space telescope. The star has one confirmed transiting
planet, roughly the size of Neptune, orbiting it every 10.18 days. The transit signal
from the planet is one order of magnitude weaker than the brightness variations of
the star itself. After finding the stellar lightcurve model that leaves us the strongest
planetary signal, I characterize the planet based on the lightcurves of its transit.

The thesis ends with conclusions in Chapter 5.





2. Modeling stellar lightcurves

2.1 Sinusoid model

One of the goals of this thesis is to find models to fit the large scale variations of stars
that happen on the timescales of days. As flares have typically much shorter, and
starspot evolution has typically longer timescales than that, the primary phenomena
to be modeled are those arising from the rotation of the stars. As a consequence of the
star’s rotation, the observer looks at the surface features of the star at continuously
changing angles. The most prominent features that have lifetimes that typically ex-
ceeding the rotation period of stars and thus introduce a stable, periodic signal into the
lightcurves of stars are starspots. These spots disappear and reappear as they rotate
around the axis of the star.

It is for these reasons that the lightcurves of the stars with prominent surface
features can be approximated with periodic functions. A common form of this is
through modeling the time dependence of the brightness as the sum of some freely
chosen, n number of sine waves:

f(t) = C +
n∑

i=1
Ai cos (2πfit + φi) , (2.1)

where C is some constant, Ai is the amplitude, fi is the frequency and φi is the phase
of a sine wave. Throughout this thesis, the function f(t) = C + A cos(2πft + φ) is
referred to as a sinusoid.

In most cases, the lightcurve will not follow the form presented in (2.1), as the
observations inevitably contain some excess noise. In this case, an observation mi has
an additional noise component ϵi. This ϵi is different for every observation and is most
usually modeled as having a Gaussian distribution, with a mean µ = 0 and variance σ2.
These Gaussian random numbers are independent and identically distributed (i.i.d.).
The common notation for random variables ϵi following a Gaussian distribution with
given µ and σ2 values is ϵi ∼ N (µ, σ2).

A commonly used statistic to describe the goodness of fit of a model (including the
variance of the noise) to the observed data is the likelihood l. For a single observation,

15
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it is calculated as

li = [2π(σ2
i + σ2)]−1/2 exp

[
−1

2
(mi − f(t))2

σ2
i + σ2

]
(2.2)

where mi denotes the observed value, f(t) is the value predicted by the model, σ2
i is the

known instrumental noise of the observations and σ2 is the variance of the excess noise
of the model. The likelihood of the whole fit is given as the product of the likelihoods
of individual observations

l =
∏

i

li . (2.3)

The calculation of likelihood l can lead to values so high that they impose computa-
tional problems. It is a common approach to use the logarithm of the likelihood, or
log likelihood, log l instead. The log likelihood of individual observations is

log li = −1
2

[
log(2π) + log(σ2

i + σ2) + (mi − f(t))2

σ2
i + σ2

]
. (2.4)

The log likelihood of the whole fit is the sum of the log likelihoods of the individual
observations

log l =
∑

i

log li . (2.5)

The lightcurve of the star may be divided into intervals on the scale of couple
of days, to account for spot evolution and the differential rotation of the star, which
changes the positions of starspots relative to each other. Differential rotation is also re-
sponsible for the need for sinusoids with different frequencies, describing the lightcurve
of a single rotating body.

2.2 Autoregressive and moving average models

A sinusoidal fit might not be able to follow the lightcurve of the star so closely, that
when the brightness variations are removed by the fit, the transits become visible. A
way to compensate for the noise above the sinusoidal variations is presented by ARMA
models. The word ARMA is an acronym, based on the two components of the model,
the autoregressive (AR) and moving average (MA) models. These models describe
an observation as a function of previous observations (autoregressive models) or their
random deviations from the mean of the observations (moving average models).

2.2.1 Autoregressive model

Autoregressive process models operate with autoregression, i.e., the assumption that
there is a correlation between an observation and the ones preceding it. Using this
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assumption, one can give a prediction for a data point based on previous data points
and account for correlated noise in which the value of the measurement depends on
the previous ones.

The most simple autoregressive process model, the first-order autoregression, de-
noted as AR(1) assumes a linear correlation between an observation, mi and the one
preceding it, mi−1. It fulfills the equation

mi = c + φ mi−1 + ϵi . (2.6)

where c is some constant, φ is the parameter of the model, which quantifies the de-
pendence of mi on the previous observed value mi−1, and ϵi are i.i.d. Gaussian random
numbers with standard deviation σ (ϵi ∼ N (0, σ2)).

The general form of autoregressive process models is a pth order autoregression,
also noted as AR(p). In this model, the value of a measurement depends on the values
of the preceding p measurements. An AR(p) process satisfies the equation

mi = c +
p∑

j=1
φj mi−j + ϵi . (2.7)

The observations might not be evenly spaced in time, and so it might be useful
to introduce an exponential smoothing to the model, where the dependence of mi on
the previous measurements decays exponentially over time:

mi = c +
p∑

j=1
φj exp

(
ti − ti−j

τ

)
mi−j + ϵi . (2.8)

Here, ti is the time at which observation mi is taken and τ is the parameter that deter-
mines the timescale of exponential smoothing. This guarantees that the dependence
of an observation on a previous one becomes negligible if they are separated by a long
time interval ti − ti−j.

The parameters c, φ1, ..., φp, σ can be estimated with Monte Carlo methods (see
Section 3.2). For this, one needs to take the likelihood function or alternatively, the
log likelihood function of the autoregressive model. Since in autoregressive models,
the individual measurements are dependent on each other, the joint likelihood of the
observations is conditional, such that

l(m1, ..., mN) = l(m1) × l(m2|m1) × ... × l(mN |mN−1, ..., mN−p) , (2.9)

where N is the total number of observations. This means that the likelihood function
of the AR(p) model can be given recursively. The log likelihood of the first observation
in the AR(p) model is

log l(m1) = −1
2 log(2πσ2) − (mi − c)2

2σ2 , (2.10)
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the log likelihood of the second observation in the AR(1) model is

log l(m2) = −1
2 log(2πσ2) − (mi − c − φm1)2

2σ2 , (2.11)

similarly, the likelihood of the ith observation in the AR(1) model is

log l(mi) = −1
2 log(2πσ2) − (mi − c − φmi−1)2

2σ2 . (2.12)

The log likelihood of the ith observation of an AR(p) model is

log l(mi) = −1
2 log(2πσ2) −

(mi − c −∑p
j=1 φjmi−j)2

2σ2 , (2.13)

given that p ≤ i. If p > i, the summing in the right hand term is over indices j = 1, ..., i.
The log likelihood of the model fit is

log l =
N∑

i=1
log l(mi) . (2.14)

An artificially generated AR(1) process, fitted using the mean of parameters
generated by the Adaptive Metropolis (AM) algorithm (see Section 3.2) is shown on
Fig. 2.1.
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Figure 2.1: An artificially generated AR(1) dataset, and its fit, calculated by generating the pa-
rameters describing the process with the Adaptive Metropolis (AM) algorithm (see Section 3.2). The
AR(1) process has the parameters c = 0.3, φ = 0.7, σ = 0.02.
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2.2.2 Moving average model

Moving average models describe the measurement mi based on the the random devi-
ations ϵi of previous measurements from the mean value of the time series. Based on
this, it is possible to give a prediction for an observation by taking into account the
deviations of the previous observations. These models can be used to account for the
correlated noise from the deviations of previous measurements.

The most simple moving average model is the first order moving average model,
denoted as MA(1). This model only uses the random deviation of the previous mea-
surement and satisfies

mi = c + ϵi + θϵi−1 (2.15)

where c is some constant, ϵi ∼ N (0, σ2) that are i.i.d., and θ quantifies the dependence
of mi on the random deviation of the previous measurement.

The general form of moving average models, where the observation mi depends
on the random deviations of the previous q measurements is a qth order moving average
model and is denoted as MA(q). The MA(q) model satisfies

mi = c + ϵi +
q∑

j=1
θjϵi−j . (2.16)

The joint log likelihood function of the MA models are conditional, similarly to
that of the AR models. The log likelihood of an MA(1) model can be given using the
following steps. If ϵi−1 is known, then

mi|ϵi−1 ∼ N (c + θϵi−1, σ2) . (2.17)

Let us assume that ϵ0 = 0. If m1 is known, the value of ϵ1 can be given as ϵ1 = m1 − c.
If ϵ1 is known, then ϵ2 can be calculated as ϵ2 = m2 − c − θϵ1. Similarly, all ϵi values
can be calculated recursively, as

ϵi = mi − c − θϵi−1 . (2.18)

The log likelihood of the first observation is the same as in (2.10). The log likelihood
of the rest of the observations is

log l(mi) = −1
2 log(2πσ2) − ϵ2

i

2σ2 . (2.19)

To get the log likelihood of the whole model, the log likelihoods of the individual
observations are summed up similarly as in (2.14). Exponential decay between the
observations can be similarly introduced as for the AR models.

The log likelihood function of a qth order moving average model, MA(q) is

log l = −N

2 log(2πσ2) −
N∑

i=1

ϵ2
i

2σ2 , (2.20)
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where if i = 1, ϵi = m1 − c, and if i > 1,

ϵi = mi − c −
q∑

j=1
θjϵi−j (2.21)

given that q ≤ i. If q > i, the summing in the right hand term is over indices j = 1, ..., i.

2.2.3 ARMA models

The values and deviations from the mean of previous measurements can be used to-
gether to predict the value of future measurements. The models that take into account
both types of information are called ARMA models. These models account for the
correlated noise in the observation introduced by the dependence on both the previ-
ous observation and its random deviation from the data mean. The combination of a
pth order autoregressive AR(p), and a qth order moving average model is denoted as
ARMA(p, q). The most simple form of an ARMA model is the ARMA(1, 1) model, for
an observation mi which satisfies

mi = c + ϵi + φmi−1 + θϵi−1 . (2.22)

For an observation mi, the ARMA(p, q) model fulfills

mi = c + ϵi +
p∑

j=1
φjmi−j +

q∑
j=1

θjϵi−j . (2.23)

The log likelihood of observation of the first observation in the ARMA models is
the same as in (2.10). The likelihood of the rest of the observations in an ARMA(1,1)
model is

log l(mi) = −1
2 log(2πσ2) − (mi − c − φmi−1 − θϵi−1)2

2σ2 , (2.24)

where ϵ can be given recursively, assuming that ϵ0 = 0 and ϵ1 = m1 − c:

ϵi = mi − c − φmi−1 − θϵi−1 . (2.25)

The log likelihood of the rest of the observations in an ARMA(p, q) is

log l(mi) = −1
2 log(2πσ2) − ϵ2

i

2σ2 , (2.26)

where
ϵi = mi − c −

p∑
j=1

φjmi−j −
q∑

j=1
θjϵi−j . (2.27)

A practical set of initial values for the iteration in (2.27) for i = 1, 2, ..., N are ys =
c/(1 − ∑p

i=1 φi) for s = 0, −1, ..., −p + 1 and ϵs = 0 for s = 0, −1, ..., −q + 1 (e.g.,
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Hamilton, 1994, Chapter 5). The log likelihood of the whole model is given similarly
as in (2.14).

Similarly to the AR(p) and MA(q) models, exponential smoothing can also be
applied here, in order to account for the uneven sampling intervals.

In all the above equations, the constant c can be replaced by the values of a
function f(t). This is particularly useful when dealing with signals that can be fit with
a simple function (e.g., a sinusoid, when modeling rotating starspots or stellar radial
velocity data in order to detect exoplanets).

A considerable disadvantage of the models described in this section in general, is
that they can adapt rather easily to the variations they are supposed to describe. In
other words, they can be almost as effective at filtering out the signal as filtering out
the noise, which they are supposed to target.

2.3 Transit models

Transit models make predictions about the shape of the lightcurve when the exoplanet
transits the star. They make these predictions based on the parameters of the planet
and the star.

If the stellar, planetary, and orbital parameters are chosen correctly, a transit
model is able to provide a fit for the lightcurve when the transit happens. From this
point on, this part of the lightcurve is referred to as a transit lightcurve.

Such models have been proposed by Mandel and Agol (2002) and Giménez (2007)
who used analytical formulae to model the amount of incoming stellar flux during the
transit. These models give a highly accurate lightcurve, accounting for limb darkening
with highly accurate quadratic or non-linear formulae. However, when dealing with
highly noisy data, the nuances in the lightcurve caused by the uneven surface brightness
of the star are negligible. In this case, it is often sufficient to model the transit lightcurve
using a linear approximation.

2.3.1 Linear approximation

One model using a linear approximation for the shape of the transit lightcurve was
introduced by Carter et al. (2008). The model assumes a star of radius R∗ with a
uniform surface flux f0, and a planet with radius Rp, orbital period P , semi-major axis
a, eccentricity e, argument of periapsis ω, and inclination i. The ratio of the radii of
the two bodies is denoted as r = Rp/R∗ The amount of incoming flux from the star
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F l(t) changes as

F l(t) =


f0 − δ, |t − tc| ≤ T/2 − τ/2,

f0 − δ + (δ/τ) × (|t − tc| − T/2 + τ/2), T/2 − τ/2 < |t − tc| < T/2 + τ/2,

f0, |t − tc| ≥ T/2 + τ/2 .

(2.28)
where tc is the mid-transit time of the planet. The amount of relative dimming caused
by the planet, i.e., the transit depth is given as

δ = f0r
2 = f0

(
Rp

R∗

)
. (2.29)

The difference between t and tc is compared to parameters T and τ , which determine
if the planet is fully or partially eclipsing the star (ingressing or egressing the stellar
disk) or does not eclipse it at all. These parameters are defined as

T = 2τ0
√

1 − b2 , (2.30)

τ = 2τ0
r√

1 − b2
. (2.31)

Here b is the impact parameter, which is proportional to the angular distance between
the center of the planet and the center of the star in the middle of the transit:

b = a cos i

R∗

(
1 − e2

1 + e sin ω

)
. (2.32)

The impact parameter can change between 0 (corresponding to a transit in which the
planet’s center passes in front of the star’s center) and 1 (corresponding to a transit
where the edge of the planet touches the edge of the star).

The parameter τ0 is defined as

τ0 = R∗

an

( √
1 − e2

1 + e sin ω

)
, (2.33)

where n = 2π/P is the mean motion of the planet.

2.3.2 Stellar limb darkening

The uneven surface brightness distribution of stars has to be taken into account when
fitting highly accurate transit data. The surface brightness distribution of a star can
be approximated by a linear limb-darkening law (Milne, 1921), according to which the
intensity of the stellar surface changes as

I(µ)
I(0) = 1 − u

N∑
i=1

Ai(1 − µ)i (2.34)
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where µ =
√

1 − z2, A is the flux at the center of the stellar disk, u is the linear limb
darkening coefficient, N is the order of linear limb darkening∗ and 0 ≤ z ≤ 1 is the
normalized radial coordinate on the disk of the star (Mandel and Agol, 2002). For a
circular orbit, z can be given as

z(t) = aR−1
∗

√
[sin n(t − tc)]2 + [cos i cos n(t − tc)]2 (2.35)

(e.g., Carter et al., 2008). A special case, the first order linear limb darkening arises
by choosing N = 1.

In order to take into account the changes in the linear approximation of the
transit lightcurve, introduced by the limb darkening, the transit depth δ needs to be
multiplied by I(µ) at every point where the model lightcurve F l(t) is evaluated.

∗An alternative, commonly used description is µ = cos γ, where γ is the angle between the line of
sight and the direction of the emerging flux from the star.





3. Computational methods

3.1 Least squares method

The least squares method aims at finding the parameters of a model that give the best
fit for some observed data.

Let us denote the individual observations of the independent variables of a dataset
with xi, i = 1, ..., n, and the individual observations of the dependent variable with
yi, i = 1, ..., n. Let us assume that the function f(xi, β), where β = (β1, ..., βk) is
a vector of parameters, describes the dependence between the independent and de-
pendent variables. The residual, i.e., the difference between the observation of the
dependent variable and the value predicted by the function f(xi, β) at xi is denoted
as ri = yi − f(xi, β).

The goal of least squares problems is finding the parameters β by minimizing the
sum of squared residuals

S =
n∑

i=1
r2

i . (3.1)

To minimize S, the parameters β need to satisfy

∂S

∂βi

= 0, i = 1, ..., k . (3.2)

In other words, the least squares problem is solved, when the gradient of the sum of
squared residuals is equal to zero.

Least squares problems are divided into linear and nonlinear least squares prob-
lems, depending on whether the correlation between the independent and dependent
variables is linear or not. For the purposes of this thesis, we only need to familiarize
ourselves with linear least squares problems.

3.1.1 Linear model estimation

Linear least squares estimation can be used when the dependent variables can be
described as some linear combination of the independent variables.

25
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Let us denote the vector containing the ith observation of the independent vari-
ables as xi = (xi1, ..., xik). These vectors can be collected to a n × k data matrix

X =


x11 · · · x1k

. . .
xn1 · · · xnk

 . (3.3)

Let us further denote the vector containing the observed dependent variables as y =
(y1, ..., yn). In linear models, the dependent variables can be given as

y = Xβ , (3.4)

and a single observation of the dependent variable as

yi = xi · β = β1xi1 + ... + βkxik . (3.5)

The sum of squared residuals in linear models is

S =
n∑

i=1
(yi − β1xi1 − ... − βkxik)2 = (y − Xβ)T (y − Xβ) = ∥y − Xβ∥2 . (3.6)

The most common way to give an estimate β̂ for the parameters β is the ordinary least
squares method. This minimizes S through the solution

β̂ = (XTX)−1XTy . (3.7)

For the purposes of this thesis, the most important least squares fitting problem
to be performed is one involving the sum of sinusoidal functions. A sinusoid f(t) =
C + A cos(ωt + φ) can be fitted using linear least squares fitting, by writing it up as
the sum of two trigonometric functions:

C + A cos(ωt + φ) = C + A1 cos(2πft) + A2 sin(2πft) . (3.8)

Here, C is some constant and A =
√

A2
1 + A2

2. The vector containing the ith obser-
vation of independent variables becomes then xi = (1, cos(2πf, ti), sin(2πf, ti)). The
parameter vector is β = (C, A1, A2). The parameter estimate can then be given as in
(3.7).

If the frequency f is unknown, then a round of iteration is needed on top of the
fitting routine described above. This iteration goes over different test frequencies. The
best estimate for f is given by the f value used fitting round with the lowest sum of
squared residuals S.

When the signal is a sum of sinusoidal functions, it can be described in the form

f(t) = C +
n∑

i=1
Ai,1 cos(2πfit) + Ai,2 sin(2πfit) . (3.9)
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The parameters β = (C, A1,1, A1,2, ..., An,1, An,2) can be determined with linear least
squares fitting. In this case, the vector of the ith observation of independent variables
is xi = (1, cos(2πf1 ti), sin(2πf1 ti), ..., cos(2πfn ti), sin(2πfn ti)). For this fitting it is
necessary that all frequencies be unequal, f1 ̸= f2 ̸= ... ̸= fn.

3.2 Markov chain Monte Carlo methods

Markov chain Monte Carlo (MCMC) methods are algorithms that sample probability
distributions using computer generated random numbers.

In such algorithms, the sampling is done by constructing so-called Markov chains.
Markov chains are discrete, random processes that satisfy the Markov property. The
Markov property, without going into any details, means that a system’s future state can
be determined based solely on its current state. In other words, knowing the previous
states of the system, besides its current one, does not improve the predictions about
its future state.

By taking samples from these Markov chains, one can access information about
the probability distribution, expected value, or variance of a variable.

Several instances of MCMC methods have been formulated. One of the most
commonly used one of these is the Metropolis-Hastings algorithm (Hastings, 1970).
This algorithm generates Markov chains by comparing the proposal distribution’s value
at the randomly generated points and by rejecting some of the newly proposed points.

For the purposes of this thesis, I am using an updated form of the Metropolis-
Hastings algorithm, the Adaptive Metropolis (AM) algorithm, introduced by Haario
et al. (2001).

3.2.1 Adaptive Metropolis algorithm

Let the target distribution to be sampled by the AM algorithm be denoted by π.
For every iteration t, a random point Y ∈ Rd is generated from a Gaussian

proposal distribution qt(·|X0, ..., Xt−1), where X0, ..., Xt−1 ∈ Rd are the previous values
of the chain, with d being the number of dimensions of the generated points. The mean
of this distribution is the last generated point Xt−1. The way the covariance matrix of
the distribution, Ct is calculated depends on whether or not the number of iterations
exceeds a certain index, t0 > 0 (the choice of which is free, but a higher t0 leads to the
adaptation taking effect later):

Ct =
 C0, t ≤ t0,

sd cov(X0, ..., Xt−1) + sd ε Id, t > t0.
(3.10)
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Here C0 indicates a strictly positive definite, initial covariance matrix, which may be
chosen arbitrarily, according to our best prior knowledge of the target distribution,∗ sd

is a scaling parameter, which is chosen as sd = (2.4)d/f (from Gelman et al., 1996), ε is
a constant that we may choose to be a very small positive number, Id is a d dimensional
identity matrix, and cov(X0, ..., Xt−1) is the covariance matrix of points X0, ..., Xt−1.

The empirical covariance matrix of points x0, ..., xk ∈ Rd is

cov(x0, ..., xk) = 1
k

(
k∑

i=0
xix

T
i − (k + 1)x̄kx̄T

k

)
(3.11)

where

x̄k = 1
k + 1

k∑
i=0

xi (3.12)

and the elements xi ∈ Rd are column vectors.
The key difference between the AM algorithm, and previously proposed MCMC

algorithms is in the treatment of previously generated points. From (3.10), it is visible
that the proposal distribution is updated by the knowledge of the target distribution
accumulated in previous iterations. If the covariance matrix would not be updated, we
would deal with a regular Metropolis-Hastings algorithm.

The recursive formula for the covariance

Ct+1 = t − 1
t

Ct + sd

t

[
t X̄t−1 X̄T

t−1 − (t + 1) X̄t X̄T
t + Xt XT

t + ε Id

]
(3.13)

can be used for iterations t ≥ t0 + 1, which alleviates the computational cost of the
algorithm.

The freshly generated point Y is accepted with probability

α(Xt−1, Y ) = min
(

1,
π(Y )

π(Xt−1)

)
(3.14)

in which case the point returned in the current iteration is Xt = Y , otherwise it remains
that of the value of the previous iteration Xt = Xt−1.

The probability distribution of points Xt generated by the algorithm follows the
target distribution π. This is demonstrated on Fig. 3.1, which shows AM algorithm
generated points whose target distribution is the reciprocal Rosenbrock function

f(x, y) = [(a − x)2 + b(y − x2)2]−1 , (3.15)

with parameters a = 1 and b = 100.
∗I chose the initial covariance matrix to be the identity matrix, multiplied by some small number

n, i.e., C0 = n Id, with n typically ranging between 10−6 and 10−9. Other initial covariance matrices
may be freely chosen.
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Figure 3.1: AM algorithm generated random points sampling the reciprocal Rosenbrock function
f(x, y). The algorithm is more likely to generate a point at such (x, y) coordinates, where the function
takes a higher value.

3.2.2 Efficiency of Markov chains

The convergence of Markov chains cannot ever be completely proven. Therefore, one
needs to perform tests proving the non-convergence of Markov Chains. If the tests
of non-convergence fail, they suggest (but not entirely prove) that a Markov Chain is
convergent (Chen et al., 2002).

One such test for non-convergence is the German-Rubin statistic R̂ (Gelman and
Rubin, 1992). This method relies on the generation of several Markov chains. A short
description of this statistics, after Ford (2006) is presented below.

The Gelman-Rubin statistics compares the variance of any quantity z(θ), gener-
ated by individual Markov chains with the variance of z(θ) values from all the chains
combined. Here θ marks the parameter to be estimated by the Markov chain.

Let the zic stand for the parameter z generated in the ith iteration of the cth
Markov chain. Let the number of Markov chains be Nc, all with length Lc. The mean
value of zic of an individual Markov chain with index c can be estimated as

z̄·c = 1
Lc

Lc∑
i=1

zic . (3.16)
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The average of the variances of zic within each chain can be estimated

W (z) = 1
Nc

Nc∑
c=1

1
Lc − 1

Lc∑
i=1

(zic − z̄·c)2 . (3.17)

The mean value of zic from all the Markov chains can be estimated as

z̄·· = 1
Nc

Nc∑
c=1

z̄c = 1
LcNc

Nc∑
c=1

Lc∑
i=1

zic (3.18)

and the variance of the estimates of a single chain as

B(z) = Lc

Nc − 1

Nc∑
c=1

(z̄·c − z̄··)2 (3.19)

The variance of all zic values can then estimated as a weighted average of W (z) and
B(z)

v̂ar+(z) = Lc − 1
Lc

W (z) + 1
Lc

B(z) . (3.20)

This is an unbiased estimator of the variance of zic if the initial states of the Markov
chains were selected from the target distribution or in the limit L → ∞. The Gelman-
Rubin statistics R̂(z) can then be given as

R̂(z) =

√√√√ v̂ar+(z)
W (z) (3.21)

As the Markov chains continue to show a lack of non-convergence, the value of R̂(z)
approaches 1. If R̂(z) gets sufficiently close to 1, one can conclude that there is no
evidence for the non-convergence of the Markov chains. The value that R̂(z) needs to
reach for all parameters θ before the chain can be used to infer these parameters is up
for choice. Ford (2005) required that R̂(z) for all parameters, before using the chains
for inference.

The Gelman-Rubin statistics of five different example Markov chains estimating
parameter z is shown on Fig. 3.2.

3.3 Periodograms

Periodograms are used in order to find and characterize the relative strengths of peri-
odic signals in a time series dataset.

In this section, three periodograms are presented. The first two, the Lomb-Scargle
and the likelihood ratio periodograms are most capable at identifying signals that show
a sinusoidal time variation.

The third type of periodograms, the box fitting periodogram was designed specif-
ically to identify the periodic variations caused by the transits of planets in front of
the stellar disk.
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Figure 3.2: Five different Markov chains estimating parameter z (above) and their corresponding
Gelman-Rubin statistics R̂(z) for every iteration i (below). As the variance of the generated z values
of all chains approaches the mean of variances from individual chains, the Gelman-Rubin statistics
converges towards 1.

3.3.1 Lomb-Scargle periodogram

One variation of periodograms, widely used within astronomy, the Lomb-Scargle peri-
odogram, PLS(f) has the strength of being able to be used for observations with uneven
sampling (Lomb, 1976, Scargle, 1982). For observations yn, n = 1, 2, ..., N taken at
times tn, n = 1, 2, ..., N , the periodogram for frequencies f can be given as

PLS(f) =1
2


(∑

n

yn cos(2πf [tn − τ ])
)2

/
∑

n

cos2(2πf [tn − τ ])

+
(∑

n

yn sin(2πf [tn − τ ])
)2

/
∑

n

sin2(2πf [tn − τ ])


(3.22)

where τ is calculated for each f to keep timeshift invariance:

τ = 1
4πf

tan−1
(∑

n sin(4πftn)∑
n cos(4πftn)

)
. (3.23)

To obtain the periodogram PLS(f), a signal (in our case the stellar flux at different
times) must be sampled at different frequencies f . The minimum difference between
the frequencies at which the signal should be sampled (also known as the Nyquist
sampling limit) is fNy = 2B. Here B is the bandwidth of the signal that is to say, the
difference between the maximum and the minimum frequencies.
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Frequencies can be converted using the P = 1/f relation to find the periods of
the signals. This is useful, as the period with the highest PLS value might correspond
to the rotation period of the star.

An example of the Lomb-Scargle periodogram is shown on Fig. 3.3. The figure
shows an artificially generated time series, along with its Lomb-Scargle periodogram.
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Figure 3.3: An example of the Lomb-Scargle periodogram on artificial data. Left: Artificially gener-
ated observations, obtained as the sum of three sinusoidal signals, with frequencies f1 = 0.3 d−1, f2 =
0.53 d−1, f3 = 0.8 d−1, and amplitudes A1 = 0.7, A2 = 0.25, A3 = 0.4, and an additional Gaussian
noise with µ = 0, σ = 0.1. Right: The Lomb-Scargle periodogram of the artificial observations. The
peaks correspond to the frequencies of signals in the observations. The heights of the peaks are pro-
portional to the signal strengths at given frequencies.

3.3.2 Likelihood ratio periodogram

An alternative method of assessing the importance of different periodic signals in
the lightcurve is the likelihood ratio periodogram (Anglada-Escudé and Tuomi, 2012,
Tuomi et al., 2018).

The basis of this algorithm is the comparison of least-squares-fit sinusoid models
with different frequencies to a reference model. The reference model is a constant signal
with the value of the mean of the observed signals m̄.

For every frequency f , a least squares fitting of a sinusoid

f(t) = A cos(2πft + φ) (3.24)

is performed with the amplitude A and phase φ being free parameters. The relative
power of the signal with period f is then equal to the likelihood ratio r of the best fit
sinusoid versus the reference model.

Wilks’ theorem (Wilks, 1938) states that the statistics resulting from the log-
arithm of the likelihood ratio log r multiplied by −2 are distributed asymptotically
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according to the χ2 distribution. It is therefore possible to take the logarithm of like-
lihood ratios, as

−2 log r = χ2
mod − χ2

ref (3.25)

where χ2
mod is the χ2 statistics of the best fit model with frequency f and χ2

ref is the
χ2 statistics of the reference model. The value of χ2 is calculated as

χ2 =
N∑

i=1

(mi − f(t))2

σ2
i

, (3.26)

where mi is the ith observation, f(t) is the value predicted by the model at the time
of the observation, and σ2

i is the error associated with the ith observation.
The advantage of this periodogram over the Lomb-Scargle periodogram is in the

ease of assessing the likelihood of a signal at a given frequency. For given degrees
of freedom (DF), the model is accepted if the likelihood ratio exceeds the certain
thresholds, listed in Table 3.1. The table contains the likelihood ratio statistics to be
exceeded, so that it can be stated that the reference model cannot explain the obser-
vation with probability P . In case of the periodogram, the number of free parameters
is two (amplitude and phase), which results in DF = 2.

Table 3.1: A model with DF degrees of freedom is accepted if its likelihood ratio value r exceeds the
values below. The different columns marked with P signify that the probability of the signal being
produced by constant stellar activity (the reference model) is P = 0.1, P = 0.05, P = 0.01, P = 0.001,
respectively.

DF

1 2.71 3.84 6.63 10.83
2 4.61 5.99 9.21 13.82
3 6.25 7.81 11.34 16.27
4 7.78 9.49 13.28 18.47
5 9.24 11.07 15.09 20.52
6 10.64 12.59 16.81 22.46
7 12.02 14.07 18.48 24.32
8 13.36 15.51 20.09 26.12
9 14.68 16.92 21.67 27.88
10 15.99 18.31 23.21 29.59

P 0.10 0.05 0.01 0.001

A value similar to P is the false alarm possibility (FAP ) that indicates how likely
is it that the observed signal can be explained by something else than the proposed
model.
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3.3.3 Box-fitting algorithm

The box-fitting algorithm in its current form has been proposed by Kovács et al. (2002)
with the aim of finding the periodic signals of transiting exoplanets in stellar lightcurves.
They employ a model which assumes a strictly periodic signal with period P0 that only
takes two discrete values: a higher H value that corresponds to the received flux from
the star when the planet is not transiting it, and a lower L value that corresponds to
the received flux when the planet is passing in front of the star. The length of the
transit is quantified with the fractional transit length q, which gives the ratio between
the time spent transiting the star and the orbital period of the planet and is typically
assumed to be a small number (≈ 0.01 − 0.05). This means that the amount of time
that the planet spends in front of the star is qP0. The mid-transit time is denoted as
tc.

The algorithm aims to find the five free parameters P0, q, L, H, tc that produce
the best fit model to the observations. The number of free parameters can be reduced
to four, by assuming that the average observed flux is zero. This way, one can describe
the higher flux value as H = −Lq/(1 − q).

Let the observations be denoted as xi, i = 1, 2, ..., n. Every observation xi has
an additive zero-mean Gaussian noise with standard deviation σi. Each observation is
given a weight

wi = σ−2
i

 n∑
j=1

σ−2
j

−1

. (3.27)

The term wixi is assumed to have a zero arithmetic average.
The algorithm iterates through different trial periods, Ptrial. For each trial period,

the algorithm takes a folded lightcurve. To create a folded lightcurve the timestamps of
the observations have to be reset. A modulo operation is performed on the timestamps
of the observations with modulus Ptrial, so that the times of all observations fall between
0 and Ptrial. The values of the observations stay intact during this conversion. It is
advised to divide the data into bins, and perform the following steps on the binned
values, to alleviate the computational costs of the algorithm.

For each folded lightcurve of different trial periods Ptrial different fractional transit
lengths are considered (usually q = 0.01, ..., 0.05, the number of intermediate transit
lengths is freely chosen).

Let the folded observations be denoted as x̃i and their corresponding weights as
w̃i. The planet transits the star between times i1 and i2.

The algorithm fits a step function to the folded lightcurve, which takes the value
L̂ between times [i1, i2] and Ĥ otherwise. For each (i1, i2), the average square deviation
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D =
i1−1∑
i=1

w̃i

(
x̃i − Ĥ2

)
+

n∑
i=i2+1

w̃i

(
x̃i − Ĥ2

)
+

i2∑
i=i1

w̃i

(
x̃ − L̂

)2
(3.28)

is minimized. D is minimized, if

L̂ = s

r
, Ĥ = − s

1 − r
(3.29)

where

s =
i2∑

i=i1

w̃ix̃i ,

r =
i2∑

i=i1

w̃i .

(3.30)

Taking advantage of the notation above, the average square deviation can be expressed
as

D =
n∑

i=1
w̃ix̃

2
i − s2

r(1 − r) . (3.31)

D needs to be calculated for all possible (i1, i2) pairs separately, to find the absolute
minimum of D for any trial period. The first term in (3.31) is independent of the
choice of (i1, i2), and so it is sufficient to only take into account the second term of
the equation to characterize the quality of the fit. The best fit is provided by the
parameters that minimize D over the whole parameter space.

For any trial period, the confidence of the transit signal for any (i1, i2) can be
expressed with the log likelihood of the fit

log l = −1
2

i1−1∑
i=1

(x̃i − Ĥ)2

σ2
i

+
n∑

i=i2+1

(x̃i − Ĥ)2

σ2
i

+
i2∑

i=i1

(x̃i − L̂)2

σ2
i

+ c (3.32)

where
c = −1

2

n∑
i=1

log(2πσ2
i ) . (3.33)

The maximum of log l values from the iterations over (i1, i2) gets accepted as the
log likelihood of the trial period. The indices (i1, i2) resulting in the maximum log l

correspond to the indices of the minimum of D.
A box fitting periodogram is created by calculating the likelihood ratio r, or log

likelihood ratio log r for all trial periods at a fixed fractional transit length. This results
in the use of only three free parameters (Ĥ, L̂, i1).

The log likelihood of the box fitting model for different periods and a fixed frac-
tional transit length of HD 110082 is shown on Fig. 3.4.
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Figure 3.4: Box fitting periodogram of HD 110082 with fixed fractional transit length q = 0.012.
The dashed lines correspond to a 5% (below) and a 1% (above) probability of the transit signal being
falsely identified (false alarm probability). The peak at P ≈ 10.18 days corresponds closely to the
orbital period of HD 110082 b.

3.4 Information criteria and model selection

In order to select the model that gives the best description of the observed data, it
is necessary to apply a tool that quantifies the goodness of the individual models. A
practical overview of these statistical tools, the model selection criteria have been given
by Liddle (2007). They note that the two set of tools that statistics literature contains
are either based on information theory (a prime example of this is the Akaike Infor-
mation Criterion) or Bayesian inference (where a commonly used tool is the Bayesian
Information Criterion).

The Akaike Information Criterion (AIC) is defined as

AIC ≡ −2 log lmax + 2k (3.34)

where lmax is the maximum likelihood achievable by the model and k is the number of
parameters of the model (Akaike, 1974). Note that the definition uses the maximum
of all possible likelihood values and not the likelihood value of an individual fit. This
is useful as the mean of the generated parameters of Monte Carlo Markov chains does
not necessarily correspond to a model with the highest likelihood, only one close to it.

The best model is the one that minimizes the AIC value. For models that have
been sampled with Monte Carlo Markov chains, the maximum likelihood is readily
available.
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The Bayesian Information Criterion (BIC) is defined as

BIC ≡ −2 log lmax + k log N (3.35)

where N is the number of datapoints used for the fit (Schwarz, 1978). Similarly to
AIC, a lower BIC value means a better model.





4. Results

The methods described in the previous chapters were tested on observations of
HD 110082, made with the TESS space telescope. HD 110082 is a star showing peri-
odic variations on a timescale of days. It has one confirmed planet, HD 110082 b on a
10.18 day orbit (Tofflemire et al., 2021).

After the period of the large scale brightness variations was established with the
help of periodograms, the variability of HD 110082 was modeled using three different
methods:

1. A sum of four sinusoids (Eq. 2.1 with n = 4) is fitted on the lightcurve with the
least squares method (also referred to as the sinusoidal fit in this Chapter).

2. An ARMA(1,1) model fit is generated by taking the mean of the model parame-
ters sampled with the AM algorithm.

3. A combined version of the ARMA(1,1) and the sinusoidal fit (also referred to as
the sinusoids + ARMA(1,1) model).

This chapter contains the description and the assessment of these model fits. It closes
with a report on the fitting of the transit lightcurve of the planet.

4.1 TESS lightcurve

HD 110082 is a young, active F8V spectral type star, with one confirmed planet,
HD 110082 b.

The planet, HD 110082 b is a sub-Neptune on a 10.1827 day orbit. A list of select
stellar and planetary parameters is given in Table 4.1 (Tofflemire et al., 2021).

HD 110082 shows variations on the scale of δ ∼ 4 × 10−3, mostly as a combined
result of stellar rotation and starspots. The planet’s signal depth is δ ∼ 6 × 10−4.

The star has been observed by the TESS in Sectors 12 (May 21–June 19, 2019),
13 (June 19–July 18, 2019) and 27 (July 4 – July 30, 2020). These observations are
shown on Fig. 4.1. The star was a so-called TESS Object of Interest. Such objects are
selected before the observations, with the purpose of detecting or confirming possible

39
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Table 4.1: Parameters of HD 110082 and HD 110082 b.

Parameter Value

HD 110082 RA (J2000)* 12:50:22.020
Dec. (J2000)* −88:07:15.72
M∗ (M⊙) 1.21 ± 0.06
R∗ (R⊙) 1.19 ± 0.06
Prot (d) 2.34 ± 0.07
Age (Myr) 250+50

−70

HD 110082 b t0 (BJD) 2 458 629.909 ± 0.001
Porb (d) 10.18271 ± 0.00004
a (au) 0.113+0.009

−0.013

Rp (R⊕) 3.2 ± 0.1

planets around them. TESS Objects of Interest get a unique identifier within the TESS
mission (in this case, TOI-1098) and are observed with two-minute cadence.

Figure 4.1: TESS lightcurve of HD 110082. The star was observed by the space telescope in three
of its observing sectors (Sectors 12 and 13 are shown left, separated with a dashed line, Sector 27 is
shown right). The times of transit events are marked with black lines.

A total of eight transits are to be seen in the recorded lightcurve of HD 110082.
These transits are not necessarily consecutive ones. The transit with center time
t0 = BJD-2 458 629.909 is henceforward referred to as Transit 1. Transits with center
times tc = t0 + n × Porb, where Porb stands of the orbital period of the planet are
refereed to as Transit n.

∗Based on Gaia DR2 astrometry (Gaia Collaboration, 2018).
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4.2 Period search

Time series data from HD 110082 was first analyzed by the Lomb-Scargle and likelihood
ratio periodograms. The three TESS observation sectors were analyzed separately.
The likelihood ratio periodograms for the three sectors are shown on Fig. 4.2. The
Lomb-Scargle periodograms follow a similar curve shape, only with different scaling.
Two common features on the periodograms for all sectors are a spike around 1.15 and
2.3 days. The higher one of these periods corresponds to the rotation period of the
star Prot.
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Figure 4.2: Likelihood ratio periodograms of HD 110082 for different TESS observing sectors. The
changing likelihood ratios of different periods is an indicator of spot evolution on the star’s surface.
The black dashed line corresponds to a false alarm possibility of 0.001.

The explanation for choosing the spike with the longer period to be the rotation
period of the star is as follows. The large scale variations in the lightcurve are most
likely to be caused by starspots, viewed at different angles as the star rotates. First, let
us imagine that there are two active regions on the star, at exactly 180-degree latitude
difference. As the star rotates, at every half-rotation, a group of starspots will face the
observer. In this scenario, the highest spike of the periodogram is at P ≈ Prot/2.

If we assume the presence of only a single active region, periodic dimmings caused
by the starspots facing us will only happen once every rotation. If this happens, the
highest spike of the periodogram is at P ≈ Prot.

The presence of multiple spikes on the periodograms thus is an indicator of mul-
tiple spot groups and their relative strength reflects on their relative sizes. The inter-
pretation of change in spike positions and strengths is therefore a change in the spot
pattern of the star. The presence of multiple active regions produces two spikes in the
periodogram, one at P ≈ Prot/2 and one at P ≈ Prot.

The rotation periods for the different sectors based on the periodograms are
Prot = 2.24 ± 0.11 days for Sector 12, Prot = 2.27 ± 0.09 days for Sector 13, and
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Prot = 2.44 ± 0.09 days for Sector 27. The error weighted average of these values is
Prot = 2.31 ± 0.09.

There is a clear shift towards a longer rotation period from Sectors 12 and 13
to Sector 27. This can be explained with a combination of starspot evolution and
the differential rotation of the star. If a spot appears at a latitude that has a long
orbital period, the periodogram shows a peak at a long period, corresponding to the
rotation period of that latitude. The strength of that peak is proportional to the signal
produced by the spot. In a similar way, spots appearing at latitudes with faster rotation
produce peaks at shorter periods in the periodogram. The periodograms can therefore
be interpreted as the sum of signals produced by starspots at different latitudes of the
star. The highest period, clearly distinguishable individual peak from all periodograms
of HD 110082 appears at P ≈ 2.6 days (Sector 12), while the lowest period individual
peak around the main calculated rotation period appears at P ≈ 2.1 days (Sector 27).

4.3 Sinusoidal model

In order to account for the variations in flux, caused by the starspots in the lightcurve
of HD 110082, the lightcurve was first fit with a sum of four sinusoids (the functional
form is presented in Eq. 2.1, with n = 4) using a least squares fit.

The observations were divided into 1.5 day long sections, over which the fitting
was performed. Since the sections were fitted independently from each other, when
a combined lightcurve is created of the different sections, it might show some sudden
“jumps” at the edges of the individual sections. To avoid these jumps, nine additional
least squares fits were performed, all starting 0.15 days later than the previous one.
The final least squares fit is the mean of these individual fits. The least squares fit along
with the original lightcurve is shown on Fig. 4.3. Parts of this lightcurve along with
the fit showing the planetary transit events are available in Section B of the Appendix.

The frequencies f of the individual sinusoids were searched for in accordance with
the rotational period of the star for each TESS observing sector separately. Iterations
on f were performed around f ∼ 1/Prot for one pair of sinusoids and f ∼ 2/Prot for
the other pair of sinusoids. Using this choice of frequencies, was possible to cover the
most significant peaks introduced by starspots and rotation in the periodograms of all
sectors.

The lightcurve of two individual transit events, along with the least squares fit
sinusoidal model, and a model for the signal the planet is expected to produce (see
Section 4.7) is shown on Fig. 4.4. The fitted sinusoidal model follows the long timescale
brightness variations of the star, but seems to spare the few hours long signal produced
by the planetary transit. The lightcurve of all transiting events along with the model
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Figure 4.3: TESS lightcurve of HD 110082 fitted with a four component sinusoidal curve. The
standard deviation of the residuals is σ = 5.8 × 10−4.

is shown on Fig. B.1 in the Appendix.

Figure 4.4: Transits 6 and 42 from the lightcurve of HD 110082. The least squares fit is marked
with orange. A planetary transit model above the least squares fit (see Section 4.7) is marked with a
black line.

An efficient way to visualize the efficiency of the fit in detrending the large scale
variations of the lightcurve is supplied by the periodogram of the residuals. A likelihood
ratio periodogram of the residuals is shown on Fig. 4.5. The effects of the two most
significant peaks at Prot and Prot/2 have been strongly filtered out by the sinusoidal
model. The log likelihood of both Prot/2 and Prot has weakened by a factor of 105.
The periodogram of the residuals is dominated by a forest of spikes for periods shorter
than one day. These variations are, however, insignificant compared to the prominent
effects of starspots in the original TESS lightcurve. The variations appear to be on
timescales that do not characteristically correspond to any photospheric phenomenon.
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Figure 4.5: Likelihood ratio periodogram of the residuals of the sinusoid fit. A false alarm probability
of 0.001 is marked with a black, dashed line.

4.4 MCMC sampling

The Adaptive Metropolis (AM) algorithm was used for the fitting of two models on
the lightcurve of HD 110082. These models were a simple ARMA(1,1) model, and an
ARMA(1,1) model where the constant c has been replaced with a sum of four sinusoidal
functions (sinusoids+ARMA(1,1) model).

The appropriate length of the Markov chains for parameter estimation was de-
termined for both models by assessing the Gelman-Rubin statistic R̂(z) of the Markov
chains used for parameter estimation.

To create different Markov chains for the calculation of R̂(z), all initial parameters
of a given model z1, z2, ..., zN were shifted by some random number ϵi. This random
number was generated from a Gaussian distribution with ϵi ∼ N (0, 0.2) for all initial
values individually, so that the new initial values of the Markov chains were z1 +
ϵ1, z2 + ϵ2, ..., zN + ϵN . The threshold for convergence was chosen to be R̂(z) < 1.1 for
all parameters z.

For the combined sinusoid and ARMA(1,1) fitting, the TESS lightcurve was di-
vided into 1.5-day-long sections. The calculation of R̂(z) for all individual sections
using that model would have imposed a disproportionately large computational cost.
For that reason, R̂(z) was only calculated for five randomly selected, 1.5-day-long sec-
tions. The Markov chain length of the section whose R̂(z) values have shown the
slowest convergence towards one was chosen to be the required Markov chain length
for all sections.
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4.4.1 ARMA(1,1) model

An ARMA(1,1) model was fit to the whole TESS lightcurve with the AM algorithm
using 140 000 iteration rounds.

As the ARMA(1,1) model does not take into account the frequency changes and
other effects resulting from the evolution of the stellar surface, it was not necessary to
divide the lightcurve into smaller sections, as it was with the least squares fitting. The
whole MCMC fitting was performed on the whole lightcurve as a single piece.

The lightcurve along with the ARMA(1,1) model with the above parameters is
shown on Fig. 4.6. A consequence of the ARMA(1,1) fit being very sensitive to the

Figure 4.6: TESS lightcurve of HD 110082 along with the best fit ARMA(1,1) model. The standard
deviation of the residuals is σ = 1.6 × 10−3.

minute changes of the lightcurve is the almost complete disappearance of the transit
signal. This is demonstrated on Fig. 4.7. The figure shows two parts of the lightcurve
around individual transiting events (the lightcurves of all transit events along with the
ARMA(1,1) fit is shown on Fig. B.2 in the Appendix). The ARMA(1,1) model seems
to closely follow the measurements. This is further shown when plotting the box fitting
periodogram with the expected fractional transit length q = 0.012 for the residuals of
the model (see Section 4.5).

The likelihood ratio periodogram of residuals of the model fit is shown on Fig. 4.8.
The most significant peaks in the periodogram correspond to the rotation and half
rotation period of the star. Although the likelihood ratio values of these peaks have
decreased significantly compared to the original TESS lightcurve, they still dominate
the periodogram. The reason behind this is, despite the fact that ARMA(1,1) fit follows
the original TESS lightcurve rather closely, it tends to overestimate the minima of the
lightcurve, and underestimate the maxima of the lightcurve. This causes the residuals
to keep the period of the original observations.
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Figure 4.7: Transits 6 and 42 from the ARMA(1,1) fitting of the lightcurve of HD 110082. The least
squares fit combined with a planetary transit model (see Section 4.7) is marked with a black line.
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Figure 4.8: Likelihood ratio periodogram of the ARMA(1,1) model fit residuals.

4.4.2 Sinusoids + ARMA(1,1) model

The model employed for this section was an ARMA(1,1) model where the constant c

has been replaced by a function, described as the sum of four sinusoids (Eq. 2.1, with
n = 4). The lightcurve was divided into shorter sections similarly to what is described
in Section 4.3. The fitting of the model was performed with the AM algorithm. The
initial values describing the sinusoids (Ai, fi, φi) were supplied by a least squares fit.
The initial parameters describing the ARMA(1,1) part of the fit were set as (θ, φ, σ) =
(0, 0, σX), where σX is the standard deviation of observations within the given section
of the lightcurve. The chain length was set to 100 000, corresponding to the criterion
R̂(z) < 1.1.

The generated fit, along with the observed lightcurve is shown on Fig. 4.9. The
shape of the fitted lightcurve bears a close resemblance to the simple sinusoidal fit.
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However, as this model contains an ARMA(1,1) component, this fit is more sensitive
to the smaller individual deviations of each observation from the sinusoidal curve.

Figure 4.9: TESS lightcurve of HD 110082, fitted with the combined sinusoid + ARMA(1,1) model.
The standard deviation of the residuals is σ = 6.4 × 10−4.

The likelihood ratio periodogram of the residuals is shown on Fig. 4.10. The
effects of stellar rotation have been damped significantly. The peaks at Prot and Prot/2
have log likelihood ratio values that are three orders of magnitude lower than those on
the periodograms of the TESS observations. Indeed, the rotation induced variations
appear to have been filtered out so completely that they disappear in the forest of
signals of other periods. The periodogram is dominated by variations with periods less
than a day, similarly to the simple sinusoid fit (see Fig. 4.5). Parts of the lightcurve
showing individual transit events along with the fit are shown on Fig. B.3 in the
Appendix.

4.5 Box fitting periodograms

The TESS lightcurves detrended with the sinusoid, ARMA(1,1), and combined si-
nusoids+ARMA(1,1) variability models were all analyzed with the box fitting peri-
odogram with a fractional transit length of q = 0.012, predicted for HD 110082 b. The
box fitting periodograms around the orbital period P = 10.18271 days for the three
models are shown on Fig. 4.11. The box fitting periodograms over an extended range
are given on Figs. C.4-C.6 in Section C.2 of the Appendix.

The log likelihood ratios, likelihood rations and false alarm probabilities at the
orbital period Porb are listed for each model in Table 4.2.

Of the three tested models, two, namely the sinusoidal and the sinu-
soid+ARMA(1,1) show a peak at the orbital period of the planet, with a false alarm
probability FAP < 0.05.
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Figure 4.10: Likelihood ratio periodogram of the residuals from the Sinusoidal+ARMA fit. The
standard deviation of the residuals is σ = 6.4 × 10−4.
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Figure 4.11: Box fitting periodogram for the residuals of the three models analyzed in this thesis.
The fractional transit length q = 0.012 was chosen in accordance with the predictions for the planet.
Black dashed lines represent the different false alarm possibilities.

The peak at Porb on the box-fitting periodogram of the residuals of the sinusoid
model stands out as a single solution. The sinusoids+ARMA(1,1) model was able to
detrend the variations of the star efficiently enough so that the transit signal is returned
with a FAP < 0.05. This signal, however, does not appear to be a unique peak as in the
case of the simple sinusoid model. On the contrary, several peaks surpass the FAP =
0.05 threshold, and a signal with a stronger log likelihood is found at P = 14.44 days
(see Fig. C.5 in the Appendix). These changes in the periodogram compared to that of
the simple sinusoidal model is an artifact caused by the ARMA(1,1) component. While
the simple sinusoidal model only fits the long timescale variations, the autoregression
present in the model introduces a sensitivity to the individual observations. In this case,
this results in the fitted lightcurve becoming more prone to producing false positive
signals.
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Table 4.2: Likelihood ratios and false alarm probabilities at the orbital period P of HD 110082 b
per each tested model used for fitting the whole TESS lightcurve.

Model Method of fitting log r at Porb r at Porb FAP

Sinusoidal model least squares 2.443 11.508 0.01
ARMA(1,1) AM 0.179 1.196 0.77
Sinusoids + ARMA(1,1) AM 2.343 10.412 0.016

The simple ARMA(1,1) model followed the TESS observations so closely that
no significant peak is shown through the whole range in which the periodogram was
evaluated.

4.6 Information criteria

The Akaike and Bayesian Information Criteria (AIC and BIC respectively) have been
calculated for four different variability models. These models are 1) a reference model
containing a single sinusoidal signal, 2) a sum of four sinusoids, 3) the ARMA(1,1)
model, and 4) a sum of four sinusoids combined with the ARMA(1,1) model. All
these models contain an excess noise component with standard deviation σ as a free
parameter. The model uses the excess noise as a means to compensate for the deviation
between the observed and expected values.

All models have been fitted for the first 6.5 days (N = 4 500 observations) of
the TESS lightcurve of HD 110082. This part of the lightcurve includes one transit of
HD 110082 b (Transit 1). All fittings were performed for the whole of the 6.5 day long
period as a single piece. This was necessary to avoid any possible discontinuity in the
fitted model lightcurves.

The range of 6.5 days was chosen as an approximate maximum possible length
for the reference model. Due to spot evolution and differential rotation, the lightcurve
of HD 110082 is not likely to show a pattern that can be approximated with a single
sinusoid. All models were fit with the AM algorithm to explore the possible range of log
likelihood values log l. The maximum of these log l values were used for the calculation
of the AIC and BIC criteria.

The AIC and BIC values of different models, as well as the number of their free
parameters k and average excess noise σ̄ is presented in Table 4.3.

The stellar variability model with both the lowest AIC and BIC values is the
ARMA(1,1) model (the best model is said to be the one that minimizes these values).
This model, however, is too sensitive to the variations happening from one observation
to the next. Indeed, this capacity is in the definition of ARMA models. As the model
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Table 4.3: Information criteria and excess noise of different models to describe a section of the
lightcurve of HD 110082.

Model k AIC BIC σ̄

Single sinusoid 4 −519 −380 1.19 × 10−3

Four sinusoids 13 −6 032 −5 949 5.29 × 10−4

ARMA(1,1) 4 −10 497 −10 494 3.98 × 10−4

Four sinusoids + ARMA(1,1) 16 −6 092 −5 989 4.05 × 10−4

follows all the minute variations in the lightcurve exceedingly closely, even though it is
the best model found in terms of AIC and BIC criteria, it is utterly useless for finding
planetary signals.

The two models with the second and third lowest AIC and BIC values are the sum
of four sinusoids combined with the ARMA(1,1) model and without the ARMA(1,1)
model, respectively. Of these two, the one containing an ARMA(1,1) component proves
to be the better model, as it is more sensitive to the minute changes taking place
between observations. Nevertheless, the information criteria values of both of these
models fall remarkably close to each other. The differences of the two models show
more clearly in the average standard deviation of the model fit. The sinusoidal model
with the ARMA(1,1) component showed a σ̄ value that falls much closer to the σ̄ value
of the ARMA(1,1) fit compared to the simple four sinusoidal fit.

The model with the highest AIC and BIC values proved to be the one containing a
single sinusoid. This model was the least able to follow the variations of the lightcurve.
Its inability to produce a fit similar in quality to the other models is based on two
reasons. The model did not contain a component that would help it adapt to the values
of single observations and was not able to follow the possible differential rotation of
the star, as it contained only a single frequency.

4.7 Transit modeling

Planetary parameters were estimated based on the transit model proposed by Carter
et al. (2008) combined with a first-order linear limb darkening of the stellar disk (see
Section 2.3.2).

Individual transiting events have been selected from the original TESS lightcurve
of HD 110082. Observations in a 0.5-day-long interval both before and after the transit
event have been fit with a four-component sinusoidal function, using the least squares
method. The individual transit events themselves were left out from the fitted data-
points. The least squares fitting of a simple sum of sinusoids was preferred over an AM
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based, combined sinusoid and ARMA method as it gives results much faster.
These individual lightcurve sections, containing the transits were then combined

into a phase-folded and binned lightcurve, with 400 bins in total. This phase-folded
and binned lightcurve was then fitted with the transit model described in Section 2.3,
for parameters r, i, tc − t0, and u – i.e., the radius ratio of the planet and its star, the
planetary orbit’s inclination, the difference between the center of the transit event and
the value found in literature, and the linear limb darkening coefficient. The fitting was
performed using the following assumptions:

1. The limb darkening of the star can be described as a first-order linear limb dark-
ening.

2. The eccentricity of the planet is e = 0. This is a reasonable expectation, as
the planet orbits its star on a very close orbit (a = 0.113 au), where the tidal
interactions are predicted to circularize the orbit of a planet.

3. The maximum possible inclination achievable by the orbit of the planet is i = 90◦.
Solutions with higher inclinations are possible, but it is impossible to distinguish
them from the solutions with i < 90◦, as they are geometrically identical.

The fitting was performed using the AM algorithm. This makes it possible to get a full
image on the probability distributions of the fitted parameters. A cornerplot, showing
the histograms of the parameters generated for the AM fits, and their correlations
is plotted on Fig. 4.12. The parameter estimate for each value is shown above the
histogram of the parameter.

The phase folded and binned lightcurve around the transit event, along with 50
randomly sampled AM fits is shown on Fig. 4.13.

4.8 Transit mapping

Additional information on the stellar surface might be available from the shape of the
individual transit lightcurves. If the planet passes in front of a darker region on the
surface of the star, the received flux from the star increases. This can be observed as
a small, temporary increase in the lightcurve of the transit event. In order for this
increase to be credibly explained as a spot, the observed brightness should not exceed
the value observed when the planet is not in front of the stellar disk.

The transit lightcurves of HD 110082 b contain a number of possible instances
in which the planet transits starspots. Fig. 4.14 shows two individual transit events,
Transit 1 (tc = 2 458 650.3 BJD) and Transit 42 (tc = 2 459 047.4 BJD). Long timescale
variations have been removed in a similar way to what is reported in Section 4.7.
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Figure 4.12: Cornerplot of parameters estimated by fitting the transit lightcurve with a linear
approximation transit lightcurve, assuming a circular orbit, a known orbital period, stellar mass and
radius. The parameter values were generated with the AM algorithm.

Besides the Gaussian jitter, observable through the whole lightcurve, two individual
periods with a higher observed flux can be observed. These are marked as Feature 1
and 2. The features fulfill the criteria of a scenario in which the planet transits a
starspot. A collection of all transit events is shown on Fig. B.4 in the Appendix.

The individual times of these spot eclipses are 0.12 hours and 0.28 hours. As-
suming that the planet orbits on a circular orbit and that the features on the stellar
disk remain motionless for the time of the transit, one can give an estimate on the
minimal possible size dmin of these spots. These values are dmin ≈ 122 000 km and
dmin ≈ 52 000 km for Features 1 and 2 respectively.
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Figure 4.13: Phase-folded and binned lightcurve of HD 110082 around the transit event. The
lightcurve was fit with a first-order linear limb darkening transit model, using the AM algorithm. The
orange curves represent fifty different randomly drawn AM generated fits.
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Figure 4.14: Individual transit events in the lightcurve of HD 110082. The two possible surface
features on the star have been identified as Feature 1 and 2. The mean generated transit model is
shown with a black line.

The scope of this thesis does not extend to a deeper analysis of the signals that
might arise from the presence of starspots in the transit lightcurves. Nevertheless, such
models would by all means provide valuable information about the spots on the stellar
surface and produce a more accurate fit for the transit lightcurve.





5. Discussion

In this thesis, I applied a number of different approaches to describe the activity of the
young star HD 110082. The lightcurve of HD 110082 is a prime example of an extrinsic
variable star with a highly fluctuating brightness.

Using the Lomb-Scargle and likelihood ratio periodograms, I have found signs
of spot evolution and differential rotation on the surface of HD 110082. The derived
values for the rotation period of the star in this work are compared to those derived
by Tofflemire et al. (2021) in Table 5.1. The values from the two sources are within
the margin of error.

Table 5.1: Rotation periods Prot of HD 110082 for different TESS observing sectors, and an average
derived in this work and by Tofflemire et al. (2021).

This thesis (d) Tofflemire et al. (2021) (d)

Sector 12 2.24 ± 0.11 2.28 ± 0.05
Sector 13 2.27 ± 0.09 2.29 ± 0.03
Sector 27 2.44 ± 0.09 2.43 ± 0.03
Average 2.31 ± 0.09 2.34 ± 0.07

The minimum and maximum rotational period found based on the periodograms
of different TESS observing sectors are P ≈ 2.1 days and P ≈ 2.6 days.

In the paper reporting on the discovery of HD 110082 b, Tofflemire et al. (2021)
also explain the inferred rotational period change of HD 110082 with differential ro-
tation. They state that the shift between rotation periods is well within the range
observed for active stars in the lightcurves collected by the Kepler space telescope
(Reinhold et al., 2013, Lanza et al., 2014). I found this statement also to be true for
the individual periods P ≈ 2.1 days and P ≈ 2.6 days.

The whole TESS lightcurve of the star was fitted with three different models.
The first model was composed as a sum of four sinusoidal signals with frequencies
close to either the rotation period, or half rotation period of the star. The second
model was an ARMA(1,1) model. The aim of using this model was to reduce the
noise in the observations, from dependence on the last observation and its deviation

55



56 Chapter 5. Discussion

from the signal average. The model was fit with the AM algorithm. The third model
was a combination of the four component sinusoid model and the ARMA(1,1) model.
The frequencies of the sinusoids were set similarly as in the first model. Fitting was
performed with the AM algorithm. The TESS lightcurve of HD 110082 along with
each model fit is shown in Chapter A of the Appendix.

Both models containing sinusoids were able to weaken the effects of large timescale
(P > 1 day) stellar variations so much that the transit signal of the planet became
detectable. The likelihood ratio periodograms of the residuals from every model fit
are shown in Section C.1. The sinusoidal model without the ARMA(1,1) component
proved to produce a higher likelihood ratio signal at the expected orbital period of the
planet.

The combined sinusoid and ARMA(1,1) model did manage to find the planetary
transit signal, yet with a smaller likelihood ratio. An explicit disadvantage of this
model is the fact that it was much more prone to identifying false positives than any
other model examined. The simple ARMA(1,1) model followed all the variations of the
star so closely that it filtered out the planetary transit signal to a level that it became
undetectable.

All stellar variability models, along with a model containing a single sinusoidal
curve have been assessed in terms of the Bayesian and Akaike Information Criteria.
Based on these criteria, the best model is the simple ARMA(1,1) model. However, this
model filtered out the planetary transit signals and therefore is not to be used in the
survey for exoplanets.

The four component sinusoid combined with an ARMA(1,1) model, and a simple
four component sinusoid had the second lowest and third lowest AIC and BIC values.
The information criteria of these models fell rather close to each other.

Due to the relative similarities in information criteria of the aforementioned
two models and the higher probability of false positives in the model containing an
ARMA(1,1) component, the most effective model in order to find planetary signals
proves to be one that can be expressed as a simple sum of sinusoids.

After the stellar activity has been subtracted from the observations, the transit
signal of the planet was analyzed separately. The shape of the transit lightcurve was
fit with a model assuming a linear limb darkening of the stellar disk. The fitting was
performed with the AM algorithm. The parameters derived from the AM fitting for
this thesis, as well as those calculated by Tofflemire et al. (2021), are listed in Table 5.2.
The most striking difference between the two sets of values is the discrepancy between
the radius ratios. This can be attributed to the fact that Tofflemire et al. (2021) used
a different method with a quadratic limb darkening law to describe the stellar limb
darkening. Assuming a uniform intensity stellar disk, the same AM model fit results
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Table 5.2: Parameters estimated from the transit fitting.

This thesis Tofflemire et al. (2021)

r 0.030 ± 0.003 0.025 ± 0.001
i (◦) 88.0 ± 0.05 88.2+1.1

−0.7

tc − t0 (s) −28.1+94.4
−104.9 0 ± 86.4

u 0.59+0.20
−0.25 –

in r = 0.025 ± 0.001.
Finally, the individual transits were examined separately in order to find possible

active regions on the star. The inclusion of more information about starspots has a
potential at further improving the analysis of lightcurves.





Appendix A. TESS lightcurves

Figure A.1: TESS lightcurve of HD 110082 fitted with a four component sinusoidal curve. The
standard deviation of the residuals is σ = 5.8 × 10−4.

Figure A.2: TESS lightcurve of HD 110082 along with the best fit ARMA(1,1) model. The standard
deviation of the residuals is σ = 1.6 × 10−3.
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Figure A.3: TESS lightcurve of HD 110082, fitted with the combined sinusoid + ARMA(1,1) model.
The standard deviation of the residuals is σ = 6.4 × 10−4.



Appendix B. Transit lightcurves

Figure B.1: TESS lightcurve of HD 110082 around individual transit events. The least squares fit
of a four-component sinusoid model is shown in orange. Transit signals are shown with a black line
for comparison.

Figure B.2: TESS lightcurve of HD 110082 around individual transit events. The AM generated
ARMA(1,1) is shown in orange. Transit signals are shown with a black line for comparison.
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Figure B.3: TESS lightcurve of HD 110082 around individual transit events. The mean of modeled
composite sinusoid+ARMA(1,1) lightcurves, generated by the AM algorithm are shown in orange.
The least squares fit sinusoidal model with transits is shown as a black line for comparison.
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Figure B.4: Individual transit events of HD 110082 b. Long scale stellar brightness variations
have been removed with a least-squares-fitted, four-component sinusoidal model (see Section 4.7).
Brightness increases below the out-of-transit flux level, during transit events might be explained by
the planet transiting a spot on the star’s surface.





Appendix C. Periodograms of residuals

C.1 Likelihood ratio periodograms
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Figure C.1: Likelihood ratio periodogram of the sinusoidal model fit residuals.
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Figure C.2: Likelihood ratio periodogram of the ARMA(1,1) model fit residuals.
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Figure C.3: Likelihood ratio periodogram of the residuals from the Sinusoidal+ARMA fit.

C.2 Box fitting periodograms
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Figure C.4: Box fitting periodogram of the residuals of the sinusoid model fitting. The log likelihood
of a transit at the observed orbital period of HD 110082 b is log r = 2.443.
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Figure C.5: Box fitting periodogram of the residuals of the ARMA(1,1) fitting. The log likelihood
of a transit at the observed orbital period of HD 110082 b is log r = 0.179.
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Figure C.6: Box fitting periodogram of the residuals of the combined sinusoid + ARMA(1,1) fitting.
The log likelihood of a transit at the observed orbital period of HD 110082 b is log r = 2.343.
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