
Master’s thesis

Master’s Programme in Computer Science

Practical Aspects of Implementing a Suffix
Array-based Lempel-Ziv Data Compressor

Aki Utoslahti

May 15, 2022

Faculty of Science
University of Helsinki

Supervisor(s)

Assoc. Prof. Simon J. Puglisi

Examiner(s)

Assoc. Prof. Simon J. Puglisi
Dr. Juha Kärkkäinen

Contact information

P. O. Box 68 (Pietari Kalmin katu 5)
00014 University of Helsinki,Finland

Email address: info@cs.helsinki.fi
URL: http://www.cs.helsinki.fi/

Faculty of Science Master’s Programme in Computer Science

Aki Utoslahti

Practical Aspects of Implementing a Suffix Array-based Lempel-Ziv Data Compressor

Assoc. Prof. Simon J. Puglisi

Master’s thesis May 15, 2022 91 pages, 25 appendix pages

Data compression, Lempel-Ziv factorization, Suffix array, Integer coding, String comparison

Helsinki University Library

Algorithms study track

Lempel-Ziv factorization of a string is a fundamental tool that is used by myriad data compres-
sors. Despite its optimality regarding the number of produced factors, it is rarely used without
modification, for reasons of its computational cost. In recent years, Lempel-Ziv factorization
has been a busy research subject, and we have witnessed the state-of-the-art being completely
changed. In this thesis, I explore the properties of the latest suffix array-based Lempel-Ziv fac-
torization algorithms, while I experiment with turning them into an efficient general-purpose
data compressor.

The setting of this thesis is purely exploratory, guided by reliable and repeatable benchmarking.
I explore all aspects of the suffix array-based Lempel-Ziv data compressor. I describe how the
chosen factorization method affects the development of encoding and other components of a
functional data compressor. I show how the chosen factorization technique, together with
capabilities of modern hardware, allows determining the length of the longest common prefix of
two strings over 80% faster compared to the baseline approach. I also present a novel approach
to optimizing the encoding cost of the Lempel-Ziv factorization of a string, i.e., bit-optimality,
using a dynamic programming approach to the Single-Source Shortest Path problem.

I observed that, in its current state, the process of suffix array construction is a major com-
putational bottleneck in suffix array-based Lempel-Ziv factorization. Additionally, using a
suffix array to produce a Lempel-Ziv factorization leads to optimality regarding the number
of factors, which does not necessarily correspond to bit-optimality. Finally, a comparison with
common third-party data compressors revealed that relying exclusively on Lempel-Ziv factor-
ization prevents reaching the highest compression efficiency. For these reasons, I conclude
that current suffix array-based Lempel-Ziv factorization is unsuitable for general-purpose data
compression.

ACM Computing Classification System (CCS)
Theory of computation → Design and analysis of algorithms → Data structures design and
analysis → Data compression

HELSINGIN YLIOPISTO – HELSINGFORS UNIVERSITET – UNIVERSITY OF HELSINKI
Tiedekunta — Fakultet — Faculty Koulutusohjelma — Utbildningsprogram — Study programme

Tekijä — Författare — Author

Työn nimi — Arbetets titel — Title

Ohjaajat — Handledare — Supervisors

Työn laji — Arbetets art — Level Aika — Datum — Month and year Sivumäärä — Sidoantal — Number of pages

Tiivistelmä — Referat — Abstract

Avainsanat — Nyckelord — Keywords

Säilytyspaikka — Förvaringsställe — Where deposited

Muita tietoja — övriga uppgifter — Additional information

Contents

1 Introduction 1

2 Background 4
2.1 Common terminology . 4
2.2 Suffix array . 5
2.3 Lempel-Ziv factorization . 6
2.4 Suffix array-based Lempel-Ziv factorization 9

2.4.1 BGS . 9
2.4.2 KKP3 . 13

2.5 Variable-byte coding . 17
2.6 Unary coding . 21
2.7 Golomb-Rice coding . 23

3 Methods 26
3.1 General remarks . 26
3.2 Compressed file format . 27
3.3 Suffix array construction . 28
3.4 Lcp-comparison . 30

3.4.1 Faster comparison with words . 31
3.4.2 Reduced number of comparisons . 36
3.4.3 Lcp-comparison performance . 39

3.5 Practical Lempel-Ziv factorization . 40
3.5.1 Greedy factorization . 40
3.5.2 Lazy non-greedy factorization . 42
3.5.3 Minimum-cost factorization . 43
3.5.4 Dynamic programming minimum-cost factorization 45

3.6 Encoding . 46
3.6.1 Encoding format . 46

3.6.2 Factor offset reuse . 49
3.6.3 Incompressible segments . 52
3.6.4 Choosing optimal integer codes . 52

3.7 Performance optimizations . 54
3.7.1 Memory reuse . 54
3.7.2 Memory access patterns . 55
3.7.3 Integer code optimizations . 57
3.7.4 Reduced branching . 58
3.7.5 Compile time branch prediction . 65
3.7.6 Loop unrolling . 68
3.7.7 Copying in words . 70

4 Results 73
4.1 Benchmark payload collection . 73
4.2 Benchmark environment and procedure . 75
4.3 Final data compressor designs . 78
4.4 Benchmark results . 78

5 Discussion 81
5.1 Comparison to third-party data compressors 81
5.2 Future work . 84
5.3 Conclusions . 85

Bibliography 89

A SALZ benchmarks

B SALZ micro-benchmarks

C Other benchmarks

1 Introduction

For more than 40 years, the Lempel-Ziv factorization [14] has been a cornerstone of data
compression and general stringology. Its first application to data compression dates back
to the LZ77 data compression algorithm [30], and since then it has played an important role
within modern data compressors, for example, in gzip, WinZip, 7-Zip, and lz4. It also
acts as a general measure of compressibility, as the size of the Lempel-Ziv factorization
of a string has been shown to be a lower bound for the size of the smallest context-
free grammar that represents it [2]. Other recent applications include finding maximal
repetitions in a string [12], detecting periodicities in strings [4], and compressed full-text
indexes intended for searching highly repetitive collections [17; 16]. The common aspect
between all these applications is that the calculation of the Lempel-Ziv factorization is,
in practice, a bottleneck in their time and memory consumption [10]. Because of that,
Lempel-Ziv factorization has remained a busy research target.

During the last two decades, the state-of-the-art of Lempel-Ziv factorization algorithms
has changed completely. The development dates back to 2008, when Crochemore and Ilie
showed how the LPF (Longest Previous Factor) array of a string could be computed in
linear time, using only the corresponding suffix array [3]. The LPF array leads directly
to linear-time Lempel-Ziv factorization. Before Crochemore and Ilie’s algorithm, suffix
array-based Lempel-Ziv factorization had relied on using additional information, usually
the LCP (Longest Common Prefix) array. Although the LCP array can also be computed
in linear time, it is nevertheless a costly extra step that adds to the total computation time
and to the space consumption. This led to further developments, with Ohlebusch and Gog
showing in 2011 how the technique of Crochemore and Ilie could be performed faster and
using less space [19]. Next, Goto and Bannai [7], as well as Kempa and Puglisi [11], showed
simultaneously and independently similar ideas on how the computation of the full LPF
array could be avoided. The algorithms in [7] were based on the observation that the LPF
array contains more information than is needed for Lempel-Ziv factorization, as only a
subset of the LPF array entries are used. These algorithms had smaller memory footprint
than their predecessors, and they were faster in practice. Finally, later in 2013, Kärkkäinen
et al. [10] showed how the algorithms of Goto and Bannai in [7] could be combined and
reorganized to further reduce memory usage and running times. Since then, the algorithms
of Kärkkäinen et al. have remained the fastest and the most succinct.

2

Even if Lempel-Ziv factorization is central to many modern data compressors, it is only
rarely used without modification or without being accompanied by heuristics because of
its computational cost. Although these modifications and heuristics improve the running
time, they usually come with a cost to compression performance. For example, the com-
pression algorithm used by gzip and WinZip restricts the size of the search window used
in factorization, while lz4 performs only a best-effort factorization using a hash table. My
main hypothesis in this thesis is that the current state-of-the-art Lempel-Ziv factorization
algorithm could be turned into a general-purpose data compressor that would compress
arbitrary data in a fast and efficient manner.

The main objective of this thesis is, therefore, to document the process of designing and im-
plementing a prototype of a general-purpose data compressor, using the latest Lempel-Ziv
factorization algorithms based on suffix arrays. This includes mapping out the advantages
and disadvantages of such an approach, as well as determining its profitability. There
are also three secondary objectives. The first objective is to determine what kind of in-
fluence the chosen factorization method has on the encoding. The second objective is to
explore and map the possibilities to further improve and optimize the chosen factoriza-
tion method. The last objective is to document the general practical aspects of designing
and implementing a general-purpose data compressor. The research setting of this thesis
is experimental and exploratory, and as such, I use rapid prototyping, guided by exact
and repeatable benchmarks, in a trial-and-error approach to develop the prototype data
compressor.

To my knowledge, the algorithms of [10] have not been tested before for general data
compression. Additionally, there seem to be no data compressors using Lempel-Ziv fac-
torization based on a suffix array. In this thesis, I also explore the optimality of the
Lempel-Ziv factorization with respect to the size of the encoding, that is, bit-optimality
as opposed to the number of factors in the factorization. Research on the bit-optimality
of Lempel-Ziv factorization is extremely sparse, and the most notable works include those
of Horspool [8] and Ferragina et al. [5]. Therefore, this thesis potentially provides novel
information on topics that have received little or no attention.

This thesis documents the design and implementation of a suffix array-based Lempel-
Ziv data compressor from the ground up and is structured as follows. First, Chapter 2
introduces the central background concepts used in the development of the building blocks
of the prototype data compressors. Next, Chapter 3 describes in detail the development
steps of these building blocks. In Chapter 4, I define the final prototype data compressor

3

designs built using those blocks, describe how they were benchmarked, and provide a
comparison between them. Finally, in Chapter 5, I compare the prototype data compressor
designs with well-known third-party data compressors, define points of interest for future
research, and provide my final conclusions.

2 Background

In this chapter, I introduce the background concepts that are central to the methods
discussed in Chapter 3. I start by defining common terms and notation that are used
throughout this thesis. I then introduce the suffix array data structure and the Lempel-Ziv
factorization, before describing how a state-of-the-art Lempel-Ziv factorization algorithm
can be designed using the suffix array. Finally, I describe three integer coding schemes
that were utilized in the prorotype data compressor developed during the research phase
of this thesis.

2.1 Common terminology

This section describes the common terminology and notation used in this thesis. Those
that are related to texts/strings are mostly borrowed from Kärkkäinen et al. [10] and
Crochemore and Ilie [3].

Byte units. Two different orders of magnitude for byte units are used in this thesis, decimal
(SI) and binary (IEC). The decimal prefixes are powers of 103 and named as kilo (k), mega
(M) and giga (G). The corresponding binary prefixes are powers of 210 and named as kibi
(ki), mebi (Mi) and gibi (Gi). For example, 1 megabyte (1 MB) refers to 1, 000, 000 bytes,
while 1 mebibyte (1 MiB) refers to 1, 048, 576 bytes.

Compression ratio. The compression ratio is the relative reduction in space usage achieved
with data compression, i.e., the level of compression.

compression ratio = uncompressed size
compressed size

Text. A text T = T [1 . . . n] = T [1]T [2] . . . T [n] is a concatenation of |T | = n symbols
drawn from an alphabet Σ of size |Σ| = σ. The alphabet model being addressed in this
thesis is the byte alphabet (Σ = {0, . . . , 255}), which is a special case of an integer alphabet
(Σ = {0, . . . , σ − 1}). An integer alphabet is ordered and therefore it supports symbol
comparison with operators < (less than) and = (equal to). Symbols of an integer alphabet
can also be used in arithmetic and as array indices. In this thesis, I use the terms text and
string synonymously.

5

Substring. A substring of text T [1 . . . n] that starts at position i and ends at position j,
such that i, j ∈ {1, . . . , n} and i ≤ j, is denoted by T [i . . . j] = T [i]T [i+ 1] . . . T [j]. In this
thesis, I use the terms substring and factor synonymously.

Prefix. A prefix of text T [1 . . . n] is a substring that starts at position 1 and ends at
position i ∈ {1, . . . , n}, which is denoted by T [1 . . . i] = T [1]T [2] . . . T [i]. In this thesis, I
use “prefix i” to refer to prefix T [1 . . . i].

Suffix. A suffix of text T [1 . . . n] is a substring that starts at position i ∈ {1, . . . , n} and
ends at position n, which is denoted by T [i . . . n] = T [i]T [i + 1] . . . T [n]. In this thesis, I
use “suffix i” to refer to suffix T [i . . . n].

Longest common prefix. The length of the longest common prefix of suffixes i and j of
text T [1 . . . n], denoted by lcp(i, j), is the maximum l ≤ min(|T [i . . . n]|, |T [j . . . n]|) such
that T [i . . . i+ l−1] = T [j . . . j+ l−1]. For compatibility with algorithms in the following
sections, I define lcp(0, i) = lcp(i, 0) = 0 for i ∈ {1, . . . , n}.

Lexicographical order. Let i and j be suffixes of text T [1 . . . n], and let lcp(i, j) = l. Suffix
i is lexicographically smaller than or equal to suffix j, denoted by T [i . . . n] ≤ T [j . . . n], if
and only if either

• |T [i . . . n]| = l, or

• |T [i . . . n]| > l, |T [j . . . n]| > l and T [i+ l] ≤ T [j + l].

2.2 Suffix array

The suffix array is a data structure introduced by Manber and Myers in 1990, as a space
efficient alternative to suffix trees for on-line string searches [15]. Since then, suffix arrays
have been a vibrant area of research and they have been widely used in full-text indices,
data compression, and stringology.

Suffix array. The suffix array SA of text T [1 . . . n] is a lexicographically ordered array
of all suffixes of T . Importantly, the suffix array is not an array of texts, but instead an
array of integers. This is possible as each suffix can be uniquely determined by its starting
position. Therefore, suffix array SA is a permutation of integers [1 . . . n] such that

T [SA[1] . . . n] ≤ T [SA[2] . . . n] ≤ . . . ≤ T [SA[n] . . . n].

For compatibility with the algorithms in following sections, I define SA[0] = SA[n+1] = 0.

6

Inverse suffix array. The inverse suffix array ISA is the inverse permutation of the suffix
array. Let T [1 . . . n] be a text. For each suffix i ∈ {1, . . . , n}, ISA[i] contains the position
of suffix i in the suffix array. Formally, for i, j ∈ {1, . . . , n}, ISA[i] = j if and only if
SA[j] = i.

The suffix array and the inverse suffix array for the text T = “banana” are illustrated
together in Table 2.1.

Table 2.1: Suffix array for text T = “banana”.

i T[i . . .n] ISA[i] SA[i] T[SA[i] . . .n]

1 “banana” 4 6 “a”
2 “anana” 3 4 “ana”
3 “nana” 6 2 “anana”
4 “ana” 2 1 “banana”
5 “na” 5 5 “na”
6 “a” 1 3 “nana”

Suffix array construction for text T [1 . . . n] of integer alphabet is possible using O(n) time
and O(n log n) bits of space [18]. A complete suffix array uses n log n bits of space for any
alphabet.

2.3 Lempel-Ziv factorization

Dictionary-based data compression algorithms replace parts of a text with references to
a dictionary. Actual compression is achieved when the references use less space than
the parts of text that they replace. In 1977, Lempel and Ziv introduced the LZ77 data
compression algorithm, which utilizes the preceding part of the text as a dictionary [30].
Even though the original LZ77 data compression algorithm has been bested by numerous
derivatives, its core principle, the Lempel-Ziv factorization [14], still remains a fundamental
tool for data compression.

Longest previous factor. The longest previous factor for position i of text T is the longest
substring that occurs both at position i and to the left of it in T .

Conceptually, the Lempel-Ziv factorization is a greedy left-to-right factorization of a text
into its longest previous factors, encoded as tokens. In this thesis, I use “LZ77 factor-

7

ization” to refer to Lempel-Ziv factorization that is encoded using LZ77 token format. I
represent the LZ77 tokens as (o/s, l) pairs, where

• o/s: offset/symbol, represents offset, if a previous occurrence exists, or a symbol
literal otherwise.

• l: length, represents the length of the occurrence, i.e., l > 0 if previous occurrence
exists, or l = 0 otherwise.

For example, the LZ77 factorization algorithm would partition text T = “bananabandana”
into factors b|a|n|ana|ban|d|ana and encode them using the above token format as:

‘b’
(‘b’, 0),

‘a’
(‘a’, 0),

‘n’
(‘n’, 0),

“ana”
(2, 3),

“ban”
(6, 3),

‘d’
(‘d’, 0),

“ana”
(7, 3).

Algorithm 1 shows a naïve implementation of the LZ77 factorization algorithm. For each
factor starting position p of text T [1 . . . n], the algorithm finds the longest previous factor
by computing the longest common prefix between suffix p and all p− 1 preceding suffixes.
The time complexity of the naïve LZ77 factorization algorithm is O(n2), as the total
number of symbol comparisons is bounded by the total length of the longest previous
factors, i.e., the length of the text n [7]. The algorithm to reconstruct text T , given its
LZ77 factorization, is shown in Algorithm 2. For each factor, the algorithm first checks if
it is a symbol literal or a reference to preceding, already reconstructed, text. If the factor
is a symbol literal, the algorithm simply appends the symbol to the already reconstructed
text. Otherwise, it copies a substring of l symbols, from a position that is o symbols to the
left of the current position, to the end of the already reconstructed text. The algorithm
runs in O(n) time as the total amount of work is bounded by the length of the text. Note
that this same reconstruction algorithm is also utilized with the advanced factorization
algorithms introduced in the next section. Both factorization and reconstruction algorithm
use only O(1) extra space.

The main disadvantage with the previously introduced LZ77 token format is the high
likelihood of increased space usage due to encoding all factors using the same format.
In particular, a pair of integers for each single repeated symbol, or symbol that has not
occurred before, is wasteful. In 1982, Storer and Szymanski introduced LZSS (Lempel-
Ziv-Storer-Szymanski), a derivative of LZ77, which addresses this problem (among others)
[26]. LZSS strives to improve LZ77 in multiple ways, but in the context of this thesis, we
are only interested in two of them. First, instead of using exclusively pairs to represent the

8

Algorithm 1 Naïve LZ77 factorization of text T [1 . . . n].
1: p← 1
2: while p ≤ n do
3: length← 0
4: offset ← 0
5: for i← 1, . . . , p− 1 do
6: l← lcp(i, p)
7: if l > length then
8: offset ← p− i
9: length← l

10: if length > 0 then
11: Output-factor((offset, length))
12: else
13: Output-factor((T [p], 0))

14: p← p+ max(1, length)

Algorithm 2 Reconstruction of text T , given its LZ77 factorization ((o1, l1), . . . , (oz, lz)).
1: p← 1
2: for i← 1, . . . , z do
3: if li = 0 then
4: T [p]← oi

5: else
6: for j ← 0, . . . , li − 1 do
7: T [p+ j]← T [p− o+ j]

8: p← p+ max(1, li)

9

factorization, LZSS uses one-bit flags to indicate whether a factor is an offset/length pair
or a symbol literal. Second, Storer and Szymanski had an idea to discard offset/length
pairs which use more space than the original text they replace.1 By using unset bits to
represent literals and set bits to represent factors, we obtain following LZSS factorization
for the example text:

flags

0001101,
‘b’
‘b’,

‘a’
‘a’,

‘n’
‘n’,

“ana”
(2, 3),

“ban”
(6, 3),

‘d’
‘d’,

“ana”
(7, 3).

In this thesis, I make a distinction between (normal) factors that are defined by an off-
set/length pair, and factors that are symbol literals. From this point forward, I use “factor”
to refer exclusively to former, and “literal” to refer to latter.

2.4 Suffix array-based Lempel-Ziv factorization

In the previous section, I showed a naïve LZ77 factorization algorithm that runs in O(n2)
time using O(1) extra space. Even though the memory usage is impressive, the time usage
is too great for the algorithm to have much practical use. In this section, I first provide
a bottom-up description of the BGS algorithm by Goto and Bannai [7], which is heavily
influenced by earlier research of Crochemore and Ilie [3], and Ohlebusch and Gog [19].
BGS is a suffix array-based Lempel-Ziv factorization algorithm that runs in O(n) time
using (4n+ s) log n bits of extra space, where s ≤ n is the maximum size of the stack used
by the algorithm. Afterwards, I describe how KKP3, the current state-of-the-art LZ77
factorization algorithm by Kärkkäinen et al. [10], optimizes the BGS algorithm in order
to achieve faster running times, while utilizing only 3n log n bits of extra space.

2.4.1 BGS

The first step in the bottom-up description of BGS algorithm is to define LZ77 factorization
using LPF and PrevOcc arrays [3; 7; 10].

LPF and PrevOcc arrays. Let T [1 . . . n] be a text. For each i ∈ {1, . . . , n}, LPF [i] contains
the length of the longest previous factor for suffix i, and PrevOcc[i] contains the starting
position of it. If T [i] is the leftmost occurrence of symbol in T , and as a result PrevOcc[i]
is not defined, we set PrevOcc[i] = 0. If there are multiple candidates for PrevOcc[i], any

1This idea is re-explored later in Section 3.5.

10

of them can be chosen.

LPF [i] = max(lcp(i, j) | 1 ≤ j < i)

PrevOcc[i] =

0 if LPF [i] = 0

j otherwise

LZ77 factorization. Let the factorization be computed up to the position i. If LPF [i] > 0,
then the next factor is (i − PrevOcc[i], LPF [i]). Otherwise, the next factor is (T [i], 0).
Table 2.2 contains the LPF and PrevOcc arrays for text T = “bananabandana”, while
Algorithm 3 shows an algorithm that, given corresponding LPF and PrevOcc arrays,
produces LZ77 factorization of text. Note that the actual factorization part is now linear
to the number of factors z = O(n/ logσ n) [9], instead of the length of the text n.

Table 2.2: LPF and PrevOcc arrays for text T = “bananabandana”

i 1 2 3 4 5 6 7 8 9 10 11 12 13
T [i] b a n a n a b a n d a n a
LPF [i] 0 0 0 3 2 1 3 2 1 0 3 2 1
PrevOcc[i] 0 0 0 2 3 4 1 4 5 0 4 5 11

Algorithm 3 LZ77 factorization of text T [1 . . . n], given its LPF and PrevOcc arrays.
1: p← 1
2: while p ≤ n do
3: if LPF [p] > 0 then
4: Output-factor((p− PrevOcc[p], LPF [p]))
5: else
6: Output-factor((T [p], 0))

7: p← max(1, LPF [p])

Crochemore and Ilie showed in [3] how the LPF and PrevOcc arrays can be obtained
using the suffix array in O(n) time. From the lexicographic ordering of the suffix array,
it follows that for any suffix i, the suffixes that appear closer to it in the suffix array, will
have longer longest common prefixes with it. Therefore, to find out the longest previous
factor for suffix i, it suffices to consider two suffixes, the nearest lexicographic predecessor
and successor that have values smaller than i.

11

PSVlex and NSVlex arrays. Let SA[1 . . . n] be a suffix array of text T [1 . . . n]. For each
position i ∈ {1, . . . , n}, PSVlex[i] contains the position of the previous smaller value (psv)
in SA, compared to SA[i]. If such value does not exist, we set PSVlex[i] = 0. NSVlex[i]
is similar with the exception that it contains the position of the next smaller value (nsv)
instead.

PSVlex[i] = max({0} ∪ {1 ≤ j < i | SA[j] < SA[i]})

NSVlex[i] = min({0} ∪ {i < j ≤ n | SA[j] < SA[i]})

For each position i ∈ {1, . . . , n} of text T [1 . . . n], the corresponding previous and next
smaller values, psvi and nsvi, can be obtained using SA, ISA, PSVlex and NSVlex of T .

psvi = SA[PSVlex[ISA[i]]]

nsvi = SA[NSVlex[ISA[i]]]

Next we redefine LPF [i] and PrevOcc[i] using psvi and nsvi.

lpsvi
= lcp(psvi, i)

lnsvi
= lcp(nsvi, i)

LPF [i] = max(lpsvi
, lnsvi

)

PrevOcc[i] =

psvi if lpsvi

≥ lnsvi

nsvi otherwise

Note that the actual LPF and PrevOcc arrays are no longer needed, as it is possible
to compute the factorization directly from SA, ISA, PSVlex and NSVlex arrays in a lazy
manner. The arrays are demonstrated in Table 2.3, while the corresponding factorization
algorithm is illustrated in Algorithm 4. Following similar reasoning as with the naïve LZ77
factorization algorithm, the time complexity of this algorithm is O(n), as for each factor
we only consider a constant number of factor candidates.

Since we know (from Section 2.2) that the SA and ISA can be computed in O(n) time,
it remains to show how the PSVlex and NSVlex arrays can be computed in O(n) time.
Fortunately, it is possible to compute them with a simple linear scan over the suffix array,
as shown in Algorithm 5 (adapted from [7]). The algorithm uses a stack as a helper data
structure, which during the execution of the algorithm has a maximum size of s ≤ n bytes.
In practice, s is almost always significantly smaller than n, but in the worst case, when
all n elements are pushed to the stack before popping any element, the size is equal to n.

12

Table 2.3: SA, ISA, PSVlex and NSVlex arrays for text T = “bananabandana”.

i 1 2 3 4 5 6 7 8 9 10 11 12 13
T [i] b a n a n a b a n d a n a
SA[i] 13 6 11 4 2 8 1 7 10 12 5 3 9
ISA[i] 7 5 12 4 11 2 8 6 13 9 3 10 1
PSVlex[i] 0 0 2 0 0 5 0 7 8 9 7 7 12
NSVlex[i] 2 4 4 5 7 7 0 11 11 11 12 0 0

Algorithm 4 BGS (post-processing): LZ77 factorization of text T [1 . . . n], given its SA,
ISA, PSVlex and NSVlex arrays.
1: p← 1
2: while p ≤ n do
3: LPF ← 0
4: PrevOcc← 0
5: psv ← SA[PSVlex[ISA[p]]]
6: nsv ← SA[NSVlex[ISA[p]]]
7: lpsv ← lcp(psv, p)
8: lnsv ← lcp(nsv, p)
9: if lpsv ≥ lnsv then
10: LPF ← lpsv

11: PrevOcc← psv

12: else
13: LPF ← lnsv

14: PrevOcc← nsv

15: if LPF > 0 then
16: Output-factor((p− PrevOcc, LPF))
17: else
18: Output-factor((T [p], 0))

19: p← p+ max(1, LPF)

13

Therefore, the BGS algorithm can produce the LZ77 factorization of a text in O(n) time
using (4n + s) log n bits of space, as each of the four auxiliary arrays uses n log n bits of
space.

Algorithm 5 BGS (preprocessing): computation of PSVlex and NSVlex arrays of text
T [1 . . . n], given its SA.
1: Let S be an empty stack
2: for i← 1, . . . , n do
3: while not S.empty() and SA[i] < SA[S.peek()] do
4: NSVlex[S.pop()]← i

5: if S.empty() then
6: PSVlex[i]← 0
7: else
8: PSVlex[i]← S.peek()

9: S.push(i)

10: while not S.empty() do
11: NSVlex[S.pop()]← 0

2.4.2 KKP3

The KKP3 algorithm can be essentially seen as an optimized version of the BGS algorithm,
and therefore it is simplest to explain it in terms of individual optimizations. In total,
there are four different optimizations, which are all introduced in [10].

The first optimization reduces the number of symbol comparisons during LZ77 factoriza-
tion stage. It is based on observation that lcp(psvi, nsvi) = min(lcp(psvi, i), lcp(nsvi, i)),
which allows reducing the number of symbol comparisons by lcp(psvi, nsvi) for each factor
i. The optimization can be observed by comparing lines 15–22 of Algorithm 6 to lines
7–14 of Algorithm 4.

The second optimization reduces memory usage and the number of memory accesses dur-
ing the factorization stage. The KKP3 algorithm uses PSVtext and NSVtext arrays, which
contain the actual psv and nsv values in text order, instead of PSVlex and NSVlex arrays,
which contain the positions of psv and nsv values in the suffix array, in lexicographic
order. This means that the suffix array and inverse suffix array are not needed any-
more in the factorization stage of the algorithm. Therefore, the inverse suffix array is no

14

longer needed at all, which results in a reduction of n log n bits in memory usage. The
optimization also reduces the number of memory accesses during the factorization stage.
PSVtext and NSVtext arrays are defined in relation to PSVlex and NSVlex arrays such that

PSVtext[SA[i]] = SA[PSVlex[i]]

NSVtext[SA[i]] = SA[NSVlex[i]].

The arrays are shown in Table 2.4, while the optimization can be observed by comparing
lines 13–14 of Algorithm 6 to lines 5–6 of Algorithm 4.

Table 2.4: SA,PSVtext and NSVtext arrays for text T = “bananabandana”.

i 1 2 3 4 5 6 7 8 9 10 11 12 13
T [i] b a n a n a b a n d a n a
SA[i] 13 6 11 4 2 8 1 7 10 12 5 3 9
PSVtext[i] 0 0 1 0 1 0 1 2 3 7 6 10 0
NSVtext[i] 0 1 0 2 3 4 5 1 0 5 4 5 6

The third and fourth optimization further reduce the memory usage, and improve the
CPU cache utilization in the preprocessing stage of the algorithm. The third optimization
is based on observation by Kärkkäinen et al., that the size of the stack is never larger than
the already processed part of the suffix array. Therefore, the optimization removes the
external stack and relocates its contents to the already processed part of the suffix array.
Note that this optimization should not be used in case the contents of the suffix array
should be preserved for later use.

Goto and Bannai observed in [7] that memory accesses to the PSV andNSV arrays always
occur at indices that are same, or close to each other. Therefore, they improved the locality
of memory access by interleaving the PSV and NSV arrays to a single PSV/NSV array
of 2n log n bits, such that

PSV [i] = PSV/NSV [2i]

NSV [i] = PSV/NSV [2i+ 1].1

The KKP3 algorithm does similarly and stores PSVtext and NSVtext arrays interleaved.
However, the KKP3 algorithm optimizes the locality of memory access even further by
computing the PSVtext values when popping from the stack instead of when pushing to the

1The ordering (lex/text) has no effect.

15

stack, so that each PSVtext[i] and NSVtext[i] are computed and written at the same time.
These last two optimizations are illustrated together on lines 1–8 of Algorithm 6, which
can be compared to PSVlex and NSVlex construction algorithm shown in Algorithm 5.

The above optimizations together result in a total extra memory usage of 3n log n bits, and
faster running time in practice, even if the asymptotic time complexity remains unchanged.
It should be noted that Kärkkäinen et al. were further able to reduce the space utilization
in [10], but those more succinct algorithms were not able to match the running times of
KKP3 in general.

16

Algorithm 6 KKP3: LZ77 factorization of text T [1 . . . n], given its SA.
1: top← 0 . Stack top pointer
2: for i← 1, . . . , n+ 1 do
3: while SA[i] < SA[top] do
4: PSVtext[SA[top]]← SA[top− 1]
5: NSVtext[SA[top]]← SA[i]
6: top← top− 1 . Stack.pop()

7: top← top+ 1 . Stack.push()
8: SA[top]← SA[i]

9: p← 1
10: while p ≤ n do
11: LPF ← 0
12: PrevOcc← 0
13: psv ← PSVtext[p]
14: nsv ← NSVtext[p]
15: l← lcp(psv, nsv)
16: if T [p+ l] = T [psv + l] then
17: l← l + 1
18: LPF ← l + lcp(p+ l, psv + l)
19: PrevOcc← psv

20: else
21: LPF ← l + lcp(p+ l, nsv + l)
22: PrevOcc← nsv

23: if LPF > 0 then
24: Output-factor((p− PrevOcc, LPF))
25: else
26: Output-factor((T [p], 0))

27: p← p+ max(1, LPF)

17

2.5 Variable-byte coding

Variable-byte coding is a technique for compressing non-negative integers by reducing the
number of leading zeros from their binary representation [29; 24]. The technique was
originally introduced as part of the MIDI file format by the name variable-length quantity
[27]. Afterwards, the technique has been adopted under multiple different names. Some
of the well-known names for this technique include VInt1, varint2, varbyte [1], and VByte
[20; 13]. In this thesis, I use the name VByte.

VByte is a byte-aligned coding, where each byte-sized block contains seven bits of data
and a continuation bit. The continuation bit, stored in the most significant bit of each
byte, determines whether the VByte code continues in the following byte. To construct
a VByte code, given a non-negative fixed-length integer, we concatenate it seven bits
at a time with a continuation bit, starting from the least significant bit, until the most
significant set bit. The continuation bit in the least significant byte is set, while the other
continuation bits are left unset. The VByte encoded integer is then stored in big-endian
byte order.3 For example, integer 73 (1001001) encoded in VByte is 11001001, and
824 (11 00111000) is 00000110 10111000. Listing 2.1 contains the embodiments of VByte
encoding and decoding algorithms.

By carefully studying the VByte decoding algorithm, we observe that VByte coding con-
tains some redundancy, as it is possible to pad VByte encoded integers with bytes con-
sisting of only zero bits. For example, VBytes codes 11001001, 00000000 11001001, and
00000000 00000000 11001001 all correspond to integer 73. To remove this redundancy, we
alter the coding so that the smallest possible n + 1 byte code represents a value that is
strictly one greater than the largest value representable with n-byte code.4 As a result, the
altered VByte coding can encode integers in [27(n−1)+27(n−2)+. . .+27, 27n+27(n−1)+. . .+27)
using n > 1 bytes. This is a significant improvement over traditional VByte, which can
encode integers in range [27(n−1), 27n) using n > 1 bytes. Note that the behaviour for
single-byte codes remains unchanged. Both codings can encode integers in [0, 27) using
a single byte. This alteration in coding turns traditional VByte coding into a bijective

1Apache Lucene. https://lucene.apache.org/core/3_5_0/fileformats.html (April 13, 2022)
2Google Protocol Buffers. https://developers.google.com/protocol-buffers/docs/encoding

(April 13, 2022)
3Even though VByte is usually implemented using little-endian byte order, I chose to implement it

using big-endian byte order to simplify the decoding algorithm.
4The origin of this alteration is in varint coding used in Git version control system. https://github.

com/git/git/blob/master/varint.c (April 14, 2022)

https://lucene.apache.org/core/3_5_0/fileformats.html
https://developers.google.com/protocol-buffers/docs/encoding
https://github.com/git/git/blob/master/varint.c
https://github.com/git/git/blob/master/varint.c

18

1 encode_vbyte(val):
2 vbyte = (val & 0x7F) | 0x80
3 val = val >> 7
4 vbyte_len = 1
5 while val > 0:
6 vbyte = (vbyte << 8) | (val & 0x7F)
7 val = val >> 7
8 vbyte_len = vbyte_len + 1
9 while vbyte_len > 0:

10 write_byte(vbyte & 0xFF)
11 vbyte = vbyte >> 8
12 vbyte_len = vbyte_len - 1
13 return
14

15 decode_vbyte():
16 byte = read_byte()
17 res = byte & 0x7F
18 while byte < 0x80:
19 byte = read_byte()
20 res = (res << 7) | (byte & 0x7F)
21 return res

Listing 2.1: Traditional approach to VByte encoding and decoding algorithms. encode_vbyte(val)
takes a non-negative integer value as an argument and writes it to a byte stream as VByte code.
decode_vbyte() reads a VByte code from a byte stream and returns an integer value.

19

mapping, and therefore I refer to it as bijective VByte. The changes in implementation of
encoding and decoding algorithms are demonstrated in Listing 2.2, while the differences
in the resulting codes are demonstrated in Table 2.5.

Table 2.5: Comparison of 32-bit fixed-length binary to traditional VByte and bijective VByte.

n 32-bit fixed-length binary VByte VByte (bijective)

0 00000000 00000000 00000000 00000000 10000000 10000000
1 00000000 00000000 00000000 00000001 10000001 10000001
2 00000000 00000000 00000000 00000010 10000010 10000010
...

127 00000000 00000000 00000000 01111111 11111111 11111111
128 00000000 00000000 00000000 10000000 00000001 10000000 00000000 10000000
129 00000000 00000000 00000001 00000001 00000001 10000001 00000000 10000001
...

16383 00000000 00000000 00111111 11111111 01111111 11111111 01111110 11111111
16384 00000000 00000000 01000000 00000000 00000001 00000000 10000000 01111111 10000000
16385 00000000 00000000 01000000 00000001 00000001 00000000 10000001 01111111 10000001

...
16511 00000000 00000000 01000000 01111111 00000001 00000000 11111111 01111111 11111111
16512 00000000 00000000 01000000 10000000 00000001 00000001 10000000 00000000 00000000 10000000
16513 00000000 00000000 01000000 10000001 00000001 00000001 10000001 00000000 00000000 10000001

It is also possible to generalize the idea of VByte coding, including the bijective variant,
to other block widths. Instead of attaching a continuation bit to every seven data bits, we
attach it to every k data bits and call the coding VLQk, a variable-length quantity with
k data bits per block. Note that VByte is a byte-aligned special case of VLQ, namely
VLQ7. General VLQ codes may be useful for improving the compression ratio when
the distribution of integers is known, but this improvement usually comes with severe
performance degradation due to loss of byte alignment. For high throughput, it is best to
use VByte or word-aligned VLQ codes. One exception to this is VLQ3, or VNibble, as it
is possible to implement extraction of nibble-sized fields from a byte stream in an efficient
manner. While experimenting with the prototype data compressor, I utilized exclusively
the bijective variants of VByte, VNibble and general VLQ codes.

20

1 encode_vbyte(val):
2 vbyte = (val & 0x7F) | 0x80
3 val = val >> 7
4 vbyte_len = 1
5 while val > 0:
6 val = val - 1
7 vbyte = (vbyte << 8) | (val & 0x7F)
8 val = val >> 7
9 vbyte_len = vbyte_len + 1

10 while vbyte_len > 0:
11 write_byte(vbyte & 0xFF)
12 vbyte = vbyte >> 8
13 vbyte_len = vbyte_len - 1
14 return
15

16 decode_vbyte():
17 byte = read_byte()
18 res = byte & 0x7F
19 while byte < 0x80:
20 byte = read_byte()
21 res = res + 1
22 res = (res << 7) | (byte & 0x7F)
23 return res

Listing 2.2: Bijective variants of VByte encoding and decoding algorithms. The changes compared to
traditional VByte algorithms are highligted.

21

2.6 Unary coding

Unary coding is one of the simplest prefix coding schemes for integers [23, Sec. 2.1]. A
prefix code is uniquely decodable due to the fact that none of the codes is a prefix of
another code.

Prefix coding. Let Σ be the source alphabet and Γ be the code alphabet. Code C : Σ 7→ Γ∗

is a prefix coding if C(a) is not a prefix of C(b), ∀a, b ∈ Σ and a 6= b.

There are many ways to implement Unary coding and the choice depends on one’s specific
needs. With minor changes, Unary coding can be used to encode either positive or non-
negative integers. It is also possible to extend Unary coding to handle signedness. In this
thesis, Unary coding is exclusively utilized for the variable length portion of Golomb-Rice
codes introduced in the next section and therefore a simple variant which can encode non-
negative integers is sufficient. The chosen variant encodes integer n as n 0-bits, followed
by a single 1-bit.

Unary(n) =
n zeros︷ ︸︸ ︷

000 . . . 0 1

Alternatively, the bits could be reversed, but the particular encoding was chosen as it
provides a possibility for a performance optimization introduced later in Section 3.7.3.
Table 2.6 contains examples of Unary codes, while the encoding and decoding algorithms
are embodied in Listing 2.3.

22

Table 2.6: Examples of Unary codes. The stop character ‘1’ has been highlighted by separating it from
the actual value with a blank character.

n binary Unary code

0 0 1
1 1 0 1
2 10 00 1
3 11 000 1
4 100 0000 1
5 101 00000 1
6 110 000000 1
7 111 0000000 1
8 1000 00000000 1
9 1001 000000000 1

1 encode_unary(val):
2 while val > 0:
3 write_bit(0)
4 val = val - 1
5 write_bit(1)
6 return
7

8 decode_unary():
9 res = 0

10 bit = read_bit()
11 while bit != 1:
12 res = res + 1
13 bit = read_bit()
14 return res

Listing 2.3: Algorithms for encoding and decoding integers with Unary coding. encode_unary(val)
takes a non-negative integer value as an argument and encodes it to a bit stream as Unary code.
decode_unary() reads an Unary code from a bit stream and returns an integer value.

23

2.7 Golomb-Rice coding

Golomb coding is a parameterized prefix coding for non-negative integers [6; 23, Sec. 2.23].
The encoding format depends on the choice of the parameter m (modulus), which is used
in encoding the integer in two parts. The first part is always variable length, but the
second part depends on the choice of m. If m is a power of two, then the second part
has a fixed length. Otherwise, the second part too has variable length. The special case,
where m is a power of two, is called Golomb-Rice coding [21; 23, Sec. 2.24]. Even though
Golomb-Rice coding might in some scenarios have an adverse effect towards encoding
efficiency, its main advantage is increased simplicity, which often leads to better encoding
and decoding speed.

To construct Golomb-Rice code for integer n, two quantitites q (quotient) and r (remain-
der) need to be computed first by

q =
⌊
n

m

⌋
, and

r = n− qm.

The encoded representation is formed by concatenating q encoded in Unary, with a fixed
length binary representation of r of log2 m bits. Table 2.7 contains examples of Golomb-
Rice codes with different bases, while the encoding and decoding algorithms are embodied
in Listing 2.4.

In this thesis, I use “Golomb-Ricek” and “GRk” to refer to Golomb-Rice coding that uses
base k, corresponding to modulus m = 2k.

24

Table 2.7: Examples of Golomb-Rice codes with different bases. The two parts of Golomb-Rice codes
have been highlighted by separating the Unary encoded quotient from the fixed length remainder with a
blank character.

n binary GR1 GR2 GR3 GR4

0 0 1 0 1 00 1 000 1 0000
1 1 1 1 1 01 1 001 1 0001
2 10 01 0 1 10 1 010 1 0010
3 11 01 1 1 11 1 011 1 0011
4 100 001 0 01 00 1 100 1 0100
5 101 001 1 01 01 1 101 1 0101
6 110 0001 0 01 10 1 110 1 0110
7 111 0001 1 01 11 1 111 1 0111
8 1000 00001 0 001 00 01 000 1 1000
9 1001 00001 1 001 01 01 001 1 1001
10 1010 000001 0 001 10 01 010 1 1010
11 1011 000001 1 001 11 01 011 1 1011
12 1100 0000001 0 0001 00 01 100 1 1100
13 1101 0000001 1 0001 01 01 101 1 1101
14 1110 00000001 0 0001 10 01 110 1 1110
15 1111 00000001 1 0001 11 01 111 1 1111
16 1 0000 000000001 0 00001 00 001 000 01 0000

25

1 encode_golomb_rice(val, m):
2 encode_unary(val >> m)
3 if m > 0:
4 mask = 1 << (m - 1)
5 while mask > 0:
6 if (val & mask != 0)
7 write_bit(1)
8 else
9 write_bit(0)

10 mask = mask >> 1
11 return
12

13 decode_golomb_rice(m):
14 res = decode_unary() << m
15 if m > 0:
16 rem = 0
17 while m > 0:
18 rem = (rem << 1) | read_bit()
19 m = m - 1
20 res = res | rem
21 return res

Listing 2.4: Algorithms for encoding and decoding integers with Golomb-Rice coding.
encode_golomb_rice(val, m) takes a non-negative integer value and a non-negative Golomb-Rice base
as an argument, and writes the integer value to a bit stream as Golomb-Rice code with specified base.
decode_golomb_rice(m) takes a non-negative Golomb-Rice base as an argument, reads a Golomb-Rice
code with specified base from a bit stream, and returns an integer value.

3 Methods

In this chapter, I introduce the individual building blocks of the prototype data compres-
sors discussed in Chapter 4. First, I define some general aspects concerning the exper-
iments discussed later in this chapter. I continue by defining a compressed file format,
which facilitates compression and decompression in practice. After that, I discuss the two
most computationally intensive subtasks of suffix array-based data compression, which are
the construction of the suffix array and the lcp-comparisons performed during Lempel-Ziv
factorization. Subsequently, I introduce four factorization algorithms with varying de-
grees of greediness that are based on the greedy KKP3 factorization algorithm discussed
in Chapter 2. After factorization, I describe the base encoding, which provides the actual
compression, and three enhancements that can be layered on top of it for additional im-
provements in the compression ratio. Finally, I close this chapter by describing the general
principles that contribute to the performance of prototype data compressors.

3.1 General remarks

The prototype data compressor is called SALZ, which is an acronym of suffix array-based
Lempel-Ziv data compressor. SALZ was developed with the C programming language,
and it is compiled with GCC 9.3.0 by a CMake based build system. The compilation
uses flags -Wall, -Werror, -Wextra and -pedantic1 and optimization level -O3. SALZ
links against the 32-bit version of the libsais2 suffix array construction library, which is
built using -Wall compilation flag and optimization level -O3. The experiments rely on
data being processed as text consisting of byte alphabet symbols and, therefore, the input
and output buffers are simple byte arrays. The extra space used by SALZ is allocated in
4-byte words, which should be considered when discussing memory usage. All asymptotic
complexities refer to a variable n, the length of the text, which corresponds to the size
of the uncompressed file in bytes. SALZ was developed on a system that uses little-
endian byte order, and some of the advanced features and methods described in this
chapter rely on that. Parallelization in the form of multithreading is not used, but some

1One of the experimental lcp-comparison methods in Section 3.4.1 uses additionally the -march=native
compilation flag. However, that method was not used in any of the final compressor designs.

2https://github.com/IlyaGrebnov/libsais (May 6, 2022)

https://github.com/IlyaGrebnov/libsais

27

of the advanced techniques use instruction level parallelism or vectorised instructions for
increased performance.

3.2 Compressed file format

To facilitate the decompression of compressed data at some later point, at least some
metadata is needed besides the compressed payload. The prototype data compressor uses
the concept of block size to compress files in segments of equal size, with the exception
that the last segment may be shorter. The block size can range from 32kiB to 128MiB,
with the default being 64kiB. The block size is encoded in VByte at the very beginning
of the compressed data. This allows the decompression process to allocate a sufficient
amount of resources for decompression, and it acts as an additional sanity check against
malformatted segments.

To simplify decompression, each compressed segment is preceded by its size encoded in
VByte. This allows the decompressor to process a single whole segment of compressed
data at a time, therefore eliminating the need to shuffle buffers and minimizing the amount
of copying of data between buffers. This means that decompression is performed exactly
one compressed segment at a time. Otherwise, the decompressor would need to handle
continuous decompression and have the means to request more data to complete the
decompression of a segment and store data belonging to the next segment for future use.

Each compressed segment consists of streams that, like compressed segments, are preceded
by their size encoded in VByte. The file format does not reach any deeper, instead
the stream contents and their utilization depend solely on the chosen encoding. The
streams were introduced to facilitate some of the advanced encoding methods described
in Section 3.6. The layered file format is illustrated in Figure 3.1.

Besides the minimal metadata that is used by SALZ, a fully featured data compressor
could benefit from additional types of metadata. In addition to the block size, the header
of the file could store additional information about the compressed file. Examples of such
could be a file format identifier to determine the file type, or additional information about
the data compressor or encoding, to support backward compatibility if new features are
added to the data compressor at some later point. Additional sanity checks in the form
of segment-specific checksums would allow ensuring data integrity.

28

Figure 3.1: The compressed file format used by SALZ.

3.3 Suffix array construction

Suffix array construction is computationally intensive, and therefore a great deal of care
should be taken when choosing a method for it. For typical stringology, the suffix array
is usually constructed for the whole text. However, from the perspective of a general-
purpose data compressor, constructing the suffix array of the whole file might not be
feasible or even possible with large files, because of limited computational resources. Suffix
array construction has been heavily studied, and there are myriad methods with different
asymptotic complexities and practical differences. Since the focus of the thesis is on
implementing a data compressor, I used existing methods that are readily available.

The current default choice for suffix array construction is the mature and fast libdivsufsort1

library by Yuta Mori. The asymptotic running time of libdivsufsort is O(n log n) and it
uses 5n + O(1) bytes of memory, which includes the memory required to store the input
and output. I performed the preliminary benchmark to determine the effects of block size
on suffix array construction using libdivsufsort with block sizes in the range 1kiB to 1GiB,
in powers of two. As the benchmark payload, I used a collection of 100MB files, which are
described later in Section 4.1. Based on the benchmark, I observed that the best runtimes
were achieved with block sizes in the range 32kiB to 128kiB. I observed the total time
spent in suffix array construction to increase as the block size diverges from the block size
corresponding to the minimum time. The behaviour was further studied with the perf

and valgrind programs, which revealed the phenomenon explaining the effect. When the
1https://github.com/y-256/libdivsufsort (May 6, 2022)

https://github.com/y-256/libdivsufsort

29

block size increases, the number of cache misses increases because of the inefficient memory
access pattern of the suffix array construction algorithm. As the block size decreases, the
amount of work increases with a greater number of machine instructions.

A recent competitive alternative to libdivsufsort in suffix array construction is libsais1

library by Ilya Grebnov. The time complexity of libsais is O(n) and it uses at most 7n
bytes of memory.2 It is based on the SA-IS [18] algorithm, but it uses the capabilities of
modern hardware to tackle the high constants hidden by the asymptotic notation. It is
considerably faster than libdivsufsort on modern hardware; the improvements diminishing
on older hardware. The best performance with libsais is obtained with block sizes between
32kiB to 1MiB, the higher end yielding better results. The increase in running time as the
block size increases is not nearly as dramatic as with libdivsufsort. The graph in Figure 3.2
illustrates the above observations on a single payload.

Figure 3.2: Suffix array construction times for varying block sizes with libdivsufsort and libsais libraries,
benchmarked on silesia payload. Refer to Section 4.1 for more information about the payload.

10 15 20 25 30

10

20

30

Block size (log2)

SA
co
ns
tr
uc
tio

n
tim

e
(s

) libdivsufsort
libsais

Besides the suffix array construction times, I also measured the time spent in disk I/O and
the mean LCP values across all segments. Disk I/O times follow a similar pattern as the
suffix array construction time, with the best time observed with block sizes in the range
256kiB to 4MiB. However, I observed the disk I/O times to be insignificant when compared
to the suffix array construction times. I also observed the mean LCP values to vary heavily
depending on the payload. As expected, repetitive and well-compressible payloads had

1https://github.com/IlyaGrebnov/libsais (May 6, 2022)
2In addition to worst case extra memory requirement of 2n bytes, 5n bytes are required to store the

input and output.

https://github.com/IlyaGrebnov/libsais

30

high mean LCP across all block sizes. With some individual payloads, the amount of
repetition was observed to sharply rise at some specific block size, indicated by a great
increase in mean LCP over a single step in block size. Some payloads showed relatively low
mean LCP values across all block sizes, which seemed like a favorable scenario for trying
to experiment with suffix array construction via traditional string sorting algorithms.

Because of the mean LCP observations, I also benchmarked the suffix array construction
via ordinary string sorting algorithms. In the benchmark, I made use of the enormous
collection of string sorting algorithms by Tommi Rantala.1 I benchmarked all 147 se-
quential string sorting algorithms of the collection against libdivsufsort. Due to such many
algorithms, I limited the block sizes to the range 64kiB to 4MiB and truncated the test
payloads to 10MB. Over all payloads and block sizes, suffix array construction via string
sorting was considerably slower than utilizing libdivsufsort. Even at its best, the construc-
tion of the suffix array via string sorting took twice the time of libdivsufsort. No single
string sorting algorithm was superior, as the most suitable algorithm varied according to
the payload and block size. With string sorting algorithms, the effect of increasing the
block size was even more fatal than with libdivsufsort. As expected, I observed a low mean
LCP to correspond to better performance with string sorting algorithms.

After experimenting with suffix array construction, I chose libsais as the suffix array
construction method for SALZ because of its superior performance and currently active
development.

3.4 Lcp-comparison

As mentioned at the start of this chapter, lcp-comparison is central to Lempel-Ziv factor-
ization. It is used to determine the longest previous factors for factorized text positions
and makes up most work performed during the post suffix array construction phase of
Lempel-Ziv factorization. The amount of work grows depending on the number of fac-
torized text positions and the number of previous positions compared per each factorized
position. With greedy factorization, the number of factorized positions is a subset of
all positions dependent on the repetitiveness or compressibility of the text, while with
non-greedy factorization, all text positions might be factorized. When factorization is
performed using a suffix array, there are at most two candidates for the longest previous
factor for each text position.

1https://github.com/rantala/string-sorting (May 6, 2022)

https://github.com/rantala/string-sorting

31

A naïve (and indeed natural) approach to lcp-comparison compares two positions of a byte
buffer, single byte at a time, until the first mismatching byte is found. The number of
bytes compared until the first mismatching byte corresponds to the length of the longest
common prefix of the two positions. Listing 3.1 embodies such a naïve lcp-comparison
function.

1 size_t lcp_cmp(uint8_t *text, size_t text_len, size_t pos1, size_t pos2)
2 {
3 size_t len = 0;
4 if (pos2 < pos1)
5 swap(pos1, pos2);
6 while (pos2 + len < text_len && text[pos1 + len] == text[pos2 + len])
7 len++;
8 return len;
9 }

Listing 3.1: Naïve single byte-at-a-time lcp-comparison function.

The naïve lcp-comparison function can be sped up by performing the comparison multiple
bytes at a time, in a seemingly parallel manner. On the other hand, if the positions are
known to share a common prefix of some known length, it is possible to skip comparing that
part and instead start the comparison from an offset, reducing the number of compared
bytes. The possibility of starting the comparison from an offset depends on the availability
of additional information. Since the used factorization techniques are based on the suffix
array, such information is fortunately available. In this section, I describe techniques that
use either platform native word size or vectorised instructions to perform lcp-comparison
with words, a method to reduce the number of compared bytes that applies to the setting
of non-greedy factorization, and finally observations about the performance of the two
methods on their own and when combined.

3.4.1 Faster comparison with words

Most modern machines process data with a native 8-byte word size, which allows perform-
ing lcp-comparison multiple bytes at a time. A straightforward and effective approach is
to augment the naïve lcp-comparison algorithm by reading and comparing 8-byte words
until a first mismatching word is encountered and, at that point, revert to a single-byte
comparison.

32

A more sophisticated approach is to make use of the TZCNT instruction, which counts the
number of trailing zero bits in a word. After reading the two 8-byte words, instead of
comparing them to each other, we compute a bitwise XOR between them. If the result is
zero, we know the words were identical and we can continue to try the next two words.
However, if the result is non-zero, we know that there is a mismatch somewhere inside the
words. By computing the number of trailing zeroes in the result, we determine the number
of matching bits until the first mismatching bit. Since we are interested in the number of
matching bytes, we can divide the number of matching bits by 8 to determine the number
of matching bytes until the first mismatching byte. We can then compute the lcp value
by summing the total length of fully matched words with the number of matching bytes
within the mismatching words as computed with TZCNT. Since we do not want to read past
the allocated memory area, we need to fall back to the single-byte comparison whenever
there are less than 8 bytes left until the end of the string.

Below is a demonstration of using the technique described above to compute the longest
common prefix for strings A = “abbbbbbb” and B = “afffffff”. From the final XOR result,
we see that the trailing 10 bits are matching, which corresponds to a mismatch in the
second byte, i.e., only the first byte is matching. Note that the example uses little-endian
byte order.

A

8 byte word︷ ︸︸ ︷
‘a’ (0x61)
01100001

‘b’ (0x62)
01100010 . . .

‘b’ (0x62)
01100010

B
‘a’ (0x61)
01100001

‘f’ (0x66)
01100110 . . .

‘f’ (0x66)
01100110

XOR 00000000 00000100 . . . 00000100

The possibility of unaligned memory access is a concern, as in general, the factors have
lengths that cause them to start or end between word boundaries. Even though most
modern platforms can perform unaligned memory accesses, even without negative effects
on computation cost, it might cause fatal problems including hardware crashes on some
platforms.1 And even if the platform supports unaligned memory access, it is still an
undefined behaviour according to the C standard, which may cause problems depending
on the compiler or chosen compiler options. One of the simplest mitigations is to make use
of the memcpy system call, which a clever compiler can optimize in a platform-supported

1https://lemire.me/blog/2012/05/31/data-alignment-for-speed-myth-or-reality/ (May 6,
2022)

https://lemire.me/blog/2012/05/31/data-alignment-for-speed-myth-or-reality/

33

way. For example, with x86-64 instruction set, calling memcpy with a constant size of
8 bytes, will emit a single MOV instruction, while with ARMv5, the compiler will emit
instructions that build an 8-byte word with the help of single byte moves and bit shifting.
A fully portable lcp-comparison method using 8-byte words, augmented with TZCNT is
showed fully in Listing 3.2.

1 size_t lcp_cmp8(uint8_t *text, size_t text_len, size_t pos1, size_t pos2)
2 {
3 size_t len = 0;
4 if (pos2 < pos1)
5 swap(pos1, pos2);
6 while (pos2 + len < text_len - 7) {
7 uint64_t val1, val2;
8 memcpy(&val1, &text[pos1 + len], 8);
9 memcpy(&val2, &text[pos2 + len], 8);

10 uint64_t diff = val1 ^ val2; // XOR
11 if (diff != 0)
12 return len + (__builtin_ctzll(diff) / 8); // TZCNT
13 len += 8;
14 }
15 while (pos2 + len < text_len && text[pos1 + len] == text[pos2 + len])
16 len++;
17 return len;
18 }

Listing 3.2: Lcp-comparison performed using 8-byte words, augmented with TZCNT instruction. The
method expects little-endian byte order.

On platforms supporting vectorised instructions, lcp-comparison can be performed with
even larger words. The SSE2, AVX2 and AVX-512 instruction set extensions allow the
use of words with sizes 16, 32, and 64 bytes, respectively. Since AVX-512 support is still
quite rare, I discuss here only SSE2 and AVX2 based methods. The basic idea is quite
similar to the previously described methods using 8-byte words. We first read two 16-byte
words with the MOVDQU instruction, which supports unaligned access. After reading the
words, we compare them for equality with PCMPEQB instruction, which produces a 16-byte
comparison result. PCMPEQB compares the individual bytes in the corresponding positions
of the words, and, in the case of equality, sets the byte in the corresponding position
of the comparison result to 0xFF, and otherwise sets it to 0x00. We then convert the
bytes of the comparison result into individual bits of a 4-byte comparison mask with the
PMOVMSKB instruction, which extracts the most significant bit of each individual byte in

34

the comparison result. Finally, we use bitwise NOT to receive a final comparison mask,
where each zero bit corresponds to a matched byte in the original word and each non-zero
bit corresponds to a mismatched byte. Since only the lower half of the mask is used, the
upper half needs to be unset before proceeding to the final step. The final comparison
mask is similar to the final 8-byte word of the previous technique, except this time each
single bit corresponds to a matched byte. If the comparison mask is zero, we continue
matching with words. Otherwise, we count the trailing zeros in it to derive the number
of matched bytes before the first mismatched byte. The number of matched bytes overall
is then the sum of the total length of fully matched words and the last matching bytes
computed with TZCNT. In order to not read past the allocated memory area, we again
need to fall back to a single-byte comparison if there are less than 16 bytes left until the
end of the string. Listing 3.3 contains an embodiment of lcp-comparison with 16-byte
words performed with the help of the SSE2 instruction set extension. To convert the
function to perform lcp-comparison with 32-byte words with the help of AVX2 instruction
set extension, MOVDQU, PCMPEQB and PMOVMSKB instructions need to be replaced with their
corresponding AVX2 variants VMOVDQU, VPCMPEQB and VPMOVMSKB. In addition, the upper
half of the comparison mask must not be unset with the 32-byte version as VPMOVMSKB

uses the whole 4-byte integer.

Below is a demonstration of using the technique described above to compute the longest
common prefix for texts A = “abbbbbbbbbbbbbbb” and B = “accccccccccccccc”. The
number of trailing zeros in the final NOT result indicates that only the first bytes are
matching. Note that the example uses little-endian byte order, which results in a difference
in ordering between PCMPEQB and PMOVMSKB results.

A

16 byte word︷ ︸︸ ︷
‘a’ (0x61)
01100001

‘b’ (0x62)
01100010 . . .

‘b’ (0x62)
01100010

B
‘a’ (0x61)
01100001

‘c’ (0x63)
01100011 . . .

‘c’ (0x63)
01100011

PCMPEQB
0xFF

11111111
0x00

00000000 . . .
0x00

00000000

PMOVMSKB
16 bit integer︷ ︸︸ ︷

00000001 00000000

NOT 11111110 11111111

35

1 size_t lcp_cmp16(uint8_t *text, size_t text_len, size_t pos1, size_t pos2)
2 {
3 size_t len = 0;
4 if (pos2 < pos1)
5 swap(pos1, pos2);
6 while (pos2 + len < text_len - 15) {
7 __m128i val1 = _mm_loadu_si128((void *)&text[pos1 + len]); // MOVDQU
8 __m128i val2 = _mm_loadu_si128((void *)&text[pos2 + len]);
9 __m128i cmp = _mm_cmpeq_epi8(val1, val2); // PCMPEQB

10 int cmpmask = _mm_movemask_epi8(cmp); // PMOVMSKB
11 int diff = ~cmpmask; // NOT
12 diff &= 0x0000ffff; // Fix MSB bits
13 if (diff != 0)
14 return len + __builtin_ctz(diff); // TZCNT
15 len += 16;
16 }
17 while (pos2 + len < text_len && text[pos1 + len] == text[pos2 + len])
18 len++;
19 return len;
20 }

Listing 3.3: Lcp-comparison performed using 16-byte words with the help of 128-bit SSE2 and TZCNT
instructions. The method can be converted to perform comparison in 32-byte words by converting in-
structions to corresponding 256-bit AVX2 versions and skipping the MSB correction step. The method
expects little-endian byte order.

36

3.4.2 Reduced number of comparisons

With greedy Lempel-Ziv factorization, the number of symbol comparisons performed by
the naïve lcp-comparison algorithm is linear to the length of the factorized text. How-
ever, the minimum-cost factorization algorithms need to factorize all text positions, which
increases the number of symbol comparisons to quadratic if comparisons are performed
naïvely. Fortunately, the properties of the suffix array and the LPF array can be exploited
to obtain an algorithm that can reduce the number of symbol comparisons to linear.

In [3], Crochemore and Ilie showed how the LPF and PrevOcc arrays could be obtained
in linear time using only the suffix array. Their approach relied on a key property of the
LPF array, LPF [i] ≥ LPF [i − 1] − 1, to minimize the number of symbol comparisons.
This property holds even when only positions corresponding to suffixes that are lexico-
graphically smaller or greater are considered, and therefore allows the computation of full
LPF and PrevOcc arrays in linear time, using the PSV and NSV arrays, as described
in Section 2.4.1.

Implementing the Crochemore and Ilie’s approach is a simple matter of storing the lengths
of the longest common prefixes associated with PSV and NSV positions for the current
factorized positions and using them in the factorization of the next position. SALZ stores
the needed information in a lcp-comparison context structure that is demonstrated in
Listing 3.4. Additionally, the lcp-comparison function must be able to start the comparison
from an offset. Listing 3.5 demonstrates a variant of the naïve lcp-comparison function,
which has the capability of starting the comparison from an offset that is supplied as
an additional argument. To compute the factor starting at the current position i, the
algorithm takes the results of factorizing the previous position i− 1 and decrements both
of them by one. If the resulting values are positive, they are used to skip the corresponding
number of bytes for lcp-comparison between positions i and both PSV [i] and NSV [i].
Finally, the obtained results are stored in the lcp-comparison context structure, for use in
the factorization of the next position i+ 1. The algorithm is demonstrated in Listing 3.6.

This technique eliminates comparing symbols that are known to match. Removing these
unnecessary symbol comparisons results in asymptotically less work and practically faster
comparison in all scenarios. The only exception is a text which contains no factors at all,
in which case the performance remains unchanged.

37

1 struct lcp_cmp_ctx {
2 size_t psv_len; // lcp between previous PSV and previous
3 // factorization positions
4 size_t nsv_len; // lcp between previous NSV and previous
5 // factorization positions
6 };

Listing 3.4: Lcp-comparison context structure that stores the results of previous factorization.

1 static size_t lcp_cmp(uint8_t *text, size_t text_len, size_t common_len,
2 size_t pos1, size_t pos2)
3 {
4 size_t len = common_len;
5 if (pos2 < pos1)
6 swap(pos1, pos2);
7 while (pos2 + len < text_len && text[pos1 + len] == text[pos2 + len])
8 len++;
9 return len;

10 }

Listing 3.5: Naïve single byte-at-a-time lcp-comparison function with a capability to start comparison
at an offset.

38

1 static void lz_factor(struct lcp_cmp_ctx *ctx, uint8_t *text,
2 size_t text_len, size_t pos, int32_t psv, int32_t nsv)
3 {
4 size_t psv_len = 0;
5 size_t nsv_len = 0;
6

7 if (psv != -1) {
8 size_t common_len = max(0, ctx->psv_len - 1);
9 psv_len = lcp_cmp(text, text_len, common_len, psv, pos);

10 }
11

12 if (nsv != -1) {
13 size_t common_len = max(0, ctx->nsv_len - 1);
14 nsv_len = lcp_cmp(text, text_len, common_len, nsv, pos);
15 }
16

17 ctx->psv_len = psv_len;
18 ctx->nsv_len = nsv_len;
19 }

Listing 3.6: Lempel-Ziv factorization algorithm that minimized the number of symbol comparisons using
LPF array key property LPF [i] ≥ LPF [i− 1]− 1.

39

3.4.3 Lcp-comparison performance

The technique to perform comparison with words can be applied to all Lempel-Ziv fac-
torization variants, which are introduced in Section 3.5. In the case of greedy and lazy
non-greedy variants, there is no need to factorize all positions. In that setting, the 8-byte
word size provides the largest improvement, resulting in a 7.5%–38.6% improvement in
factorization time compared to performing lcp-comparison a single byte at a time. 16-
and 32-byte word sizes were measured to result in up to 36.5% and 35.4% improvements,
respectively. In all cases, the amount of improvement decreases when the block size is
increased. In addition, using 16- and 32-byte word sizes with the largest block size of
128MiB results in slight performance degradation.

With the minimum-cost algorithms, the improvements are even more significant as all
text positions are factorized. In this setting, the best improvements were obtained by
performing the lcp-comparison with a 32-byte word size, which resulted in a 78.1%–84.5%
improvement in factorization time, when compared to a single-byte comparison. 16- and
8-byte word sizes resulted in 76.8%–82.2% and 73.4%–79.4% improvements, respectively.

The technique to reduce the number of compared symbols relies on the factorization of
consecutive text positions, which makes it applicable mainly to minimum-cost algorithms.
It could be adapted to the factorization of consecutive literal positions with greedy and
lazy non-greedy variants, but I did not pursue this direction. By utilizing this technique, I
observed performance improvements of 69.9%–83.9%, when compared to performing lcp-
comparison a single byte at a time. The performance benefit obtained by reducing the
number of compared symbols is therefore quite comparable to performing lcp-comparison
with words.

When the above techniques are used in combination, we observe both improvement and
degradation of performance depending on the chosen block size. With a word size of 8
bytes, I observed improvements of 13.4%–42.5% with block sizes between 32kiB and 16MiB
and degradation up to 16.3% with larger block sizes up to 128MiB, when compared to a
single byte-at-a-time comparison with a reduced number of symbol comparisons. A 16-
byte word size resulted in a 3.6%–32% improvement and up to a 27.5% degradation with
the same block sizes. Finally, a 32-byte word size resulted in a 5.0%–25.9% improvement
with block sizes between 32kiB and 8MiB and degradation up to 38.7% with larger block
sizes up to 128MiB.

Because of the significant increase in suffix array construction time with larger block

40

sizes, we would like to avoid block sizes larger than 8MiB. We can therefore neglect the
degradation caused by combining these techniques with larger block sizes. By focusing only
on block sizes between 32kiB and 16MiB, we obtain a performance improvement of 82.7%–
87.0% over the naïve baseline implementation, by using the combination technique with
platforms native word size. Therefore, I use the 8-byte word size in all SALZ variants. In
addition, the minimum-cost variants use the technique to reduce the number of compared
symbols for further improvement. A micro-benchmark corresponding to different lcp-
comparison techniques can be found from Appendix B.

3.5 Practical Lempel-Ziv factorization

While the final compressed size depends mostly on the encoding of factor information,
the qualities of factors produced by the factorization stage also play a big role. The
traditional greedy approach to Lempel-Ziv factorization is optimal regarding the number
of factors produced, but it rarely corresponds to optimal results regarding the compressed
size. In this section, I describe four different factorization methods with varying degrees
of greediness, which are all based on the greedy KKP3 factorization algorithm. I start
by introducing factor pruning heuristics to the greedy KKP3 factorization algorithm and
subsequently introduce a variable amount of laziness to it. In addition, I describe two
factorization algorithms capable of minimum encoding cost optimization. Since the effects
of these factorization algorithms depend on the encoding, I discuss the results later in
Chapter 4.

3.5.1 Greedy factorization

The main problem when applying traditional LZ77 factorization to data compression is
that the factorization alone does not reflect the overall encoding cost. Trying to come up
with an efficient encoding for plain LZ77 factorization is difficult as with any encoding,
fixed or variable length, the encoded lengths of short factors can easily exceed the length
of the original data. Because of this, LZSS factorization is generally a more suitable
approach as it enhances the traditional LZ77 factorization with the distinction of literals
from factors. However, even though LZSS significantly reduces this adverse behaviour, it
does not entirely eliminate it.

One of the most often used strategies to mitigate the above drawbacks is to limit the

41

maximum factor offset, which can further be used to limit the minimum factor length. By
adding an upper bound to the factor offset, the length of its fixed length representation
can be bounded too. Ideally, the upper bound should be a power of two for encoding
efficiency. The upper bound of the encoded factor offset can then be used to determine
the lower bound for the factor length. The bound should be set to the first factor length,
that, with the given factor offset restriction, can provide an encoded factor which uses
less space when compared to encoding consecutive literals. Pruning the factors in this
way results in an increased number of factors and generally mandates the use of a sliding
window factorization algorithm to maintain a better compression ratio.

With suffix array-based Lempel-Ziv factorization, using a sliding window is not a practical
option as dynamic updates to the suffix array come with high cost. Emulating a sliding
window by constructing the suffix array of a block that is larger than the usable window
is generally a weak option too. Because the suffix array-based Lempel-Ziv factorization
algorithm provides factors that are the lexicographically closest, the probability that a
factor is found outsize the usable window increases with the block size. It is therefore
necessary that the encoding must be able to represent factor offsets up to the suffix array
block size. The best scenario is therefore to use a variable length encoding for factor
offsets. This, in turn however causes inconvenience when determining the lower bound for
the factor lengths. If the minimum factor length is set too low, short factors with large
offsets end up having encoded representations that use more space compared to consecutive
literals. On the other hand, if the lower bound for the factor length is too high, the data
compressor might end up encoding consecutive literals instead of a short factor with a
small offset, which would have a more compact encoded representation. Therefore, with
variable length representations, factors should also be pruned based on either a heuristic
or by comparing the actual encoded lengths.

The approach that is used in SALZ is to always choose the longer of the factor candidates,
or, in the case of factors with equal length, the candidate that has a smaller offset. The
encoded length of the candidate factor’s offset is then compared to the actual factor length.
Since, with LZSS-based encoding, a factor length is a sufficiently close approximation to
the cost of consecutive literals, factors with offsets greater than or equal to the factor
length can be discarded. The greedy variant of SALZ is strongly based on the KKP3
factorization algorithm and it diverges from it only by having a lower bound of 3 for
factor length and by additionally pruning the factors based on their offset. Based on a
benchmark, both increasing and decreasing the lower bound set for factor length lowered

42

the compression ratio.

Discarding a factor causes the data compressor to emit a literal and immediately continue
factorization at the next position. Since the upper bound for the factor offset is defined by
the block size, there is a constant upper bound for the discardable factors length. There-
fore, the pruning does not cause an increase in asymptotic time complexity. Asymptotic
complexity remains O(n) and space usage is 12n+O(1) bytes, as with the original KKP3
factorization algorithm. Even though the factorization variant is called greedy, it is in fact
non-greedy due to not using all produced factors. It is, however, as greedy as is practical.

3.5.2 Lazy non-greedy factorization

With greedy factorization, we only use a factor if it saves space compared to encoding the
occurrence as consecutive literals. Moving further into the non-greedy factorization, we
concern ourselves with the possibility that using a future factor occurring to the right of
the current position would provide us with a better compression ratio than the factor at
the current factorization position. This consideration is not novel and has been used both
in practice and discussed in scientific literature [8; 22, Sec. 6.25]. Before introducing the
technique used in SALZ, I first describe the two antecedent methods from which I derived
the technique.

The first of the methods appears in the well-known and widely used gzip program. During
factorization, before emitting a factor, gzip checks if there is a longer factor available at
position immediately to the right of the current position [22, Sec. 6.25]. If a longer factor
is found, gzip emits a literal, followed by the longer factor, instead of emitting the original
factor. The second one is a generalization of the gzip method with a predefined amount
of laziness, introduced by Horspool in [8]. Horspool’s method relies on the notion that
skipping multiple positions (rather than just a single one) might be profitable. It uses
a constant-sized “look-ahead buffer” in which it looks for a factor that extends past the
current factor. If it finds such, and combining it with a partial application of the current
factor would result in a more succinct encoded representation, the encoder emits the
original factor as shortened, followed by the longer factor instead of the original factor
in its full length. In practice, the Horspool method, with a look-ahead buffer of size 1,
corresponds to the gzip method.

The weakness of the gzip method is that it checks only the next position for each factor
and therefore it cannot use factors occurring further to the right. The major strength

43

is that checking only one adjacent position adds only a little extra computation to the
factorization. On the other hand, Horspool’s method checks a constant number of positions
for every factor, which, depending on the number of checked positions, might not be a
significant compression improvement over the gzip method or could increase the amount
of computation significantly. SALZ strives to benefit from checking multiple positions
without increasing the amount of computation significantly by utilizing the gzip approach
in a lazy manner. In case we find a longer factor at the next position, we emit a literal
and instead of committing to the longer factor, we continue the factorization from the
next position. The negative impact is that the compressor ends up sometimes emitting
consecutive literals, which might result in larger encoding than a shortened factor would
have. However, the positive impact is that SALZ can improve factors in a continuous
manner beyond the next position with a minimal increase in the amount of computation.
The asymptotic time complexity can be kept in O(n) by using the technique to reduce the
number of symbol comparisons during factorization, which was introduced in Section 3.4.2.
The increase in used extra space is O(1) as only a constant number of new local variables
are introduced.

3.5.3 Minimum-cost factorization

We can achieve even better results with an algorithm that computes the total cost to
encode a text with a predefined encoding. I found the initial inspiration towards minimum-
cost optimization while comparing SALZ to LZ41 and its high compression variant LZ4HC.
LZ4HC can produce an encoding with a significantly greater compression ratio than LZ4
at the cost of significantly increased computation time. Study of the source code reveals
that when the level of compression increases, the number of compared positions increases
and finally, with LZ4HC, a cost optimization heuristics are included.

The key notion in the minimum-cost heuristic of SALZ is that for each position of the
text, there are at most three available transitions to right. For each position, with the
exception of the last one, there is a transition with a length of 1 byte, corresponding to
a literal. Additionally, there are at most two factor transitions with length greater than
equal to 1 byte due to using the suffix array-based Lempel-Ziv factorization algorithm.
As a result, a directed acyclic graph (DAG), with unique source and sink vertices, can
represent the text and all available transitions. The symbols of the text correspond to
vertices of the DAG and all literals and factors form the edges of it. Additionally, the

1https://lz4.github.io/lz4/ (May 6, 2022)

https://lz4.github.io/lz4/

44

DAG is already in topological order, as each transition leads to the right in the text. In
principle, the approach is similar to one introduced by Ferragina et al. in [5]. However,
the advantage of SALZ’s approach is that costly pruning of transitions is not needed, as
the suffix array-based approach to factorization itself limits the number of transitions.

With fixed encoding, we can assign costs to all transitions by defining a cost function.
Now the matter of computing the minimum cost to encode the text can be determined by
simply computing the shortest path from the source to sink with the edge weights given
by the cost function. Such an algorithm iterates over all vertices of the DAG in topo-
logical order and assigns each adjacent vertex a minimum cost to arrive from the current
vertex. Additionally, by storing the transitions corresponding to the minimum costs, the
factorization corresponding to the minimum encoding cost can then be backtracked.

In practice, the produced encoding is not necessarily globally optimal, but locally opti-
mal, given the constraints of the suffix array-based factorization algorithm. The globally
optimal factorization does not necessarily use the full length of the factors, instead the
optimal solution could be to use only parts of the factors. Additionally, the algorithm only
considers at most two longest previous factors, when the optimal factorization might result
from using a slightly shorter factor with a smaller offset. However, pursuing a globally
optimal encoding would result in a dramatic increase in running time and in the worst
case, the algorithm would have an asymptotic time complexity of Ω(n3) as it would need
to check all possible factors for all lengths less than or equal to their full length for all text
positions.

Deriving a cost function for an LZSS-type encoding is relatively simple. For each literal
or factor, there is a corresponding flag that uses a single bit. The literals are simple byte
constants, of 1 byte each. For factors, we need to compute the actual space usage of
encoding the offset and length, which with integer codings used by SALZ is possible in
constant time. If a block format is used, e.g., LZ4 encoding, the cost associated with the
constant-sized tokens should be associated with the factors as the factors could present
back-to-back and each factor potentially breaks up a run of consecutive literals.

The minimum-cost factorization separates the factorization stage from the encoding stage
and further divides it into two substages. After computing the PSV/NSV array, we in
an interleaved manner factorize all positions while updating the minimum costs from
left to right. Next, we backtrack (right to left) the factorization corresponding to the
minimum encoding cost. Finally, we emit the encoding corresponding to the factorization
produced in the previous step from left to right. For each position, we evaluate at most

45

three different transitions using a constant time cost function. Additionally, we use the
technique to minimize the number of symbol comparisons in the factorization, introduced
in Section 3.4.2, which allows us to perform all stages with O(n) time complexity. Besides
the PSV/NSV values needed in the factorization stage, we need to store three additional
values for each vertex: the cost to encode the transition, the offset used in the transition,
and the current vertex. Later, in the backtracking stage, we no longer need the PSV/NSV
values and overwrite them with the factor offsets and lengths that correspond to the
minimum encoding cost. Therefore, we can implement the algorithm using 20n + O(1)
bytes of extra space.

3.5.4 Dynamic programming minimum-cost factorization

A more refined observation about the problem is that it has an optimal substructure prop-
erty, which allows the use of a dynamic programming approach. The optimal substructure
property means that the optimal solution can be obtained using the optimal solutions
of its subproblems. Regarding the factorization problem, it essentially means that if the
factorization corresponding to the minimum-cost encoding from some vertex u to some
other vertex v includes a transition starting from vertex s, then the optimal solution is a
combination of optimal solutions from u to s and and from s to v.

The algorithm is essentially a reversed version of the previously introduced minimum-cost
factorization algorithm. Instead of computing the cost to arrive from the source vertex,
we compute the cost to reach the sink vertex instead. We achieve this by iterating the
vertices from right to left and for each vertex, computing the cost of reaching the sink node
with a literal and available factor candidates, and choosing the transition that minimizes
the encoding cost to reach the sink vertex.

One benefit of a dynamic programming approach is that separate stages for computing
the minimum costs and determining the optimal solution are no longer needed. Instead, a
single right-to-left pass suffices for computing both the costs and determining the optimal
factorization. Another benefit is that the number of memory writes is reduced by a mul-
tiplicative factor of three. In both approaches, the number of memory reads is essentially
the same as for each vertex at most three costs are compared. However, with the normal
approach, up to three values associated with up to three different positions are updated
for each processed vertex. With the dynamic programming approach, the cost is only
updated for the current vertex, which also improves the locality of memory access.

46

It is possible to implement the dynamic programming approach in 12n + O(1) bytes of
extra space. We can achieve this by overwriting the suffix array with minimum-cost values
and repurposing the PSV/NSV array for the factor offsets and lengths corresponding to
the minimum encoding. Note that the repurposing of PSV/NSV array is only possible
because of the optimal substructure property and factorization direction of the dynamic
programming approach. The caveat of this approach is that we can no longer use the
technique to reduce the number of symbol comparisons as the LCP array property ex-
ploited in it is not applicable in the reverse direction. In the worst case, this increases the
asymptotic time complexity to O(n2).

To achieve O(n) complexity, the factorization needs to be performed first, in a separate
stage. We first factorize all positions from left to right, and store the offsets and lengths
for both factor candidates. Then we compute the minimum costs from right to left, as
explained previously. As we need to store at most two factor candidates for each text
position, the extra space consumption goes back to 20n+O(1) bytes. However, because of
more efficient cache usage and improved memory access pattern with a smaller number of
writes, the dynamic programming approach routinely outperforms the normal approach.

3.6 Encoding

From the perspective of data compression, Lempel-Ziv factorization is only a preprocessing
stage. The actual saving in the space consumption is a consequence of judicious encoding.
On the other hand, no single encoding works in all scenarios and it must fit together with
the chosen factorization method. In this section, I describe the base encoding used in
SALZ and additionally three techniques that can augment it.

3.6.1 Encoding format

The starting point for experiments in encoding was a simple block format encoding that
used VByte. The compressed segment consists of blocks, a single block consisting of a
literal run followed by a factor. The length of a literal run is encoded in VByte at the
beginning of a block. In case the length of a literal run is non-zero, it is followed by the
literals. Factor offset and length are then encoded in VByte at the end of the block. The
last block of the compressed segment may be incomplete, in which case it only contains
a literal run. I found the compression ratios achieved with this baseline solution to be

47

extremely bad, as a great number of bytes are wasted by encoding the values in VByte
due to generally short literal runs and factors.

To discover a more suitable encoding, I decided to determine some of the practical dif-
ferences between suffix array-based Lempel-Ziv factorization and the more traditional
approach of chained hashing. The most obvious way to determine this was to copy the
encoding used by a third-party data compressor. The group of well-known and widely used
data compressors relying solely on Lempel-Ziv factorization is small, and from that group
LZ4 is the most widely adopted candidate. LZ4 is mostly known for its extreme compres-
sion and decompression speed, but it also has a high compression variant, LZ4HC, that
uses the same format. LZ4HC provides satisfactory results regarding compression ratio.

LZ4 compresses files in frames1, which consists of blocks2 using a 64kiB sliding window.
Similar to the baseline VByte encoding, LZ4 block consists of a literal run followed by a
factor. The block starts with a single byte token that is divided into two nibble-sized fields.
The most significant nibble represents the length of a literal run, while the least significant
nibble represents the factor length. If the length of a literal run cannot be represented
with a nibble-sized field, the remaining length is encoded after the token and is followed by
the literals. The factor offset is encoded as a 2-byte unsigned integer in little-endian byte
order after the literals. If the factor length could not be represented with a nibble-sized
field, the remaining length is encoded after the factor offset. The additional length fields
are encoded as a sum of consecutive byte values, which is demonstrated in Listing 3.7.
Because of performance optimizations, the LZ4 block format forces the last block of a
frame to contain only a literal run. In my experiments, I allowed the last block to be
incomplete, but did not force it.

1 write_add_len(len):
2 while len >= 0xFF:
3 write(0xFF)
4 len = len - 0xFF
5 write(len)

Listing 3.7: Linear encoding used to encode the additional literal run length and factor length fields of
LZ4 block format.

SALZ with a greedy factorization seems to generally outperform LZ4, but is bested by
LZ4HC on some payloads. LZ4 uses a greedy hash table-based approach in factorization,

1https://github.com/lz4/lz4/blob/dev/doc/lz4_Frame_format.md (April 27, 2022)
2https://github.com/lz4/lz4/blob/dev/doc/lz4_Block_format.md (April 27, 2022)

https://github.com/lz4/lz4/blob/dev/doc/lz4_Frame_format.md
https://github.com/lz4/lz4/blob/dev/doc/lz4_Block_format.md

48

while LZ4HC uses Morphing Match Chains1 together with non-greedy cost optimization
heuristics. Direct comparison between LZ4 and the prototype data compressor is not
very useful because of significant differences in the factorization. However, based on
the comparison, I could deduce that with suffix array-based factorization, the encoder
should always be able to encode factor offsets up to the block size. When the block size
is increased, it becomes increasingly probable that the factorization algorithm produces
factor candidates with offsets too great to be used. Removing the factor offset limitation
and encoding the factor offsets in VByte led to significant improvements in compression
ratio for larger block sizes, which confirms the previous notion. This notion also led to
the observation that emulating a sliding window factorization algorithm deteriorates the
compression ratio when utilized together with suffix array-based factorization. Therefore,
it is clear that with suffix array-based factorization it is not possible to compress a file
as a continuous stream or a series of dependent segments, but instead the compression
must be performed a single segment at a time. This characteristic of suffix array-based
factorization makes the LZ4 style of encoding useless for SALZ.

Before further experiments, I collected factor statistics to help in experimental design.
One profitable observation from analyzing the statistics was that with suffix array-based
factorization, the runs of literals are very short on average. Therefore, moving from a literal
run-based block format to a flag-based format with single byte literals proved beneficial for
the compression ratio in general. The format used by SALZ is a straightforward adaptation
of the LZSS type of encoding. An unset flag corresponds to a single byte literal while a
set flag corresponds to a factor.

After experimenting with multiple ways of encoding the factors with the help of VByte,
VNibble, Elias-Gamma, and Golomb-Rice codes, I found an encoding providing the overall
best compression ratio in the block size range 32kiB to 128MiB. The encoding appears to
be a local optimum, as any minor modification leads to a slight to moderate deterioration
in the compression ratio. The encoding emits the factor offsets in two parts, fixed and
variable length. The fixed part corresponds to the least signifying byte of a factor offset.
The remainder of the factor offset is then encoded as VNibble, which in practice means that
the encoded representation of a factor offset uses 12–36 bits. We encode the factor length
using Golomb-Rice code with base 3. We encode both factor offset and length as biased
values, with the amount of bias corresponding to the minimum values. The minimum
offset is 1, since an offset of 0 would correspond to no offset. I chose the minimum factor

1https://fastcompression.blogspot.com/p/mmc-morphing-match-chain.html (April 27, 2022)

https://fastcompression.blogspot.com/p/mmc-morphing-match-chain.html

49

length to be 3, which forces shorter factors to be encoded as literals.

We write the bit flags and variable length integer codes in an interleaved manner to 8-byte
fields. Literals, fixed parts of the factor offsets, and the bit fields as interleaved form the
primary compressed data stream. We read and write literals and fixed parts of factor
offsets synchronously, while the bit fields are buffered. At the beginning of compression,
we allocate space for the first bit field at the beginning of the primary stream. When
the buffered bit field is full, we write it to the previously allocated location, empty the
buffer and reserve the space for the new bit field at the current output position. After
compressing a segment, we fill the unused part of the buffer with zeros before flushing
it. The decompression works in reverse. In the start, we fill the bit field buffer from the
beginning of the primary stream and each time it gets empty, we refill it from the current
input position.

For further performance improvements, the format could be enhanced by storing the flags
separated from the Golomb-Rice codes. This would open up a possibility to determine the
number of consecutive literals using the LZCNT1 intrinsic and perform copying of literals
multiple bytes at a time. Another useful observation is that since every factor has a non-
negative number of literals preceding it, the space used by LZSS flags is equivalent to using
the concept of literal runs and encoding their length using Unary encoding. Then, with
non-repetitive payloads, swapping Unary encoding with another variable length integer
code, e.g., Elias-Gamma, could improve the compression ratio even further. However, I
did not pursue these directions in the prototyping of SALZ.

3.6.2 Factor offset reuse

Analyzing the factor statistics further revealed that the factor offsets have a moderately
flat distribution along the whole range, which explains the failures encountered when
applying variable length encoding to them. Collecting additional statistics about recently
used offsets revealed that identical offsets have a minor tendency to appear shortly after
their previous use. I collected the statistics with the help of a constant-sized self-organizing
cache that keeps the offsets ordered from the most recently used to the least recently used.
The statistics showed that there is some amount of offset reuse on all payloads. The offset
reuse strongly depends on the payload and the amount of it varies dramatically. The
statistics on factor offset reuse for a single payload can be found from Appendix B.

1Leading Zero Count.

50

Even though offset reuse opens up the possibility of skipping offset encoding altogether,
implementing it is problematic. In LZSS encoding, single bit flags are used to distinguish
between single byte literals and ordinary factors. To augment LZSS encoding with offset
reuse, we need some additional information to distinguish the two different factor types.
Optionally, we could add extra information to offset reusing factors to distinguish between
the previous offset, second-to-previous offset, and so on up until some constant boundary.
In practice, adding even a single bit of information to every factor to detect its type inflates
the size of the compressed segment more than is possible to save by reusing the offsets.
Augmenting the primary stream with offset reuse proved therefore not beneficial.

However, I found a profitable way to implement the offset reuse using a secondary stream.
The secondary stream stores the ordinals of the factors that use the previous offset. Every
time we encounter a factor with repeated offset, we write the ordinal of that factor to the
secondary stream and skip the writing of the factor offset to the primary stream. The
decoding process works in reverse. At the beginning of decoding, we read the ordinal of
the first factor with offset reuse from the secondary stream. When it is time to decode that
particular factor, we then use the previous offset instead of reading one from the primary
stream, read the ordinal of the next factor with offset reuse from the secondary stream,
and continue the decoding process. For decoding to work, we must store a special stop
value at the end of the secondary stream to signal that there are no factors with offset
reuse left. SALZ implements this by storing a value that is strictly greater than the last
factor ordinal.

For efficient representation, we must encode the ordinals in the secondary stream with
a variable length encoding instead of a fixed length representation. Since SALZ at this
point already used multiple integer coding schemes, I experimented with what was already
available. Since the values stored in the secondary stream are positive and in strictly
increasing order, I layered delta encoding on top of the variable length encoding. Delta
encoding replaces the actual values with differences between adjacent values. Since we
access the values in a strictly sequential order, delta encoding adds only a constant amount
of extra computation to decode the values. After some brief experimentation, I found
VNibble encoded deltas to provide satisfactory results.

Since the problem of encoding positive and strictly increasing integers is a well-researched
topic, e.g., in search engines, I could validate the optimality of the chosen encoding. One
of the encodings devised to tackle such problems is Elias-Fano encoding [28]. Elias-Fano
encoding is quasi-optimal, which means that it is close to information-theoretical lower

51

bound. In addition, there exists a well-defined closed form upper bound for the number of
bits needed to represent a series of positive and strictly increasing integers with it. When
I compared the actual bit utilization of the chosen encoding to the upper bound defined
for Elias-Fano encoding, I observed that the chosen encoding performed well. In most
cases, the chosen encoding could outperform the upper bound of Elias-Fano, with the
encoded representation using up to 41.1% less bits in the best case. For some individual
payloads with larger block sizes, the upper bound of Elias-Fano encoding in bit utilization
was exceeded, with at most 6.6%.

Since the technique touches only the final encoding stage, it can be used with all factor-
ization variants of SALZ. The extra memory needed is O(1) since only a couple of new
variables need to be introduced. However, there is a penalty on the compression per-
formance. I observed the technique to provide 0.42%–0.78% improvement in compression
ratio with 6.7%–16.1% increase in encoding time and 1.9%–7.7% increase in decoding time.
A micro-benchmark corresponding to this technique can be found from Appendix B.

Augmenting the minimum-cost optimization heuristic with the technique is more complex.
The simplest way is to ignore the encoding cost of the factor offset that is reused. To
achieve that, the minimum-cost stage needs to store the offset of the factor with the
minimum cost to arrive at each position. Since the minimum-cost factorization algorithm
already does that to allow backtracking the minimum-cost factorization, the extra memory
cost is only O(1). However, since the factor offset dependencies are directed to the right,
it is not possible to take factor offset reuse into account with the dynamic programming
approach to the minimum-cost heuristic. Augmenting the minimum-cost heuristic with
factor offset reuse adds a performance penalty as it increases the nested branching inside
the minimum-cost calculation loop. Most of the penalty could be mitigated with the
technique to reduce the branching introduced later in Section 3.7.4. The calculation of
real costs associated with offset reuse seemed so complex that I did not pursue it any
further.

The compression ratio could be improved further by using some constant number of re-
cently used offsets in addition to the previous offset. With greedy factorization, the extra
memory cost would still be in O(1), but with minimum-cost factorization it would be
kn log n bits, where k is the number of recently used offsets. Because of the complex
nature of the technique and high memory cost, I left this direction unpursued too.

52

3.6.3 Incompressible segments

Some payloads can contain incompressible segments, in which case the compressed repre-
sentation results in using more space than the original uncompressed data. Incompressible
segments are encountered usually with small block sizes, especially when the data appears
sufficiently random or has a low degree of repetitiveness. SALZ uses a simple technique
to minimize the size inflation caused by incompressible segments. After compressing a
segment, we compare its size to the size of the original uncompressed segment. If the
compressed segment ends up using more space than the original uncompressed data, we
empty the compressed streams and write the original uncompressed data behind the last
stream. The added overhead of the empty streams is 9 bytes per stream, so the overall
overhead caused by the incompressible segment is negligible. The greatest benefit of the
approach is that it effectively minimizes the negative effect of incompressible segments
without affecting the functional properties of the data compressor. We could further re-
duce the stream overhead of incompressible segments by adding more complexity to the
encoding and decoding processes. However, since the possible gains are extremely low, I
did not pursue this direction further.

3.6.4 Choosing optimal integer codes

Statistics gathered on factors showed that the structure and repetitiveness of the payload
influences the distribution of factor lengths to a great degree. Factor lengths follow a
distribution which rises sharply to a peak at very low factor lengths and then settles
down rapidly, forming a long tail distribution. The height and position of the peak varies
between payloads, with repetitive payloads having a blunter peak and a thicker tail, and
non-repetitive payloads having a more prominent peak with a thinner tail. Furthermore,
the position of the peak varies between payloads, so that the peak of repetitive payloads
corresponds to a higher factor length compared to non-repetitive payloads. To some minor
extent, factor offsets show similar behaviour even though they generally have a relatively
flat distribution across a variety of payloads. The offsets generally are over the whole
possible range, but for small block sizes, there is a tendency to slightly favour the smaller
side. However, as the block size increases, the distribution flattens. This variance across
payloads presents a possibility of tuning the parameters of the utilized variable length
integer codes in the hope of increased compression ratio. Since SALZ processes files in
independent segments, it is possible to tune the parameters on a per segment basis.

53

The base encoding utilizes Golomb-Rice codes with base 3, as I found them to be the best
overall fit across a variety of payloads. However, the optimal base varies highly between
payloads and even more so between individual segments of a payload. A straightforward
way to choose a suitable base is to collect the occurrences of each factor length in a
histogram during factor selection. Afterwards, the optimal base is the one that minimizes
the cost to encode all factor lengths. Due to the previously observed distribution of the
factor lengths, it is easy to see that there exists an optimal base k = a such that the
cost to encode all factor lengths increases when k diverges from a in either direction.
Therefore, the optimal base can be determined by computing the total cost to encode
all factor lengths for k = 0, 1, 2, . . ., until the cost stops decreasing, at which point the
optimal base corresponds to k − 1. Since we must know the base for decompression,
we precede each compressed segment with the chosen base encoded in VNibble. Since
the maximum factor length of a segment can be arbitrarily large, we should only iterate
the histogram up to some predefined upper bound. In practice, I observed an upper
bound in the range 1024–8192 to provide satisfactory results as a lower value affected
the compression ratio negatively, and the gains in compression ratio diminished rapidly
when the value was increased. There should also be a predefined upper limit on the base
as otherwise we encounter an infinite loop if a segment consists only of literals, or all
factors are longer than the upper bound chosen for the histogram iteration. SALZ uses
8192 as the upper bound for histogram iteration and 27 for the maximum base, which
means that the overhead increase for a single segment is in O(1) and the total increase
in overhead depends on the number of segments. The optimization provides up to 2.1%
improvement in compression ratio with an overhead increase of 10µs–100µs per segment.
A micro-benchmark corresponding to this technique can be found from Appendix B.

Since the method alters the encoding, we cannot use it with factorization variants that rely
on fixed encoding or make assumptions about it. This means that the method cannot be
used with either of the minimum-cost factorization variants due to circular dependency, in
which the chosen encoding depends on factor selection, which depends on the minimum-
cost heuristic, while the minimum-cost stage depends on encoding. Integrating the method
with greedy and lazy non-greedy factorization variants is straightforward, but comes with
a caveat. Since the encoding can be only chosen after the factor selection is done, it
is no longer possible to perform factor selection and encoding in an interleaved manner.
Instead, we must divide them into stages separated by the integer code optimization stage,
which increases the processing time even though the asymptotic amount of work performed
remains unchanged. The extra memory usage is in O(1), since for both greedy and lazy

54

non-greedy factorization variants, we can repurpose the space reserved for the suffix array
for the factor length histogram.

For the factor offsets, I found the method to be not useful. The idea was otherwise similar,
but instead of tuning the base of Golomb-Rice codes, the plan was to replace VNibble with
a general VLQ. The plan had two major caveats. First, due to the relatively flat distribu-
tion of factor offsets, the iteration depth of the factor offset histogram cannot be bounded,
but the whole histogram has to be iterated. Second, I found VNibble, corresponding to
VLQ3, to be optimal or near optimal for most of the segments across a variety of payloads.
The gains in compression ratio were almost non-existent and the increase in processing
time was too high to be justified.

3.7 Performance optimizations

The performance of a data compressor depends mostly on the algorithms chosen for the
different stages of compression, but the minor implementation details of those algorithms
matter as well. In this section, I introduce a variety of well-known optimization techniques
that were utilized in implementing the algorithms. The optimization techniques rely on
code and memory area organization, and on the use of special compiler intrinsics. Micro-
benchmarks corresponding to the techniques introduced in this section can be found from
Appendix B.

3.7.1 Memory reuse

The number of dynamic memory area allocations and frees is rarely considered when de-
signing a program. Since the underlying platform processes the dynamic memory alloca-
tions via system calls, it is not possible to predict their performance. On some platforms,
the overhead of allocating and freeing memory may depend on the size of the memory
area, and even the overhead of freeing and allocating memory areas of the same size could
vary. On some platforms, freeing and allocating a memory area of the same size results
in reusing that same area with reduced overhead,1 while on some other platforms, the
overhead might be unaffected.

1The platform used in the development of SALZ had memory management system that reused the same
memory areas when memory resources were freed and allocated between individual segments. Therefore
it was not possible to measure the benefits of this strategy in a meaningful manner.

55

In Section 3.6.1, I described how SALZ compresses arbitrarily sized files using identically
sized blocks. To process each block, the compressor needs sufficiently sized input and
output buffers, along with sufficient auxiliary space to store the interim values used by
the chosen algorithm variant. For a large file compressed with a small block size, this
could mean a significant number of calls to memory allocation and free. As previously
mentioned, the size of all blocks is identical with the exception of the last block, which
may be smaller than the preceding blocks. Therefore, the needed memory resources can
be bound from above to process any block, which makes it possible to reuse the same
memory areas for all blocks during compression of a single file.

Instead of allocating memory resources individually for each block, SALZ employs memory
preallocation to eliminate the overhead of repeated memory allocation and freeing. After
the block size is determined, before proceeding to actual compression, SALZ allocates
all needed memory resources based on the chosen block size and combines them into an
encoding context structure. During compression, SALZ keeps reusing those preallocated
resources and frees them only after compressing all segments. The above applies also to
decompression, with its own corresponding memory requirements. By reusing preallocated
memory, the number of memory allocations to compress or decompress a file is always
constant, which effectively removes the possible platform-dependent overhead caused by
repeated allocation and freeing of memory. On the test platform used in this thesis, I
measured allocation and freeing of memory resources for a single segment to take 0.1µs–
133µs depending on the size of the segment.

3.7.2 Memory access patterns

Suffix array-based Lempel-Ziv factorization is inherently memory bound and does not
include significant amounts of computation. Modern CPUs use hardware prefetching for
soon to be used data if they can detect the underlying memory access pattern. In practice,
CPUs can detect linear memory access in either ascending or descending order of memory
addresses, which allows prefetching of data to CPU cache. Memory bound programs often
get significant improvements when the memory access patterns are optimized in a way
that allows hardware prefetching. Another beneficial optimization is to group the data in
a way that allows fetching data that is used together using a single fetch. For example,
optimizing the dynamic programming variant of the minimum-cost algorithm in a way
that is described later in this section improves compression time by up to 14.7%.

56

In the KKP3 factorization algorithm, the first step after computing the suffix array is
the computation of PSV and NSV values. In this phase, the memory access pattern for
the suffix array is inherently linear. The suffix array values are read linearly and even
though the already processed part of the suffix array is used as a stack, the memory access
pattern is always either strictly ascending or descending. However, the access pattern for
the PSV and NSV values is essentially random, which in the worst case could lead to 2n
cache misses. Goto and Bannai were the first ones to recognize this issue and proposed
the interleaving of the PSV and NSV values into a single array as a solution [7]. Since
we always access PSV and NSV values at the same positions during the computation
of the values, the interleaving of the arrays could effectively eliminate half of the cache
misses. In the factorization stage, the benefit of interleaving is not as dramatic as we access
the PSV and NSV values strictly linearly. However, as a result, the CPU prefetching
has to deal with only one array, which could have a positive impact. In the greedy
and non-greedy variants of SALZ which are directly based on the KKP3 factorization
algorithm, the PSV/NSV array is stored in an interleaved manner as inspired by Goto
and Bannai. Regarding the memory access patterns of greedy and non-greedy variants
of SALZ, there seems to be no more space for further optimization. Fortunately, the
minimum-cost variants of SALZ offer more room for the optimization of memory access
patterns.

Similar to greedy and non-greedy variants, the minimum-cost algorithm starts by com-
puting the suffix array and then proceeds to compute the interleaved PSV/NSV array.
During the left-to-right factorization and minimum-cost computation stage, we store three
interim values for each text position as explained previously in Section 3.5.3. During the
right-to-left backtracking stage, those interim values are used in computing the optimal
factorization, which is also stored as interim values. In the last stage, we emit the opti-
mal encoding with a single left-to-right pass over the stored factors. During all previous
stages, we access the values by the same array indices, and therefore can benefit from
interleaving of them. Additionally, the algorithm can make use of two sufficiently sized
arrays for reuse in all stages, instead of having separate auxiliary arrays for each algo-
rithm stage. Before compression, we allocate two arrays: a larger and a smaller one of
12n and 8n bytes, respectively. We store the suffix array at the beginning of the larger
array, followed by storing the interleaved PSV/NSV values in the smaller array. We then
repurpose the larger array for the values computed in the forward stage of the minimum-
cost factorization, which are stored in an interleaved manner. In the backtracking stage,
we repurpose the smaller array for the interleaved factor offsets and lengths. This array

57

utilization strategy effectively minimizes the needed auxiliary space and provides benefits
from the interleaving of the values accessed together.

With the dynamic programming variant of the minimum-cost algorithm, we again allocate
two arrays, but this time with sizes 4n bytes and 16n bytes. We store the suffix array in
the smaller array and the interleaved PSV/NSV values in the larger array, so that there
are two array slots of padding between each PSV/NSV value pair. After this point, we no
longer use the smaller array, but keep reusing the larger one. In the forward factorization
stage of the dynamic minimum-cost algorithm, we compute the factors associated with
the PSV/NSV pairs one by one and store them in an interleaved manner. At any given
time during this stage, the already processed part of the array contains the factor offset
and length pairs associated with that position, while the unprocessed part contains the
untouched PSV/NSV pairs. Since there are two factors with their corresponding offset
and length, there no longer is any padding in the already processed part of the array. In
the right-to-left minimum-cost stage, the best factor candidate is determined and stored
with the associated encoding cost to the end of the text in an interleaved manner. Since
this time there are only three values, we need to separate the triples with a single array
slot of padding. During this stage, the already processed part of the array contains the
optimal factors associated with the encoding cost up to the end of the text, while the
unprocessed part of the array contains the factors produced by the previous step. Finally,
in the last step, we iterate over the optimal factors while emitting the encoding. Similar
to before, the auxiliary space utilization is minimized and all values accessed together
are interleaved. Above array reutilization strategy has the caveat of using padding, but
eliminating it would lead to using more auxiliary space and shuffling multiple arrays, or
allocating and freeing memory between the different stages of algorithm. However, since
we want to avoid memory allocations between segments, we also want to avoid them during
the processing of a single segment.

3.7.3 Integer code optimizations

The most advanced version of SALZ, the minimum-cost algorithm with factor offset reuse,
utilizes a wide variety of integer codes, including VByte, VNibble and Golomb-Rice. In
addition, Golomb-Rice utilizes Unary coding internally. Since the utilized codes are bit-
oriented, except for VByte, it makes sense to write specialized functions to handle their
specific needs. A bare minimum is to read and write multiple bits at a time with the help of
bit shifting and masking, but sometimes further optimizations are possible. With VNibble,

58

we always read data from the input stream exactly 4 bits at a time. With Golomb-Rice3,
we read a variable length Unary code first, followed by exactly 3 bits. Although we could
have one general function for reading any amount of bits from the input stream, it is also
possible to hasten the functions operating on integer codes by having specialized functions
that always read exactly the needed amount of bits. This allows reducing the amount of
computation, as it is possible to define bit shift widths and bit masks as constant values,
instead of (re)computing them on each function call. This optimization is applicable also
for writing bits to the underlying byte stream.

For some special cases, there are even faster methods than reading or writing a constant
number of bits from the input stream. Unary coding is an example of such as, as each
code consists of a variable number of zero bits followed by exactly one non-zero bit. The
traditional implementation reads zero bits, one bit at a time, until a first non-zero bit is
encountered. The approach is problematic, especially with large Unary encoded integers,
as the encoded size grows fast proportional to the magnitude of the integer. Therefore,
it is useful to read and write zero bits using full bytes or words if possible. Since the
underlying encoding format stores the bit stream using 8-byte words, we should also
perform the Unary encoding in that capacity. For writing the integers, we write the zeros
in as large chunks as possible, at most 8 bytes at a time, until we have written the whole
integer. This is possible with the help of bit shifting, as is demonstrated in Listing 3.8.
For reading the integers, we read zero-valued 8-byte words until we encounter the first
non-zero word. We then extract the last zero bits with the help of LZCNT1 instruction, as
is demonstrated in Listing 3.9.

SALZ performs all bit-oriented I/O multiple bits at a time and uses specialized functions
instead of generic functions whenever applicable. I observed the optimizations described
here to provide 13.7%–28.7% improvement in the encoding stage and up to 13.4% im-
provement in the decoding stage.

3.7.4 Reduced branching

Modern processors implement instruction level parallelism [25, Ch. 16 and 18]. Instruction
level parallelism must not be confused with concurrency, as true concurrency involves mul-
tiple threads executing individual workloads on a set of CPU cores or individual CPUs.
Instead, instruction level parallelism involves a single thread on a single core or processor

1Leading Zero Count.

59

1 struct io_stream {
2 uint8_t *buf; // Byte stream
3 size_t buf_len; // Length of byte stream
4 size_t buf_pos; // Current byte stream position
5 uint64_t bits; // Bit buffer
6 size_t bits_avail; // Number of unused bits in bit buffer
7 size_t bits_pos; // Position allocated for bit buffer
8 };
9

10 static void write_zeros(struct io_stream *stream, size_t count)
11 {
12 while (count != 0) {
13 if (stream->bits_avail == 0) {
14 memcpy(&stream->buf[stream->bits_pos], &stream->bits, 8);
15 stream->bits = 0;
16 stream->bits_avail = 64;
17 stream->bits_pos = stream->buf_pos;
18 stream->buf_pos += 8;
19 }
20

21 size_t write_count = min(stream->bits_avail, count);
22 stream->bits <<= write_count;
23 stream->bits_avail -= write_count;
24 count -= write_count;
25 }
26 }

Listing 3.8: Function that writes zero bits in at most 8-byte chunks to a bit stream that is interleaved
with a byte-oriented output stream.

60

1 static size_t read_zeros(struct io_stream *stream)
2 {
3 if (stream->bits_avail == 0) {
4 memcpy(&stream->buf[stream->buf_pos], &stream->bits, 8);
5 stream->buf_pos += 8;
6 stream->bits_avail = 64;
7 }
8

9 size_t ret = 0;
10

11 while (stream->bits == 0) {
12 ret += stream->bits_avail;
13 memcpy(&stream->buf[stream->buf_pos], &stream->bits, 8);
14 stream->buf_pos += 8;
15 stream->bits_avail = 64;
16 }
17

18 size_t last_zeros = __builtin_clzll(stream->bits); // LZCNT
19 stream->bits <<= last_zeros;
20 stream->bits_avail -= last_zeros;
21

22 return ret + last_zeros;
23 }

Listing 3.9: Function that reads zero bits in at most 8-byte chunks from a bit stream that is interleaved
with a byte-oriented input stream.

61

executing multiple instructions in a seemingly parallel manner. It is achieved via instruc-
tion pipelining, which essentially means dividing instructions into smaller atomic subunits,
which can be executed at the same time using different parts of the instruction pipeline.

In ideal conditions, when the instruction stream consists of operations without depen-
dencies and no branching occurs, the instruction pipeline can be kept full and the CPU
can complete a single instruction per clock cycle.1 Dependencies between instructions
and branching can significantly degrade the operation of the pipeline. The dependencies
cause wait cycles in parts of the pipeline, therefore postponing the execution of future
instructions. Branching is even more costly, as it leads to jump instructions, which cause
the whole pipeline to be halted, emptied and rebuilt from scratch. The severity of the
degradation depends on the length of the pipeline. Since only a single instruction can be
fed to the pipeline per clock cycle, the pipeline will be throttled for the equivalent number
of clock cycles. Modern processors utilize pipelines with dozens of stages.2

Since branching affects instruction throughput in such an expensive way, processor man-
ufacturers employ a multitude of techniques to predict the outcome of branching and
execute the instructions of a predicted branch in an eager manner. If a branch prediction
is correct, the operation of the pipeline is not affected. In the opposite case, the pipeline
is flushed and the results of eager computation are discarded. Even though branch pre-
diction strategies in modern CPUs are quite advanced, branches taken with equivalent
probability are still impossible to predict reliably. The only viable solution is to write the
code without branching when it is possible and beneficial.

Usually, branches exist for a reason and we cannot simply remove them without altering the
functionality of a program. However, sometimes we can rewrite functions in a branchless
way with the help of bitwise operations and predication. Bitwise operations are mostly
used for converting branching to computation, while predication corresponds to conditional
instructions, whose effect depends on the state of the CPU flag registers.3

In different variants of SALZ, there are multiple places where it is possible to convert
branches to computation by utilizing bitwise operations. One such place is the backtrack-

1In reality, modern processors have multiple execution ports that allow a throughput of multiple
instructions per clock cycle. Without loss of generality, we can assume the CPU to have a single execution
port.

2In reality, most modern processors utilize even smaller atomic instruction units, micro-operations, with
even longer pipelines. Without loss of generality, we can expect the CPU to not utilize micro-operations.

3Some simple examples of predication include CMOV (Conditional Move), SETE/SETZ (Set if equal
/ if zero) and SETNE/SETNZ (Set if not equal / if not zero) instruction.

62

ing stage of the minimum-cost variant of SALZ, which is embodied in Listing 3.10. Before
the backtracking stage, the algorithm has computed the optimal factor for each position
of the input text. In the backtracking stage, it then processes those optimal factors in
reverse order to determine the optimal factorization for the text. For each factorized posi-
tion, the algorithm starts by computing the factor corresponding to the transition to that
position. It then stores the factor for future use and, to simplify the later encoding stage,
distinguishes literals from factors by setting the factor offset and length as zero for them.
The function is written in the most straightforward way, with the help of branching.

1 void backtrack(size_t src_len) {
2 for (size_t src_pos = src_len; src_pos > 0;) {
3 int32_t prev_pos = get_pos(src_pos);
4 int32_t prev_offs = get_offs(src_pos);
5 int32_t factor_len = src_pos - prev_pos;
6

7 if (factor_len != 1) {
8 store_offs(prev_pos, prev_offs);
9 store_len(prev_pos, factor_len);

10 } else {
11 store_offs(prev_pos, 0);
12 store_len(prev_pos, 0);
13 }
14

15 src_pos = prev_pos;
16 }
17 }

Listing 3.10: Example of the backtracking step of the minimum-cost variant of SALZ. For each factor
in the optimal factorization, the algorithm checks if the factor length is non-zero. If the factor length is
non-zero, it stores the factor length and offset for future use. Otherwise, it zeroes the factor length and
offset to signal the encoding stage to emit a literal instead of a factor.

In the corresponding machine code in Listing 3.11, we see two different labels, .L2 and
.L3, corresponding to branches. The beginning part of .L2 (lines 1–10) corresponds to
the instructions executed at the start of the loop, before branching. Then the condition
inside the if clause is computed (line 11) and depending on the result, the execution
either jumps to .L3 (line 12) or continues from the next instruction (line 13). If no jump
is made, the CPU will execute the first branch (lines 13–17), which stores the actual offset
and length values. The loop condition is then checked (line 18) and, based on the result,
the program jumps back to the beginning of loop .L2 (line 19) or exits from the function

63

(lines 20–23). If a jump to the else branch is made, the CPU will continue to execute the
second branch (lines 25–30) which stores zeros as offset and length values. Then again,
the loop condition is tested (line 31) and based on the result, a jump to the beginning of
loop .L2 (line 32) is made or the function exits (lines 33–36). Since looping itself requires
jumping, it is only possible to eliminate the jumps resulting from branching.

Listing 3.12 demonstrates a branchless version of the example function, which has exactly
the same behaviour as the branching one. The loop again begins with extracting and com-
puting the information needed to determine the correct factor offset and length. However,
this time the algorithm does not have two branches, but it makes use of the result of the
original if clause condition in arithmetic. In C, the condition factor_len != 1 evaluates
to integer 0 or 1, depending on the factor length being equal to 1 or not. The algorithm
then uses the result of evaluating the condition as a multiplier for the factor offset and
length, which, with a literal, leads to storing them as zeroed and otherwise storing them
as unmodified.

The corresponding machine code in Listing 3.13 now has only a single label, namely .L14.
The beginning of .L14 (lines 1–10) corresponds to fetching the needed values and com-
puting the factor length. Then the algorithm evaluates the condition (line 11), computes
and stores both the factor offset (lines 12–16) and the factor length (lines 17–20). Finally,
the algorithm tests the loop condition (line 21) and either jumps to the beginning of loop
.L14 (line 22) or exits (lines 23–27).

When we compare the branchless version of the function with the original one, we observe
that the algorithm performs some extra arithmetic operations instead of jumping between
branches. Since predicting a loop condition is trivial,1 the pipeline now only needs to be
flushed when the loop is complete. The branchless version of the function should now be
able to keep the pipeline operational, with the instruction throughput being dependent
only on the dependencies between the instructions. In this example, converting branching
to branchless computation improves the time spent in the function by 4.7%–22.7%. It
is, however, good to remember that branchless functions are not beneficial in all cases.
When branchless code is used in places where the CPU branch predictor could predict
branching correctly in a repeatable and reliable manner, the extra computation associated
with branchless code will most likely cause a negative effect on performance. The key to
achieving performance gains with this method relies, therefore, on robust benchmarking

1In our application, the loop condition is always true for all iterations except the one that finally
breaks the loop.

64

1 .L2:
2 mov rdi, rbx
3 mov r12d, ebx
4 call get_pos(unsigned long)
5 mov rdi, rbx
6 mov ebp, eax
7 call get_offs(unsigned long)
8 sub r12d, ebp
9 movsx rbx, ebp

10 mov esi, eax
11 cmp r12d, 1
12 je .L3
13 mov rdi, rbx
14 call store_offs(unsigned long, int)
15 mov esi, r12d
16 mov rdi, rbx
17 call store_len(unsigned long, int)
18 test rbx, rbx
19 jne .L2
20 pop rbx
21 pop rbp
22 pop r12
23 ret
24 .L3:
25 xor esi, esi
26 mov rdi, rbx
27 call store_offs(unsigned long, int)
28 xor esi, esi
29 mov rdi, rbx
30 call store_len(unsigned long, int)
31 test rbx, rbx
32 jne .L2
33 pop rbx
34 pop rbp
35 pop r12
36 ret

Listing 3.11: Assembly code corresponding to contents of the for loop of Listing 3.10. For each factor,
the algorithm checks if the factor length is non-zero and jumps to the branch corresponding to appropriate
action is performed.

65

1 void backtrack_branchles(size_t src_len) {
2 for (size_t src_pos = src_len; src_pos > 0;) {
3 int32_t prev_pos = get_pos(src_pos);
4 int32_t prev_offs = get_offs(src_pos);
5 int32_t factor_len = src_pos - prev_pos;
6

7 store_offs(prev_pos, (factor_len != 1) * prev_offs);
8 store_len(prev_pos, (factor_len != 1) * factor_len);
9

10 src_pos = prev_pos;
11 }
12 }

Listing 3.12: Branchless variant of Listing 3.10 that results in exactly the same result. However, instead
of comparison driven branching, the function uses the result of a comparison as a multiplier to compute
the values to be stored for later use in encoding stage.

and profiling.

3.7.5 Compile time branch prediction

In the previous section, I showed how branchless code can improve the performance when
a set of values is computed differently depending on certain condition. However, in some
scenarios, the functionality of each branch differs so greatly that it is not possible to write
branch-free code. This is especially true when the branches execute other functions or
cause side effects. Fortunately, many modern C compilers still provide a way for mitigating
the increased overhead caused by branching.

Listing 3.14 embodies a simple example of a function foo that takes an integer argument
x. If the argument is zero, the function will return the result of function bar. Otherwise, if
the argument is non-zero, the function will return the result of function baz. Listing 3.15
embodies the corresponding machine code after compilation, which shows that for each
non-zero argument, an extra jump instruction is executed, provided that the CPU did not
succesfully predict the correct branch. The misprediction of the correct branch causes the
CPU pipeline to be flushed and subsequently rebuilt, which causes instruction throughput
to decrease.

Now suppose that from some specific knowledge (perhaps gathered by profiling the pro-
gram), we know that the probability of x being non-zero is significantly higher than

66

1 .L14:
2 mov rdi, rbx
3 mov r13d, ebx
4 xor ebp, ebp
5 call get_pos(unsigned long)
6 mov rdi, rbx
7 mov r12d, eax
8 call get_offs(unsigned long)
9 sub r13d, r12d

10 movsx rbx, r12d
11 cmp r13d, 1
12 mov rdi, rbx
13 setne bpl
14 imul eax, ebp
15 mov esi, eax
16 call store_offs(unsigned long, int)
17 mov esi, ebp
18 mov rdi, rbx
19 imul esi, r13d
20 call store_len(unsigned long, int)
21 test rbx, rbx
22 jne .L14
23 pop rbx
24 pop rbp
25 pop r12
26 pop r13
27 ret

Listing 3.13: Assembly code corresponding to contents of the for loop of Listing 3.12. As expected, the
algorithm executes the same exact machine instructions for all of the factors.

1 int foo(int x)
2 {
3 if (x == 0)
4 return bar();
5 else
6 return baz();
7 }

Listing 3.14: Example function foo() that takes an integer argument x. In case the argument is zero,
the function will return the result of function bar(). Otherwise, it will return the result of function baz().

67

1 foo(int):
2 test edi, edi
3 jne .L2
4 jmp bar()
5 .L2:
6 jmp baz()

Listing 3.15: Machine code corresponding to Listing 3.14. For every non-zero argument, extra jump
instruction is performed.

the probability of it being zero. For this kind of scenario, GCC provides an intrin-
sic __builtin_expect,1 which allows the programmer to provide branch prediction in
the source code that is later used in the organization of the code flow. The intrinsic
__builtin_expect(long exp, long c) takes two arguments, exp for an expression to
be evaluated and c for the expected outcome of evaluating the expression. In Listing 3.16,
the original condition if (x == 0) has been substituted with the expectation that x is
non-zero, i.e., with if (__builtin_expect(x == 0, 0)). From the corresponding ma-
chine code after compilation in Listing 3.17 we can observe that the program flow has
been reversed. With a non-zero argument, the program no longer has to execute the extra
jump instruction.

1 int foo(int x)
2 {
3 if (__builtin_expect(x == 0, 0))
4 return bar();
5 else
6 return baz();
7 }

Listing 3.16: Function foo() provided with the expectation that argument x is non-zero.

In SALZ, there are exactly two logical places for this kind of optimization. The first
one is the optimization that allows factor offset reuse through a separate stream of factor
ordinals introduced in Section 3.6.2. Based on statistics gathered during implementing
that feature, the factor offset reuse is possible only for a fraction of factors. Therefore, it
is possible to provide the compiler with an expectation that favors normal factors instead
of the ones that reuse the previous offset for both encoding and decoding. In principle,

1https://gcc.gnu.org/onlinedocs/gcc/Other-Builtins.html (May 10, 2022)

https://gcc.gnu.org/onlinedocs/gcc/Other-Builtins.html

68

1 foo(int):
2 test edi, edi
3 je .L4
4 jmp baz()
5 .L4:
6 jmp bar()

Listing 3.17: Machine code corresponding to Listing 3.16. Due to reversed program flow, extra jump
instruction is no longer needed for a non-zero argument.

providing this expectation information could mitigate some of the overhead caused by
factor offset reuse. However, in practice, the change further increases the overhead, which
highlights the need to quantify the results through benchmarking.

The second possibility for utilizing compile time branch prediction is the optimization that
allows the compressor to choose the optimal integer codes for the factor lengths introduced
in Section 3.6.4. That technique chooses an optimal base for the Golomb-Rice codes used
to encode the factor lengths. The special case of Golomb-Rice0 corresponds to Unary
coding and because of its rapidly increasing codeword lengths, it is used only infrequently.
It is therefore possible to optimize the functions related to Golomb-Rice by providing an
expectation that Golomb-Rice codes are to be encoded with a non-zero base and opt for
utilizing specialized Unary coding functions for Golomb-Rice codes with a zero base. Here,
providing expectations results in reducing the increased overhead by up to 8.7%.

3.7.6 Loop unrolling

Sometimes, it is possible to reduce the adverse effects of branching by manually unrolling
loops. A standard implementation of VByte, VNibble and general VLQ codes relies on
looping. Listing 3.18 contains an example of function vbyte_size, that returns the number
of bytes needed to represent an integer using VByte. However, when the integers can
be limited to some known maximum value, we can unroll the loop manually for faster
performance.1 With SALZ, the integers are limited by the utilized word size, which
limits the unsigned integers from above to a maximum value of 232 − 1. The performance
gain results from the CPU branch predictor getting accustomed to the distribution of
integers and, therefore, being often able to correctly predict the outcome of branching,

1The optimization is inspired by the great libvbyte library by Christoph Rupp, which utilizes loop
unrolling with VByte. https://github.com/cruppstahl/libvbyte (May 10, 2022)

https://github.com/cruppstahl/libvbyte

69

which minimizes the number of CPU instruction pipeline flushes. Listing 3.19 contains an
unrolled version of the vbyte_size function that relies on the distribution of the encoded
integers being skewed towards smaller values. If the distribution was skewed toward larger
values, the clauses could be reversed and, if the distribution was mostly uniform, the
function could be changed to perform an unrolled binary search for the correct branch.
With SALZ, the values are on the smaller side, so I implemented the optimization as
shown. It is possible to implement the unrolling with encoding and decoding too, but
with decoding, the performance gains seem non-existent because in between comparisons,
more data needs to be read from the byte stream.

1 size_t vbyte_size(uint32_t val)
2 {
3 size_t len = 1;
4 while ((val >>= 7) > 0) {
5 val -= 1
6 len += 1
7 }
8 return len;
9 }

Listing 3.18: A standard loop-based implementation of a function that returns the number of bytes
needed to represent an integer using VByte.

1 size_t vbyte_size(uint32_t val)
2 {
3 if (val < (1 << 7))
4 return 1;
5 if (val < (1 << 14) + (1 << 7))
6 return 2;
7 if (val < (1 << 21) + (1 << 14) + (1 << 7))
8 return 3;
9 if (val < (1 << 28) + (1 << 21) + (1 << 14) + (1 << 7))

10 return 4;
11 return 5;
12 }

Listing 3.19: Unrolled variant of the function that returns the number of bytes needed to represent an
integer using VByte. Note that the compiler will substitute all computed values in this example with
constant values during the compilation.

In SALZ, manual unrolling of loops was implemented for all functions related to VByte

70

and VNibble codes. According to a benchmark, loop unrolling can result in up to 6.5%
improvement in the combined performance of the stages using those codes. In SALZ, this
includes the minimum-cost optimization and encoding stages.

3.7.7 Copying in words

Decompressing a file compressed with SALZ is very simple and leaves very little space for
optimization after the integer code optimizations described in Section 3.7.3. The input
stream is processed in a tight loop, which, with a literal copies a single byte from the input
stream to the output stream and with a factor, copies a previous occurrence from some
earlier position of the output stream to the end of it. However, the copying of factors
contains a major bottleneck with significant impact on decompression performance.

For copying chunks of memory, memcpy and memmove system calls are usually the best op-
tions. They have high performance that results from optimizations that exploit features
of the underlying platform, e.g., memory alignment correction combined with word-sized
copying, possibly even with the help of vectorised instructions. With self-referential fac-
tors, i.e., when the factor length is greater than the factor offset, such system calls cannot
be used as the copied memory area is only partially initialized at the time of invoking the
call. With self-referential factors, we must perform the copying in a loop that copies at
most the factor offset number of bytes in a single iteration, which in the worst case is a
single byte at a time.

Even though the above technique might look profitable, it rarely improves performance
when compared to the most straightforward way of copying all factors a single byte at a
time. This is because the compiler cannot further optimize variable-sized calls to memcpy

or memmove, and with a sufficiently large offset, copying a single byte at a time allows lots
of room for instruction level parallelism to provide increased instruction throughput. The
logical next step is then to perform the copying in some constant-sized chunks instead of
a single byte at a time, the platform native word size of 8 bytes being the most obvious
choice. Copying a word at a time is significantly faster than copying a single byte at a
time, and as a bonus it still leaves room for benefitting from instruction level parallelism.
In case the factor offset is greater than or equal to 8 bytes, there are no problems and we
can simply perform the copying using words. This means that we might write up to 7
bytes of extra data to the output stream, which we must consider when writing to the end
of the buffer. However, factors with offsets less than 8 bytes pose a challenge. Fortunately,

71

the factor offset can always be increased to 8 bytes by performing additional steps before
the copying occurs.

A generic algorithm to increase small factor offsets to 8 bytes involves three steps.1 In the
first step, we copy the first 4 bytes of a factor a single byte at a time, to facilitate offsets
of less than 4 bytes. Then we copy the next 4 bytes from a position that is dependent
on the factor offset. Finally, we adjust the copy position according to the factor offset.
If the factor length is less than or equal to 8 bytes, there is no need to perform any
additional copying. Otherwise, we copy the rest of the factor using 8-byte words. Since
the copy positions in the second step and the copy position adjustments in the final step
are constants specific to each factor offset, we can store them in a look-up table to avoid
computing them. Listing 3.20 contains a function that illustrates the above technique.

Alternatively, we could perform the copying using 4-byte word size or even larger words of
16, 32 or 64 bytes with the help of vectorised instructions. A word size of 4 bytes has the
benefit of simplifying the offset correction, but it leads to a smaller increase in performance
when compared to an 8-byte word size. The larger word sizes have an undesired effect of
increasing the complexity of offset correction instead. Additionally, the factors are short
on average and the vectorised instructions have high latency. Therefore, the word size of
8 bytes seems to be the optimal choice for a general factor copying method, resulting in
13.3%–25.2% improvement in decoding time.

1The origins of this algorithm are in LZ4 source code, while the origins of the technique, in general,
are unknown. https://github.com/lz4/lz4 (April 27, 2022)

https://github.com/lz4/lz4

72

1 static const int snd_copy_pos[8] = { -1, 0, 0, 1, 0, 4, 4, 4 };
2 static const int src_ptr_inc[8] = { -1, 0, 0, 2, 0, 3, 2, 1 };
3

4 static void cpy_factor(uint8_t *buf, size_t pos, size_t offs, size_t len)
5 {
6 uint8_t *src = &buf[pos - offs];
7 uint8_t *dst = &buf[pos];
8 uint8_t *end = dst + len;
9

10 if (offs < 8) {
11 dst[0] = src[0];
12 dst[1] = src[1];
13 dst[2] = src[2];
14 dst[3] = src[3];
15 dst += 4;
16 memcpy(dst, src + snd_copy_pos[offs], 4);
17 src += src_ptr_inc[offs];
18 dst += 4;
19 }
20

21 while (dst < end) {
22 memcpy(dst, src, 8);
23 dst += 8;
24 src += 8;
25 }
26 }

Listing 3.20: Example function that copies factors in 8-byte words, with factor offset correction for
factors with offsets smaller than the minimum copy size. The function is adopted from LZ4 source code
with minor (simplifying) modifications.

4 Results

In this chapter, I describe how SALZ was benchmarked, specify the benchmarked data
compressor designs built with the techniques from the previous chapter, and summarize
the benchmark results.

4.1 Benchmark payload collection

As mentioned in the previous chapter, I gathered a set of statistics on the characteristics
of KKP3 factorization algorithm on different payloads before starting the development of
SALZ. Initial ideas about possible directions of development were devised while studying
those statistics, but even at that point, it was clear that the development setting was to
be highly experimental, carried out mostly by trial and error. Using the trial-and-error
method relies on being able to produce reliable observations on the studied phenomenon.
Therefore, one of the first steps preceding the actual development was building a carefully
curated benchmark payload collection.

A variety of corpora for compression benchmarking already exist. The Calgary Corpus1

and The Canterbury Corpus2 are two of the most well-known corpora, but they are old
and therefore do not represent the current data compression payloads. In particular, the
individual payloads in those corpora are too small (< 1 MiB) to provide any useful observa-
tions on modern hardware. The Silesia compression corpus3 is a more recent compression
payload collection that better represents the needs of modern data compression. It ex-
hibits a good degree of variety, but the individual payloads in it are still fairly small (< 49
MiB). An even more recent take is The Pizza&Chili Corpus4, which is a text collection
compiled especially for research on both compressed and uncompressed text indexes. The
individual payloads in it represent the workloads used widely in academia and they are of
sufficient size. Therefore, I chose The Pizza&Chili Corpus as the base of my benchmark
payload collection.

1https://web.archive.org/web/20061209055036/http://links.uwaterloo.ca/calgary.
corpus.html (May 10, 2022)

2https://corpus.canterbury.ac.nz/descriptions/ (May 10, 2022)
3http://sun.aei.polsl.pl/~sdeor/index.php?page=silesia (May 10, 2022)
4http://pizzachili.dcc.uchile.cl/ (May 10, 2022)

https://web.archive.org/web/20061209055036/http://links.uwaterloo.ca/calgary.corpus.html
https://web.archive.org/web/20061209055036/http://links.uwaterloo.ca/calgary.corpus.html
https://corpus.canterbury.ac.nz/descriptions/
http://sun.aei.polsl.pl/~sdeor/index.php?page=silesia
http://pizzachili.dcc.uchile.cl/

74

The Pizza&Chili Corpus contains a variety of files between 53.24MiB and 2.05GiB. Since
I wanted to benchmark often and have the benchmarks complete in moderate time, I
truncated each file to 100MB. However, I felt that The Pizza&Chili Corpus alone was not
diverse enough, so I augmented the collection with payloads that better represent those
typical in the industry. Besides The Pizza&Chili Corpus, I added XML formatted text
in the form of a data dump from English Wikipedia, source code in the form of a recent
Linux kernel, a full concatenation of Silesia corpus and truncated parts of it, and an empty
file consisting only of zero bytes. The produced benchmark payload collection is diverse
enough to judge the behaviour of the data compressor for both academic purposes and
the needs of the industry.

The individual files included in the benchmark payload collection, descriptions of their
contents, and URLs for obtaining them are listed below.1

• The Pizza&Chili corpus:2

– dblp.xml8 : First 100, 000, 000 bytes of the XML dataset, which consists of
XML formatted “bibliographic information on major computer science journals
and proceedings”. (σ: 97; H0: 5.228 bits) http://pizzachili.dcc.uchile.

cl/texts/xml/

– dna8 : First 100, 000, 000 bytes of the DNA dataset, which contains “a sequence
of newline-separated gene DNA sequences”. (σ: 16; H0: 1.977 bits) http://

pizzachili.dcc.uchile.cl/texts/dna/

– english8 : First 100, 000, 000 bytes of the ENGLISH dataset, which contains a
“concatenation of English text files [without headers]”. (σ: 239; H0: 4.556 bits)
http://pizzachili.dcc.uchile.cl/texts/nlang/

– pitches: The PITCHES dataset (55, 832, 855 bytes), which contains “a sequence
of pitch values”. (σ: 133; H0: 5.628 bits) http://pizzachili.dcc.uchile.

cl/texts/music/

– proteins8 : First 100, 000, 000 bytes of the PROTEINS dataset, which contains
“a sequence of newline-separated protein sequences”. (σ: 27; H0: 4.190 bits)
http://pizzachili.dcc.uchile.cl/texts/protein/

1A precompiled collection can also be downloaded from https://www.cs.helsinki.fi/u/akiutosl/
bench_collection.tar.gz.

2Alphabet sizes (σ) and empirical entropies of order 0 (H0) are quoted from http://pizzachili.dcc.
uchile.cl/texts.html on April 22, 2022.

http://pizzachili.dcc.uchile.cl/texts/xml/
http://pizzachili.dcc.uchile.cl/texts/xml/
http://pizzachili.dcc.uchile.cl/texts/dna/
http://pizzachili.dcc.uchile.cl/texts/dna/
http://pizzachili.dcc.uchile.cl/texts/nlang/
http://pizzachili.dcc.uchile.cl/texts/music/
http://pizzachili.dcc.uchile.cl/texts/music/
http://pizzachili.dcc.uchile.cl/texts/protein/
https://www.cs.helsinki.fi/u/akiutosl/bench_collection.tar.gz
https://www.cs.helsinki.fi/u/akiutosl/bench_collection.tar.gz
http://pizzachili.dcc.uchile.cl/texts.html
http://pizzachili.dcc.uchile.cl/texts.html

75

– sources8 : First 100, 000, 000 bytes of the SOURCES dataset, which consists of
“C/Java source code ... [of] linux-2.6.11.6 and gcc-4.0.0 distributions”.
(σ: 230; H0: 5.540 bits) http://pizzachili.dcc.uchile.cl/texts/code/

• Additional payloads:

– enwik8 : First 100, 000, 000 bytes of the English Wikipedia dump from Mar. 3,
2006. The dataset consists of “UTF-8 encoded XML consisting primarily of
English text”. http://mattmahoney.net/dc/textdata

– kernel8 : First 100, 000, 000 bytes of Linux 5.11.11 source code in an un-
compressed tar archive. https://cdn.kernel.org/pub/linux/kernel/v5.x/

linux-5.11.11.tar.gz

– silesia: The contents of Silesia compression corpus concatenated together in al-
phabetical order. Silesia compression corpus consists of various files of different
data types “between 6MB and 51MB”. http://sun.aei.polsl.pl/~sdeor/

index.php?page=silesia

– silesia8[h|m|t]: First/middle/last 100, 000, 000 bytes of contents of silesia pay-
load.

– zero8 : 100, 000, 000 zero bytes.

4.2 Benchmark environment and procedure

All benchmarking was performed on a Lenovo ThinkPad X1 Carbon Gen 6 equipped with
Intel(R) Core(TM) i7-8550U CPU running at 1.80GHz, 16GB of DDR3 memory running
at 2133MHz and Western Digital WD Black SN750 M.2 NVMe SSD. The underlying
operating system was Ubuntu 20.04.3 LTS with Linux 5.11.0-37, GCC 9.3.0 and GLIBC
2.31.

SALZ by default outputs the compression ratio and total compression and decompression
times, including disk I/O. If built with -DENABLE_STATS switch, it also outputs the to-
tal time spent in different stages of compression. The additional measurements include
the times spent on suffix array construction, PSV/NSV array computation, Lempel-Ziv
factorization, minimum-cost optimization and encoding. I used these more refined time
measurements mainly to produce micro-benchmarks needed to evaluate the performance
of the individual techniques and optimizations described in Chapter 3. The procedure
itself is a simple Bash script comprising the steps listed below.

http://pizzachili.dcc.uchile.cl/texts/code/
http://mattmahoney.net/dc/textdata
https://cdn.kernel.org/pub/linux/kernel/v5.x/linux-5.11.11.tar.gz
https://cdn.kernel.org/pub/linux/kernel/v5.x/linux-5.11.11.tar.gz
http://sun.aei.polsl.pl/~sdeor/index.php?page=silesia
http://sun.aei.polsl.pl/~sdeor/index.php?page=silesia

76

1. Checkout the SALZ variant selected for benchmarking from the Git repository.

2. Initialize the build environment.

3. Build the SALZ variant selected for benchmarking.

4. Benchmark the selected SALZ variant with one or more benchmark payloads, with
all block sizes between 32kiB and 128MiB.

(a) Use SALZ to compress the payload.

(b) Use SALZ to decompress the compressed file produced in the previous step.

(c) Verify that the decompressed file produced in the previous step matches with
the original payload.

For the benchmarks to represent real-life scenarios and to produce reliable results, I took
the following measures in benchmarking.

• Different storage medias have different I/O speeds and thus all reading and writing
must be performed on the same storage media to produce comparable results. In
addition, the benchmark must be performed on an actual block device, as the use of a
RAM disk or similar could provide overly optimistic results. Therefore, I performed
all SALZ benchmarks using the SSD mentioned earlier in this section.

• In real-life scenarios, a single payload is rarely compressed many times in a row
with different block sizes, nor is a compressed file decompressed immediately af-
ter compressing it. That approach jeopardizes the reliability of the benchmark as
fragments of the files could be available for use in file system buffers or block de-
vice cache. Fortunately, Linux file system buffers can be flushed with sync com-
mand and block device caches (page cache, dentries and inodes) with echo 3 >

/proc/sys/vm/drop_caches command. In SALZ benchmarking, I ran these two
commands before every compression and decompression command to make sure that
all data was written to the block device and read from it.

• To produce benchmark time measurements that are comparable, we must use a reli-
able way of measuring time. SALZ uses the clock_gettime system call from time.h

which is a POSIX implementation of high-resolution timers. I used clock_gettime

with CLOCK_MONOTONIC clock type, which represents the monotonic time since the
system was last booted and is not affected by discontinuous jumps in the system
time.

77

• The Intel(R) Core(TM) i7-8550U CPU utilized in benchmarking has 4 physical cores
that are capable of hyper-threading. This means that each physical core can execute
two threads at the same time using shared resources. From the perspective of the
operating system, there are 8 logical CPUs to be used in computation. The Linux
scheduler exhibits natural CPU affinity by executing processes on the same CPU “as
long as it is practical for performance reasons”.1 In practice, the benchmark process
might be forced to migrate to another CPU when resuming from sleep caused by
another process being executed on the same CPU. With the taskset utility, the
benchmark process can be bound to a specific CPU, which prevents the process
from being migrated. However, binding the benchmark process to a specific CPU
is not enough as it does not prevent other processes executing on the same CPU.
In addition, another process being executed on the sibling CPU might affect the
performance due to shared physical resources. Fortunately, the Linux kernel has
the isolcpus boot option, which prevents processes being executed on the specified
CPUs unless explicitly requested with taskset command. In SALZ benchmarking, I
used isolcpus=0,4 boot option to prevent processes from being executed on the first
physical CPU core and taskset -c 0,4 command to bind the benchmark process
to that otherwise disabled core.2 This way, I could reserve a single physical CPU
core exclusively for the benchmark process.

• I observed the results right at the beginning of the benchmark session to provide
overly optimistic performance, which was indicated by a monotonic decrease in per-
formance over the first few iterations. To mitigate this effect, the actual benchmarks
were preceded by a sufficient number of “warmup” iterations for which the results
were discarded. With SALZ, I observed 5 warmup iterations with 1MiB block size
to eliminate the undesired behaviour.

• Even when using all the above methods, the benchmark results still fluctuated
slightly between iterations. Therefore, I executed each benchmark setting for 5
iterations and produced the final benchmark result by taking the mean of the re-
sults.

1TASKSET(1) - https://man7.org/linux/man-pages/man1/taskset.1.html (May 11, 2022)
2The mapping between physical cores and logical CPUs depends on the hardware and platform. With

Linux, the mapping can be verified from /proc/cpuinfo.

https://man7.org/linux/man-pages/man1/taskset.1.html

78

4.3 Final data compressor designs

For the final comparison, I built 7 different data compressor designs, each a different
combination of the techniques introduced in Chapter 3. All designs utilize the file for-
mat described in Section 3.2 and libsais library for suffix array construction. The lcp-
comparison is always performed with the 8 byte word size as described in Section 3.4.1. In
addition, all minimum-cost designs utilize the technique to reduce the number of symbol
comparisons described in Section 3.4.2. The utilized encoding is the base encoding format
described in Section 3.6.1 augmented with the optimization of incompressible segments
described in Section 3.6.3. All additional design-dependent optimizations to the encoding
format are explicitly mentioned for each design. In each design, all applicable performance
optimizations of Section 3.7 are utilized.

The final data compressor designs come down to differences in factorization and additional
encoding optimizations applicable to each factorization variant. The final designs and their
descriptions are listed below.

• greedy - The baseline greedy SALZ variant described in Section 3.5.1.

• greedy-opt - Previous augmented with factor offset reuse and Golomb-Rice optimiza-
tion described in Sections 3.6.2 and 3.6.4, respectively.

• nongreedy - The lazy non-greedy SALZ variant described in Section 3.5.2.

• nongreedy-opt - Previous augmented with factor offset reuse and Golomb-Rice opti-
mization described in Sections 3.6.2 and 3.6.4, respectively.

• mincost - Standard minimum-cost SALZ variant described in Section 3.5.3.

• mincost-opt - Previous augmented with factor offset reuse described in Section 3.6.2.

• dp-mincost - Dynamic programming minimum-cost SALZ variant described in Sec-
tion 3.5.4.

4.4 Benchmark results

In this section, I summarize the observations made from the SALZ benchmarks, which are
available in Appendix A. The benchmarks measured compression ratio, and compression

79

and decompression times across all payloads and block sizes. The results are further
grouped by their utilization of minimum-cost heuristics. I start by drawing observations
from the decompression times, followed by compression times, and finally I discuss the
compression ratios.

The decompression times are generally very close to each other. The decoding stages
of greedy, nongreedy, mincost and dp-mincost designs are identical to each other. The
greedy-opt, nongreedy-opt and mincost designs extend the baseline decoding stage with
offset reuse. Additionally, greedy-opt and nongreedy-opt designs utilize a variable Golomb-
Rice base. The fastest decompression times for non-minimum-cost designs are obtained
with either greedy or nongreedy designs, depending on the payload and block size. The
result is expected, as the decoding stages of the designs utilizing encoding optimizations
contain additional complexity. Among the minimum-cost designs, the best results are
generally obtained with dp-mincost design, which is surprising as the decoding stage and
the produced compression ratios are identical to the mincost design. A closer look at
the compressed output reveals that even though the encoding costs are identical, the
factorizations are usually different due to the difference in the direction of the minimum-
cost optimization. There are a couple of exceptions when the mincost design can match or
slightly outperform the dp-mincost design regarding decompression time, but they are not
significant enough to invalidate the general observation. Perhaps even more surprisingly,
the dp-mincost design corresponds consistently to the fastest decompression times over all
designs. It seems that the dp-mincost design can generally produce a factorization that
exhibits a greater degree of locality in factor selection when compared to other designs.
The only clear outlier is the zero8 payload, for which the decompression times are almost
the same between all designs. However, that is expected as the produced factorization is
identical between all designs.

The most obvious observation about the compression times is that they increase propor-
tional to the complexity of the data compressor design. In addition, the designs utilizing
encoding enhancements are generally slower than their corresponding “vanilla” variants.
From the non-minimum-cost designs, the greedy design is the fastest, followed by greedy-
opt, nongreedy and nongreedy-opt designs. There are some occasions when greedy-opt and
nongreedy can match or outperform greedy, and when nongreedy can beat greedy-opt, but
they are not enough to disrupt the generally observed pattern. The dp-mincost design
dominates the minimum-cost category, followed by mincost and mincost-opt. Again, there
are some rare exceptions, namely mincost outperforming dp-mincost on some certain pay-

80

loads and block sizes. Over all designs, greedy is consistently the fastest one. The increase
in overhead between non-minimum-cost and minimum-cost designs is quite large, and es-
pecially visible with larger block sizes with slightly less compressible payloads. In addition,
with minimum-cost designs, the proportional increase in overhead reduces when the block
size increases, which is the opposite of what happens with non-minimum-cost designs.

With the compression ratio, the benchmark results exhibit more variance than with com-
pression and decompression times. Generally, the compression ratios are quite close to
each other when designs are compared within their respective groups. When designs are
compared across the groups, the difference in compression ratio is more dramatic. As ex-
pected, the most complex designs provide generally the best compression ratios. The best
compression ratios are obtained with the nongreedy-opt design for the non-minimum-cost
designs and the mincost-opt design for the minimum-cost design, even though on some
occasions on small block sizes mincost and dp-mincost are able to match with it. Over
all the designs, mincost-opt consistently produces the best results. The 32kiB block size
is an exception to the previous as with many payloads, the best results are obtained with
nongreedy-opt design. Another exception is the proteins8 payload on small block sizes as
even greedy-opt can beat mincost-opt. Like with the decompression times, the zero8 pay-
load is again an outlier as the produced factorization is identical between the compressor
designs, such that the compression ratios are identical to each other. The exception to this
are the greedy-opt and nongreedy-opt designs which achieve extremely high compression
ratios due to their variable Golomb-Rice base optimization.

The best compressor design depends significantly on the objectives, desired behaviour,
and application. When all factors are considered, there are three final designs that de-
serve to be highlighted. For the best compression, the clear winner is mincost-opt, which
can consistently achieve the highest compression ratios by spending more time. On the
other hand, almost as high compression ratios can be achieved with dp-mincost, which ad-
ditionally minimizes the time spent on decompression. If the time spent on compression is
a concern, nongreedy-opt seems to be the best choice, as it provides the best compression
ratios among the non-minimum-cost designs, while not being significantly slower than the
other designs of the same group, but being significantly faster than the minimum-cost
designs. Since the decompression times are so close to each other, the choice of the most
suitable data compressor design comes down to a trade-off between the compression ratio
and compression time, as is usual with data compression.

5 Discussion

In the previous chapter, I described how SALZ was benchmarked and how different SALZ
designs compare with each other. In this chapter, I introduce a group of selected third-
party data compressors and compare them with SALZ. Then I continue by stating some
starting points for future research, and finally I conclude this thesis with a section that
provides a summary, reflection, and my final conclusions.

5.1 Comparison to third-party data compressors

In this section, I will provide a comparison of SALZ with selected third-party data com-
pressors. Since I developed SALZ as a command-line interface (CLI) tool for Linux, I
chose to include the de facto standard free and open-source CLI tools for Unix-like op-
erating systems: gzip (GNU Gzip 1.10), bzip2 (bzip2 1.0.8) and xz (XZ Utils 5.2.4).
Additionally, I wanted to include some of the recent attempts at developing a high-speed
data compressor. From these, I chose to include lz4 (LZ4 1.9.2) and zstd (Zstandard
1.4.4). Also, I would have liked to include promising Snappy1, but unfortunately it was
not readily available as a CLI tool. All third-party tools were obtained as precompiled
binaries from Ubuntu 20.04 package repositories, as the latest available versions. They
were benchmarked with their minimum, maximum and default compression levels. How-
ever, only two compression levels were benchmarked for lz4, as its default and minimum
levels are the same. For zstd, two additional compression levels were benchmarked, as the
default range of compression levels can be extended by supplying additional command-
line arguments. All benchmarks were performed using the SALZ benchmark procedure
described in Section 4.2. The benchmark results of third-party data compressors for silesia
payload are available in Appendix C.

gzip2 was developed for the GNU project by Jean-Loup Gailly and Mark Adler and
first released in 1992. Currently, it uses the Deflate algorithm, which was developed by
Philip Katz in 1993 [22, Ch. 6.25]. The Deflate algorithm was specified as IETF RFC

1Snappy is a recent data compression library developed by Google. https://github.com/google/
snappy (April 27, 2022)

2https://www.gnu.org/software/gzip/ (April 27, 2022)

https://github.com/google/snappy
https://github.com/google/snappy
https://www.gnu.org/software/gzip/

82

19511 in 1996. The Deflate algorithm combines a variation of the LZ77 factorization with
Huffman coding. In principle, the LZ77 factorization acts as a preprocessing stage for
the Huffman coding. gzip has well-balanced performance. It provides good compression
ratios, and it is neither fast nor slow in compression or decompression. Additionally, it is
well-known and widely utilized, which is why I refer to it also when introducing other third-
party data compressors. When low compression levels are compared to non-minimum-cost
SALZ designs, we observe that the compression ratios are quite comparable, but gzip has
lower compression times. However, with medium compression levels, compression times
become comparable, but gzip produces higher compression ratios. When medium to high
compression levels are compared with minimum-cost SALZ designs, we observe that SALZ
can provide comparable or even slightly higher compression ratios with slightly lower or
comparable compression times. In decompression, SALZ is always faster than gzip.

bzip22 was developed by Julian Seward and first released in 1996. bzip2 uses a multi-stage
algorithm that combines Run-length encoding, Burrows-Wheeler transform, Move-to-front
transform and Huffman coding. Generally, bzip2 provides higher compression ratios than
gzip, but with higher compression and decompression times. When compared to SALZ,
we observe that bzip2 provides higher compression ratios than any SALZ design, with
compression times that are comparable to only minimum-cost designs on highest block
sizes. With decompression, SALZ is significantly faster than bzip2.

xz3 was developed by Lasse Collin and first released in 2010. It uses the LZMA (Lempel-
Ziv-Markov chain) algorithm, which was developed by Igor Pavlov in 1996 [22, Ch. 6.26].
The LZMA algorithm resembles the Deflate algorithm, but utilizes Range coding for post-
processing instead of Huffman coding. The goal of xz is to provide extremely high com-
pression ratios regardless of compression time, but without sacrificing fast decompression.
Generally, xz provides significantly higher compression ratios than gzip, but it is ex-
tremely slow in compression. The single exception to the previous statement is xz at its
lowest compression levels, where it has compression times comparable to gzip’s highest
compression levels. The decompression times of xz are slightly higher than those of gzip.
Compared to bzip2, xz is slower in compression, faster in decompression, and produces
consistently higher compression ratios. The comparison between xz and SALZ leads to
identical observations as in the comparison between xz and gzip.

1https://datatracker.ietf.org/doc/html/rfc1951 (April 27, 2022)
2https://www.sourceware.org/bzip2/ (April 27, 2022)
3https://tukaani.org/xz/ (April 27, 2022)

https://datatracker.ietf.org/doc/html/rfc1951
https://www.sourceware.org/bzip2/
https://tukaani.org/xz/

83

lz41 is a free and open-source data compressor developed by Yan Collet and first released
in 2011. lz4 is a variation of LZ77, that attempts to provide extremely fast compression
and decompression, while providing reasonable compression ratios. Due to its high per-
formance, LZ4 has been widely adopted, for example, for network protocols, (compressed)
file systems, and databases. The lower compression levels of lz4 produce compression ra-
tios significantly lower than gzip, but compression and decompression are extremely fast.
The highest compression levels of lz4, also known as LZ4HC, produce compression ratios
comparable to gzip on its lowest compression levels, with significantly higher compression
time, but without sacrificing decompression speed. Against SALZ, the comparison results
are quite similar to those of gzip. The only exception is that LZ4HC can match the com-
pression ratio of all SALZ designs with smaller block sizes at a cost of inferior compression
times. Although SALZ is fast in decompression, lz4 can outperform it by a wide margin.

zstd2 is another free and open-source data compressor developed by Yan Collet. It was
first released in 2015 and has been specified as IETF RFC 88783 in 2018. Like xz, zstd

uses an algorithm that resembles the Deflate algorithm, with the exception that it utilizes
Finite State Entropy (FSE) in combination with Huffman coding. At lower compression
levels, zstd provides compression ratios comparable to gzip, while being significantly
faster in compression. At the higher compression levels, the compression ratios are slightly
higher than with bzip2, but slightly lower than with xz, while the compression times
are comparable to xz. The decompression times of zstd are quite comparable to lz4.
Compared to SALZ, zstd produces comparable compression ratios with significantly lower
compression times. The decompression times of zstd are roughly comparable with lz4

and therefore lower than with any SALZ design.

On the basis of the above observations, I conclude that SALZ is not the best choice for
any of the possible compression scenarios. Note that because of the trade-off between
compression ratio and time, not all imaginable scenarios are possible. If fast compression
is prioritized at the cost of the compression ratio, lz4 is the obvious choice. In the opposite
scenario, when a high compression ratio is prioritized at the cost of compression time, xz

seems to be the best choice. In case fast decompression times are prioritized, there are
multiple possible choices depending on the secondary priority. If decompression time is
the only priority, lz4 is the obvious choice. For slightly better compression ratios, zstd

is a great choice that results in only slightly inflated decompression times compared to
1https://lz4.github.io/lz4/ (April 27, 2022)
2https://facebook.github.io/zstd/ (April 27, 2022)
3https://datatracker.ietf.org/doc/html/rfc8878 (April 27, 2022)

https://lz4.github.io/lz4/
https://facebook.github.io/zstd/
https://datatracker.ietf.org/doc/html/rfc8878

84

lz4. For high compression ratios, xz provides the best decompression times, but it is not
particularly fast. In general, zstd seems to be the current best choice for a general-purpose
data compressor, as it can outperform gzip in every measured aspect.

5.2 Future work

Although this thesis comprehensively documents the practical aspects of designing and
implementing a suffix array-based Lempel-Ziv data compressor, I have identified some
aspects for which further study could prove beneficial.

Since in this thesis I focused on developing a general-purpose data compressor, I strived to
keep both running times and memory consumption reasonable. In Section 3.3, I explained
how the chosen block size influences the suffix array construction times. Additionally, the
total memory consumption of all SALZ variants introduced in Section 4.3 is quite high,
between 14n + O(1) and 22n + O(1) bytes, where n is the chosen block size. For these
reasons, I developed SALZ mostly by relying on observations made from benchmarks
executed on modest block sizes. Exploring different trade-offs, e.g., by experimenting
with larger block sizes along with suitable encodings, could therefore provide a wider
understanding of what is possible.

When I discussed the factorization and encoding in Section 3.5 and Section 3.6, respec-
tively, I concluded that utilizing or emulating a sliding window algorithm is not feasible
with suffix array-based methods. I reasoned that it has an adverse effect on the quality of
extracted factors and that it also prevents efficient encoding of factor offsets. However, the
significance of this limitation was not measured. Therefore, I think it could be beneficial
to measure the difference in compression ratios between fixed window and sliding window
based compression algorithms.

In Section 3.6.1, I explained how I committed to the LZSS-type encoding, as opposed
to a token-based encoding, backed by observations of factor lengths. This commitment
resulted in the inability to encode longer runs of literals efficiently. Furthermore, the chosen
encoding type also caused challenges in factor offset reuse introduced in Section 3.6.2. As
a result, I could only reuse the previous factor offset, which proved to be only slightly
beneficial with respect to the compression ratio. I am convinced that exploring different
token-based encodings could prove beneficial in the form of an increased compression
ratio. For example, a token-based encoding could be designed around the idea of reusing
a constant number of previous factors. The format could further be augmented by efficient

85

encoding of literal runs and encoding factor offsets using multiple switch controlled fixed
lengths, instead of encoding them using a single variable-length scheme.

The last future research point is to further reduce the greediness in the suffix array-based
Lempel-Ziv factorization. As concluded in Section 3.5.3, the factor candidates obtained
from the PSV and NSV arrays do not necessarily result in factors that are optimal with
respect to their encoded size. It is also clear that the suffix array and its derivatives
contain a great amount of information that is currently not being used. Therefore, it could
be beneficial to explore novel non-greedy ways to utilize the suffix array in Lempel-Ziv
factorization. A relatively straightforward starting point could be to check some constant
number of psv and nsv values for each factor starting position, hoping to find only slightly
shorter factors with significantly smaller offsets.

5.3 Conclusions

In this thesis, I described the design and implementation of SALZ, a prototype of a suffix
array-based Lempel-Ziv data compressor, from the ground up. I chose to approach the
project with an experimental and exploratory approach. Therefore, I started by carefully
curating a benchmark payload collection and setting up a benchmarking framework. I
proceeded to collect a set of statistics to use as a guide for building an initial prototype
to act as a starting point for the exploratory process. The statistics included times spent
on data compression subtasks and information on the benchmark payloads. The statistics
showed that the suffix array construction times dominated greatly over all other subtasks
of data compression, which led me to suspect that my hypothesis would prove wrong. To
provide meaningful measurements, I continued by designing a minimalistic file format, so
that I could measure compression ratios and disk-to-disk compression and decompression
times.

I started the exploratory phase by experimenting with suffix array construction. I con-
firmed that suffix array construction via ordinary string sorting was not a viable option,
even for less-repetitive payloads. I came across a new and promising suffix array construc-
tion library, libsais, which I observed to consistently outperform libdivsufsort, the current
default choice, by wide margins. During my thesis work, I also provided a minor contri-
bution to libsais.1 I then continued by experimenting with lcp-comparison, which resulted
in the most important contribution of my thesis. Using the properties of the LPF array,

1https://github.com/IlyaGrebnov/libsais/issues/3 (May 3, 2022)

https://github.com/IlyaGrebnov/libsais/issues/3

86

I could reduce the number of symbol comparisons performed during the Lempel-Ziv fac-
torization. By performing the comparison using multi-byte words and efficient compiler
intrinsics, I could compare the remaining symbols faster. I observed this technique to
provide consistently over 80% improvement over the baseline solution. When exploring
the LZ77 factorization, unfortunately, I observed that the traditional greedy approach
did not result in compression ratios that would be justifiable considering the compression
times. I therefore decided to use even more time and pursue higher compression ratios
by reducing the amount of greediness and employing cost optimization heuristics. In this
way, I was able to achieve significantly higher compression ratios with a justifiable increase
in compression time. The second most important contribution of my thesis is the dynamic
minimum-cost factorization algorithm, which is the fastest of the high-compression vari-
ants due to optimized memory access patterns and reduced number of memory accesses.
The exploratory phase was concluded with experiments on encoding. The final encoding
proved to be not only efficient, but also fast. Most surprisingly, even though the encoding
is mostly bit-oriented, the decompression times are close to those of the fastest well-known
data compressors.

Before continuing to final benchmarks and evaluation, I tried my best to optimize all the
techniques using both well-known general-purpose optimizations and domain-specific op-
timizations. Finally, I combined the techniques I had developed during the exploratory
phase and built seven different data compressor designs. Evaluation of the final bench-
marks confirmed that my hypothesis was wrong. Even if the final prototypes compress
well, without being particularly slow, they are too slow for the compression ratios they
provide to be competitive. The main bottleneck is the use of a suffix array, as its con-
struction constitutes the majority of the compression time. Additionally, the suffix array
also limits the compression ratio, as I observed that the highest compression ratios do not
necessarily result from utilizing the longest previous factors. However, it should be noted
that the compression ratios themselves are very competitive when SALZ is compared to
other data compressors that rely exclusively on dictionary compression, i.e., refrain from
using an additional entropy encoding stage.

Despite the fact that my hypothesis proved to be wrong, I consider all the objectives set
for this thesis to have been met. To summarize, I found out that suffix array construc-
tion takes currently too much time to achieve fast data compression, and that it is not
possible to achieve the higher compression ratios using it, or relying exclusively on dictio-
nary compression. However, the suffix array was observed to provide factors of consistent

87

quality, which proved beneficial when fitting an encoding scheme to the chosen factoriza-
tion. I was further able to augment greedy LZ77 factorization by employing non-greedy
techniques and cost optimization heuristics. Additionally, I found various practicalities
that are necessary for designing and implementing a general-purpose data compressor.
Although I outlined some points of interest for further research in the previous section, I
believe that the outcome of this thesis will remain correct. However, significant further
improvements in suffix array construction or in the update cost of dynamic suffix arrays
could show otherwise. Nevertheless, suffix array-based Lempel-Ziv factorization (or data
compression) remains useful for scenarios where the suffix array is anyway needed for some
other purpose.

Bibliography

[1] B. Bhattacharjee, L. Lim, T. Malkemus, G. Mihaila, K. Ross, S. Lau, C. McArthur,
Z. Toth, and R. Sherkat. “Efficient Index Compression in DB2 LUW”. In: Proc.
VLDB Endow. 2.2 (Aug. 2009), pp. 1462–1473. issn: 2150-8097. doi: 10.14778/

1687553.1687573.

[2] M. Charikar, E. Lehman, D. Liu, R. Panigrahy, M. Prabhakaran, A. Sahai, and A.
Shelat. “The smallest grammar problem”. In: IEEE Transactions on Information
Theory 51.7 (2005), pp. 2554–2576. doi: 10.1109/TIT.2005.850116.

[3] M. Crochemore and L. Ilie. “Computing Longest Previous Factor in Linear Time
and Applications”. In: Information Processing Letters 106.2 (Apr. 2008), pp. 75–80.
issn: 0020-0190. doi: 10.1016/J.IPL.2007.10.006.

[4] J.-P. Duval, R. Kolpakov, G. Kucherov, T. Lecroq, and A. Lefebvre. “Linear-Time
Computation of Local Periods”. In: Mathematical Foundations of Computer Science
2003. Ed. by B. Rovan and P. Vojtáš. Berlin, Heidelberg: Springer Berlin Heidelberg,
2003, pp. 388–397. isbn: 978-3-540-45138-9.

[5] P. Ferragina, I. Nitto, and R. Venturini. “On the Bit-Complexity of Lempel–Ziv
Compression”. In: SIAM Journal on Computing 42.4 (2013), pp. 1521–1541. doi:
10.1137/120869511.

[6] S. Golomb. “Run-length encodings (Corresp.)” In: IEEE Transactions on Informa-
tion Theory 12.3 (1966), pp. 399–401. doi: 10.1109/TIT.1966.1053907.

[7] K. Goto and H. Bannai. “Simpler and Faster Lempel Ziv Factorization”. In: 2013
Data Compression Conference. 2013, pp. 133–142. doi: 10.1109/DCC.2013.21.

[8] R. N. Horspool. “The Effect of Non-Greedy Parsing in Ziv-Lempel Compression
Methods”. In: Proceedings DCC ’95 Data Compression Conference. IEEE, 1995,
pp. 302–311. isbn: 0818670126.

[9] J. Kärkkäinen, D. Kempa, and S. J. Puglisi. “Lazy Lempel-Ziv Factorization Al-
gorithms”. In: ACM J. Exp. Algorithmics 21 (Oct. 2016). issn: 1084-6654. doi:
10.1145/2699876.

https://doi.org/10.14778/1687553.1687573
https://doi.org/10.14778/1687553.1687573
https://doi.org/10.1109/TIT.2005.850116
https://doi.org/10.1016/J.IPL.2007.10.006
https://doi.org/10.1137/120869511
https://doi.org/10.1109/TIT.1966.1053907
https://doi.org/10.1109/DCC.2013.21
https://doi.org/10.1145/2699876

90

[10] J. Kärkkäinen, D. Kempa, and S. J. Puglisi. “Linear Time Lempel-Ziv Factorization:
Simple, Fast, Small”. In: Combinatorial Pattern Matching. Ed. by J. Fischer and P.
Sanders. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013, pp. 189–200. isbn:
978-3-642-38905-4.

[11] D. Kempa and S. J. Puglisi. “Lempel-Ziv Factorization: Simple, Fast, Practical”.
In: 2013 Proceedings of the Meeting on Algorithm Engineering and Experiments
(ALENEX), pp. 103–112. doi: 10.1137/1.9781611972931.9.

[12] R. Kolpakov and G. Kucherov. “Finding maximal repetitions in a word in lin-
ear time”. In: 40th Annual Symposium on Foundations of Computer Science (Cat.
No.99CB37039). 1999, pp. 596–604. doi: 10.1109/SFFCS.1999.814634.

[13] D. Lemire, N. Kurz, and C. Rupp. “Stream VByte: Faster byte-oriented integer
compression”. In: Information Processing Letters 130 (2018), pp. 1–6. issn: 0020-
0190. doi: 10.1016/J.IPL.2017.09.011.

[14] A. Lempel and J. Ziv. “On the Complexity of Finite Sequences”. In: IEEE Trans-
actions on Information Theory 22.1 (1976), pp. 75–81. doi: 10.1109/TIT.1976.

1055501.

[15] U. Manber and G. Myers. “Suffix Arrays: A NewMethod for On-Line String Searches”.
In: SIAM Journal on Computing 22.5 (1993), pp. 935–948. doi: 10.1137/0222058.

[16] G. Navarro. “Indexing Highly Repetitive Collections”. In: Combinatorial Algorithms.
Ed. by S. Arumugam and W. F. Smyth. Berlin, Heidelberg: Springer Berlin Heidel-
berg, 2012, pp. 274–279. isbn: 978-3-642-35926-2.

[17] G. Navarro and V. Mäkinen. “Compressed Full-Text Indexes”. In: ACM Comput.
Surv. 39.1 (Apr. 2007), 2–es. issn: 0360-0300. doi: 10.1145/1216370.1216372.

[18] G. Nong, S. Zhang, and W. H. Chan. “Linear Suffix Array Construction by Almost
Pure Induced-Sorting”. In: 2009 Data Compression Conference. 2009, pp. 193–202.
doi: 10.1109/DCC.2009.42.

[19] E. Ohlebusch and S. Gog. “Lempel-Ziv Factorization Revisited”. In: CPM’11. Palermo,
Italy: Springer-Verlag, 2011, pp. 15–26. isbn: 9783642214578.

[20] J. Plaisance, N. Kurz, and D. Lemire. “Vectorized VByte Decoding”. In: Interna-
tional Symposium on Web AlGorithms. 2015.

[21] R. F. Rice. “Practical Universal Noiseless Coding”. In: Applications of Digital Image
Processing III. Ed. by A. G. Tescher. Vol. 0207. International Society for Optics and
Photonics. SPIE, 1979, pp. 247–267. doi: 10.1117/12.958253.

https://doi.org/10.1137/1.9781611972931.9
https://doi.org/10.1109/SFFCS.1999.814634
https://doi.org/10.1016/J.IPL.2017.09.011
https://doi.org/10.1109/TIT.1976.1055501
https://doi.org/10.1109/TIT.1976.1055501
https://doi.org/10.1137/0222058
https://doi.org/10.1145/1216370.1216372
https://doi.org/10.1109/DCC.2009.42
https://doi.org/10.1117/12.958253

91

[22] D. Salomon. Handbook of data compression. 5th ed. London: Springer, 2010. isbn:
1848829035.

[23] D. Salomon. Variable-length codes for data compression. London: Springer, 2007.
isbn: 1846289599.

[24] F. Scholer, H. E. Williams, J. Yiannis, and J. Zobel. “Compression of Inverted
Indexes For Fast Query Evaluation”. In: Proceedings of the 25th Annual International
ACM SIGIR Conference on Research and Development in Information Retrieval.
SIGIR ’02. Tampere, Finland: Association for Computing Machinery, 2002, pp. 222–
229. isbn: 1581135610. doi: 10.1145/564376.564416.

[25] W. Stallings. Computer Organization and Architecture: Designing for Performance.
11th ed. New York, NY: Pearson, 2019. isbn: 9780135160930.

[26] J. A. Storer and T. G. Szymanski. “Data Compression via Textual Substitution”.
In: J. ACM 29.4 (Oct. 1982), pp. 928–951. issn: 0004-5411. doi: 10.1145/322344.

322346.

[27] The Complete MIDI 1.0 Detailed Specification. Los Angeles, CA: The MIDI Manu-
facturers Association, 1996.

[28] S. Vigna. “Quasi-Succinct Indices”. In: Proceedings of the Sixth ACM International
Conference on Web Search and Data Mining. WSDM ’13. Rome, Italy: Association
for Computing Machinery, 2013, pp. 83–92. isbn: 9781450318693. doi: 10.1145/

2433396.2433409.

[29] H. E. Williams and J. Zobel. “Compressing Integers for Fast File Access”. In: The
Computer Journal 42.3 (Jan. 1999), pp. 193–201. issn: 0010-4620. doi: 10.1093/

COMJNL/42.3.193.

[30] J. Ziv and A. Lempel. “A universal algorithm for sequential data compression”. In:
IEEE Transactions on Information Theory 23.3 (1977), pp. 337–343. doi: 10.1109/

TIT.1977.1055714.

https://doi.org/10.1145/564376.564416
https://doi.org/10.1145/322344.322346
https://doi.org/10.1145/322344.322346
https://doi.org/10.1145/2433396.2433409
https://doi.org/10.1145/2433396.2433409
https://doi.org/10.1093/COMJNL/42.3.193
https://doi.org/10.1093/COMJNL/42.3.193
https://doi.org/10.1109/TIT.1977.1055714
https://doi.org/10.1109/TIT.1977.1055714

Appendix A SALZ benchmarks

Table A.1: Benchmark with dblp.xml8 payload. The best results for each block size are highlighted.

Data compressor design

greedy greedy-opt nongreedy nongreedy-opt mincost mincost-opt dp-mincost

Block size Compression ratio

32 k 4.205 4.208 4.320 4.338 4.385 4.412 4.385
64 k 4.575 4.578 4.710 4.729 4.806 4.833 4.806
128 k 4.940 4.944 5.095 5.115 5.219 5.244 5.219
256 k 5.274 5.279 5.449 5.477 5.603 5.626 5.603
512 k 5.539 5.549 5.737 5.777 5.923 5.943 5.923
1 M 5.778 5.797 5.996 6.049 6.207 6.226 6.207
2 M 5.969 6.001 6.202 6.270 6.440 6.458 6.440
4 M 6.113 6.158 6.349 6.431 6.616 6.634 6.616
8 M 6.264 6.325 6.501 6.600 6.794 6.812 6.794
16 M 6.414 6.492 6.652 6.769 6.973 6.993 6.973
32 M 6.530 6.624 6.772 6.907 7.124 7.146 7.124
64 M 6.639 6.746 6.886 7.035 7.248 7.272 7.248
128 M 6.793 6.918 7.047 7.217 7.425 7.451 7.425

Compression time (seconds)

32 k 2.951 3.365 3.394 3.431 4.683 4.703 4.297
64 k 2.905 3.285 3.322 3.344 4.666 4.697 4.263
128 k 2.907 3.260 3.306 3.311 4.670 4.714 4.269
256 k 3.022 3.351 3.415 3.402 4.842 4.867 4.412
512 k 3.074 3.413 3.463 3.463 5.120 5.125 4.652
1 M 3.204 3.540 3.564 3.593 5.293 5.311 4.926
2 M 3.461 3.762 3.770 3.808 5.568 5.593 5.200
4 M 3.830 4.024 4.045 4.077 5.967 6.003 5.515
8 M 4.407 4.517 4.529 4.560 6.478 6.532 6.024
16 M 5.154 5.262 5.248 5.302 7.386 7.452 6.921
32 M 5.804 5.874 5.906 5.944 8.427 8.486 7.970
64 M 6.165 6.211 6.242 6.275 9.047 9.134 8.587
128 M 6.498 6.546 6.591 6.592 9.740 9.808 9.279

Decompression time (seconds)

32 k 0.186 0.216 0.190 0.208 0.193 0.196 0.186
64 k 0.178 0.206 0.179 0.199 0.183 0.188 0.177
128 k 0.168 0.194 0.172 0.188 0.173 0.178 0.167
256 k 0.160 0.187 0.163 0.180 0.164 0.169 0.158
512 k 0.158 0.182 0.159 0.177 0.159 0.165 0.155
1 M 0.162 0.184 0.162 0.177 0.160 0.168 0.156
2 M 0.166 0.187 0.166 0.180 0.163 0.169 0.160
4 M 0.166 0.187 0.166 0.180 0.161 0.167 0.159
8 M 0.166 0.190 0.167 0.182 0.163 0.168 0.159
16 M 0.183 0.202 0.184 0.198 0.174 0.182 0.175
32 M 0.228 0.263 0.242 0.253 0.219 0.224 0.224
64 M 0.252 0.295 0.287 0.278 0.244 0.261 0.245
128 M 0.282 0.343 0.313 0.326 0.273 0.290 0.271

ii Appendix A

Table A.2: Benchmark with dna8 payload. The best results for each block size are highlighted.

Data compressor design

greedy greedy-opt nongreedy nongreedy-opt mincost mincost-opt dp-mincost

Block size Compression ratio

32 k 2.804 2.852 2.820 2.858 2.948 2.948 2.948
64 k 2.849 2.876 2.863 2.884 3.008 3.010 3.008
128 k 2.910 2.923 2.923 2.934 3.068 3.071 3.068
256 k 2.960 2.965 2.971 2.976 3.121 3.125 3.121
512 k 2.971 2.972 2.982 2.985 3.141 3.145 3.141
1 M 3.004 3.004 3.015 3.018 3.167 3.172 3.167
2 M 3.030 3.030 3.040 3.044 3.193 3.198 3.193
4 M 3.027 3.026 3.039 3.042 3.196 3.201 3.196
8 M 3.048 3.048 3.064 3.066 3.213 3.216 3.213
16 M 3.071 3.071 3.088 3.091 3.234 3.238 3.234
32 M 3.077 3.077 3.097 3.099 3.244 3.247 3.244
64 M 3.096 3.096 3.116 3.118 3.258 3.261 3.258
128 M 3.128 3.128 3.149 3.152 3.284 3.286 3.284

Compression time (seconds)

32 k 4.271 4.545 4.596 4.703 6.698 6.713 5.687
64 k 4.268 4.496 4.590 4.666 6.833 6.857 5.823
128 k 4.270 4.451 4.560 4.619 6.770 6.804 5.846
256 k 4.353 4.517 4.611 4.663 6.943 6.960 6.047
512 k 4.388 4.570 4.658 4.692 7.295 7.252 6.386
1 M 4.445 4.636 4.708 4.728 7.441 7.397 6.760
2 M 4.636 4.785 4.849 4.893 7.678 7.639 7.111
4 M 4.939 5.039 5.087 5.148 8.052 8.057 7.551
8 M 5.412 5.489 5.568 5.583 8.758 8.736 8.115
16 M 6.099 6.239 6.292 6.384 11.141 11.172 10.515
32 M 6.739 6.875 6.989 6.998 14.121 14.201 13.575
64 M 7.294 7.227 7.326 7.320 15.861 15.916 15.430
128 M 7.590 7.661 7.643 7.723 17.750 17.916 17.336

Decompression time (seconds)

32 k 0.248 0.289 0.255 0.294 0.257 0.272 0.246
64 k 0.254 0.293 0.259 0.298 0.260 0.277 0.249
128 k 0.249 0.287 0.250 0.289 0.256 0.274 0.247
256 k 0.242 0.280 0.241 0.278 0.245 0.262 0.235
512 k 0.250 0.284 0.249 0.285 0.251 0.268 0.239
1 M 0.248 0.278 0.248 0.281 0.253 0.271 0.249
2 M 0.240 0.268 0.239 0.273 0.242 0.258 0.236
4 M 0.236 0.268 0.239 0.270 0.239 0.258 0.229
8 M 0.244 0.277 0.250 0.281 0.251 0.266 0.244
16 M 0.366 0.426 0.395 0.417 0.374 0.393 0.367
32 M 0.487 0.570 0.526 0.558 0.499 0.521 0.493
64 M 0.563 0.638 0.587 0.635 0.559 0.584 0.561
128 M 0.685 0.734 0.672 0.723 0.627 0.664 0.632

Appendix A iii

Table A.3: Benchmark with english8 payload The best results for each block size are highlighted.

Data compressor design

greedy greedy-opt nongreedy nongreedy-opt mincost mincost-opt dp-mincost

Block size Compression ratio

32 k 1.974 2.068 2.035 2.111 2.091 2.091 2.091
64 k 2.084 2.162 2.151 2.210 2.221 2.221 2.221
128 k 2.197 2.257 2.268 2.315 2.347 2.347 2.347
256 k 2.299 2.346 2.375 2.412 2.465 2.465 2.465
512 k 2.380 2.418 2.461 2.490 2.564 2.565 2.564
1 M 2.510 2.539 2.596 2.617 2.710 2.711 2.710
2 M 2.710 2.728 2.803 2.818 2.931 2.936 2.931
4 M 2.823 2.832 2.918 2.927 3.060 3.068 3.060
8 M 2.952 2.955 3.048 3.054 3.200 3.207 3.200
16 M 3.052 3.054 3.149 3.156 3.312 3.320 3.312
32 M 3.169 3.171 3.268 3.276 3.446 3.455 3.446
64 M 3.208 3.210 3.307 3.315 3.488 3.498 3.488
128 M 3.245 3.246 3.343 3.350 3.526 3.535 3.526

Compression time (seconds)

32 k 4.315 4.600 4.575 4.765 6.457 6.473 5.748
64 k 4.072 4.345 4.356 4.532 6.363 6.355 5.588
128 k 3.919 4.186 4.195 4.356 6.174 6.209 5.433
256 k 3.980 4.217 4.259 4.385 6.321 6.327 5.591
512 k 4.022 4.266 4.307 4.431 6.616 6.579 5.879
1 M 4.130 4.346 4.393 4.498 6.759 6.722 6.172
2 M 4.320 4.566 4.564 4.666 6.935 6.930 6.431
4 M 4.652 4.945 4.852 4.943 7.331 7.328 6.830
8 M 5.223 5.415 5.400 5.468 7.988 7.978 7.404
16 M 6.055 6.259 6.218 6.320 9.690 9.726 9.092
32 M 6.842 6.978 7.037 7.109 11.770 11.819 11.206
64 M 7.298 7.414 7.464 7.493 13.076 13.159 12.650
128 M 7.831 7.935 8.003 7.961 14.485 14.541 14.178

Decompression time (seconds)

32 k 0.332 0.376 0.331 0.372 0.347 0.357 0.331
64 k 0.323 0.370 0.322 0.367 0.336 0.349 0.319
128 k 0.308 0.353 0.307 0.351 0.318 0.333 0.303
256 k 0.296 0.340 0.296 0.338 0.304 0.322 0.291
512 k 0.314 0.357 0.313 0.357 0.317 0.334 0.305
1 M 0.310 0.350 0.307 0.347 0.311 0.328 0.305
2 M 0.289 0.328 0.286 0.324 0.287 0.301 0.277
4 M 0.286 0.324 0.278 0.315 0.278 0.290 0.268
8 M 0.285 0.319 0.279 0.312 0.276 0.288 0.267
16 M 0.378 0.358 0.360 0.383 0.338 0.354 0.337
32 M 0.487 0.474 0.465 0.499 0.433 0.454 0.429
64 M 0.545 0.530 0.514 0.556 0.481 0.510 0.482
128 M 0.625 0.599 0.591 0.641 0.541 0.588 0.549

iv Appendix A

Table A.4: Benchmark with enwik8 payload. The best results for each block size are highlighted.

Data compressor design

greedy greedy-opt nongreedy nongreedy-opt mincost mincost-opt dp-mincost

Block size Compression ratio

32 k 2.127 2.199 2.181 2.239 2.230 2.232 2.230
64 k 2.233 2.293 2.294 2.342 2.356 2.358 2.356
128 k 2.334 2.383 2.401 2.444 2.473 2.476 2.473
256 k 2.419 2.462 2.493 2.529 2.578 2.581 2.578
512 k 2.478 2.514 2.559 2.588 2.660 2.662 2.660
1 M 2.542 2.571 2.630 2.652 2.740 2.743 2.740
2 M 2.605 2.626 2.696 2.710 2.817 2.820 2.817
4 M 2.650 2.664 2.742 2.748 2.875 2.878 2.875
8 M 2.709 2.714 2.800 2.801 2.940 2.943 2.940
16 M 2.769 2.770 2.860 2.862 3.010 3.013 3.010
32 M 2.811 2.812 2.903 2.905 3.064 3.068 3.064
64 M 2.852 2.853 2.945 2.947 3.110 3.113 3.110
128 M 2.916 2.917 3.010 3.011 3.180 3.183 3.180

Compression time (seconds)

32 k 4.360 4.766 4.646 4.858 6.323 6.318 5.719
64 k 4.272 4.642 4.540 4.723 6.457 6.375 5.685
128 k 4.144 4.506 4.417 4.582 6.336 6.281 5.582
256 k 3.983 4.327 4.257 4.421 6.261 6.212 5.546
512 k 4.011 4.351 4.301 4.430 6.515 6.453 5.773
1 M 4.085 4.386 4.383 4.484 6.669 6.588 6.036
2 M 4.279 4.529 4.531 4.634 6.847 6.799 6.297
4 M 4.565 4.812 4.790 4.879 7.350 7.173 6.663
8 M 5.083 5.308 5.254 5.358 7.772 7.764 7.506
16 M 5.952 6.166 6.123 6.230 9.445 9.464 8.838
32 M 6.730 6.889 6.918 7.010 11.432 11.492 10.810
64 M 7.177 7.323 7.336 7.410 12.600 12.687 12.022
128 M 7.688 7.837 7.812 7.870 13.785 13.844 13.364

Decompression time (seconds)

32 k 0.325 0.375 0.325 0.367 0.338 0.347 0.323
64 k 0.319 0.368 0.317 0.360 0.330 0.338 0.314
128 k 0.307 0.358 0.306 0.349 0.317 0.328 0.302
256 k 0.298 0.346 0.296 0.341 0.306 0.318 0.292
512 k 0.318 0.363 0.314 0.356 0.319 0.332 0.308
1 M 0.318 0.362 0.315 0.354 0.321 0.333 0.311
2 M 0.309 0.356 0.308 0.346 0.310 0.321 0.298
4 M 0.308 0.349 0.305 0.338 0.298 0.313 0.289
8 M 0.311 0.351 0.305 0.342 0.304 0.316 0.322
16 M 0.427 0.407 0.408 0.431 0.391 0.404 0.383
32 M 0.553 0.530 0.526 0.566 0.496 0.516 0.488
64 M 0.611 0.587 0.588 0.627 0.548 0.574 0.543
128 M 0.678 0.663 0.648 0.706 0.604 0.646 0.601

Appendix A v

Table A.5: Benchmark with kernel8 payload. The best results for each block size are highlighted.

Data compressor design

greedy greedy-opt nongreedy nongreedy-opt mincost mincost-opt dp-mincost

Block size Compression ratio

32 k 3.745 3.782 3.847 3.901 3.908 3.945 3.908
64 k 4.056 4.091 4.180 4.236 4.264 4.305 4.264
128 k 4.344 4.376 4.487 4.544 4.591 4.635 4.591
256 k 4.590 4.621 4.752 4.811 4.881 4.926 4.881
512 k 4.766 4.795 4.949 5.009 5.103 5.150 5.103
1 M 4.921 4.949 5.122 5.185 5.297 5.345 5.297
2 M 5.039 5.063 5.253 5.316 5.450 5.498 5.450
4 M 5.106 5.131 5.326 5.390 5.546 5.595 5.546
8 M 5.168 5.193 5.393 5.460 5.631 5.680 5.631
16 M 5.218 5.239 5.449 5.510 5.704 5.753 5.704
32 M 5.239 5.259 5.476 5.541 5.758 5.807 5.758
64 M 5.279 5.292 5.522 5.586 5.816 5.865 5.816
128 M 5.341 5.362 5.592 5.664 5.903 5.951 5.903

Compression time (seconds)

32 k 3.382 3.726 3.597 3.672 5.096 5.147 4.557
64 k 3.298 3.560 3.508 3.587 5.042 5.064 4.515
128 k 3.260 3.488 3.461 3.530 5.007 5.016 4.483
256 k 3.305 3.528 3.517 3.566 5.132 5.125 4.600
512 k 3.326 3.539 3.534 3.574 5.347 5.335 4.774
1 M 3.401 3.606 3.590 3.640 5.505 5.482 4.962
2 M 3.553 3.741 3.723 3.778 5.662 5.652 5.213
4 M 3.785 3.937 3.936 3.974 5.975 5.969 5.546
8 M 4.145 4.280 4.277 4.328 6.355 6.352 5.861
16 M 4.683 4.827 4.812 4.869 7.037 7.068 6.519
32 M 5.207 5.362 5.348 5.384 7.901 7.939 7.420
64 M 5.549 5.677 5.679 5.723 8.502 8.539 8.075
128 M 5.914 6.068 6.059 6.134 9.236 9.282 8.798

Decompression time (seconds)

32 k 0.214 0.248 0.213 0.233 0.221 0.228 0.209
64 k 0.205 0.235 0.203 0.225 0.208 0.216 0.199
128 k 0.195 0.225 0.193 0.216 0.197 0.205 0.189
256 k 0.188 0.215 0.186 0.208 0.189 0.196 0.182
512 k 0.188 0.212 0.183 0.205 0.185 0.193 0.179
1 M 0.191 0.215 0.186 0.208 0.188 0.196 0.184
2 M 0.191 0.215 0.187 0.207 0.187 0.194 0.183
4 M 0.192 0.215 0.187 0.208 0.186 0.193 0.183
8 M 0.198 0.219 0.191 0.212 0.188 0.194 0.184
16 M 0.207 0.227 0.200 0.221 0.196 0.206 0.194
32 M 0.261 0.280 0.250 0.270 0.233 0.244 0.234
64 M 0.294 0.315 0.276 0.299 0.260 0.273 0.257
128 M 0.332 0.350 0.307 0.329 0.287 0.300 0.285

vi Appendix A

Table A.6: Benchmark with pitches payload. The best results for each block size are highlighted.

Data compressor design

greedy greedy-opt nongreedy nongreedy-opt mincost mincost-opt dp-mincost

Block size Compression ratio

32 k 2.524 2.586 2.558 2.614 2.602 2.612 2.602
64 k 2.558 2.612 2.594 2.644 2.650 2.660 2.650
128 k 2.581 2.629 2.619 2.663 2.688 2.697 2.688
256 k 2.593 2.635 2.634 2.672 2.716 2.725 2.716
512 k 2.584 2.621 2.628 2.662 2.725 2.733 2.725
1 M 2.575 2.609 2.623 2.654 2.733 2.742 2.733
2 M 2.572 2.602 2.623 2.650 2.745 2.755 2.745
4 M 2.559 2.583 2.610 2.633 2.742 2.752 2.742
8 M 2.554 2.575 2.605 2.624 2.747 2.756 2.747
16 M 2.550 2.564 2.602 2.614 2.753 2.762 2.753
32 M 2.555 2.565 2.608 2.617 2.770 2.780 2.770
64 M 2.624 2.629 2.681 2.686 2.857 2.868 2.857
128 M 2.624 2.629 2.681 2.686 2.857 2.868 2.857

Compression time (seconds)

32 k 2.506 2.687 2.647 2.733 3.330 3.296 3.042
64 k 2.552 2.679 2.639 2.729 3.409 3.375 3.113
128 k 2.571 2.673 2.644 2.726 3.476 3.445 3.153
256 k 2.644 2.707 2.679 2.763 3.604 3.567 3.244
512 k 2.675 2.723 2.707 2.774 3.754 3.709 3.343
1 M 2.692 2.746 2.708 2.798 3.849 3.804 3.431
2 M 2.761 2.778 2.753 2.835 3.914 3.873 3.540
4 M 2.772 2.862 2.839 2.924 4.039 4.013 3.702
8 M 2.914 2.971 2.929 2.989 4.182 4.164 3.839
16 M 3.117 3.281 3.213 3.293 4.658 4.659 4.327
32 M 3.419 3.650 3.545 3.603 5.347 5.362 5.073
64 M 3.726 4.041 3.892 3.958 6.183 6.235 5.929
128 M 3.718 4.118 3.886 4.049 6.227 6.262 5.919

Decompression time (seconds)

32 k 0.151 0.170 0.153 0.167 0.152 0.155 0.144
64 k 0.153 0.168 0.151 0.166 0.156 0.159 0.147
128 k 0.155 0.169 0.151 0.167 0.157 0.162 0.149
256 k 0.158 0.171 0.152 0.170 0.158 0.164 0.149
512 k 0.169 0.183 0.162 0.180 0.167 0.174 0.160
1 M 0.175 0.188 0.169 0.187 0.174 0.181 0.167
2 M 0.176 0.186 0.165 0.185 0.171 0.176 0.165
4 M 0.173 0.188 0.167 0.187 0.171 0.178 0.165
8 M 0.175 0.191 0.171 0.189 0.177 0.182 0.169
16 M 0.189 0.204 0.187 0.203 0.191 0.195 0.187
32 M 0.224 0.257 0.244 0.254 0.230 0.238 0.226
64 M 0.268 0.313 0.289 0.300 0.265 0.275 0.262
128 M 0.267 0.310 0.298 0.308 0.268 0.270 0.268

Appendix A vii

Table A.7: Benchmark with proteins8 payload. The best results for each block size are highlighted.

Data compressor design

greedy greedy-opt nongreedy nongreedy-opt mincost mincost-opt dp-mincost

Block size Compression ratio

32 k 1.417 1.572 1.425 1.579 1.476 1.477 1.476
64 k 1.448 1.589 1.457 1.597 1.514 1.515 1.514
128 k 1.481 1.604 1.491 1.611 1.550 1.552 1.550
256 k 1.508 1.614 1.518 1.623 1.584 1.586 1.584
512 k 1.522 1.614 1.534 1.625 1.612 1.615 1.612
1 M 1.543 1.624 1.558 1.639 1.643 1.646 1.643
2 M 1.573 1.643 1.591 1.662 1.678 1.683 1.678
4 M 1.633 1.690 1.653 1.713 1.743 1.750 1.743
8 M 1.706 1.754 1.730 1.782 1.821 1.832 1.821
16 M 1.781 1.822 1.812 1.860 1.908 1.925 1.908
32 M 1.826 1.862 1.862 1.910 1.969 1.992 1.969
64 M 1.846 1.880 1.885 1.930 1.995 2.019 1.995
128 M 1.943 1.943 1.993 2.037 2.108 2.141 2.108

Compression time (seconds)

32 k 5.152 5.327 5.340 5.551 6.972 6.976 6.442
64 k 5.207 5.384 5.430 5.623 7.120 7.090 6.579
128 k 5.209 5.356 5.396 5.593 7.143 7.117 6.574
256 k 5.250 5.413 5.449 5.630 7.362 7.319 6.762
512 k 5.284 5.462 5.516 5.670 7.684 7.625 7.064
1 M 5.315 5.542 5.572 5.750 7.828 7.760 7.362
2 M 5.337 5.562 5.586 5.763 7.995 7.942 7.635
4 M 5.796 5.912 5.939 6.103 8.382 8.375 8.061
8 M 6.039 6.168 6.203 6.358 8.884 8.887 8.520
16 M 6.994 7.189 7.270 7.437 11.101 11.143 10.746
32 M 7.883 8.142 8.274 8.410 14.150 14.239 14.049
64 M 8.384 8.627 8.839 9.004 16.114 16.195 16.058
128 M 8.948 8.948 9.357 9.541 17.989 18.058 18.188

Decompression time (seconds)

32 k 0.425 0.432 0.415 0.423 0.450 0.466 0.420
64 k 0.426 0.440 0.418 0.430 0.440 0.457 0.411
128 k 0.420 0.439 0.409 0.431 0.426 0.444 0.399
256 k 0.433 0.448 0.422 0.445 0.428 0.447 0.405
512 k 0.448 0.479 0.441 0.481 0.445 0.472 0.427
1 M 0.424 0.465 0.409 0.473 0.436 0.456 0.418
2 M 0.396 0.442 0.385 0.449 0.416 0.438 0.395
4 M 0.400 0.443 0.395 0.446 0.412 0.434 0.393
8 M 0.402 0.440 0.395 0.440 0.403 0.429 0.388
16 M 0.514 0.587 0.537 0.569 0.502 0.526 0.495
32 M 0.681 0.800 0.732 0.773 0.645 0.675 0.639
64 M 0.783 0.930 0.845 0.899 0.732 0.774 0.725
128 M 0.855 0.855 0.932 0.985 0.812 0.850 0.795

viii Appendix A

Table A.8: Benchmark with silesia payload. The best results for each block size are highlighted.

Data compressor design

greedy greedy-opt nongreedy nongreedy-opt mincost mincost-opt dp-mincost

Block size Compression ratio

32 k 2.451 2.524 2.508 2.581 2.551 2.573 2.551
64 k 2.561 2.630 2.625 2.693 2.681 2.704 2.681
128 k 2.656 2.717 2.725 2.787 2.793 2.816 2.793
256 k 2.735 2.790 2.810 2.866 2.890 2.913 2.890
512 k 2.789 2.838 2.871 2.923 2.966 2.989 2.966
1 M 2.840 2.885 2.930 2.979 3.036 3.059 3.036
2 M 2.888 2.931 2.985 3.032 3.102 3.124 3.102
4 M 2.927 2.963 3.026 3.067 3.150 3.171 3.150
8 M 2.965 2.993 3.065 3.098 3.193 3.214 3.193
16 M 2.996 3.019 3.096 3.126 3.228 3.248 3.228
32 M 3.007 3.029 3.107 3.136 3.245 3.265 3.245
64 M 3.018 3.035 3.119 3.144 3.262 3.281 3.262
128 M 3.019 3.025 3.119 3.133 3.262 3.281 3.262

Compression time (seconds)

32 k 7.508 8.375 8.435 8.842 11.568 11.729 10.582
64 k 7.293 8.120 8.207 8.548 11.374 11.605 10.427
128 k 7.244 8.049 8.132 8.457 11.329 11.601 10.391
256 k 7.487 8.208 8.290 8.589 11.638 11.895 10.688
512 k 7.544 8.258 8.355 8.639 12.162 12.359 11.144
1 M 7.680 8.454 8.502 8.822 12.547 12.602 11.737
2 M 8.119 8.817 8.878 9.190 12.934 12.983 12.232
4 M 8.813 9.331 9.413 9.716 13.623 13.666 12.944
8 M 9.726 10.087 10.161 10.395 14.464 14.557 13.693
16 M 10.763 11.207 11.220 11.439 15.861 15.970 15.052
32 M 11.744 12.185 12.167 12.436 17.421 17.546 16.657
64 M 12.776 13.052 13.050 13.215 18.539 19.012 18.142
128 M 13.315 13.840 13.775 13.978 19.544 20.078 19.226

Decompression time (seconds)

32 k 0.516 0.600 0.536 0.596 0.561 0.579 0.536
64 k 0.506 0.583 0.520 0.582 0.543 0.567 0.522
128 k 0.489 0.569 0.503 0.563 0.524 0.552 0.505
256 k 0.492 0.569 0.502 0.563 0.522 0.547 0.502
512 k 0.525 0.587 0.522 0.582 0.538 0.564 0.522
1 M 0.531 0.588 0.525 0.584 0.543 0.562 0.528
2 M 0.521 0.582 0.514 0.575 0.527 0.546 0.514
4 M 0.518 0.581 0.514 0.573 0.523 0.543 0.509
8 M 0.525 0.591 0.524 0.581 0.527 0.549 0.517
16 M 0.550 0.616 0.554 0.604 0.547 0.563 0.535
32 M 0.605 0.684 0.611 0.661 0.579 0.617 0.583
64 M 0.715 0.785 0.690 0.739 0.619 0.678 0.647
128 M 0.746 0.802 0.712 0.762 0.638 0.691 0.664

Appendix A ix

Table A.9: Benchmark with silesia8h payload. The best results for each block size are highlighted.

Data compressor design

greedy greedy-opt nongreedy nongreedy-opt mincost mincost-opt dp-mincost

Block size Compression ratio

32 k 2.740 2.828 2.816 2.908 2.861 2.906 2.861
64 k 2.835 2.915 2.918 3.003 2.974 3.020 2.974
128 k 2.917 2.989 3.008 3.086 3.073 3.119 3.073
256 k 2.987 3.052 3.087 3.159 3.162 3.207 3.162
512 k 3.034 3.093 3.144 3.211 3.233 3.277 3.233
1 M 3.073 3.127 3.196 3.258 3.296 3.339 3.296
2 M 3.117 3.167 3.250 3.308 3.363 3.404 3.363
4 M 3.158 3.201 3.295 3.349 3.416 3.456 3.416
8 M 3.190 3.226 3.330 3.377 3.460 3.498 3.460
16 M 3.212 3.242 3.354 3.398 3.492 3.528 3.492
32 M 3.224 3.250 3.367 3.407 3.512 3.547 3.512
64 M 3.225 3.249 3.372 3.412 3.524 3.558 3.524
128 M 3.233 3.246 3.380 3.403 3.530 3.564 3.530

Compression time (seconds)

32 k 3.549 3.630 3.666 3.748 4.997 4.821 4.594
64 k 3.536 3.624 3.648 3.735 5.049 4.952 4.604
128 k 3.523 3.618 3.635 3.727 5.067 4.985 4.600
256 k 3.596 3.707 3.723 3.810 5.204 5.154 4.748
512 k 3.628 3.747 3.749 3.847 5.438 5.362 4.954
1 M 3.677 3.832 3.818 3.914 5.610 5.527 5.191
2 M 3.803 3.968 3.957 4.072 5.795 5.702 5.419
4 M 4.067 4.182 4.185 4.300 6.111 6.066 5.776
8 M 4.462 4.538 4.548 4.631 6.485 6.450 6.128
16 M 4.938 5.052 5.034 5.127 7.105 7.091 6.715
32 M 5.393 5.534 5.517 5.601 7.782 7.800 7.440
64 M 5.820 5.997 5.947 6.042 8.582 8.625 8.235
128 M 6.019 6.239 6.164 6.277 8.852 8.890 8.539

Decompression time (seconds)

32 k 0.239 0.259 0.227 0.251 0.234 0.234 0.225
64 k 0.236 0.257 0.223 0.248 0.230 0.235 0.220
128 k 0.229 0.251 0.217 0.242 0.225 0.230 0.214
256 k 0.228 0.249 0.216 0.240 0.222 0.228 0.212
512 k 0.239 0.260 0.226 0.251 0.231 0.236 0.224
1 M 0.243 0.262 0.230 0.254 0.235 0.241 0.227
2 M 0.240 0.261 0.227 0.251 0.232 0.237 0.222
4 M 0.240 0.261 0.227 0.252 0.230 0.232 0.221
8 M 0.245 0.266 0.232 0.256 0.233 0.240 0.228
16 M 0.255 0.275 0.241 0.264 0.240 0.245 0.233
32 M 0.277 0.302 0.266 0.288 0.258 0.267 0.253
64 M 0.312 0.356 0.309 0.331 0.294 0.306 0.293
128 M 0.324 0.375 0.324 0.347 0.312 0.321 0.311

x Appendix A

Table A.10: Benchmark with silesia8m payload. The best results for each block size are highlighted.

Data compressor design

greedy greedy-opt nongreedy nongreedy-opt mincost mincost-opt dp-mincost

Block size Compression ratio

32 k 2.799 2.861 2.870 2.937 2.919 2.945 2.919
64 k 2.961 3.023 3.041 3.108 3.106 3.133 3.106
128 k 3.090 3.149 3.177 3.241 3.254 3.282 3.254
256 k 3.184 3.240 3.275 3.337 3.366 3.393 3.366
512 k 3.252 3.305 3.349 3.409 3.457 3.482 3.457
1 M 3.319 3.370 3.422 3.480 3.539 3.563 3.539
2 M 3.376 3.423 3.484 3.538 3.608 3.631 3.608
4 M 3.425 3.468 3.534 3.584 3.665 3.688 3.665
8 M 3.463 3.502 3.569 3.616 3.704 3.726 3.704
16 M 3.508 3.537 3.613 3.655 3.749 3.772 3.749
32 M 3.517 3.523 3.622 3.639 3.761 3.784 3.761
64 M 3.529 3.535 3.634 3.651 3.774 3.796 3.774
128 M 3.532 3.538 3.637 3.652 3.778 3.801 3.778

Compression time (seconds)

32 k 3.654 3.752 3.737 3.861 4.995 4.923 4.564
64 k 3.578 3.685 3.681 3.782 5.005 4.969 4.568
128 k 3.557 3.647 3.650 3.734 5.014 4.975 4.570
256 k 3.628 3.712 3.731 3.811 5.160 5.114 4.717
512 k 3.658 3.758 3.774 3.848 5.402 5.359 4.936
1 M 3.696 3.849 3.827 3.937 5.572 5.523 5.171
2 M 3.876 4.034 4.018 4.133 5.782 5.734 5.443
4 M 4.154 4.289 4.263 4.362 6.124 6.082 5.767
8 M 4.569 4.649 4.648 4.724 6.518 6.491 6.161
16 M 5.113 5.180 5.163 5.239 7.134 7.121 6.744
32 M 5.476 5.421 5.386 5.477 7.445 7.445 7.069
64 M 5.661 5.757 5.705 5.780 7.888 7.889 7.577
128 M 6.064 6.239 6.155 6.278 8.514 8.529 8.251

Decompression time (seconds)

32 k 0.237 0.251 0.224 0.245 0.227 0.227 0.216
64 k 0.228 0.245 0.215 0.237 0.220 0.222 0.211
128 k 0.219 0.237 0.206 0.230 0.213 0.217 0.203
256 k 0.218 0.235 0.207 0.229 0.213 0.217 0.204
512 k 0.224 0.242 0.214 0.234 0.217 0.222 0.211
1 M 0.222 0.240 0.211 0.234 0.217 0.221 0.208
2 M 0.220 0.236 0.209 0.227 0.213 0.217 0.204
4 M 0.220 0.238 0.208 0.228 0.211 0.216 0.204
8 M 0.222 0.240 0.212 0.230 0.216 0.220 0.211
16 M 0.226 0.240 0.216 0.233 0.221 0.224 0.215
32 M 0.238 0.250 0.224 0.247 0.230 0.240 0.221
64 M 0.256 0.270 0.241 0.259 0.243 0.251 0.238
128 M 0.259 0.278 0.257 0.267 0.253 0.256 0.244

Appendix A xi

Table A.11: Benchmark with silesia8t payload. The best results for each block size are highlighted.

Data compressor design

greedy greedy-opt nongreedy nongreedy-opt mincost mincost-opt dp-mincost

Block size Compression ratio

32 k 2.219 2.280 2.262 2.319 2.304 2.309 2.304
64 k 2.339 2.396 2.388 2.442 2.444 2.449 2.444
128 k 2.442 2.493 2.496 2.543 2.564 2.569 2.564
256 k 2.528 2.573 2.585 2.625 2.668 2.673 2.668
512 k 2.586 2.624 2.647 2.682 2.745 2.750 2.745
1 M 2.644 2.679 2.709 2.743 2.819 2.824 2.819
2 M 2.703 2.736 2.771 2.804 2.889 2.894 2.889
4 M 2.742 2.770 2.810 2.839 2.934 2.939 2.934
8 M 2.790 2.814 2.856 2.880 2.982 2.987 2.982
16 M 2.813 2.826 2.878 2.892 3.008 3.013 3.008
32 M 2.828 2.833 2.893 2.899 3.026 3.031 3.026
64 M 2.831 2.836 2.896 2.902 3.030 3.036 3.030
128 M 2.847 2.848 2.912 2.915 3.049 3.054 3.049

Compression time (seconds)

32 k 4.224 4.392 4.390 4.545 5.809 5.712 5.239
64 k 4.020 4.190 4.194 4.350 5.679 5.602 5.123
128 k 3.949 4.109 4.114 4.250 5.638 5.573 5.111
256 k 3.991 4.151 4.169 4.303 5.766 5.699 5.240
512 k 4.011 4.190 4.192 4.320 6.028 5.967 5.476
1 M 4.079 4.253 4.263 4.393 6.192 6.128 5.736
2 M 4.253 4.426 4.433 4.553 6.382 6.321 5.990
4 M 4.574 4.716 4.730 4.852 6.776 6.735 6.387
8 M 5.020 5.166 5.174 5.264 7.302 7.271 6.845
16 M 5.537 5.714 5.692 5.791 8.054 8.036 7.591
32 M 5.981 6.143 6.123 6.217 8.696 8.701 8.272
64 M 6.369 6.557 6.522 6.621 9.262 9.304 8.873
128 M 6.827 7.023 6.979 7.102 10.237 10.285 9.861

Decompression time (seconds)

32 k 0.288 0.310 0.280 0.306 0.289 0.288 0.274
64 k 0.278 0.301 0.270 0.299 0.278 0.282 0.264
128 k 0.267 0.290 0.259 0.287 0.266 0.272 0.256
256 k 0.268 0.291 0.260 0.286 0.265 0.272 0.252
512 k 0.275 0.299 0.265 0.295 0.271 0.279 0.261
1 M 0.274 0.299 0.266 0.296 0.271 0.279 0.261
2 M 0.267 0.293 0.258 0.288 0.262 0.269 0.253
4 M 0.268 0.292 0.260 0.283 0.260 0.266 0.248
8 M 0.273 0.297 0.264 0.290 0.263 0.271 0.255
16 M 0.299 0.320 0.288 0.315 0.285 0.290 0.275
32 M 0.330 0.350 0.314 0.336 0.310 0.321 0.302
64 M 0.346 0.365 0.332 0.352 0.320 0.330 0.314
128 M 0.385 0.427 0.373 0.402 0.357 0.367 0.356

xii Appendix A

Table A.12: Benchmark with sources8 payload The best results for each block size are highlighted.

Data compressor design

greedy greedy-opt nongreedy nongreedy-opt mincost mincost-opt dp-mincost

Block size Compression ratio

32 k 3.311 3.343 3.397 3.429 3.458 3.476 3.458
64 k 3.539 3.565 3.639 3.667 3.721 3.741 3.721
128 k 3.746 3.763 3.857 3.880 3.958 3.980 3.958
256 k 3.901 3.911 4.024 4.043 4.146 4.169 4.146
512 k 4.009 4.015 4.145 4.165 4.290 4.315 4.290
1 M 4.100 4.104 4.249 4.268 4.413 4.438 4.413
2 M 4.170 4.173 4.330 4.348 4.512 4.537 4.512
4 M 4.213 4.216 4.379 4.397 4.581 4.607 4.581
8 M 4.277 4.280 4.447 4.465 4.666 4.692 4.666
16 M 4.335 4.338 4.511 4.529 4.750 4.777 4.750
32 M 4.369 4.371 4.552 4.568 4.815 4.841 4.815
64 M 4.421 4.423 4.610 4.626 4.885 4.911 4.885
128 M 4.493 4.495 4.688 4.705 4.981 5.008 4.981

Compression time (seconds)

32 k 3.878 4.060 4.062 4.185 5.479 5.424 4.922
64 k 3.693 3.880 3.885 3.998 5.435 5.385 4.857
128 k 3.608 3.786 3.791 3.898 5.394 5.349 4.815
256 k 3.655 3.819 3.834 3.935 5.539 5.497 4.944
512 k 3.661 3.822 3.843 3.945 5.779 5.727 5.122
1 M 3.720 3.886 3.904 3.991 5.949 5.902 5.350
2 M 3.864 4.035 4.038 4.142 6.126 6.082 5.601
4 M 4.091 4.235 4.256 4.333 6.437 6.400 5.888
8 M 4.455 4.589 4.597 4.671 6.832 6.805 6.251
16 M 5.034 5.181 5.143 5.237 7.654 7.661 7.049
32 M 5.587 5.725 5.745 5.821 8.737 8.760 8.161
64 M 5.943 6.095 6.089 6.166 9.501 9.576 8.942
128 M 6.339 6.482 6.489 6.556 10.417 10.505 9.813

Decompression time (seconds)

32 k 0.246 0.274 0.241 0.270 0.244 0.248 0.232
64 k 0.236 0.265 0.231 0.263 0.236 0.243 0.224
128 k 0.228 0.256 0.221 0.251 0.225 0.233 0.217
256 k 0.222 0.249 0.216 0.246 0.217 0.225 0.210
512 k 0.221 0.247 0.213 0.243 0.214 0.224 0.207
1 M 0.229 0.255 0.223 0.251 0.221 0.231 0.217
2 M 0.229 0.254 0.222 0.250 0.221 0.230 0.218
4 M 0.227 0.254 0.221 0.250 0.218 0.226 0.214
8 M 0.231 0.257 0.225 0.252 0.220 0.229 0.216
16 M 0.252 0.274 0.246 0.262 0.235 0.246 0.232
32 M 0.332 0.356 0.315 0.328 0.288 0.302 0.287
64 M 0.376 0.401 0.351 0.372 0.325 0.343 0.320
128 M 0.423 0.469 0.391 0.421 0.361 0.378 0.358

Appendix A xiii

Table A.13: Benchmark with zero8 payload. The best results for each block size are highlighted.

Data compressor design

greedy greedy-opt nongreedy nongreedy-opt mincost mincost-opt dp-mincost

Block size Compression ratio

32 k 61 1130 61 1130 61 60 61
64 k 63 2260 63 2260 63 62 63
128 k 63 4519 63 4519 63 63 63
256 k 64 9024 64 9024 64 64 64
512 k 64 18044 64 18044 64 64 64
1 M 64 35881 64 35881 64 64 64
2 M 64 71685 64 71685 64 64 64
4 M 64 142857 64 142857 64 64 64
8 M 64 284091 64 284091 64 64 64
16 M 64 561798 64 561798 64 64 64
32 M 64 1098901 64 1098901 64 64 64
64 M 64 1612903 64 1612903 64 64 64
128 M 64 3030303 64 3030303 64 64 64

Compression time (seconds)

32 k 1.108 1.707 1.167 1.735 1.819 1.877 1.626
64 k 1.107 1.433 1.167 1.454 1.810 1.872 1.643
128 k 1.105 1.298 1.162 1.316 1.805 1.851 1.640
256 k 1.148 1.283 1.220 1.304 1.871 1.906 1.715
512 k 1.150 1.248 1.225 1.265 1.896 1.913 1.747
1 M 1.165 1.236 1.222 1.248 1.924 1.928 1.763
2 M 1.172 1.240 1.230 1.252 1.931 1.942 1.793
4 M 1.191 1.256 1.249 1.269 1.980 1.998 1.837
8 M 1.233 1.294 1.288 1.307 2.012 2.025 1.859
16 M 1.254 1.373 1.312 1.330 2.046 2.073 1.899
32 M 1.306 1.380 1.374 1.384 2.142 2.185 2.005
64 M 1.425 1.502 1.483 1.505 2.313 2.329 2.156
128 M 1.525 1.627 1.579 1.656 2.457 2.497 2.319

Decompression time (seconds)

32 k 0.061 0.060 0.061 0.060 0.061 0.061 0.060
64 k 0.059 0.057 0.059 0.057 0.058 0.059 0.058
128 k 0.060 0.057 0.058 0.057 0.058 0.058 0.058
256 k 0.058 0.056 0.058 0.056 0.057 0.057 0.057
512 k 0.057 0.056 0.057 0.056 0.057 0.057 0.057
1 M 0.058 0.056 0.058 0.056 0.057 0.057 0.059
2 M 0.059 0.058 0.059 0.058 0.059 0.059 0.059
4 M 0.061 0.060 0.061 0.060 0.061 0.061 0.061
8 M 0.065 0.063 0.064 0.063 0.065 0.064 0.064
16 M 0.068 0.067 0.068 0.066 0.068 0.068 0.068
32 M 0.073 0.071 0.073 0.071 0.073 0.075 0.073
64 M 0.081 0.081 0.082 0.082 0.081 0.083 0.084
128 M 0.092 0.091 0.090 0.093 0.092 0.090 0.090

Appendix B SALZ micro-benchmarks

Lcp-comparison

Table B.1: The effect of performing lcp-comparison using multi-byte words on Lempel-Ziv factorization
time (seconds), when only the positions used in final encoding are factorized. Benchmarked on greedy
compressor design and silesia payload. The best results for each block size are highlighted.

8B words 16B words 32B words

Block size Base Time Change Time Change Time Change

32 k 1.117 0.686 -38.61% 0.709 -36.53% 0.722 -35.35%
64 k 1.080 0.671 -37.86% 0.696 -35.58% 0.732 -32.20%
128 k 1.061 0.659 -37.89% 0.677 -36.17% 0.707 -33.37%
256 k 1.037 0.652 -37.14% 0.668 -35.59% 0.714 -31.14%
512 k 1.064 0.698 -34.37% 0.711 -33.24% 0.754 -29.11%
1 M 1.090 0.742 -31.94% 0.755 -30.75% 0.790 -27.47%
2 M 1.123 0.795 -29.17% 0.812 -27.69% 0.848 -24.47%
4 M 1.154 0.834 -27.72% 0.850 -26.33% 0.890 -22.82%
8 M 1.201 0.889 -25.94% 0.907 -24.47% 0.951 -20.81%
16 M 1.337 1.057 -20.90% 1.076 -19.51% 1.143 -14.50%
32 M 1.666 1.418 -14.88% 1.488 -10.70% 1.600 -4.01%
64 M 1.924 1.694 -11.97% 1.869 -2.85% 1.901 -1.18%
128 M 2.149 1.987 -7.51% 2.161 0.58% 2.287 6.46%

Table B.2: The effect of performing lcp-comparison using multi-byte words on Lempel-Ziv factorization
time (seconds), when all text positions are factorized. Benchmarked on dp-mincost compressor design
and silesia payload. The best results for each block size are highlighted.

8B words 16B words 32B words

Block size Base Time Change Time Change Time Change

32 k 8.463 1.946 -77.00% 1.760 -79.20% 1.635 -80.68%
64 k 9.518 2.127 -77.66% 1.875 -80.30% 1.740 -81.71%
128 k 10.800 2.348 -78.26% 2.027 -81.23% 1.817 -83.18%
256 k 12.187 2.513 -79.38% 2.164 -82.24% 1.894 -84.46%
512 k 12.923 2.785 -78.45% 2.377 -81.61% 2.072 -83.96%
1 M 13.972 3.074 -78.00% 2.603 -81.37% 2.242 -83.96%
2 M 14.614 3.305 -77.39% 2.776 -81.01% 2.383 -83.70%
4 M 15.431 3.485 -77.42% 2.949 -80.89% 2.545 -83.51%
8 M 17.006 3.772 -77.82% 3.176 -81.32% 2.726 -83.97%
16 M 20.251 4.222 -79.15% 3.626 -82.09% 3.236 -84.02%
32 M 20.228 4.928 -75.64% 4.176 -79.36% 3.892 -80.76%
64 M 20.881 5.327 -74.49% 4.706 -77.46% 4.374 -79.05%
128 M 21.189 5.628 -73.44% 4.910 -76.83% 4.636 -78.12%

ii Appendix B

Table B.3: The effect on reducing the number of symbol comparisons on Lempel-Ziv factorization time
(seconds), when all text positions are factorized. Benchmarked on dp-mincost compressor design and
silesia payload.

Block size Base Optimized Change

32 k 8.463 2.544 -69.93%
64 k 9.518 2.560 -73.11%
128 k 10.800 2.594 -75.99%
256 k 12.187 2.584 -78.80%
512 k 12.923 2.660 -79.41%
1 M 13.972 2.772 -80.16%
2 M 14.614 2.846 -80.53%
4 M 15.431 2.912 -81.13%
8 M 17.006 3.005 -82.33%
16 M 20.251 3.265 -83.88%
32 M 20.228 3.701 -81.70%
64 M 20.881 4.094 -80.40%
128 M 21.189 4.294 -79.73%

Table B.4: The effect of performing lcp-comparison using multi-byte words on Lempel-Ziv factoriza-
tion time (seconds), when all text positions are factorized with reduced number of symbol comparisons.
Benchmarked on dp-mincost compressor design and silesia payload. The best results for each block size
are highlighted.

8B words 16B words 32B words

Block size Base Time Change Time Change Time Change

32 k 2.544 1.462 -42.52% 1.730 -32.03% 1.886 -25.87%
64 k 2.560 1.490 -41.79% 1.767 -30.95% 1.955 -23.61%
128 k 2.594 1.557 -39.95% 1.829 -29.49% 1.978 -23.75%
256 k 2.584 1.589 -38.51% 1.895 -26.66% 2.042 -20.97%
512 k 2.660 1.777 -33.20% 2.047 -23.06% 2.207 -17.05%
1 M 2.772 1.948 -29.71% 2.213 -20.15% 2.408 -13.14%
2 M 2.846 2.073 -27.17% 2.345 -17.58% 2.548 -10.45%
4 M 2.912 2.173 -25.36% 2.451 -15.84% 2.673 -8.20%
8 M 3.005 2.348 -21.88% 2.609 -13.18% 2.856 -4.97%
16 M 3.265 2.829 -13.36% 3.148 -3.57% 3.449 5.64%
32 M 3.701 3.774 1.97% 4.133 11.67% 4.528 22.35%
64 M 4.094 4.395 7.37% 4.885 19.34% 5.535 35.22%
128 M 4.294 4.993 16.28% 5.473 27.45% 5.957 38.72%

Appendix B iii

Factor offset reuse

Table B.5: Cache hit statistics measured for factor offset reuse. The statistics contain the total cache hit
rate and the distribution of hits per cache position. The statistics were obtained using 8-slot Move-to-Front
cache on dp-mincost design and silesia payload.

Per position

Block size Total 1 2 3 4 5 6 7 8

32 k 0.096 0.406 0.217 0.112 0.091 0.060 0.046 0.036 0.032
64 k 0.086 0.405 0.222 0.110 0.092 0.060 0.045 0.035 0.031
128 k 0.078 0.403 0.227 0.109 0.089 0.064 0.044 0.034 0.030
256 k 0.073 0.400 0.232 0.108 0.088 0.067 0.043 0.033 0.029
512 k 0.070 0.397 0.235 0.109 0.089 0.066 0.042 0.033 0.028
1 M 0.067 0.395 0.237 0.110 0.090 0.066 0.042 0.032 0.028
2 M 0.064 0.393 0.237 0.111 0.091 0.066 0.041 0.032 0.028
4 M 0.063 0.389 0.238 0.112 0.092 0.066 0.042 0.032 0.028
8 M 0.061 0.383 0.239 0.114 0.093 0.067 0.042 0.032 0.028
16 M 0.060 0.381 0.239 0.115 0.095 0.068 0.042 0.032 0.028
32 M 0.059 0.380 0.239 0.115 0.095 0.068 0.042 0.032 0.028
64 M 0.058 0.378 0.240 0.116 0.096 0.068 0.042 0.032 0.029
128 M 0.058 0.378 0.240 0.116 0.096 0.068 0.042 0.032 0.029

iv Appendix B

Table B.6: The effect of factor offset reuse optimization on compression ratio and encoding and decoding
time (seconds). Benchmarked with nongreedy-opt compressor design and silesia payload.

Before After Change

Block size Compression ratio

32 k 2.561 2.581 0.78%
64 k 2.674 2.693 0.71%
128 k 2.768 2.787 0.69%
256 k 2.847 2.866 0.67%
512 k 2.904 2.923 0.65%
1 M 2.961 2.979 0.61%
2 M 3.015 3.032 0.56%
4 M 3.051 3.067 0.52%
8 M 3.083 3.098 0.49%
16 M 3.111 3.126 0.48%
32 M 3.122 3.136 0.45%
64 M 3.131 3.144 0.42%
128 M 3.119 3.133 0.45%

Encoding time

32 k 0.397 0.443 11.55%
64 k 0.393 0.427 8.66%
128 k 0.365 0.408 11.69%
256 k 0.351 0.395 12.57%
512 k 0.348 0.384 10.35%
1 M 0.334 0.367 9.81%
2 M 0.322 0.361 12.18%
4 M 0.318 0.369 16.09%
8 M 0.327 0.368 12.54%
16 M 0.354 0.378 6.89%
32 M 0.348 0.380 9.35%
64 M 0.332 0.367 10.61%
128 M 0.334 0.362 8.28%

Decoding time

32 k 0.423 0.438 3.61%
64 k 0.417 0.437 4.84%
128 k 0.407 0.425 4.42%
256 k 0.393 0.419 6.52%
512 k 0.387 0.413 6.72%
1 M 0.376 0.404 7.65%
2 M 0.389 0.396 1.87%
4 M 0.373 0.397 6.57%
8 M 0.381 0.404 5.99%
16 M 0.414 0.437 5.57%
32 M 0.476 0.493 3.62%
64 M 0.542 0.572 5.63%
128 M 0.593 0.611 3.14%

Appendix B v

Choosing optimal integer codes

Table B.7: The overhead of Golomb-Rice optimization stage on compression time. Benchmarked with
nongreedy-opt compressor design and silesia payload.

Block size Total (ms) Per segment (µs)

32 k 12.127 1.875
64 k 9.658 2.986
128 k 7.530 4.657
256 k 5.402 6.677
512 k 3.860 9.531
1 M 2.465 12.143
2 M 1.598 15.667
4 M 1.122 22.000
8 M 0.780 30.000
16 M 0.515 39.615
32 M 0.337 48.143
64 M 0.170 42.500
128 M 0.104 52.000

Table B.8: The effect of Golomb-Rice optimization on compression ratio. Benchmarked with nongreedy-
opt compressor design and silesia payload.

Block size Base Optimized Change

32 k 2.508 2.561 2.11%
64 k 2.625 2.674 1.87%

128 k 2.725 2.768 1.58%
256 k 2.810 2.847 1.32%
512 k 2.871 2.904 1.15%
1 M 2.930 2.961 1.06%
2 M 2.985 3.015 1.01%
4 M 3.026 3.051 0.83%
8 M 3.065 3.083 0.59%
16 M 3.096 3.111 0.48%
32 M 3.107 3.122 0.48%
64 M 3.119 3.131 0.38%
128 M 3.119 3.119 0.00%

vi Appendix B

Memory reuse

Table B.9: The time (milliseconds) taken by memory resource allocation for compressing a single seg-
ment. Benchmarked with dp-mincost compressor design.

Block size Allocation time

32 k 0.101
64 k 0.138

128 k 0.244
256 k 0.461
512 k 0.817
1 M 1.329
2 M 2.517
4 M 4.518
8 M 7.965

16 M 16.363
32 M 34.869
64 M 68.899
128 M 132.666

Memory access patterns

Table B.10: The effect of optimizing memory access patterns on compressions time (seconds), excluding
suffix array construction time. Benchmarked on dp-mincost compressor design and silesia payload.

Block size Base Optimized Change

32 k 4.644 4.605 -0.82%
64 k 4.765 4.870 2.21%
128 k 4.833 5.194 7.45%
256 k 5.318 5.573 4.80%
512 k 5.607 5.977 6.61%
1 M 5.979 6.251 4.54%
2 M 6.875 6.603 -3.96%
4 M 7.666 7.217 -5.86%
8 M 8.434 7.212 -14.49%
16 M 9.325 7.954 -14.70%
32 M 10.349 9.020 -12.84%
64 M 11.492 9.954 -13.39%
128 M 12.737 10.934 -14.15%

Appendix B vii

Integer code optimizations

Table B.11: The effect of integer code performance optimizations on encoding and decoding time (sec-
onds). Benchmarked with nongreedy-opt compressor design and silesia payload.

Single bits Multiple bits Change

Block size Encoding time

32 k 0.516 0.445 -13.73%
64 k 0.503 0.413 -17.85%
128 k 0.502 0.422 -15.98%
256 k 0.535 0.381 -28.67%
512 k 0.578 0.447 -22.73%
1 M 0.665 0.542 -18.46%
2 M 0.682 0.529 -22.45%
4 M 0.713 0.533 -25.26%
8 M 0.705 0.539 -23.54%
16 M 0.700 0.546 -22.03%
32 M 0.703 0.556 -20.91%
64 M 0.734 0.587 -20.07%
128 M 0.746 0.602 -19.31%

Decoding time

32 k 0.425 0.450 5.79%
64 k 0.428 0.428 0.00%
128 k 0.431 0.436 1.14%
256 k 0.427 0.432 1.18%
512 k 0.422 0.401 -5.01%
1 M 0.420 0.388 -7.46%
2 M 0.417 0.407 -2.37%
4 M 0.428 0.432 0.82%
8 M 0.445 0.386 -13.41%
16 M 0.471 0.422 -10.49%
32 M 0.505 0.448 -11.13%
64 M 0.573 0.517 -9.74%
128 M 0.607 0.553 -8.99%

viii Appendix B

Reduced branching

Table B.12: The effect of reducing branching on the time (seconds) spent in backtracking stage of
mincost compressor design. Benchmarked on silesia payload.

Block size Base Optimized Change

32 k 0.239 0.191 -20.19%
64 k 0.232 0.185 -20.11%
128 k 0.227 0.175 -22.73%
256 k 0.230 0.199 -13.42%
512 k 0.379 0.345 -8.88%
1 M 0.470 0.447 -4.98%
2 M 0.425 0.405 -4.72%
4 M 0.400 0.374 -6.60%
8 M 0.402 0.370 -7.87%
16 M 0.419 0.392 -6.38%
32 M 0.445 0.415 -6.80%
64 M 0.455 0.424 -6.87%
128 M 0.471 0.447 -4.93%

Appendix B ix

Compile time branch prediction

Table B.13: The effect of using compile time branch prediction in factor offset reuse optimization on
total encoding and decoding time (seconds). Benchmarked with nongreedy-opt compressor design and
silesia payload.

Before After Change

Block size Encoding time

32 k 0.443 0.458 3.40%
64 k 0.427 0.441 3.26%
128 k 0.408 0.415 1.78%
256 k 0.395 0.401 1.41%
512 k 0.384 0.393 2.37%
1 M 0.367 0.372 1.51%
2 M 0.361 0.384 6.29%
4 M 0.369 0.380 2.83%
8 M 0.368 0.365 -0.58%
16 M 0.378 0.391 3.44%
32 M 0.380 0.384 1.08%
64 M 0.367 0.371 1.13%

128 M 0.362 0.377 4.12%

Decoding time

32 k 0.438 0.428 -2.37%
64 k 0.437 0.425 -2.77%
128 k 0.425 0.437 2.82%
256 k 0.419 0.408 -2.69%
512 k 0.413 0.406 -1.82%
1 M 0.404 0.404 -0.17%
2 M 0.396 0.391 -1.40%
4 M 0.397 0.397 -0.04%
8 M 0.404 0.401 -0.63%
16 M 0.437 0.435 -0.40%
32 M 0.493 0.495 0.43%
64 M 0.572 0.605 5.69%

128 M 0.611 0.627 2.51%

x Appendix B

Table B.14: The effect of using compile time branch prediction on time (seconds) spent in Golomb-Rice
optimization stage. Benchmarked with nongreedy-opt compressor design and silesia payload.

Block size Before After Change

32 k 12.127 12.176 0.40%
64 k 9.658 9.548 -1.14%
128 k 7.530 7.101 -5.70%
256 k 5.402 5.383 -0.35%
512 k 3.860 3.759 -2.62%
1 M 2.465 2.394 -2.88%
2 M 1.598 1.603 0.31%
4 M 1.122 1.080 -3.74%
8 M 0.780 0.759 -2.69%
16 M 0.515 0.528 2.52%
32 M 0.337 0.329 -2.37%
64 M 0.170 0.175 2.94%
128 M 0.104 0.095 -8.65%

Loop unrolling

Table B.15: The effect of loop unrolling on combined time (seconds) spent in minimum-cost optimization
and encoding stages of mincost compressor design. Benchmarked on silesia payload.

Block size Base Optimized Change

32 k 2.061 2.099 1.89%
64 k 2.176 2.238 2.86%
128 k 2.208 2.156 -2.37%
256 k 2.327 2.281 -1.97%
512 k 2.521 2.489 -1.29%
1 M 2.668 2.671 0.10%
2 M 2.724 2.749 0.92%
4 M 2.957 2.811 -4.92%
8 M 2.911 2.867 -1.50%
16 M 3.055 2.951 -3.41%
32 M 3.132 2.929 -6.47%
64 M 3.188 3.029 -5.00%
128 M 3.209 3.055 -4.80%

Appendix B xi

Copying in words

Table B.16: The effect of copying in words on decoding time (seconds). Benchmarked on dp-mincost
compressor design and silesia payload.

Block size Bytes Words Change

32 k 0.561 0.443 -21.07%
64 k 0.559 0.440 -21.35%
128 k 0.567 0.424 -25.22%
256 k 0.537 0.431 -19.77%
512 k 0.537 0.421 -21.53%
1 M 0.527 0.417 -20.89%
2 M 0.521 0.420 -19.43%
4 M 0.526 0.417 -20.75%
8 M 0.539 0.452 -16.05%
16 M 0.578 0.482 -16.60%
32 M 0.677 0.568 -16.10%
64 M 0.808 0.680 -15.87%

128 M 0.899 0.779 -13.25%

Appendix C Other benchmarks

Table C.1: Benchmarks on third-party data compressors include the de facto standard data compressors
for Unix-like operating systems (gzip, bzip2 and xz) and two well-known modern alternatives (lz4 and
zstd). The data compressors were benchmarked with their default, minimum and maximum compression
levels. zstd offers additional compression levels outside of the default range, which were tested in addition.
The benchmarks were performed on silesia payload.

Compression ratio Compression time (s) Decompression time (s)

Compression level gzip

(min) -1 2.739 3.196 1.394
(default) -6 3.106 7.644 1.286

(max) -9 3.133 16.926 1.277

bzip2

(min) -1 3.504 16.176 5.752
(max, default) -9 3.883 18.206 6.016

xz

(min) -1 3.628 12.242 3.592
(default) -6 4.308 91.320 3.015

(max) -9 4.347 106.080 3.006

lz4

(min, default) -1 2.100 0.635 0.369
(max) -12 2.739 22.268 0.351

zstd

--fast 2.433 1.154 0.302
(min) -1 2.881 1.338 0.367

(default) -3 3.177 1.635 0.405
(max) -19 3.979 103.199 0.428

--ultra -22 4.019 121.869 0.449

	Introduction
	Background
	Common terminology
	Suffix array
	Lempel-Ziv factorization
	Suffix array-based Lempel-Ziv factorization
	BGS
	KKP3

	Variable-byte coding
	Unary coding
	Golomb-Rice coding

	Methods
	General remarks
	Compressed file format
	Suffix array construction
	Lcp-comparison
	Faster comparison with words
	Reduced number of comparisons
	Lcp-comparison performance

	Practical Lempel-Ziv factorization
	Greedy factorization
	Lazy non-greedy factorization
	Minimum-cost factorization
	Dynamic programming minimum-cost factorization

	Encoding
	Encoding format
	Factor offset reuse
	Incompressible segments
	Choosing optimal integer codes

	Performance optimizations
	Memory reuse
	Memory access patterns
	Integer code optimizations
	Reduced branching
	Compile time branch prediction
	Loop unrolling
	Copying in words

	Results
	Benchmark payload collection
	Benchmark environment and procedure
	Final data compressor designs
	Benchmark results

	Discussion
	Comparison to third-party data compressors
	Future work
	Conclusions

	Bibliography
	SALZ benchmarks
	SALZ micro-benchmarks
	Other benchmarks

