
Master’s thesis

Master’s Programme in Computer Science

Fast Implementation of Shortest Common
Superstring Approximation with

Application to Relative Lempel-Ziv
Dictionary Construction

Arttu Kilpinen

May 23, 2022

Faculty of Science
University of Helsinki

Supervisor(s)

Assoc. Prof. Simon Puglisi

Examiner(s)

Prof. Leena Salmela

Contact information

P. O. Box 68 (Pietari Kalmin katu 5)
00014 University of Helsinki,Finland

Email address: info@cs.helsinki.fi
URL: http://www.cs.helsinki.fi/

Faculty of Science Master’s Programme in Computer Science

Arttu Kilpinen

Fast Implementation of Shortest Common Superstring Approximation with Application to Relative
Lempel-Ziv Dictionary Construction

Assoc. Prof. Simon Puglisi

Master’s thesis May 23, 2022 68 pages

shortest common superstring, relative lempel-ziv, implementation

Helsinki University Library

Algorithms study track

The objective of the shortest common superstring problem is to find a string of minimum length
that contains all keywords in the given input as substrings. Shortest common superstrings have
many applications in the fields of data compression and bioinformatics. For example, a common
superstring can be seen as a compressed form of the keywords it is generated from.

Since the shortest common superstring problem is NP-hard, we focus on the approximation
algorithms that implement a so-called greedy heuristic. It turns out that the actual shortest
common superstring is not always needed. Instead, it is often enough to find an approximate
solution of sufficient quality.

We provide an implementation of the Ukkonen’s linear time algorithm for the greedy heuristic.
The practical performance of this implementation is measured by comparing it to another
implementation of the same heuristic. We also hypothesize that shortest common superstrings
can be potentially used to improve the compression ratio of the Relative Lempel-Ziv data
compression algorithm. This hypothesis is examined and shown to be valid.

ACM Computing Classification System (CCS)
Theory of Computation → Design and Analysis of Algorithms → Data Structures Design and
Analysis → Data Compression
Theory of Computation → Design and Analysis of Algorithms → Data Structures Design and
Analysis → Pattern Matching
Theory of Computation → Design and Analysis of Algorithms → Data Structures Design and
Analysis → Sorting and Searching

HELSINGIN YLIOPISTO – HELSINGFORS UNIVERSITET – UNIVERSITY OF HELSINKI
Tiedekunta — Fakultet — Faculty Koulutusohjelma — Utbildningsprogram — Study programme

Tekijä — Författare — Author

Työn nimi — Arbetets titel — Title

Ohjaajat — Handledare — Supervisors

Työn laji — Arbetets art — Level Aika — Datum — Month and year Sivumäärä — Sidoantal — Number of pages

Tiivistelmä — Referat — Abstract

Avainsanat — Nyckelord — Keywords

Säilytyspaikka — Förvaringsställe — Where deposited

Muita tietoja — övriga uppgifter — Additional information

Contents

1 Introduction 1

2 Terminology and Definitions 5

3 Ukkonen’s Algorithm 9
3.1 The Greedy Heuristic . 9
3.2 Aho-Corasick Machine . 13
3.3 The Approximation Algorithm . 23

4 Dictionary Compression: The LZ Family 35
4.1 Lempel-Ziv77 . 35
4.2 Relative Lempel-Ziv . 37

5 Empirical Evaluation 39
5.1 Implementation . 39
5.2 Benchmark Data . 46
5.3 Benchmark Setups . 48
5.4 Results . 49

6 Conclusions 62

Bibliography 65

List of Algorithms

1 Aho-Corasick machine: Construction of the goto function 15
2 Aho-Corasick machine: Construction of the failure function 19
3 Ukkonen’s algorithm: Preprocessing . 28
4 Ukkonen’s algorithm: Selection of the edges 32

1 Introduction

Textually represented data – text – is one of the most common types of preserved infor-
mation. It occurs in many forms, e.g., source code, markup languages and plain text.
Also, DNA and amino acid sequences are often modeled as text. In stringology, a field
of computer science that studies text processing and manipulation, this kind of data is
modeled as finite sequences of symbols called strings. Due to the large variety of applica-
tions, stringology covers many types of problems. For example, programming and editing
text documents, as well as more comprehensive areas such as bioinformatics and data
compression, involve some degree of string processing. Stringology is also one of the most
studied fields in computer science (Crochemore and Rytter, 2003).

One of the most fundamental and common problems for textual data is the String
Matching problem (also known as string searching). That is, given a text string and
a pattern the objective is to output every location of the text string that contains the
pattern as a substring (Gusfield, 1997). The generalized version of the String Matching
Problem is the Multiple String Matching problem where the pattern is replaced
with a set of patterns, while the objective is to report the locations for all of them. Since
many practical applications require solving string matching problems, it is fortunate that
these problems can be solved efficiently. For example, Knuth-Morris-Pratt (Knuth et al.,
1977) and Two-Way (Crochemore and Perrin, 1991) algorithms solve the string matching
problem in linear time. Many other polynomial-time algorithms also exist, see e.g., (Karp
and Rabin, 1987) and (Horspool, 1980). The multiple string matching problem can be
efficiently solved, for example, with algorithms presented in (Aho and Corasick, 1975),
(Navarro and Raffinot, 2000), (Karp and Rabin, 1987) and (Commentz-Walter, 1979).

Stringology also covers many optimization problems assumed to be intractable, e.g., Clos-
est String, Longest Common Subsequence, Maximal Strip Recovery, and
Shortest Common Superstring, to name a few (Bulteau et al., 2014). Although
there are many tractable special cases of these problems, they are nevertheless NP-hard,
i.e., there are no efficient algorithms known to solve these problems for arbitrary inputs.
This means that often suboptimal decisions must be settled for. For many applications,
an optimal solution is however not always required. In many cases it is enough to find

2

a solution of sufficient quality. That can be obtained with so-called approximation algo-
rithms. Depending on the problem, there are efficient heuristics to be used. For example,
the greedy heuristic for the Shortest Common Superstring problem, which we focus
on this thesis, produces very good results in practice (Romero et al., 2004).

The objective of the Shortest Common Superstring (SCS) problem is to find a string
of minimum length that contains all keywords in the given input. One obvious application
of the SCS is data compression. Since the SCS is usually shorter than the input keywords,
it can be seen as a packed form of the input. To compress a set of keywords, one can
compute an SCS and address the keywords as a pair of position and length, thus decreasing
the redundancy of the saved data, for example.

Another application of the SCS problem is DNA sequencing, i.e., the construction of a
complete model of nucleotides of some biological unit, e.g., a single gene, chromosome or a
genome. Direct DNA sequencing (sequencing a whole strand as single piece) methods can
only be applied for small nucleotide sequences, while the process is infeasible for larger
units. To sequence a longer strand of DNA, a number of its copies are first replicated.
The multiple strands of the same sequence are then split from several semi-random places,
yielding a set of different subsequencences that overlap each other. These shorter nu-
cleotide strands are then sequenced and modeled as a set of strings. What remains is to
map those randomly permutated sequences in order to find their correct natural order.
This fragment assembly problem can be simplified to the SCS problem (Peltola et al.,
1983).

As the decision version of the SCS problem is NP-complete (J. Gallant et al., 1980),
several heuristics have been developed to compute the approximate solution. The quality
of these heuristics can be defined in terms of compression, that is, the number of symbols
by which the common superstring is shorter than the input keywords combined. For
the greedy heuristic, which works by repeatedly merging the two strings with a maximal
overlap together, first described in (J. K. Gallant, 1982), the compression has been shown
to be at least half of the optimal (Tarhio and Ukkonen, 1988). Another measure for the
approximation is the length of the obtained superstring. (Blum et al., 1994) has shown
that the approximation ratio is at least 4. Later on, a tighter upper bound of 3.5, has been
proven (Kaplan and Shafrir, 2005). A conjencture (Tarhio and Ukkonen, 1988) claiming
the approximation ratio to be 2 remains unresolved. Despite this, the greedy heuristic is
observed to result in very good approximation ratios, in practice. A theoretical explanation
for this is discussed in (Ma, 2008). For other heuristics, the best proven approximation

3

ratio is 2 + 11
30 (Paluch, 2014).

For the aforementioned data compression and DNA sequencing related problems, approx-
imate solutions of the SCS problem can be used. There is no inevitable requirement to
get an actual shortest common superstring. For data compression problems, the length of
the superstring is only a matter of efficiency. A good approximation is simply enough.

One alternative to implement the greedy heuristic for the Shortest Common Super-
string problem is to solve the All-Pairs Suffix-Prefix (APSP) problem (Lim and
Park, 2017) for the input keywords and construct the common superstring repeatedly se-
lecting a pair of strings with a maximal overlap. Tarhio and Ukkonen (1988) describes an
algorithm that works in this manner. The APSP problem is solved using a Knut-Morris-
Pratt algorithm, giving a time complexity of O(mn), where m is the number of input
keywords and n is the total length of the input. This also dominates the time complexity
of the whole algorithm. To the best of our knowledge, no publicly available implementa-
tion of this algorithm exists. After the publication of (Tarhio and Ukkonen, 1988), more
efficient algorithms for APSP problem has been developed (Gusfield et al., 1992). Theo-
retically, these could be combined with the bookkeeping of (Tarhio and Ukkonen, 1988)
to implement the greedy heuristic in time O(n+m2).

There are also algorithms that compute the greedy heuristic without calculating the APSP
problem. For example, (Ukkonen, 1990) uses the so-called Aho-Corasick machine to find
the overlaps. In this way, at most 2m overlaps need to be examined. This significantly
decreases the time complexity of the computation. In fact, depending on the chosen
data structures, Ukkonen’s algorithm can be implemented to run in linear time. Another
algorithm of this kind is described in (Alanko and Norri, 2017). The time complexity of
this algorithm is O(n · log(|Σ|)), where Σ is the alphabet. This algorithm is implemented
using the SDLS library (Gog et al., 2014). The publication also has some theoretical
comparisons of the latter two algorithms. No practical comparisons were made since at the
time of writing of (Alanko and Norri, 2017), there was no publicly available implementation
of (Ukkonen, 1990). It has been stated in (Alanko and Norri, 2017) that it would be
interesting to compare these two algorithms in practice.

Motivated by the above discussion, in this thesis, Ukkonen’s linear time approximation
algorithm for the greedy heuristic of the Shortest Common Superstring problem is
further studied. We provide an implementation of the algorithm to examine its practical
capabilities. We compare the runtimes of our implementation to the implementation of
(Alanko and Norri, 2017). We also hypothesize that the shortest common superstring

4

approximation can be used to improve the quality of the Relative Lempel-Ziv (RLZ) data
compression algorithm. As RLZ dictionaries for general-purpose data are conventionally
constructed by concatenating random samples of the input, in theory, depending on the
repetitiveness of the input, the dictionary could be highly compressed. Using this fea-
ture, the overall compression could be increased while the dictionary size decreases. This
hypothesis is tested and validated in this thesis.

The structure of the thesis is as follows. In Chapter 2 we briefly discuss the preliminaries
needed to understand the rest of the thesis. Chapter 3 gives the detailed description of
Ukkonen’s algorithm for the Shortest Common Superstring problem. Besides the
pseudocode, which is discussed in four parts, Chapter 3 includes the formal definition of
the greedy heuristic as well as discussion of the Aho-Corasick machine, which is used to
implement the heuristic. In addition, we prove the correctness of Ukkonen’s algorithm and
discuss the time complexities of all of the sections. The concept of dictionary compression
is introduced in Chapter 4. We discuss the Lempel-Ziv family of compression algorithms.
The Relative Lempel-Ziv method is also defined. In Chapter 5 we detail our contribution
to the topic. Section 5.1 comes as a documentation of our implementation of Ukkonen’s
algorithm. The datasets and experiment environments are described in Sections 5.2 and
5.3, respectively. The results are discussed in Section 5.4. Finally, we give a conclusion of
the thesis in Chapter 6.

2 Terminology and Definitions

Since the Shortest Common Superstring problem is an essential part of this thesis,
we first define the notations and terminology of strings in order to formally define the
problem. The Shortest Common Superstring problem is solved as the Longest
Hamiltonian Path problem. Therefore, that problem and its related concepts are also
recalled. To make the contents of this chapter more readable, each definition is preceded
with a corresponding explanation in natural language.

Regardless of the alphabet, a string is simply a finite sequence of symbols. The length of
a string equals the number of symbols it contains. Sequences of symbols (as well as other
types of elements) are denoted by writing the elements adjacently. A dot symbol · is also
used to emphasize the concatenation of two symbols or strings.

Definition 2.1 (String).
For an alphabet Σ, a string s is a finite sequence of symbols σ1 · · ·σn where each symbol
σi ∈ Σ. The length of a string s denoted by |s| is the number of symbols in the string. An
empty string denoted by ε contains zero symbols. An ith symbol of a string s is denoted
by s[i].

In the theoretical discussion of Chapter 3 we assume an integer alphabet where any symbol
can be stored in log(|Σ|) bits, where |Σ| is the size of the alphabet.

For a pair of strings we define the concepts of substring, superstring, prefix, suffix and
overlap as follows.

The concepts of a prefix and a suffix are used to define an overlap. A string u is a prefix
of a string s if the first |u| symbols of s spells out u. Similarly, a string v is a suffix of a
string s if the last |v| symbols of s spells out v. Note that the prefix or the suffix may also
be empty.

Definition 2.2 (Prefix).
Let s and u be strings. The string u is a prefix of s if and only if s = ut for some string t.

Definition 2.3 (Suffix).
Let s and v be strings. The string v is a suffix of s if and only if s = tv for some string t.

6

Now we define the overlap of two strings to be a string that is a prefix of the first string and
a suffix of the other. Note the antisymmetry of the definition. The overlap between the
first and the second string is not necessarily the same as the overlap between the second
and the first string. Trivially, any two strings have an empty overlap.

Definition 2.4 (Overlap and Maximal Overlap).
Let s and t be strings. A string w is an overlap between s and t if and only if w is a prefix
of s and a suffix of t. If w is the longest such string, it is said to be maximal overlap.

If a string s contains another string s′ we say that the string s′ is a substring of the string s
and string s is a superstring of s′. By containing a string we mean that there is a sequence
of symbols in s that spells out s′.

Definition 2.5 (Substring and Superstring).
Let there be two strings s and s′. The string s′ is a substring of s if and only if s can be
written as u · s′ · v, where u and v are strings. Any of the strings u and v may be empty.
If u and v are both empty then s = s′ which is a substring of itself. An empty string is
trivially a substring of every other string. The string s′ is a substring of s if and only if
s is a superstring of s′. A substring of s with length k starting at index i is denoted as
s[i...k + i− 1].

Note that by Definition 2.5, prefixes and suffixes are also substrings.

Let us now define a common superstring and a shortest common superstring for a set of
strings using the previous definitions. If a string contains (i.e., is a superstring of) each
string in a set of strings, it is said to be a common superstring of the set.

Definition 2.6 (Common superstring).
Let R = {s1, ..., sm} be a set of strings and s′ be a string. The string s′ is a common
superstring of R if and only if s′ is a superstring for each si such that i ∈ 1, ...,m.

Trivially, a common superstring of a set of strings can be constructed by concatenating all
of the strings of the set together. This kind of string has a length that equals the lengths
of all the substrings added together.

Example 2.7:

LetR = { “baa”, “baba”, “abab”, “aab”} be a set of strings. The string “baababaababaab”
is a common superstring of the set R.

7

In many cases, there exists one or more common superstrings that are shorter than the
common superstring produced by this naive method. If a common superstring has the
shortest length possible, it is said to be a shortest common superstring (SCS).

Example 2.8:

Let R = { “baa”, “baba”, “abab”, “aab”} be a set of strings. A string “aababaa” is a
shortest common superstring of the set R.

Definition 2.9 (Shortest Common Superstring).
Let string s be a common superstring of a set of strings R. The string s is a shortest
common superstring of R if and only if there does not exist a common superstring of R
which is shorter than s.

A reduced set of strings is a set of strings such that no string in the set is a substring
of another string in that set. This property is important since the later discussion of the
reduction between the Shortest Common Superstring and Longest Hamiltonian
Path problems only works for reduced sets of strings. The SCS of the reduced set of
strings is the same as the SCS of the same set of strings that is not reduced.

Definition 2.10 (Reduced Set of Strings).
Let R = {s1, s2, ..., sm} be a set of strings. The set R is called reduced if and only if si is
not a substring of sj for all i, j = 1, ...,m, i 6= j.

Lemma 2.11. Let R be a set of strings such that s, s′ ∈ R and s′ is a substring of s.
The shortest common superstrings of R and R\{s′} are the same.

Proof. Let sscs be a shortest common superstring of a set R\{s′}. Since, s ∈ R\{s′} and
s′ is a substring of s, the string sscs is a superstring of s′. Adding a string to a set can
not decrease the length of its corresponding shortest common superstring. Therefore sscs

is also a shortest common superstring of the set R.

Now we have defined the necessary string-related concepts. Next the Shortest Common
Superstring problem is defined as follows

Definition 2.12 (Shortest Common Superstring Problem).
Given a set of strings R, the shortest common superstring problem asks to find a shortest
common superstring of a set R. If there are multiple such strings, any of them can be
returned.

8

The algorithm presented in Chapter 3 solves the approximation of the Shortest Com-
mon Superstring problem by reducing it to the Longest Hamiltonian Path problem
in a weighted digraph. For this reason, we will also define the necessary terminology to
understand the latter problem. The proof of the reducibility is given in Chapter 3.

For any given graph, a Hamiltonian path in a graph is a path (sequence of connected
vertices) that contains every vertex in the graph exactly once.

Definition 2.13 (Hamiltonian Path).
Let G = (V,E) be a graph. A Hamiltonian path in G is a |V | sized sequence of vertices
that contains each vertex in V exactly once and for each consecutive vertices vi and vj

there is an edge (vi, vj) ∈ E.

For a weighted graph, a longest Hamiltonian path is a Hamiltonian path of maximum
length. i.e., the sum of the weights of the edges is maximal.

Definition 2.14 (Longest Hamiltonian Path).
Let G = (V,E,w) be a weighted graph. A longest Hamiltonian path in G is a Hamiltonian
path v1 · · · v|V | such that w((v1, v2)) + · · ·+ w((v|V |−1, v|V |)) is maximized.

Finally, we define the Longest Hamiltonian Path problem as follows.

Definition 2.15 (Longest Hamiltonian Path Problem).
Given a weighted graph G, the longest Hamiltonian path problem asks to find a longest
Hamiltonian path of G. If there are multiple such paths, any of them can be returned.

3 Ukkonen’s Algorithm

In this chapter, we describe Ukkonen’s linear time approximation algorithm (Ukkonen,
1990) for Shortest Common Superstring problem in detail. First, we define the
heuristic that the algorithm uses in terms of strings. Then we show that the problem
can be reduced to the problem of finding a longest Hamiltonian path in a specific overlap
graph that encodes the same SCS problem. After the problems are proven to be equiv-
alent, we define the same heuristic for the reduced problem. The equivalence of the two
approaches are necessary, since the bounds of the achieved compression are proven using
the Longest Hamiltonian Path problem. Conceptually, Ukkonen’s algorithm solves
the approximate SCS problem by constructing the approximate longest Hamiltonian path
in a corresponding overlap graph.

Further, we define the Aho-Corasick (AC for short) machine, as it is used in the algorithm
for finding the maximal overlaps between the set of input keywords. The time complexity
of the construction of the AC-machine is also discussed. We also prove that the AC-
machine can be used to find the maximal pairwise overlaps between every input keyword.

This chapter contains four pseudocode blocks, which essentially form the algorithm as a
whole. For each of those algorithms, we first discuss their principles on a higher level.
After this, the pseudocode is presented and discussed in more detail. Finally, we prove
their time complexities. The algorithms represented here are slightly changed and contain
a few corrections from the form they were originally presented. Each such modification
is added to footnotes to emphasize the differences between the algorithms presented here
versus the original ones.

3.1 The Greedy Heuristic

Let R = {s1, ..., sm} be a set of m strings. A naive method for constructing a common
superstring for R is simply to concatenate all the strings in the set. For the set R, the
resulting superstring would then be s1s2 · · · sm. The following greedy heuristic can be used
to construct an approximation of a shortest common superstring:

10

1. Examine the set and remove two strings si and sj that have a longest overlap among
all pairs of strings (si, sj) with i 6= j. Note that a longest overlap may be an empty
string. If there are multiple pairs of strings with a longest overlap, the decision can
be made arbitrarily.

2. Merge the strings together such that they are maximally overlapped to form a short-
est common superstring of the set {si, sj}.

3. Add the new string back to the set R and repeat until there is only one string left.

It turns out that the Shortest Common Superstring problem for a reduced set of
strings is analogous with a special case of the Longest Hamiltonian Path problem,
that is, every instance of the SCS problem can be encoded as an instance of the Longest
Hamiltonian Path problem. The encoding works by creating a weighted complete
digraph from the set of strings as follows. The graph GR = (VR, ER, w), where VR is a set
of vertices, ER is a set of edges and w is a weight function defined for each edge in ER, is
constructed from the set of strings R. Let there be a vertex vi = si for each string in R.
Moreover, we define the start vertex vstart and the end vertex vend. Each vertex vi has a
directed weighted edge to each vertex vj with i 6= j. The start vertex has an edge to each
vi and each vi has an edge to the end vertex. The weight w(vstart, vi) = 0 and the weight
w(vi, vend) = 0 for all i = 1, ...,m. The weight of every other edge (vi, vj) is the length of
the maximum overlap between si and sj. More formally,

GR = (VR, ER, w) with

VR = {vi = si ∈ R} ∪ {vstart, vend},

ER = {(vstart, vi), (vi, vend), (vi, vj) | i = 1, ...,m, j = 1, ...,m, i 6= j},

and

w((vs, vd)) =

length of the longest overlap between vs and vd when vs ∈ R and vd ∈ R,

0 when vs = vstart and vd ∈ R,

0 when vs ∈ R and vd = vend.

Since the subgraph consisting of vertices vi, i = 1, ...,m is a complete graph, there exists
a Hamiltonian path or paths. Given any of the Hamiltonian paths H from the graph GR,
we can construct a common superstring of R by overlapping the strings representing the
vertices in the same order they appear on the path in the following way.

11

p(H)

t1

t2

t3

...
ti

ti+1
ui vi

...
tm

Figure 3.1: The projection p(H) of the set of strings {s1, ..., sm}

Let us take the strings in the same order as their corresponding vertices appear in the
path H. Put the strings above each other such that they are maximally overlapped.
The projection p(H) which describes the strings that are maximally overlapped (i.e., the
overlaps are not duplicated) clearly results in a common superstring of R. Depending on
the Hamiltonian path H the overlaps in the projection p(H) have different lengths, hence
the projection changes depending on the path H.

Figure 3.1 shows an example of the projection constructed from a Hamiltonian path H

in an overlap graph. The corresponding set of strings consists of s1 to sm. The strings t1
to tm are the same strings in the order they appear on H. We can represent the string
ti, i = 1, ...,m − 1 as a prefix-suffix pair (ui, vi) where vi is the suffix of ti that is also a
prefix of ti+1 such that the overlap between ti and ti+1 is maximal. The prefix of ti whose
length is |ti|− |vi| is ui, i.e., ui is the part of ti that can not be overlapped with ti+1. Using
this partitioning we can write the projection p(H) as u1u2 · · ·um−1tm.

Since the maximal overlaps vi, i = 1, ...,m−1 appear in the projection only once, the length
of the projection is (|s1|+...+|sm|)−(|v1|+...+|vm−1|). The length of the maximal overlaps
are equivalent to the weights of the overlap graph GR, and so v1 + · · · + vm−1 = |H|. As
the size of |H| grows, the size of the projection gets shorter. With this analogy, the size of
H is the compression of the common superstring, and the length of p(H) is the length of
the common superstring. We now know that the Hamiltonian path in the overlap graph
can be used to form a common superstring of the set of strings. Next, we show that also a
shortest common superstring of R has a corresponding Hamiltonian path. To prove this,
we introduce the following lemma.

12

Lemma 3.1. The compositions of p(H) and a shortest common superstring sscs for a
reduced set of strings are equivalent.

Proof (by construction). Let there be a reduced set of strings R = {s1, s2, ..., sm} and a
shortest common superstring sscs for R. The indices of the strings s1 to sm are in the
same order they appear in sscs. Let vi be the longest suffix of si such that it is also a
prefix of si+1, i.e., there is an overlap vi between si and si+1. Additionally, let us define ui

to be the prefix of si that does not overlap with vi. By this construction we see that the
composition of any SCS for any reduced set of strings is equivalent with the composition
of the superstring acquired via the projection from the Hamiltonian path.

Hence, there exists a Hamiltonian path and the corresponding projection for any SCS.

Theorem 3.2. The projection p(H) for the longest Hamiltonian path in the overlap graph
is equivalent to a shortest common superstring for a reduced set of strings.

Proof sketch. By Lemma 3.1 there exists a decomposition of the SCS that corresponds to
a Hamiltonian path in an overlap graph of a reduced set of strings.

The following defines a conceptually equivalent greedy heuristic for the SCS problem in
the terms of a Hamiltonian path in the overlap graph.

To construct an approximate longest Hamiltonian path, select an edge e from the set ER

such that

1. The edge e has the largest weight. If there are multiple such edges, the decision can
be made arbitrarily.

2. The edge e has not been selected before.

3. It is possible to construct a Hamiltonian path with e and the already selected edges.

The third constraint above indicates the following:

i The selection does not form a cycle.

ii The earlier selected edges can not have the same start vertex as e.

iii The earlier selected edges can not have the same end vertex as e.

13

Theorem 3.3. Let H ′ be the approximate longest Hamiltonian path in the overlap graph
created using the greedy heuristic and let H be the actual longest Hamiltonian path. Then,
|H ′| ≥ 1

2 |H|.

In other words, the compression achieved by the greedy heuristic is at least half of the
optimal compression. For the proof we refer the reader to (Tarhio and Ukkonen, 1988).

3.2 Aho-Corasick Machine

The Aho-Corasick (AC for short) machine is a finite state automaton (FSA) like data
structure that was developed to be used for pattern matching to find occurrences of the
given keywords (i.e., strings) in a larger text string (Aho and Corasick, 1975). The input
is a finite set of strings called keywords and an arbitrary string called a text string. The
output of the program is a list of locations of every occurrence of every keyword in the
text. The AC-machine data structure and the associated pattern matching algorithm were
first described in (Aho and Corasick, 1975).

As the string searching part of (Aho and Corasick, 1975) is not used in (Ukkonen, 1990)
and is not otherwise relevant in this thesis, we only discuss the AC-machine as a data
structure and omit the string searching functionality of the original description. Formally,
the AC-machine is defined∗ as follows.

Definition 3.4. Aho-Corasick machine is a tuple (Q,Σ, g, f), where:

1. Q is a set of states, containing at least the start state;

2. Σ is the alphabet;

3. g : Q×Σ→ Q, g(qs, σ) = qd is a function that defines a state transition from a state
qs to a state qd for a symbol σ;

4. f : Q→ Q, f(qs) = qd, is a function that defines a failure transition from state qs to
state qd.

If there is a goto transition from qs to qd in an AC-machine, we say that the state qs is the
parent of the state qd and that the state qd is a child of the state qs. A depth of a state q

∗(Aho and Corasick, 1975) also defined an output function. This is needed only when the AC-machine
is used for searching strings.

14

is the minimum number of state transitions that is needed to get q from the start state.
We use a term failure path for a continuous sequence of failure transitions with decreasing
depth.

When the AC-machine is used in a text search program, the goto function defines the state
transition from start state qs to the destination state qd with the current input symbol
σ ∈ Σ of the state automaton. If no such goto transition exists, the failure function f is
queried and the failure transition from the start state qs to the destination state qd occurs.
The alphabet Σ contains every symbol in the set of keywords (and in case of a string search
program, also every string in the processed text string) encoded by the AC-machine.

To construct the AC-machine for the set of keywords, the FSA like goto function is first
created. The goto function is then used to construct the failure function, which completes
the construction of the AC-machine. The goto function is similar to the child function
of a trie, i.e., it describes a rooted tree that stores a set of keywords such that edges are
labeled with the symbols of the alphabet and the edge label is different between each
sibling node. We say that a node spells out a string that is formed by concatenating
the edge labels from root to the node. Since there is an unambiguous correspondence
between a state and a string, those words are occasionally used interchangeably. The
failure function describes a chain of state transitions in the case when the goto function
is not defined for the current input symbol. The failure function is queried as long as the
goto function is not defined. In the AC-machine the goto function is defined for every
symbol in the alphabet in the start state. Therefore, the failure function is not defined
for the start state. Other states, whether the goto function is fully defined or not, always
have a defined failure function value. Algorithms 1 and 2 are used as complete definitions
of the goto and failure functions.

The AC-machine can be illustrated as a graph where each state is represented as a node
and each goto transition is represented as a labeled edge. Failure transitions can also be
drawn. We call such an illustration a goto graph of an AC-machine. In a goto graph, the
start state is represented by a root node.

Figure 3.7 illustrates the AC-machine for the set of keywords R = {“baa”, “baba”, “abab”,
“aab”}. The solid lines describe the goto function and the dashed lines describe the failure
function, for example, g(8, a) = 9 and f(4) = 11.

Explanation of Algorithm 1. Algorithm 1 creates a goto function for a set of strings.
It begins by setting the start state on line 2. The algorithm continues by looping over

15

Algorithm 1 Aho-Corasick machine: Construction of the goto function
Input: Set of keywords R = {s1, s2, ..., sm}
Output: Goto function g that is initially undefined for all states
Preconditions: Initially g(q, σ) is undefined for each state and symbol

1: function calculateGotoFunction(R)
2: q ← 1
3: for i← 1 until m do
4: insert(si)

5: for σ s.t. g(1, σ) is not defined do
6: g(1, σ)← 1

7: function insert(s = σ0σ1 · · ·σk−1)
8: p← 1
9: j ← 0

10: while g(p, σj) is defined do
11: p← g(p, σj)
12: j ← j + 1
13: for l← j until k − 1 do
14: q ← q + 1
15: g(p, σl)← q

16: p← q

the set of keywords and inserting them to the goto function on lines 3 to 4. At the end
of the main function, on lines 5 to 6, the goto function is defined for all g(1, σ) that were
undefined, creating a loop within the start state. This ensures that the failure function of
the start state is never used when the AC-machine is used for searching strings.

The procedure insert inserts a single keyword to the goto function. The idea in the lines
10 to 12 is to skip the prefix of s that already exists in the trie. The variable j initialized
in line 9 keeps track of this prefix. After the first symbol not already represented in the
trie is found, the new branch is created and the remaining suffix of s is inserted symbol
by symbol at lines 13-16.

1 2 3 4b a a

Figure 3.2: Illustration of the AC-machine after the first key is added in Example 3.5.

16

1 2 3

4

5 6b a

a

b a

Figure 3.3: Illustration of the AC-machine after the second key is added in Example 3.5.

Example 3.5:

Let us simulate this algorithm with a set of keywords R = {“baa”, “baba”, “abab”,
“aab”}. The algorithm starts from line 2 where the start state (root node in the figures
that illustrate the AC-machine) is created. Since there are four keywords, the first for
loop is executed four times. In the first round, the insert procedure is called for the
first keyword “baa”. In the insert procedure, the first while loop is not executed since
there are no outgoing edges from the root node yet. The for loop is executed for every
symbol and the three nodes (2,3,4) are added to the goto graph with edge labels ’b’, ’a’,
and ’a’. Figure 3.2 presents this state of the construction.

With the second round of the for loop, we add the keyword “baba”. In this case, the
insert procedure executes the while loop twice, since the common prefix of “baa” and
“baba” has length 2. At this point, a branch is added to the goto graph and the
remaining symbols ’b’ and ’a’ are inserted. Figure 3.3 corresponds with this state.

In the same way, the rest of the keywords are added. For keyword “baba” the insertion
happens in the same way as with the first keyword, that is, the while loop in the insert
procedure is not executed since there is no goto transition from the root with a symbol
’a’. For the last keyword, the branching of the goto graph happens again in a similar way
to the second keyword. At this point, the goto function is a trie of the input keywords.
After the first for loop in the main function is executed, the second loop on lines 5 to 6
creates an edge from root to root for every symbol in the alphabet such that g(1, σ) is
not defined. With this example, we already have an edge from the root for both of the
symbols in the binary alphabet, hence no edges are created in this step. However, the
corresponding edge is drawn in the image for clarity. This completes the execution of
Algorithm 1. The resulting goto graph is described in Figure 3.4

Let us define a depth function for the AC-machine. At this point, depth is merely a
concept of the machine, but later on it becomes a part of the data structure in Algorithm
3. In an AC-machine the depth of a state q, denoted by d(q), is the depth of the node

17

1

2 3

4

5 6

7 8 9 10

11 12

¬{a, b}
b

a

a

b a

a b a b

a

b

Figure 3.4: The complete goto graph for the set of keywords R = {“baa”, “baba”, “abab”, “aab”}.

(number of edges from root to that node) that corresponds to the state in the goto graph.
This is equivalent to the length of the string that represents the state, i.e., if a node q in
the goto graph is represented by the string s, then d(q) = |s|.

Description of Algorithm 2. Next, we describe the construction of the failure function
in more detail. The failure function for a state is calculated using the failure function of
the parent of that state. Thus, the computation starts from the start state, and continues
to the states of depth 1, the states of depth 2, and so on.

Since the failure function is not defined for the start state (depth 0), the calculation starts
from depth 1. We define f(q) = 1 for all states q with depth = 1. Assuming the failure
function is calculated for all states of depth d− 1, then the failure function of a state q is
defined with the instructions in Figure 3.5.

1. Let p be the parent of the state q such that g(p, σ) = q.

2. Set r = f(p).

3. Set r = f(r) until g(r, σ) is defined. Since g(start, σ) is defined for all symbols, at
some point, the condition is met.

4. Set f(q) = r.

Figure 3.5: Listing of the failure calculation for state s.

18

1

2 3

4

5 6

7 8 9 10

11 12

¬{a, b}
b

a

a

b a

a b a b

a

b

Figure 3.6: The point of Example 3.6 when f(q) is defined for all states q with depth ≤ 1.

Example 3.6:

Let us continue with the previous example from the goto function construction. By
definiton, f(1) is not defined. For the states of depth 1 (q ∈ {2, 7}) the failure function
is defined as f(q) = 1. Figure 3.6 presents this state.

Next we calculate the failure function for the states 3, 8 and 11, that is, the states with
depth 2. For state 3, we take the parent state 2 and follow the failure path to the start
state. Since g(1,a) = 7 we define f(3) = 7. For the states 8 and 11 the procedure is
similar. We set f(8) = 2 and f(11) = 7. The procedure is iterated until the failure
function is defined for every state. Figure 3.7 describes the final result. Because the AC-
machine only contains these two functions, Figure 3.7 also presents the fully constructed
AC-machine.

In Example 3.6 the value for the failure function was always found in a single iteration of
the step 3 of the above definition (Figure 3.5). Next we go through the pseudocode for
the failure function calculation in Algorithm 2.

Explanation of Algorithm 2. Since the failure values must be calculated from the
lowest depth states to the highest depth states, we go through the goto transitions using a
breadth-first search (BFS). This is provided by a queue that is appended in every non-leaf
state, i.e., the children of the currently processed state are put into the queue and the
next state to be processed is popped. The queue is initialized to be empty in the first
line of the algorithm. The for loop on lines 3 to 5 adds all the children of the start state
to the queue. Because the start state is special as it contains goto transitions to itself,

19

Algorithm 2 Aho-Corasick machine: Construction of the failure function
Input: Goto function g from algorithm 1
Output: Failure function f

1: function calculateFailureFunction(g)
2: queue← empty
3: for each σ s.t. g(1, σ) = q 6= 1 do
4: queue← queue ∪ {q}
5: f(q)← 1

6: while queue 6= empty do
7: let r be the next state in queue
8: queue← queue\{r}
9: for each σ s.t. g(r, σ) = q is defined do

10: queue← queue ∪ {q}
11: p← f(r)
12: while g(p, σ) is undefined do
13: p← f(p)

14: f(q)← g(p, σ)

the additional constraint on line 3 is added to prevent an infinite loop. In the same for
loop, we define f(s) = 1 for all states with depth 1. The while loop from line 6 to 14
implements the instructions in Figure 3.5. Since the AC-machine does not save parent
information, this is done slightly differently, although the result is exactly the same as
Figure 3.5 describes. On lines 7 and 8 we pop a state from the queue. At this point, the
failure function for that state is already defined. Then we process each child of the state
separately on lines 9 to 14 by 1) adding the child to the queue on line 10; 2) travelling the
failure function of the parent as long as we get a state that have goto transition with the
same symbol that appears between the parent and the currently processed child on lines
12 to 13; and 3) setting the failure function for the child on line 14. The execution of the
function halts when the BFS of the AC-machine is ready and the queue is finally empty.

For now, as the AC-machine is fully defined we focus on its usage for finding the maximal
pairwise overlaps of every input keyword, as Lemma 3.7 suggests.

Lemma 3.7. Let there be a state q and state o, q 6= o in an AC-machine that are
represented by strings s and t, respectively. The failure value f(q) = o if and only if t is
the longest proper suffix of s that is also a prefix of some keyword.

20

1

2 3

4

5 6

7 8 9 10

11 12

¬{a, b}
b

a

a

b a

a b a b

b
a

4

11

Figure 3.7: Fully constructed AC-machine for the keywords R = {"baa", "baba", "abab", "aab"}.

Proof (by induction). Let us have an induction hypothesis that the lemma is true for all
states whose depth is smaller than some depth d > 1. The hypothesis trivially holds for
the base case when the depth of the state is 1. That is, when f(q) = o is the start state,
represented by the empty string and the string represented by the state q has a length 1.

Let us assume there is a state q of depth d that is represented by a string s = σ1σ2 · · ·σd.
Let r be the parent state of q. Therefore r is represented by a string σ1σ2 · · ·σd−1. Let
r1, · · · , rn be a sequence of states such that:

1. r1 = f(r),

2. ri = f(ri−1) for all 1 ≤ i < n,

3. g(ri, σd) is undefined for all i < n,

4. g(rn, σd) = o.

Since Algorithm 2 encodes the above rules on lines 12 to 14 the state o is defined for
f(q). Let the strings u1, ..., un represent the states r1, ..., rn, respectively. According to
the induction hypothesis, u1 is the longest (or equal longest) proper suffix of σ1σ2 · · ·σd−1

that is also a prefix of some keyword. Also, u2 is a longest proper suffix of u1 that is also
a prefix of some keyword and so on. Therefore un is a longest proper suffix of s such that
unσd is also a prefix of some keyword. Since Algorithm 2 sets f(q) = o, the lemma is
proven.

21

Data structures for the goto and failure functions. Lemma 3.7 is used later on
in the description of Ukkonen’s algorithm. Next, we look over the time complexities of
Algorithms 1 and 2. First, we will investigate the time complexity of the insert and read
operations of the functions g and f . The failure function maps each state (except the
start state) to some other state. It is effective and practical to implement this as an array
which stores the value f(q) = r such that the array index q has a value r. Therefore,
both inserting to and reading from the failure function is performed in constant time.
The goto function maps a pair of values to a single value. In the same way, if we use a
two-dimensional array which stores a |Σ| sized row for each state in the AC-machine, the
read and write operations of g would execute in constant time. This of course results in
very high memory usage since the table would be sparsely used, especially with a large
alphabet and long keywords. The goto function can be implemented in many other ways.
One solution, which improves the memory efficiency, is to save a balanced binary tree for
each state in the AC-machine. With balanced binary trees, the insert and read operations
are performed in logarithmic time. Since each such binary tree contains at most |Σ|
elements, the time complexity of this approach is O(log(|Σ|).

Theorem 3.8. The goto function for the AC-machine can be constructed in time O(n ·
t(g)), where t(g) is the time complexity of a single read/write query of the goto function.

Proof sketch. The main function of Algorithm 1 consists of two for loops. The first loop
calls a procedure once for each keyword of the input. The function calls are executed in
a constant time, so the time complexity of the first for loop is linear with respect to the
number of input keywords. The second for loop starting on line 5 is used to search all
children of the start state. Since the start state has only |Σ| goto transitions, the loop
is executed at most |Σ| times. In the worst-case, every symbol in every input keyword is
different. In that case |Σ| = n, where n is the sum of the input symbols. Therefore, the
second for loop is executed at most n times, resulting in the time complexity of the main
function being linear with respect to the size of the input.

Let us next examine the insert procedure. The first two lines 8 and 9 can clearly be
executed in constant time. The first while loop is used to find the symbol of the string
that is not yet defined in the goto function. Let s = uv be a string, such that u is the
part of s that is already represented in the goto function. The index variable j is used so
it contains the value of the first symbol of v after the while loop is executed. The for loop
continues from j so the lines 13 to 16 are executed only for v. In the other words the insert
procedure behaves such that every symbol of the input keyword is processed either in one

22

of the two loops but not both. Since the time complexities of the loop bodies depend on
the implementation of g, the total time complexity of the function is O(n) · O(1) = O(n)
or O(n) ·O(log(|Σ|)) = O(n · log(|Σ|)) when the goto function can be used in constant or
logarithmic time, respectively.

Theorem 3.9. The time complexity of Algorithm 2 is the same as the time complexity
of Algorithm 1.

Proof sketch. In the discussion of Theorem 3.8 we reasoned that finding all children of
the state can be done in linear time. In the failure calculation, we have the same kind
of instruction in the for loop on line 9. Since this loop is executed for every state of the
machine, this kind of approach leads us to O(n|Σ|) time complexity for finding every child
of every state. Instead of scanning the goto function for each symbol in the alphabet,
we can use an auxiliary data structure to explicitly save the children of each state. One
possibility is to use a linked list (O(1) time insertions) and save the information of the
children while creating the goto function. This adds O(1) instructions to the for loop in
the insert procedure. The body of this for loop is executed O(n) times so the total time
complexity is not changed. This allows us to get the children of a state in linear time with
respect to the number of the children (and not the number of symbols in the alphabet).
Since every state has at most one parent, the body of the for loop is executed O(n) times
in total even though it is nested with another while loop (line 6). Thus the while loop
on line 6 as well as the for loop in line 9 are executed once for every state, that is O(n)
times. The lines 10 and 11 clearly take constant time. The time complexity of line 14
depends on the goto function implementation and can also be a constant time operation.
Lastly, let us examine the inner while loop on line 12. The idea is to travel the failure path
until a state is found such that the goto function for that state is defined with the same
symbol as the goto transition is defined for state we are defining the failure function for.
According to the definition of the failure function, the state r = f(q) has depth at most
one less than the depth of the state q. This means that the while loop is always executed
at most d times where d is the depth of the state state. (Aho and Corasick, 1975) showed
that this while loop is executed O(n) times in total. Since all instructions in Algorithm 2
are executed at most O(n) times, the proof is complete.

23

3.3 The Approximation Algorithm

In this section, we discuss the algorithms that use the AC-machine to find the pairwise
overlaps of a set of input keywords to implement the previously defined greedy heuristic.
Conceptually, we create an overlap graph of the keywords and select the edges according
to the rules of Figure 3.5. In practice, the computation works in two steps. First we
preprocess the AC-machine and create the needed auxiliary data structures in Algorithm
3 followed by Algorithm 4, which implements the greedy selection of the edges in the
overlap graph.

By Lemma 3.7, we can find the longest proper suffix of any state that is also a prefix of
some keyword by following the failure path of the state. In particular, let the starting
state p itself be represented by some keyword (i.e., p is a leaf). Now the failure value f(p)
defines the state q that is represented by the longest proper suffix of p that is also a prefix
of every keyword si such that q is an ancestor of si. Let us denote this kind of descendant
relationship with a function L and call it a set of supporters.

Definition 3.10. L(q) is a set of indices of the keyword set R such that states represented
by si ∈ R, i ∈ L(q) are descendants of the state q.

In other words, if a keyword index j is in L(p), then the state represented by sj is a
descendant of the state p. For example, the set L(3) = {1, 2} for the example AC-machine
in Figure 3.7. Since the prefix relation is transitive, we can iterate over the failure function
to find every pairwise overlap between p and the keywords. Algorithm 4 does exactly this.
Lemma 3.11 formalizes this property.

Lemma 3.11. Let there be an AC-machine for a keyword set R = {t1, ..., tm} and a state
p represented by string s. There is an overlap of length d(q) between s and a keyword
ti ∈ R if and only if for some k ≥ 0 state q = fk(p) is such that i ∈ L(q).

Proof (by induction). Let us have an induction hypothesis that the lemma is true for all
states whose depth is smaller than some depth d′ ≥ 1. For the base case of the induction,
we use the start state with depth 0. The hypothesis holds with k = 0 since L(start)
contains every keyword index from 1 to m and there also exists an empty overlap (length
d(start) = 0) between the empty string that the start state is represented by and all the
keywords in R.

24

In the induction step, we assume there is a state p, d(p) = d′ represented by string s.
Assume also that there is an overlap u of length d(q) between s and some keyword ti. The
overlap u represents a state q. There are three possibilities:

1. The overlap u is the string s itself. In this case clearly i ∈ L(p). Since p = f 0(p),
that is p = q and d(q) = d(p) = |s|, the lemma is true.

2. The overlap u is the longest proper suffix of s that is also a prefix of ti. By Lemma
3.7 this is true if and only if f(p) = q. In this case i ∈ L(q) and the lemma is true
with k = 1.

3. In this case, the overlap between s and ti is shorter than the longest proper suffix of
s that is a prefix of some keyword tj, i 6= j. Let u′ be the maximal overlap between
s and tj. That is, u′ is the longest proper suffix of s that is also a prefix of some
keyword. Let also q′ be represented by the string u′. By Lemma 3.7 f(p) = q′.
Because u and u′ are both suffixes of s and |u′| < |u| we know that there is also an
overlap u between u′ and ti. Since d(q′) < d(p) = d′, we can apply the induction
hypothesis to the state q′. Therefore, there is an overlap of length d(q) between
q′ and a keyword ti (which we know is true) if and only if for some k ≥ 0 state
q = fk(q′) is such that i ∈ L(q). Since we know by assumption q′ = f(p) and by
induction q = fk(q′) it follows that q = fk+1(p). We also know that i ∈ L(q) and
|u| = d(q). This concludes the proof.

Theorem 3.12. Let p be a state represented by string si and let si, sj ∈ R. The maximum
overlap between si and sj is represented by the state q such that q is the first state in the
failure path of p fk(p) and j ∈ L(q). The length of this maximum overlap is d(q).

Proof sketch. The proof directly follows from Lemmas 3.7 and 3.11.

Implementation of the heuristic using the AC-machine. By Theorem 3.12 the
AC-machine implicitly encodes the information of the longest pairwise overlaps between
any two keywords. By Lemma 3.1 the lengths of the maximal overlaps encoded in the
AC-machine are equivalent to the weights of the corresponding edges in the overlap graph.
We use the property of Theorem 3.12 to implement the greedy heuristic for the Longest
Hamiltonian Path problem in the overlap graph. The overlaps encoded by the failure

25

function have length equivalent to the depth of the state that have an incoming failure
path. Hence, the longest possible overlap can be found by searching the state that has
some incoming failure path or paths such that the depth of that state is maximized. This
suggests the following implementation.

We process every state by following the failure path and saving which state the failure
transition is coming from. The states with greater depth are processed first. This can be
done with a reversed breadth-first search ordering. Since d(p) > d(f(p)) for every p, the
reversed BFS ordering of the states ensures that when the state q is being processed, all
the states p with q = fk(p) are already processed and we have the information of each
such state. Since we have this information for every such state, we also know all the
overlaps between L(q) and each state q, s.t. q is in failure path from p. We can now select
a corresponding edge in the overlap graph as long as it does not violate the constraints of
the heuristic, that is, considering earlier selections the corresponding edge does not form
a cycle, nor does its start vertex already have an outcoming edge, nor does its end vertex
already have an incoming edge. By processing all the states in this fashion, we end up
with the set of edges that forms a Hamiltonian path in the overlap graph.

Example 3.13:

Let us apply this method to the AC-machine described in Figure 3.7. The processing
starts with depth 4 from state 6 or state 10. While processing those states, we save the
information of the incoming failure path for state 9 and 5, respectively. Depending on
the order in which we process the states with depth 3, we end up selecting one of the
two possible overlaps. Either state 5 is processed first and the overlap between s3 and
s2 is selected, or state 9 is processed first and the overlap between s2 and s3 is selected.
The information of the incoming failure paths for states 3, 8 and 11 is also saved while
processing the states of depth 3. Let us assume that state 9 was processed first and
the second of the presented overlaps were selected. While processing state 3 we know
the incoming failure path from state 6 (via state 9). This indicates that there exists an
overlap between state 6 and every state in L(3) = {1, 2} The self-overlap between s2

and s2 is forbidden since it would create a cycle. However, the other overlap between s2

and s1 cannot be selected either because the edge from s2 is selected earlier. State 8 also
has information of two incoming failure paths. Now there already exists an edge with
s3 as an end vertex. Thus, no edges are selected. When processing state 11 the only
possible overlap is compatible with the rules and the edge from s1 to s4 is selected. For
the states of depth 1 it does not matter which one is processed first. In any case, while

26

processing state 7 we find only one failure path coming from a leaf state corresponding
to keyword s2. Since s2 already has an outgoing edge, the process continues without
any selection. While processing state 2 we find two possible selections. We can select
either (s3, s1) or (s4, s2). Depending on this last selection, the common superstring for
the projection of the selected Hamiltonian path is either “baababab” or “bababaab”,
which both have the same length 8 and the same compression 14− 8 = 6.

When finding two equally long maximal overlaps, the heuristic allows arbitrary selec-
tions. Because of this, the outcome of the algorithm may differ between implementa-
tions. For example, the first time we made a selection between two allowed edges, if
we selected differently the heuristics would have produced either “aababaa”, “baababa”
or “ababaab”. These all are the actual shortest common superstrings with length and
compression 7.

Description of Algorithm 3. The actual algorithm is implemented in two parts. Al-
gorithm 3 defines the first part, which is used to calculate a set of auxiliary data structures
that are needed in order to implement the actual heuristic. The algorithm takes as an
input the AC-machine constructed with Algorithms 1 and 2 as well as the set of keywords
R, which is also the same set that the goto and failure functions were constructed for.
The listing in Figure 3.8 consists of the data structures that are calculated in algorithm 3.
Most of them are used in algorithm 4. The listing uses I as a set of keyword indices in R.

1. F : I → Q,F (i) = q Maps the index of the keyword to the corresponding state. I.e.,
a state q = F (i) is represented by the keyword si.

2. E : Q→ I, E(q) = i Inverse function of F . If the state q is a leaf represented by si

then E(q) = i. For every non-leaf states q′ we define E(q′) = 0.

3. d : Q→ Q Depth function for each state as defined before.

4. L : Q→ 2I Set of supporters as defined before.

5. b : Q→ Q, b(q) = r Reverse breadth first search ordering of the states.

6. B The last state in the BFS ordering of the machine. I.e., b(B) is the second last
state in BFS ordering, b(b(B)) is the third last and so on.

Figure 3.8: Static data structures created in Algorithm 3

27

Since by Lemma 2.11 a shortest common superstring for a reduced set of keywords is the
same as the set where it was reduced from, Algorithm 3 also performs the elimination of
those keywords that are substrings of other keywords in the set. There are two situations
when the structure of the AC-machine indicates the occurrence of such a keyword. First,
if there is a goto transition from a state that is represented by a keyword, that keyword
must be a substring of some other keyword. That is, if g(F (i), σ) is defined for any pair
(i, σ) then the keyword si must be a prefix (i.e., substring) of some other keyword and can
be removed. The second indication of such a keyword is when a leaf state has an incoming
failure transition from some other state. By Lemma 3.7, if F (i) = f(q) then the keyword
si must be a proper suffix of some other state. This means that si is either a suffix (if the
state q is itself a leaf) or a substring that is not a prefix nor suffix of some other keyword.
The removal of a substring is done using the function F . If some keyword si is a substring
of another keyword, we set F (i) = 1 to indicate that the state represented by si is not
processed as if it was a keyword.

Explanation of Algorithm 3. Algorithm 3 proceeds in two independent steps that
could be processed in either order. In the first part, we loop through every keyword (line
2) and every symbol in the keywords (line 5). Before we enter the for loop on line 5 we set
the state q to the start state. In the loop we traverse the AC-machine from the start state
to the state represented by the current keyword si. On the way, we add the index i to
every state we pass through (line 7). Processing every keyword in this way constructs the
function L as defined. After processing each keyword (if line 8 evaluates to true) we set
the values for functions F and E as defined (lines 9 and 10). Further, we set F (i) = 1 for
those keyword indices that correspond to a keyword that is a prefix of some other keyword
(lines 11, 12).

The second part of this algorithm calculates the reversed breadth-first ordering b for the
AC-machine and set the depths for every state. In addition, substring keywords other
than prefixes are removed. This part is basically a BFS traversal through the machine.
We create a queue and initialize it with the start state 1 on line 13 and set the depth of
the start state to zero (line 14). The variable B, initialized on line 15, contains the value
of the latest state that is already processed, thus at the end of the algorithm the variable
B contains the last state in the BFS ordering (which is the first state in the reversed BFS
ordering). The actual BFS starts on lines 16 to 18 when we start to process the states in
the queue. When all states are processed, the while loop ends and the function terminates.
In the for loop starting at line 19 we add the children of the current state to the queue as

28

Algorithm 3 Ukkonen’s algorithm: Preprocessing
Input: Outputs of Algorithms 1 and 2, the associated set of keywords R = {s1, ..., sm}
Output: F,E, d, L, b and B as defined earlier
Preconditions: Initially E(q) = 0 for every state q

1: function calculateAuxiliaryFunctions(g, f, R)
2: for i = 1, ...,m do
3: let si = σ0, ..., σk−1

4: q ← 1
5: for j = 0, ..., k − 1 do
6: q ← g(q, σj)
7: L(q)← L(q) · {i} ∗

8: if j = k − 1 then
9: F (i)← q

10: E(q)← i

11: if q is not a leaf of the AC machine then
12: F (i)← 1

13: queue← 1
14: d(1)← 0
15: B ← 1
16: while queue 6= empty do
17: let r be the next state in queue
18: queue← queue\{r}
19: for each q that is a child of r and q 6= r do †

20: queue← queue · q
21: d(q)← d(r) + 1
22: b(q)← B

23: F (E(f(q)))← 1

the BFS requires. On line 21 we set the depth of the current state to be one greater than
its parent state. We also update the B variable as discussed before. Finally, line 23 sets
F (i) = 1 for each keyword index i such that the state represented by si has an incoming
failure transition from any other state.

∗In the original algorithm this line was L(q)← L(q) · {j}.
†To prevent infinite recursion the inequality q 6= r was added.

29

Line 12 together with line 23 ensure that for all keywords i such that si is a substring of
some other keyword, the value of F (i) = 1, i.e., the set of keywords {sj : F (j) 6= 1} is
reduced.

Theorem 3.14. The time complexity of Algorithm 3 is the same as time the complexity
of Algorithm 1.

Proof sketch. As with the construction of the AC-machine, the time complexity of querying
the goto function depends on its underlying implementation. At first, we ignore the queries
for the goto function and focus on the rest. In the first part of the algorithm, we iterate
over all keywords at the outer for loop. In the inner for loop we iterate over each symbol
in the keyword so the total number of iterations in the inner loop equals the total number
of symbols in all the keywords combined. On line 7 we add an element to a set of items
L(q). Since this set does not need to be ordered, it can be implemented for example as a
linked list so the time complexity for adding an item is O(1). Assuming, each state has a
flag indicating whether it is a leaf, also the statements on lines 8 to 12 can be performed
in constant time. This kind of flag can be easily added in Algorithm 1. This means that
the time complexity of the outer for loop is O(n · t(x)) where n is the total number of
symbols in the input and t(x) is the time complexity of querying the goto function.

The lines 13 to 15 can clearly be executed in constant time. The while loop starting at
line 16 does the breadth first search for the AC-machine. Since the number of states in
the machine is O(n), the execution time for the BFS is also O(n). Here we assume that
the queue is also implemented using a structure that enables insertions and deletions in
a constant time (e.g., a linked list). Lines 21 to 23, neither of which are related to the
BFS search itself, can also clearly be executed at constant time. This results in the total
time complexity of Algorithm 3 being O(n · t(x)). For example, if the goto function is
implemented using direct indexing, the reading and writing of g is performed in constant
time, thus the time complexity is O(n). On the other hand, if g is implemented using for
example balanced binary trees, then the access time of g is O(log(|Σ|)) and the total time
complexity of the algorithm is O(n · log(|Σ|)).

Description of Algorithm 4. Let us now discuss the algorithm that implements the
greedy selection of the edges in the overlap graph to form an approximate longest Hamil-
tonian path in more detail. Earlier, we simulated the greedy heuristic without defining the

30

appropriate data structures. Now, with Algorithm 3 we have augmented the AC-machine
with a set of auxiliary functions and one variable, listed in Figure 3.8. This auxiliary
data is static in the following Algorithm 4, i.e., the data is only read and not written
at any point. In addition, we need some dynamic data to store the information related
to the selection of the edges in the overlap graph. As we discussed in the simulation of
the heuristic, when the execution enters a state q, all other states with depth > d(q) are
already processed and there is information about every F (i) that is a starting point of any
failure path to q, such that there is no already selected edge (si, s

′) for any keyword s′.
Let us denote this information with p.

Definition 3.15. At the point of the execution of Algorithm 4 when a state q is being
processed, p(q) is a set of keyword indices i such that each state F (i), i ∈ p(q) is a starting
point of a failure path to q, i.e., q = fk(F (p(q))) : k > 0 and there is no edge (si, s

′)
already selected for any s′ ∈ R.

When we encounter a state q with i ∈ P (q) we know that there exists an overlap of
length d(q) between si and every keyword whose corresponding state is accessible in the
AC-machine through the state q, i.e., that state is descendant of q. We have already
defined a data structure L for this information, hence there is a maximal overlap of length
d between every si and every sj, where i ∈ P (q) and j ∈ L(q). Note that although the
dynamic data structure P ensures that every keyword si, i ∈ P (q) can be selected as a
start vertex of the new edge, the L(q) returns static data. If there are already selected
edges (s′, sj), j ∈ L(q) for each j and for any s′, no more edges can be selected while
processing q. A constraint, that is to prevent a vertex having multiple ingoing edges, is
encoded in the function forbidden(i) where i is an index of a keyword.

Definition 3.16. At any point of execution of Algorithm 4

forbidden(i) =

true, if (s′, sj) ∈ H for any s′ ∈ R;

true, if sj is a substring of any other string in R;

false, otherwise.

We encode the constraints that no vertex can have multiple inbound or outbound edges
with the functions L, P and forbidden. The last constraint, which prevents the edge
selections that form a cycle, is guarded with functions first and last. Both of these
functions are defined for all keyword indices. At the beginning of Algorithm 4, first(i) =
last(i) = i for every keyword index i. The value of these functions is updated such that at

31

any point of execution if we have selected a set of edges that forms a path starting from si

and ending to sj, then first(j) = i and last(i) = j. Note that the values for the vertices
in the middle of such paths are not updated nor queried. Now, before the new edge (si, sj)
is selected, we check that the selection does form a cycle by checking that first(i) 6= j.
Note that this is the same thing as checking that last(j) 6= i. Only one of those checks is
necessary. If the check fails, the edge in question must be discarded.

Explanation of Algorithm 4. Algorithm 4 starts by setting the initial values for the
dynamic functions P, first, last and forbidden in the for loop starting at line 2. On lines
4 to 6 the algorithm initializes the data that is related to the used keywords, that is the
keywords that form a reduced set. Line 4 sets the P function for each state that has a
direct failure link from some of those keywords. For those same indices, the functions
first(i) and last(i) are initialized to i, indicating there are no edges yet selected. The else
clause on lines 7 to 8 is to ensure that there will be no incoming edges to the keywords
that are substrings of other keywords. (Note: setting F (j) = 1 for the same keywords
in algorithm 3 ensures the prevention of outcoming edges from those strings). After the
initialization is done, the first state to be processed is set on line 9. Note that setting
q = B would cause one more unnecessary iteration of the following while loop since the
last state in the BFS ordering can not have incoming failure transitions, hence the first
state is set to the second last state in that ordering.

The while loop starting at line 10 implements the actual selection of the edges. Since
deepest states are processed first, and nonemptiness of P (q) and L(q) indicates an existing
overlap of depth d(q), the maximal overlaps are selected first, if allowed by the constraints.
On line 11 we ensure that P (q) is not empty, since otherwise there are no allowed overlaps.
After that, each keyword index in L(q) that is not forbidden is processed (line 12). Each
iteration (except the last one if no allowed edge is found) of that for loop decreases the
size of P (q) and {i ∈ L(q) : forbidden(i) = false}. On lines 13 to 14 we check the set
P (q) to ensure there is at least one possible start point to the new edge. After line 15
there is a potential new edge that needs to be verified against the cyclicality constraint
(on line 16). If the edge (si, sj) would create a cycle, we check on line 17 if there exists
another index in P (q) and, if so, the edge is created. Otherwise the execution jumps to
the next iteration. Note that if the edge (si, sj) would create a cycle, then no other edge
(s′, sj) will for any s′. Therefore it P (q) only needs to be queried at most twice with each
iteration.

32

Algorithm 4 Ukkonen’s algorithm: Selection of the edges
Input: Outputs of previous Algorithms, the set of keywords R = {s1, ..., sm}
Output: The approximate longest Hamiltonian path H in the overlap graph

1: function createPath(f, F, L, b, B,R)
2: for j = 1, ...,m do
3: if F (j) 6= 1 then
4: P (f(F (j)))← P (f(F (j))) · j
5: first(j)← j

6: last(j)← j

7: else
8: forbidden(j)← true

9: q ← b(B)
10: while q 6= 1 do
11: if P (q) is not empty then
12: for each j in L(q) s.t. forbidden(j) = false do
13: if P (q) is empty then ∗

14: break
15: i← the first element of P (q)
16: if first(i) = j) then
17: if P (q) has only one element then
18: continue
19: else
20: i← the second element of P (q)

21: H ← H · {(si, sj)}
22: forbidden(j)← true

23: P (q)← P (q)\{i}
24: first(last(j))← first(i)
25: last(first(i))← last(j)

26: P (f(q))← P (f(q)) · P (q)

27: q ← b(q)

On line 21 the edge is selected. Line 22 ensures the definition for the forbidden function
remains valid and lines 24 and 25 update the first and last functions accordingly. On line

∗This line is not present in the original algorithm.

33

23 the selected keyword index is removed from P (q). After all possible edges starting from
si, i ∈ P (q) are examined, the process can move on to the next state in the b link chain
(line 27). Before that, on line 26, the P (q) is concatenated to P (f(q)) so the possibly
remaining unused keyword indices are passed to the shallower states.

Before we go into the time complexity of Algorithm 4, let us first discuss the total length of
supporters sets |L(q)| over all states q. Although L(q) may contain (partly or completely)
the same indices as L(r), q 6= r, the sum ∑

q |L(q)| is O(n). Specifically, ∑
q |L(q)| = n

for a reduced set of input keywords and ∑
q |L(q)| < n otherwise, when the start state is

excluded.

By iterating through all supporters of all states, we effectively iterate through all symbols
in the input. This is because, for each state q, each supporter i in L(q) corresponds to
a symbol in the ith input string, and every symbol corresponds to exactly one state and
supporter.

Lemma 3.17. For a reduced set of keywords, the sum ∑
q |L(q)| over each state q, except

the start state, is n, where n is the total number of symbols in the input keywords.

Proof (by induction). Let us have an induction hypothesis that the lemma is true for all
AC-machines constructed from at most M keywords. The hypothesis trivially holds for
AC-machine with a single keyword. That is, there are |s|+1 states, where s is the keyword,
and |L(q)| = 1 for each |s| states, producing ∑

q |L(q)| = |s| = n.

Let there be an AC-machine AC constructed from a reduced set of keywords of size M
and a corresponding supporters set function L. Let t be a keyword not presented in AC.
When t is added to AC, a path from start state to a leaf is branched at depth d such that
t[1...d] is the longest prefix of t that has a corresponding state in AC. The L(r) for each
new state r consists of only the index of the keyword t. The sets of supporters L(q), for
each existing state q are appended with the index of the keyword t.

In other words, the sets of supporters are increased by one for each |t| states between the
start state and the newly created leaf. According to the induction hypothesis ∑

q |L(q)| =
|s| = n.

Theorem 3.18. The time complexity of Algorithm 4 is O(n).

Proof sketch. As with L in Algorithm 3 we assume that the set returned by function
P is implemented using a linked list, allowing constant time insertions, deletions, and

34

concatenations. The first for loop starting at line 2 can clearly be executed in linear time
since all the statements take constant time and m ≤ n. The while loop starting at line 10
iterates once for each state that is O(n) times. The for loop starting at line 12 dominates
the time complexity of Algorithm 4. Since the execution of one iteration of the for loop
is a constant time operation and by Lemma 3.17 ∑

q |L(q)| = O(n), which is the total
number the for loop is iterated, the total time complexity of Algorithm 4 is O(n).

Theorems 3.8, 3.9, 3.14 show that Algorithms 1, 2 and 3 have the same time complexity
depending on the implementation of the goto function for the AC-machine. Moreover, Al-
gorithm 4 runs lin linear time. As discussed earlier, the goto function can be implemented
to allow read and write queries in O(1) using direct indexing over a two-dimensional array.
Another feasible possibility, especially for the larger alphabets, is to use balanced binary
trees with O(log(|Σ|)) time complexity. This conclusion leads us to the following theorem.

Theorem 3.19. With Algorithms 1, 2, 3 and 4 the greedy heuristic for the approximate
longest Hamiltonian path in the overlap graph can be implemented in time O(n·t(x)) where
t(x) is the time complexity of a single read/write query of the goto function.

4 Dictionary Compression:
The LZ Family

Dictionary compression algorithms (Storer and Szymanski, 1982) process the input as a
sequence of symbols. Using the structure and repetitiveness of the input, longer input
sequences are encoded as shorter tokens. This reduces the space needed to store the
original input data. In this approach, a so-called dictionary is maintained. The dictionary
may be static or it can be updated during the (de)compression process. The tokens (also
called phrases) contain pointers to the dictionary such that each token unambigiously
corresponds to a sequence of symbols (Pu, 2005).

In this chapter we discuss the Lempel-Ziv family (Ziv and Lempel, 1977), (Ziv and Lempel,
1978), (Welch, 1984) of dictionary compression methods. First we discuss the Lempel-
Ziv77 (LZ77 for short) algorithm (Ziv and Lempel, 1977) as an introduction to the rela-
tively new algorithm called Relative Lempel-Ziv (Kuruppu et al., 2010) (RLZ for short).
We show a few examples of these algorithms and discuss the possible improvement for
RLZ dictionary construction with use of a shortest common superstring approximation
algorithm.

4.1 Lempel-Ziv77

Lempel-Ziv77 is an adaptive dictionary compression method. By adaptive, we mean that
during the compression the dictionary is updated depending on the input. At first, the
dictionary is empty. The original LZ77 algorithm uses a part of the input, called a sliding
window, as a dictionary. However, we introduce a version of LZ77 that has an unbounded
window size, allowing the phrases to point to any position of the input that is already
processed, i.e., the dictionary consists of the already processed part of the input.

Each phrase in LZ77 is either

1. a literal phrase, or

2. a repeat phrase.

36

Literal phrases are used when the current symbol in the input file has not been seen before
in the file. Phrases consist of a pointer and a length, where the pointer defines the point
in the already processed text where the repeating sequence of symbols starts. To use a
repeat phrase, the text up to the pointer must already be tokenized. The length encodes
the size of the original text corresponding to the repeat phrase. The more repetitive the
input text is, the bigger the length values in repeat phrases are. This means a single
phrase encodes a longer portion of the original text, resulting in better compression. On
the other hand, if the length value is small enough, a single repeat phrase may need more
space than the original text as is. For example, if the repeat phrase is encoded using two
4-byte integers and the input symbols are encoded in a single byte, the repeat phrase with
a length of less than 8 would actually consume more space than the original text.

Example 4.1:

Let us simulate the LZ77 algorithm for a text string T = “abbabaabbaba”. We denote
literal phrases with [σ], where σ is the symbol of the phrase. Repeat phrases are denoted
with (position, length). The processing starts at the first symbol of T . Since the symbol
“a” is encountered for the first time, we create a literal phrase [“a”]. The same thing
happens with the next symbol “b”. The third symbol “b” is encoded with a repeat phrase
(2, 1) which means that the phrase encodes a string of length 1 starting at position 2.
The next repeat phase (1, 2) encodes the string “ab”. At this point, we have encoded
the string “abbab”. The next phrase encodes the following “a” with a phrase (1, 1).
Since the text string encoded to this point contains a string “abbab” the last phrase is
a pointer to the start of this string with a length of 6. The final LZ77 factorization is
therefore [“a”][“b”](2, 1)(1, 2)(1, 1)(1, 6).

To decompress the LZ77 parse, we process the phrases from the first phrase to the last
phrase. For each phrase, using the already decompressed data, we augment the dictionary
with the text corresponding to the phrase. After the decompression, the generated dictio-
nary is the same as the dictionary used with the compression. In other words, the resulting
decompression dictionary is the same sequence of symbols as the original uncompressed
data.

37

4.2 Relative Lempel-Ziv

Relative Lempel-Ziv is a simple and efficient (Deorowicz and Grabowski, 2011) general-
purpose (Hoobin et al., 2011) compression method. It combines a static dictionary with
an LZ77 parsing, providing semi random access to the compressed data. It was developed
to compress a set of genomes, however, further research has shown that RLZ scales well
with any repetitive data, providing one of the best (de)compression time and compression
ratios (Gagie et al., 2016).

To compress a collection of genomes of the same species, RLZ works as follows. One
genome is selected as a base (or reference) sequence. This genome acts as a static dic-
tionary. Further, an LZ77-like parse of every other sequence is generated relative to the
base. The LZ77 parses of the other sequences are restricted to have references only to
the base sequence. As opposed to the adaptive dictionary of the LZ77 algorithm, where
the dictionary is constructed during the (de)compression, RLZ uses a static dictionary,
providing random access for any phrase whether or not the decompression of the previous
part of the data is already performed. Definition 4.2 formalizes the Relative Lempel-Ziv
parsing (or factorization).

Definition 4.2. Let T and R be strings. Relative Lempel-Ziv factorization of T relative
to R, denoted by RLZ(T |R) is a factoriszation T = w1w2 · · ·wn, where for each 1 ≤ i ≤ n,
wi is either

1. a symbol σ that does not occur in R, or

2. the longest prefix of T [j...|T |], where j = |w1 · · ·wi−1| that is a substring of R.

Each factor wi is encoded as a pair (pi, li) where pi is the index of R where wi starts from
and li is the length of wi.

Example 4.3:
1 2 3 4 5 6 7

R = a b b a b a a

Let T = “abbababaaaaabbabaa” and R =“abbabaa” be strings. The RLZ factorization
of T relative to R is RLZ(T |R) = (1, 6)(5, 3)(6, 2)(1, 7).

As discussed above, RLZ can be used as a general-purpose compressor. With a collection
of genomes of the same species, one genome is a natural choice for a dictionary that other

38

genomes are factorized against. Choosing the dictionary for arbitrary data (not necessarily
a collection of the same kind) is however more difficult since there is no natural reference.
As the number of factors highly depends on the contents of the dictionary, this decision
is however essential. Fortunately, it has been shown that even with a lack of a natural
reference, an effective artificial one can be easily constructed. (Hoobin et al., 2011) has
shown that by taking random samples of the data and concatenating them together,
an efficient artificial reference can be constructed. The achieved compression ratios are
surprisingly good with dictionaries as small as 0.1% of the original input size. Further
(Gagie et al., 2016) have given the theoretical analysis of why this method works so well.

Our hypothesis is that RLZ compression with general data can be further improved us-
ing the sampling method described in (Hoobin et al., 2011). The idea is to eliminate
redundancy in the artificially constructed dictionary. One simple way of achieving this
is to use a shortest common superstring approximation to compress the dictionary. In
principle, depending on the repetitiveness of the data, this method should decrease the
dictionary size while keeping the number of factors roughly the same, thus improving the
compression. Another possibility is to use a compressed dictionary that is the same size
as the conventionally constructed dictionary. Theoretically, the RLZ factorization against
this kind of dictionary should result in a decreased number of factors, hence improving
compression.

This hypothesis has been tested and verified in this thesis. The results presented in
Section 5.4 show that the number of factors is drastically decreased when the dictionary for
several highly repetitive corpuses are constructed using the common superstring approach.
Also, runtimes for dictionary construction remain low when a linear time approximation
algorithm for the SCS problem is used.

5 Empirical Evaluation

In this chapter, we introduce and describe an open-source implementation of Ukkonen’s
shortest common superstring approximation algorithm, discussed in Chapter 3. We go
through the most significant aspects of the implementation and usage of the code. We
also describe the data that was used to benchmark the efficiency of the implementation as
well as the experiments related to relative Lempel-Ziv compression using the SCS of the
sampled original data as the reference string.

Finally, we present experimental results that compare the implementation with another
implementation of the same heuristic. We also show how the number of factors in the
RLZ compression is reduced when the SCS approach is used.

5.1 Implementation

Overview: The implementation is written in the C programming language without any
external libraries. Only the C standard library and POSIX libraries were used. Although
the algorithms presented in Chapter 3 are relatively short, the actual implementation also
contains other code that binds Algorithms 1, 2, 3 and 4 together. Various data structures
were also implemented for the algorithm. In total, the implementation consists of 2400
lines of code, including the comments and empty lines. The implementation also includes
some test scripts for building and testing the code.

As discussed earlier, the goto function of the AC-machine can be implemented in many
different ways. In our implementation, the underlying data structure for the goto function
is defined at compile time to be either a two-dimensional array or a red-black tree (Cormen,
2009). Hence, by Theorem 3.19 the time complexity of our implementation of Ukkonen’s
algorithm is either O(n) or O(n · log(|Σ|)), respectively.

Since the definition of the input of the algorithm is a set of keywords, we have to guard
against that constraint too. In practice, that means we need to examine the input keywords
and remove any possible duplicate values. The duplicate removal is implemented by sorting

40

the input keywords and removing any consecutive duplicate strings. The keywords are
sorted using string quicksort (Bentley and Sedgewick, 1997). Therefore the overall time
complexity of our software is O(n·log(n)). At the time of writing, the duplicates are forced
to be searched. There is no command line parameter that would omit the O(n · log(n))
time string sorting if it were already known that no duplicates were present. However, as
we see later even with the O(n) implementation of Ukkonen’s algorithm the O(n · log(n))
time preprocessing is insignificant even with relatively large inputs.

Our implementation uses the char datatype of the C programming language as the type
of the element in an integer alphabet that is used in the algorithm. The char datatype is
an obvious choice, since the C standard defines many string-processing functions for char

arrays. However, since char is only 8 bits long, this choice limits our implementation for
alphabets Σ with |Σ| ≤ 256. The code is however designed so that the alphabet data type
is bound to a macro. Thus, the change in the data type would be as easy as possible if
the software is further developed to work with bigger alphabets.

The git repository of our implementation can be found from GitHub:
https://github.com/apason/ukkonen-90

Compile-time parameters: To optimize the memory consumption and the execution
time depending on the input data, various alternative approaches were implemented. The
purpose was to include various compile or runtime flags that would change the behavior
of the application. All of those modifications except one were discarded. The current
version includes a compile-time macro OPTIMIZE_LINKS that changes the data structure
that is used to the children of each state. Later on, we refer to this parameter as the links
optimization. The optimization works as follows. Each state must be able to refer to all of
its children in time linear with respect to the number of children. Each child of a state is
saved in a list. When links optimization is turned on, this list is implemented as an array
and allocated to have as many elements as there are symbols in the alphabet. Since the
list has a fixed size, there will be only one memory allocation for each state. The drawback
of this feature is the increased memory consumption with large alphabets. When links
optimization is turned off, the list containing the children of a state is implemented using
a linked list. A new node to the list is allocated for each child, thus the overhead from the
memory management is relatively larger. In practice, the links optimization is viable only
with small alphabets and can decrease the execution time and the memory consumption
with larger alphabets. As we will see later, in general, the best performance for big alpha-

https://github.com/apason/ukkonen-90

41

bets is achieved with the combination of red-black trees and disabled links optimization.
On the contrary, when the alphabet is small enough, direct indexing over two-dimensional
arrays combined with enabled links optimization results in the best execution time.

The input keywords are given to the program as an input file that contains one keyword
per line. The line separator is an ASCII line feed character (code 10). This adds a
limitation to the alphabet, since in practice the decimal value 10 cannot be a part of any
given keyword. In Section 5.1 we introduce another input system that allows any character
code (except 0) to be used. In that input method the keywords are merely sampled from
the input file and the individual keywords are not defined. When the input keywords
are read, there is a symbol buffer where the individual lines are first read to. No input
keyword can be longer than this buffer. The size of the buffer defaults to 2048 symbols
but can be modified in compile time by setting the desired value for the macro MAX_LINE.
Note that the MAX_LINE macro defines the size of the buffer, not the size of a maximum
keyword, and that the keywords are read to the buffer with the newline character (that
is considered not part of the keyword) and that the char arrays must be terminated with
the NULL character, the actual maximum keyword size is MAX_LINE -2.

Since the value of the depth function d can not exceed the length of the longest keyword(s)
that the AC-machine encodes, we can define the datatype for the codomain of d depending
on the maximum keyword length. The default data type is an 8-bit positive integer, hence
by default, up to 255-length keywords are supported. When a keyword longer than 255 is
used, the data type for the codomain of the depth function must be larger. By defining the
compile-time macro LONG_KEYS the depth function uses a 16-bit datatype instead. This
allows the maximum keyword length to be 216 − 1 which should be enough for the RLZ
dictionary construction.

The underlying data type that encodes the numbers of states defaults to a 4-byte unsigned
integer. That means the maximum number of states that the AC-machine can encode is 232

which is approximately 4 billion. Since the number of states cannot be known beforehand,
the fact that the number of states is at most the number of symbols in the input is useful.
As we use a one-byte alphabet, the size of the input file should not exceed 4GiB when
using the default configuration. The data type for the state numbers can be changed as
follows. There is a macro MAX_STATE that automatically defines the data type to be as
small as possible. Possible data types are 8, 16, 32 and 64-bit unsigned integers. Note
that it is not necessary to set the MAX_STATES macro to a smaller value, even if the input
size were less than 216 bytes. This only affects the memory consumption of the program,

42

which is anyway quite small with input sizes less than 16KiB.

There are also two compile-time options that affect the execution. If the macro SCS is
not defined, the program only executes Algorithms 1 and 2 creating a plain AC-machine
for the input keywords. This option was added in order to compare the construction of
the AC-machine to another similar implementation (Salmela et al., 2006). When using
the program for approximate shortest common superstring calculation, the SCS macro
must always be defined. The last compile-time option is the INFO macro. When INFO is
defined, additional information of the calculation is printed along with the approximate
shortest common superstring. The additional information contains some used data types,
the number of removed duplicates in the input keywords, the number of different symbols
in the input (real alphabet size), the number of states and a table that lists the most
important phases of the execution and their time usages. Without the INFO macro the
program outputs only the approximate SCS for the input.

The following table summarizes the available compile-time options.

Macro name Possible values Default Notes
ARRAY_GOTO defined / undefined N/A Either one but not both of this macro
RB_TREE_GOTO defined / undefined N/A or this macro must be defined.
OPTIMIZE_LINKS defined / undefined undefined Enables the links optimization.
MAX_LINE Any positive integer 2048 The size of the keyword buffer.
LONG_KEYS defined / undefined undefined Sets max depth to 65536.
MAX_STATES Any positive integer 232 Should be as small as possible.
SCS defined / undefined undefined Enables an approx. SCS calculation.
INFO defined / undefined undefined Prints additional information if defined.

Compilation: The compilation and the usage of our implementation requires a C
compiler and the GNU Make software. Since the program uses <sys/resource.h> and
<sys/time.h> POSIX header files, the program can only be used in a POSIX compliant
(e.g., Linux, BSD, macOS) operating system providing these libraries. There are no other
requirements for building and running the binary. The default C compiler is GCC and it
is defined in the file common.mk.

There is a top-level Makefile in the root of the repository and other Makefiles in the tests/

and src/ folders. Every action can be executed in the repository root, since the top-level
Makefile further calls the Makefiles in these subfolders. The default action triggers the

43

project build. When the build is done, the target/scs binary is created and ready to be
executed. To build the binary, either the ARRAY_GOTO or RB_TREE_GOTO macro must be
defined. There is no default value for the goto function’s data structure. Other macros can
be defined if needed. The Makefile in the src/ folder, that builds the binary, is configured
to append every compilation command with an environment variable named DEFS. This
is a convenient way of passing macro definitions to the compiler. For example, to compile
our implementation to calculate the shortest common superstring approximation that uses
the red-black trees, one may issue the following command.

user@host:.../ukkonen-90/$ make DEFS="-DRB_TREE_GOTO -DSCS"

To compile the binary with support of keywords of length 1000 and direct indexing with
links optimization enabled and additional information printed, one may issue the following
command.

user@host:.../ukkonen-90/$ make DEFS="-DARRAY_GOTO -DOPTIMIZE_LINKS -DSCS \

-DLONG_KEYS -DMAX_LINE=1002 -DINFO"

The Makefile also contains jobs called clean, clobber and delete_tests. The clean job
removes all intermediate object files. The clobber does the same and also removes the
executable in the target/ folder. The delete_tests target removes the test instances in
the tests/ folder. After that, the next time the tests are executed the new random test
instances are also generated.

Usage: When the binary is ready to use, there are two methods for executing it. The
simplest method is to execute the binary with a single input filename. The file should
contain a single byte encoded text with line feed (ASCII 10) delimited keywords. The file
should also end with a line feed. Note that the input can be any single byte encoded text
with the following constraints:

1. The input keywords must not contain a byte of value 10, since it is reserved for
delimiting the keywords. Any keyword that contains line feed values are treated as
multiple keywords.

2. The input file must not contain zero values.

44

It does not matter whether the text is ASCII, extended ASCII, some single byte ISO-
encoding or any custom-made single byte encoding. The following example demonstrates
the usage with single input file as a parameter. In the example, the binary is compiled
with SCS macro enabled and INFO macro disabled.

user@host:.../ukkonen-90/$ cat input

baa

baba

abab

aab

user@host:.../ukkonen-90/$ target/scs input

aababaa

The other way of using our implementation is with command line options that are asso-
ciated with flags. The flag -f defines the input file. The flag -a and -b defines the input
types. Only one of the input types can be specified at a time. The -a flag defines the
same kind of input method we discussed earlier, thus the following command is equivalent
to the earlier example:

user@host:.../ukkonen-90/$ target/scs -a -f input

The input type specified with the -b flag requires two more options and the behavior of
the program is different. In this case the input file is considered as a source file where the
keywords are randomly sampled as defined by -l (line length) and -c (cut) parameters.
The sampling of the keywords is performed as follows. The -l parameter defines the length
of a single keyword (all keywords have the same length). The -c parameter defines how
many lines are sampled. The cut parameter takes a floating point value between 0 and 1.
The total number of sampled input keywords multiplied by the length of a single keyword
must equal (the value can be rounded) the original input file size multiplied by the cut
parameter. For example, if the input file is 10KB and the -l parameter has a value of 100
and the cut parameter has a value of 0.50, then the keywords are sampled such that there
are 50 keywords of length 100 (that is 10KB·0.50 = 5KB). Note that when the keywords
are sampled from rather than delimited in the input file, they can also contain the line
feed characters. After the keywords are sampled, it is possible (especially with highly
repetitive input files and big cuts) that there are multiple identical keywords. Before
the SCS algorithm is executed, the duplicates are first removed. The following example

45

demonstrates the usage with an input file that is sampled to get a set of keywords of
lengths 128 such that the size of the sampled keywords equals 10% of the size of the given
input file.

user@host:.../ukkonen-90/$ target/scs -b -f input -l 128 -c 0.1

Tests: Our implementation has been tested to be correct with three different sets of
tests. The tests are located in the same Git repository as the actual implementation.
There is also a helper script for generating random test instances and scripts that run the
actual tests. All test-related files are in the tests/ folder of the root of the git repository.
To run the tests just issue

user@host:.../ukkonen-90/$ make tests

in the root folder (of the repository). This invokes the Makefile in the tests/ folder. If
the test instances have not yet been created, the script create_instance.sh is executed
and two test folders are generated. Note that depending on your hardware, the generation
of the test instances can be quite slow (up to 30 min). The first test folder contains ran-
dom instances for alphanumeric, binary, DNA and hexadecimal alphabets, with different
number and length of keywords. This test set is used to test that the generated common
superstring actually contains every keyword in the test file. This test is executed with the
test1.sh shell script file. The grep utility is used to ensure that each keyword is present
in the output of our implementation.

The same set of tests is also used with the test3.sh file. In this test we compile two
versions of our implementation, one which uses the direct indexing and another that uses
the red-black tree implementation. The tests instances are then run with each version of
the implementation and for each test, the test is passed if the generated superstrings are
equal. In other words, the idea of this test is to ensure that the data structure that is used
with the goto function does not affect the outcome.

The second set of test instances is rather small. There are only few very small instances
with binary alphabet. The test script test2.sh runs these tests as follows. First, each test
instance is executed with a python script scs.py that uses the pysat python library to
calculate the length of a longest common superstring of the instance. The same instance
is then run with our implementation and the compression values for both are calculated.

46

Finally, the compression is compared and the test is considered to be passed if the com-
pression acquired with our implementation is at least half of the optimal compression.
The idea of this test set is to make sure that the proven quality of the compression holds.

Note that in order to run all the tests, the python environment with the pysat library must
be configured. Note also that the make format uses GNU specific features that require
GNU Make or GNU Make compliant makefile software.

5.2 Benchmark Data

Here we describe the two datasets that are use in Section 5.4. We discuss the origin
of both of those datasets and inspect their basic properties. Since the data is slightly
manipulated to fit our experiments, we also describe this preprocessing.

PizzaChili datasets: PizzaChili (Ferragina and Navarro, 2005) is a deprecated project
of University of Pisa and University of Chile, whose purpose is to share publicly available
corpuses and related full-text indices for others to experiment with. The dataset defined
here consists of some of the repetitive text collections from the PizzaChili project. We
refer to this dataset as the PizzaChili dataset. There are seven files of repetitive text from
real (as opposed to artificial) origin in the PizzaChili dataset. The following listing gives
a short description of each of those files. Table 5.1 includes some basic information of the
files. The inverse match probability is defined as the inverse of the probability that two
randomly chosen characters from the file are the same. This is also referred to the effective
alphabet size. With uniformly distributed data, the effective and actual alphabet sizes are
exactly the same.

1. The cere file consists of 17 concatenated sequences of Saccharomyces Cerevisiae.
The origin of this file is the Saccharomyces Genome Resequencing Project.

2. The coreutils file consists of 9 versions of the coreutils 5.x source code files.

3. The einstein.de.txt file consists of all German wikipedia versions of Albert Einstein
up to 2010-01-12.

4. The einstein.en.txt file consists of all English wikipedia versions of Albert Einstein
up to 2006-10-10.

47

File Size(MiB) Alphabet size Inverse match probability
cere 440 5 4.301
coreutils 196 236 19.553
einstein.de.txt 89 117 19.264
einstein.en.txt 446 139 19.501
influenza 148 15 3.845
kernel 247 160 23.078
para 410 5 4.096

Figure 5.1: Basic information of the PizzaChili files. (Ferragina and Navarro, 2005)

5. The influenza file consists of 78,041 sequences of Haemophilus Influenzae. The
origin of this file is the National Center for Biotechnology Information.

6. The kernel file consists of 36 versions of the Linux kernel source files of versions
1.0.x and 1.1.x.

7. The para file consists of 36 concatenated sequences of DNA of Saccharyomyces Para-
doxus. The origin of this file is the Saccharomyces Genome Resequencing Project.

Preprocessing of PizzaChili: Each file in the dataset is preprocessed as follows. First,
the newline characters are substituted with tab characters (ASCII key code 9). After that,
a number of new files are sampled from the files such that the new file consists of multiple
lines delimited by a newline character. Each line has a length l and the total (rounded)
number of characters, excluding the newlines, are 0.01c·s, where s is the size of the original
file. In other words, the c parameter describes the percentage of the size of the original
file. The parameters c and l have the following value combinations: (15, 128), (15, 254),
(25, 254), (50, 254), (50, 512), (75, 512), thus at total six sampled files are generated. The
sampling is performed by selecting a random position between the beginning of the file
and the end of the file subtracted by l and copying a string of length l from that position
to the sample file. This process is then repeated until the wanted file size is achieved. Any
duplicate lines are removed and the process is repeated until the wanted number of lines
is reached. At the end of this process we have a sample file that contains unique keywords
of length l such that the size of all keywords combined is c% of the original size. The files
are named s_c_l. For example, the file cere_50_128 has size 220MB (plus the number
of newlines) and contains unique keywords of length 128.

48

The DNA dataset: The second dataset is called the DNA dataset. The origin of this
data is the Sequence Read Archive of National Library of Medicine. The data consists of
3.8 million reads of escherichia coli, 100 symbols of each. The alphabet Σ = {A,C,G, T,N}
size of the original file is 5. The ’N’ characters were relatively rare in this file (3506 out
of 3849544 lines contain at least one ’N’). Since the PizzaChili dataset does not have
a file with alphabet size less than 5, the DNA dataset was modified by removing all
lines containing the ’N’ character, resulting in a file with alphabet of size 4. Further,
the duplicates were removed from the data and the data was randomly sampled to 11
different files as follows. The first file was from the main file such that the number of
lines was 3125, thus the first file has a size of 3125 + 3125 · 100 = 315625 bytes. The first
file was named 1_dna_3125.acgt. The process was repeated for the last ten files such
that the number of lines for each file was two times the number of lines in the previous
file. The same naming convention was used with the exception that each consecutive set
of three zeros was substituted with the letter ’k’. The first character in the file name is
a hexadecimal digit of the number of the file. For example, the third file was named to
3_dna_12500.acgt, the fourth file was named to 4_dna_25k.acgt and the last (11th) file
was named to B_dna_3200k.acgt

5.3 Benchmark Setups

The experiments were done in two different environments. In this section, we describe
the relevant aspects of the software and hardware for both of them. We also name the
environments so they can be referred to in Section 5.4. The first environment is called
Haapa. It is the more powerful of the environments, providing, due to its larger amount
of memory, a possibility to run much bigger problem instances. The second environment
is referred to as Env2. For running our experiments, Haapa is however the slower of
the two environments. Although Haapa has many times more CPUs, the single CPU is
significantly slower. Since the code used in the experiments are all single-threaded, the
performance of a single core is all that matters. The memory clock speed in Haapa is also
configured to be significantly slower, thus limiting the performance of our implementation
with huge memory requirements. Fewer experiments are run on Env2 since the memory of
the machine provided a limitation to the size of the problem instances. Table 5.1 describes
the main features of both environments.

49

Haapa Env2
Operating system Ubuntu Linux 20.04 LTS Gentoo Linux ∗

Linux kernel version 5.11.0 5.4.80
GCC version 9.4.0 10.2.0
Glibc version 2.31 2.32
GNU Time version 1.7 1.9
Processor model Intel Xeon E7-4830 v3 Intel Core i7-6700K
Processor clock speed 2.1 GHz 4.0 GHz
Processor cache size 30 MiB 8 MiB
Memory density 1.5 TiB 32 GiB
Configured memory clock speed 1333 MHz 2133 MHz

Table 5.1: Software and hardware specifications of the environments Haapa and Env2.

5.4 Results

In this section, we examine the performance of our implementation. As a reference, we use
another implementation of the same greedy heuristic for the approximate shortest common
superstring problem. The reference implementation (Alanko and Norri, 2017) performs
the computation in a space efficient way using only O(n · log(|Σ|)) bytes of memory. The
time complexity of the reference implementation is also O(n · log(|Σ|)). In contrast, our
implementation of Ukkonen’s algorithm works in linear time when the code is compiled
to use direct indexing for the operations with the goto function. Our implementation is
also able to use red-black trees for the goto operations. Both of these approaches were
tested. In addition, as discussed in Section 5.1, our implementation has an additional
compile-time parameter that defines the data structure used for the children list of the
states. As it is, there are four different versions of our implementation, at total:

1. Direct indexing (O(n)) with links optimization enabled.

2. Dicect indexing (O(n)) with links optimization disabled.

3. Red-black tree (O(n · log(|Σ|))) with links optimization enabled.

4. Red-black tree (O(n · log(|Σ|))) with links optimization disabled.
∗Gentoo Linux is a so-called rolling release distribution. That means it does not have any version

numbers.

50

cere einstein.en.txt
75_512 0.36% 3.54%
50_512 0.33% 3.06%
50_254 0.71% 4.87%
25_254 0.59% 4.04%
15_254 0.54% 3.25%
15_128 1.06% 4.77%

Table 5.2: Worst-case time consumptions in percentage for the input preprocessing.

For convenience, we refer to these versions as DIE, DID, RBE and RBD, respectively. All
of the results, from our implementations as well as the reference implementation, presented
in this section are from binaries that have been compiled with the same C compiler (gcc)
with the same optimization settings. The predefined optimization set -O3 have been used
as well as the linking time optimization -flto. The following process was executed with
all presented time benchmarks. Each experiment was repeated five times. For the five
execution times we picked the median value. After that, if there were any values with
at least 5 percent difference, those values were removed and the new median value was
picked. If there was an even number of values left, the bigger one of the two middle
values were chosen. The idea behind this procedure was to eliminate the possible outliers
from the results. Most often there were no outliers and the presented value was acquired
immediately. For the PizzaChili files with keyword lengths ≤ 254 there were 31/700
discarded values when time usages were measured in Haapa.

Preprocessing time: As discussed in Section 5.1, our program uses the O(n · log(n))
string quicksort algorithm to remove the possible duplicate input keywords. By compiling
our program with the INFO macro defined, we get, among other things, an analysis of the
time spent in different phases of the program. Referring to Tables 5.3, 5.4, 5.5 and 5.6,
the RBD implementation was the fastest one to process any sampled einstein.en.txt

file. Correspondingly, the DIE version was the fastest one for any cere file. In Ta-
ble 5.2 we show the time portion of our implementations (DIE for cere and RBD for
einstein.en.txt) that were used for the duplicate removal as a percentage of the total
runtime. Since the used implementation versions are the fastest ones for the particular
instances, the time portions for the duplicate removals are maximal. Table 5.2 shows the
worst-case time percentages for the preprocessing phase.

51

Investigating Table 5.2, a few observations can be made.

1. With the same line length, increasing the input size increases the time portion re-
quired to preprocess the input. This is expected since the preprocessing part of
the program works in O(n · log(n)) time, which is asymptotically more than the
implementation of the greedy heuristic.

2. With the same input size, an increase in the keyword length causes the relative
preprocessing time to decrease.

As we see, the maximum relative preprocessing time for the cere files is 1.06% of the
total runtime. The results were similar for all instances having small (< 12) alphabets.
Based on this data, it is reasonable to say that the preprocessing time of the program is
insignificant for instances with a small alphabet, while the instance sizes are in the ranges of
our experiment. For bigger alphabets (|Σ| > 12) the relative preprocessing time is greater.
However, in our experiments, the time required for the preprocessing with large alphabets
was at most around 5 percent. One may interpret this value to be significant, however
while comparing our implementation with large inputs to the reference implementation,
the differences with the relative time usages are usually significantly more than 5%.

Performance comparisons: The performance of our implementation and the reference
implementation were compared. The acquired time usages were measured using the GNU
time software. For the PizzaChili dataset, all files with line lengths of 128, 254 and
512 were investigated. This experiment was run in Haapa. For the DNA dataset, the
comparisons were run for each file. This experiment was also run in Env2 for all but the
biggest problem instance, since the memory of Env2 was not sufficient for that.

The runtimes for the PizzaChili dataset files with line length ≤ 254 are specified in Tables
5.3, 5.4, 5.5 and 5.6. Each table shows the runtimes for the set of each 7 files sampled with
the same parameters. The File column is the prefix of the used filename. For example,
the files in Table 5.3 are cere_15_128, coreutils_15_128 and so on. The column labeled
Reference shows the runtimes with the reference implementation. Columns labeled with
DIE, DID, RBE and RBD show the runtimes of our implementation versions. The best
runtimes for each input file are bolded. The last two columns are discussed later.

52

File Reference DIE DID RBE RBD Comp. Rsize
cere 146.00 91.65 100.44 115.76 120.89 0.319 0.0478
coreutils 73.23 105.04 74.24 104.80 51.27 0.463 0.0694
einstein.de.txt 37.76 29.11 23.95 29.79 18.13 0.0463 0.00694
einstein.en.txt 246.17 134.09 110.58 135.21 85.12 0.0269 0.00403
influenza 40.62 29.97 29.79 34.35 32.92 0.338 0.0507
kernel 114.56 109.74 85.58 111.53 65.13 0.244 0.0366
para 122.66 86.50 94.77 110.11 116.21 0.387 0.0580

Table 5.3: Runtimes in seconds for PizzaChili dataset with cut 0.15 and keyword length 128, compression,
relative size of the dictionary. The fastest runtimes are bolded.

File Reference DIE DID RBE RBD Comp. Rsize
cere 144.06 102.97 113.97 129.63 136.11 0.409 0.0614
coreutils 69.29 112.36 78.83 107.45 55.21 0.527 0.0791
einstein.de.txt 39.44 30.27 24.44 30.05 18.54 0.0652 0.0098
einstein.en.txt 278.75 154.52 129.48 154.96 102.88 0.0268 0.00402
influenza 38.75 33.03 32.76 38.23 37.28 0.463 0.0695
kernel 113.62 117.58 91.70 117.96 71.77 0.269 0.0403
para 119.23 97.25 107.02 123.52 129.05 0.445 0.0668

Table 5.4: Runtimes in seconds for PizzaChili dataset with cut 0.15 and keyword length 254, compression,
relative size of the dictionary. The fastest runtimes are bolded.

File Reference DIE DID RBE RBD Comp. Rsize
cere 294.24 175.33 191.33 216.54 221.55 0.316 0.0790
coreutils 145.94 187.77 131.09 180.38 95.82 0.426 0.106
einstein.de.txt 73.96 52.18 42.56 52.80 33.40 0.0442 0.0110
einstein.en.txt 483.52 244.33 202.77 246.41 159.36 0.0210 0.00524
influenza 80.12 57.89 59.75 65.41 63.83 0.410 0.103
kernel 235.27 194.60 154.91 198.07 118.92 0.182 0.0455
para 253.59 163.89 179.08 208.02 214.48 0.348 0.0870

Table 5.5: Runtimes in seconds for PizzaChili dataset with cut 0.25 and keyword length 254, compression,
relative size of the dictionary. The fastest runtimes are bolded.

53

File Reference DIE DID RBE RBD Comp. Rsize
cere 715.62 350.59 384.95 431.81 439.19 0.213 0.106
coreutils 377.27 370.95 261.72 358.27 188.88 0.289 0.145
einstein.de.txt 171.43 99.20 83.85 101.56 67.74 0.0255 0.0127
einstein.en.txt 993.62 463.47 371.48 456.26 294.33 0.0157 0.00786
influenza 197.47 118.44 120.73 129.16 128.45 0.335 0.167
kernel 569.85 392.67 306.08 392.72 241.98 0.104 0.0519
para 629.26 336.03 361.32 403.99 424.42 0.237 0.119

Table 5.6: Runtimes in seconds for PizzaChili dataset with cut 0.50 and keyword length 254, compression,
relative size of the dictionary. The fastest runtimes are bolded.

As discussed in Section 5.1, the links optimization was designed to improve the perfor-
mance of our implementation with small alphabets. In general, the approach of direct
indexing over a two-dimensional array is only reasonable with small alphabets, since it
significantly increases the memory consumption of the program. Also, in practice, our
implementations with red-black trees were faster with big alphabets. Investigating the
runtimes from Tables 5.3, 5.4, 5.5 and 5.6 we make the following observation.

1. The DIE version was the fastest for all instances with small (< 12) alphabets.

2. The RBD version was the fastest for all instances with big (> 12) alphabets.

3. The DID version was slightly (< 1%) faster than the DIE version for the files
influensa_128_15 and influensa_128_25 (|Σ| = 12).

4. The RBE version was the fastest for none of the instances.

As expected, the DID and RBE versions are generally not competitive with the DIE and
RBD versions. Later on, we only present the results for either DIE (when alphabet size
≤ 12) or RBD (when alphabet size > 12) versions of our implementation.

Let us now examine the runtimes more carefully for the instances with keyword lengths
254. Table 5.9 illustrates the runtimes for each instance in PizzaChili dataset with keyword
length 254. Thus, each plot uses the data from Tables 5.4, 5.5 and 5.6. Note that
since the data points are not uniformly distributed in the x-axis, these graphs do not
illustrate the time complexities of the programs. The x marked blue lines and circle marked
black lines show the time usages of the reference implementation and our implementation,
respectively. Runtimes in seconds are presented in the left vertical axis. As we see,

54

File Reference Our impl. Compression Rsize
cere 707.99 436.36 0.299 0.149
coreutils 362.85 227.42 0.332 0.166
einstein.de.txt 184.57 80.48 0.0385 0.0192
einstein.en.txt 1147.92 392.66 0.0181 0.00903
influenza 185.32 147.45 0.457 0.228
kernel 567.09 281.81 0.123 0.0613
para 616.93 417.35 0.296 0.148

Table 5.7: Runtimes in seconds for PizzaChili dataset with cut 0.50 and keyword length 512, compression,
relative size of the dictionary. The fastest runtimes are bolded.

the time usage of the reference implementation grows more rapidly in every case. This
relative change in runtimes is illustrated with the orange triangle marked lines. The values
are presented as a percentage of the time usage of our implementation compared to the
time usages of the reference implementation. The percentage values are shown on the
right vertical axis. This data suggests that our implementation outperforms the reference
implementation with big enough inputs. However, investigating Tables 5.3 and 5.4 we
also see that increasing the line length while keeping the instance size constant affects the
runtimes contrarily. For every file, the time usage of our implementation increases when
the line length is increased from 128 to 254 while keeping the cut in 15 percent. With
the reference implementation, the time usage grows only with the einstein files. Moreover,
the growth is relatively smaller than the growth with our implementation. By this data,
we assume that there are probably instances similarly sampled from PizzaChili data for
which the reference implementation is faster.

Tables 5.7 and 5.8 show similar data for the PizzaChili dataset with line lengths 512.
These results are consistent with the runtimes of the smaller instances. That is, our
implementation compared to the reference implementation gets faster when the size of
the instances grows while the keyword length remains constant. Also, the relative speed
of our implementation versus the reference implementation decreases while the input size
remains constant and the line length increases.

Let us now examine the runtime benchmarks for the DNA dataset. This experiment was
run in both environments. The results are shown in Table 5.10. The first column of the
table, labeled with # defines the prefix of the filename. For example, the row starting with

55

File Reference Our impl. Compression Rsize
cere 1162.88 665.73 0.237 0.178
coreutils 637.61 335.40 0.256 0.192
einstein.de.txt 303.83 126.08 0.0277 0.021
einstein.en.txt 1744.57 560.52 0.0146 0.011
influenza 324.12 221.69 0.399 0.299
kernel 946.69 432.82 0.0881 0.066
para 1033.05 634.22 0.237 0.178

Table 5.8: Runtimes in seconds for PizzaChili dataset with cut 0.75 and keyword length 512, compression,
relative size of the dictionary. The fastest runtimes are bolded.

5 corresponds to the file 5_dna_5k.acgt, which consists of 5000 lines of DNA sequences,
100 bases in each line.

The columns labeled Reference and DIE show the runtimes in seconds. Due to the high
memory usage of our implementation, the last file could not be run in Env2. For both
environments, there is also a Percentage column, which shows the runtimes of our imple-
mentation in percentages compared to the runtimes of the reference implementation. The
last column contains the compression ratio of the generated superstring, that is, the size
of the superstring divided by the size of the input instance. Note that the achieved com-
pression is a result of the greedy heuristic, which is used by both of the implementations.
Hence, the compression is the same to the number of significant digits represented in the
table.

From the data, we can observe that the runtimes are significantly higher in Haapa. This
result is expected, since Haapa has an older CPU with lower clock speed. The memory
speed in Haapa is also lower. With the smaller instances, the reference implementation
has lower runtimes. In Haapa, the reference implementation is faster with instance sizes
≤ 200,000 lines. In Env2 this threshold is 100,000 lines. The corresponding instance sizes
in mebibytes are 20 and 10, respectively. After that, our implementation dominates.

To further illustrate runtimes, we also sampled a set of instances with linearly increasing
size from 100,000 lines to 2,000,000 lines in 100,000-line steps. This set was then run in
Env2. Every instance was run only once and no precise values are shown. The results are
shown in Figure 5.2 (the image description is same with the images in Table 5.9). Since
this image has a linear scale, the time complexities of the implementations can be seen.

15 25 50

200

400

600

a)
ce

re
71

60

49

15 25 50

100

200

300

400
78

66

50

b)
co

re
ut

il
s

15 25 50

50

100

150

c)
ei

ns
te

in
.d

e.
tx

t

80

66

50

15 25 50

200

400

600

800

999 42

33

30

d)
ei

ns
te

in
.e

n.
tx

t

15 25 50

50

100

150

200

e)
in

fl
ue

nz
a

85

74

60

15 25 50

100

200

300

400

500

600 63

51

42
f)

ke
rn

el

15 25 50

200

400

600

g)
pa

ra

82

65

53

Table 5.9: Illustration of the runtimes of the Piz-
zaChili files with 254 line length. The blue lines
marked with x show the runtimes of the reference im-
plementation. Black lines market with circles show
the runtimes of our implementation. Runtimes are
shown (in seconds) in the left vertical axes. Or-
ange lines marked with triangles show the percent-
age of the runtime of our implementation compared
to the reference implementation. Percentage values
are shown in the right vertical axes. The horizontal
axes show the cut parameter of the sampled input
file.

57

Haapa Env2
Reference DIE Percentage Reference DIE Percentage Comp.
1 0.24 0.21 87.5 0.09 0.09 100.0 0.927
2 0.45 0.45 100.0 0.19 0.21 110.5 0.909
3 0.88 0.97 119.2 0.39 0.5 128.2 0.887
4 1.83 1.94 106.0 0.88 1.22 138.6 0.840
5 4.06 4.65 114.5 2.03 2.85 140.4 0.769
6 9.56 10.98 114.9 5.46 6.25 114.5 0.660
7 23.45 24.53 104.6 16.12 13.14 81.51 0.512
8 62.02 51.07 82.3 44.63 26.47 59.4 0.362
9 167.34 102.38 61.6 107.72 51.92 48.2 0.254
A 412.7 202.41 49.0 247.37 104.78 42.4 0.191
B 953.86 406.2 42.6 0.155

Table 5.10: Runtimes in seconds for the DNA dataset, the runtime of our implementation compared to
the reference implementation (in percentages) in both environments, compression (the size of the common
superstring divided to the size of the input). The fastest runtimes for each environment are bolded.

Comparing the runtimes on the PizzaChili and the DNA datasets we can conclude that
our solution implements the greedy heuristic faster:

1. When the instance size is big enough,

2. Especially with shorter input keywords and

3. With smaller alphabet sizes.

RLZ factorization. As discussed in Chapter 4 the size of the RLZ compressed file is
the size of the reference string used as a dictionary plus the size of the factors referencing
to this dictionary. Let us now discuss the compression obtained by the RLZ algorithm
with two different methods for generating the dictionary. The first method that we use
for the dictionary construction simply samples substrings of fixed length from random
positions of the file that is to be compressed. The samples are then concatenated and the
factorization is run against that dictionary. The second approach has not been studied
before. The idea is to randomly sample a number of substrings, as before but instead
of concatenation, the SCS approximation algorithm is run and the result is used as the
reference dictionary.

58

0 200 400 600 800 1,000 1,200 1,400 1,600 1,800 2,000
0

50

100

150

200

250

300

Instance size

Ru
nt
im

e
(S
ec
)

40

60

80

100

120

Ru
nt
im

e
(%

)

Figure 5.2: Comparison of the runtimes between our and reference implementation with DNA data
consisting of keywords of length 100. The blue line marked with x shows the runtimes of the reference
implementation. The black line marked with circles shows the runtimes of our implementation. Runtimes
are shown (in seconds) in the left vertical axis. The orange line marked with triangles shows the percentage
of the runtime of our implementation compared to the reference implementation. Percentage values are
shown in the right vertical axis. The x-axis specifies the size of the instance in thousands of lines.

The PizzaChili dataset sampled with line lengths from 128 to 512 and cut parameters from
15% to 75% were used. The Compression column in Tables 5.3, 5.4, 5.5, 5.6, 5.7 and 5.8
show the size of the generated superstring relative to the instance size. This compression
value depends on the size of the instance (the cut parameter). The Rsize value is calculated
from the superstring compression value to get the size of the superstring relative to the
original file. In other words, when the common superstring is used as an RLZ dictionary
the Rsize value multiplied with the size of the original file to be compressed, is the size
of the dictionary. As we see, the compressions are better with bigger instances. However,
increasing the keyword length while keeping the instance size constant, the compression
ratio gets worse.

We ran the RLZ factorization for every PizzaChili file using the common superstrings
from the instances sampled with various parameters as a dictionary. The upper part of
Table 5.11 shows the number of RLZ factors generated using the approximate SCS as a
dictionary. For reference, the lower part of the table shows the number of factors when
the dictionary is generated by simply concatenating the samples so that the lengths of the
dictionaries are the same. We see that the SCS method for the dictionary construction
results in a significantly smaller number of factors. The number of factors with the SCS

59

File 15_128 15_254 25_254 50_254 50_512 75_512
cere 2,730,732 2,135,129 1,574,261 1,233,553 816,328 686,684
coreutils 3,348,186 3,052,924 1,677,551 641,487 511,471 289,703
einstein.de.txt 300,857 168,361 163,409 154,105 83,080 85,206
einstein.en.txt 1,546,254 780,202 779,287 844,213 418,429 403,249
influenza 1,443,648 1,169,337 964,633 740,696 580,713 467,416
kernel 948,673 736,718 391,851 235,094 168,852 131,755
para 3,829,215 3,205,234 2,080,952 1,220,678 961,559 700,598
cere 10,986,309 6,900,933 5,264,601 3,930,879 2,148,565 1,904,918
coreutils 6,591,442 5,580,636 4,525,247 3,548,432 2,812,876 2,387,512
einstein.de.txt 1,456,740 800,626 737,333 683,388 379,491 361,252
einstein.en.txt 5,191,299 3,443,373 2,949,429 2,592,922 1,557,116 1,445,208
influenza 2,349,774 1,701,867 1,519,536 1,309,105 942,168 844,213
kernel 8,001,635 6,478,714 5,708,406 4,938,226 3,530,819 3,217,852
para 11,264,145 8,445,457 6,628,010 5,086,768 3,403,923 2,940,037

Table 5.11: The number of factors in relative Lempel-Ziv compression. The upper numbers result
when the RLZ dictionary is a common superstring of the corresponding file. The common superstring
is generated from the files randomly sampled with parameters specified in the column title. The lower
numbers result when the dictionary is a string obtained by concatenating random samples together such
that both dictionaries have the same length.

method ranges from 63.5% (influenza_25_254)to 4.1% (kernel_75_512) of the number
of factors generated when using a concatenated dictionary.

This suggests that the acquired RLZ compression is significantly better when the SCS
approach is used. However, the number of factors is only a part of the compression. The
final compression ratio also depends on the size of the dictionaries, which are the same in
both cases. Let us assume that each factor in the compressed file consists of two 4-byte
integers. Note that in practice, the factors could be stored with less space. For example,
in many cases the generated superstring is shorter than 24Mi symbols, making 3 bytes
sufficient for factor length and position index. For simplicity, we now use 4 byte integers.

Table 5.12 shows the final sizes of the RLZ compression for these two methods. The value
in each cell is a sum of the corresponding dictionary and the number of factors presented
in Table 5.11 multiplied with 8 bytes. The dictionary size can be calculated by multiplying
the corresponding Rsize value with the size of the original file.

60

For example, let us consider the RLZ compression of the file para with dictionary generated
with sample parameters cut = 0.50 and line length = 254. By Table 5.6 the compression
ratio of the file para_50_254 is 0.237. That means the size of the superstring compared
to the original file is 50% · 0.237 = 0.119, which is the corresponding Rsize value. Let us
also assume that the dictionary is encoded using a naive approach, where each symbol
is encoded in one byte. The absolute size of the dictionary is therefore 410Mib ·0.119 =
48.79Mib. The absolute size of the factors is 1, 220, 678 · 8 bytes = 9.31 MiB. The total
size of the compressed para file is therefore 48.79 + 9.31 = 58.10 mebibytes.

With conventionally generated dictionary of the same size, the number of factors was
5,086,768, with the size of 5, 086, 768 · 8 bytes = 38.8 mebibytes. The total size of the
compressed files is therefore 37.80 + 48.79 = 87.59 MiB.

Table 5.12 shows the total compressed sizes for each PizzaChili file with different cut and
line length parameters. Note that the values presented in Tables 5.3, 5.4, 5.5, 5.6, 5.7 and
5.8 are rounded. The values presented in Table 5.12 are calculated with more precision,
causing a small difference compared to values calculated from the earlier presented data.
For the same reason, the 75/512 version of the einstein.de.tx in the lower section of
the table is bolded. The compression with more precise values is better in this case. Note
that in real applications, the dictionaries could be encoded using a log2(|Σ|)-bit encoding.
Also, the factors could be encoded in less space. The values presented in table 5.12 are
examples with sizes of 8 byte factors and a single byte encoding with the dictionary.

Comparing the values in Tables 5.11 and 5.12 we see the significance of the dictionary
size with the compression. The bigger the dictionary is, the less significant the number
of RLZ factors becomes. We also see that the number of factors tends to decrease faster
with the conventional dictionary construction when the dictionary size or the line length
parameter is increased. This may be explained with the fact that the probability to find a
long substring from the dictionary is lower than to find a short substring. If the sampled
substrings are large enough, there is no significant benefit from using the SCS approach.

Regardless of the decrease in the number of factors, the resulting compression is not neces-
sarily better with lesser number of factors. This is because the size of the dictionary tends
to grow more rapidly than the number of factors decreases. This is especially true with
the SCS dictionary construction, when no compression with the parameters 75%/512, re-
sulted the best compression. Contrarily, with these parameters the conventional dictionary
construction resulted the best performance with three files.

61

File 15_128 15_254 25_254 50_254 50_512 75_512
cere 41.86 43.31 46.78 56.26 72.01 83.45
coreutils 39.16 38.80 33.66 33.22 36.44 39.84
einstein.de.txt 2.91 2.16 2.23 2.31 2.35 2.50
einstein.en.txt 13.59 7.75 8.28 9.95 7.23 7.96
influenza 18.51 19.21 22.53 30.41 38.25 47.86
kernel 16.28 15.57 14.23 14.60 16.48 17.33
para 52.99 51.83 51.54 57.93 68.02 78.22
cere 104.84 79.67 74.94 76.84 82.17 92.74
coreutils 63.90 58.08 55.39 55.40 54.00 55.85
einstein.de.txt 11.73 6.98 6.61 6.35 4.61 4.61
einstein.en.txt 41.40 28.06 24.84 23.29 15.92 15.91
influenza 25.43 23.27 26.77 34.74 41.01 50.73
kernel 70.09 59.38 54.79 50.48 42.13 40.87
para 109.71 91.81 86.23 87.43 86.65 95.31

Table 5.12: RLZ Compression sizes in mebibytes of the original PizzaChili files with different dictionaries.
The best compressions are bolded. The upper numbers result when the RLZ dictionary is a common
superstring of the corresponding file. The common superstring is generated from the files randomly
sampled with parameters specified in the column title. The lower numbers result when the dictionary is
a string obtained by concatenating random samples together such that both dictionaries have the same
length.

Investigating Table 5.12 even more, we can observe that for most of the lines in both sec-
tions of the table, the compressions behaves similarly. That is, the compression increases
to some point which after it starts to decrease. In other words, it seems like there is (a
local) minimum for the compression with different sampling parameters. It would be very
significant if the optimal parameters could be predicted before the full compression.

6 Conclusions

In this thesis, we investigated the Shortest Common Superstring problem in de-
tail. We focused on the greedy heuristic that provides a computationally easy-to-solve
yet practically efficient approximate solution to the problem. The greedy heuristic and
Ukkonen’s algorithm, that solves this heuristic in linear time, were discussed in detail.
The correctness and time complexity were also proved. We provided an implementation
of Ukkonen’s algorithm with performance comparisons to another algorithm for the same
heuristic.

We briefly discussed the LZ family of dictionary compression algorithms. A more detailed
introduction to the Relative Lempel-Ziv was given. We hypothesized that the RLZ com-
pression method could be improved for general-purpose data by using an approximate
shortest common superstring of the random samples of the input as a dictionary.

The aim of the comparison of the two implementations of the greedy heuristic was to
examine the practical performance of our implementation and Ukkonen’s algorithm in
general. The results of these comparisons show that our implementation of Ukkonen’s
algorithm is a very competitive method to solve the greedy heuristic of the Shortest
Common Superstring problem. Regardless of the alphabet size of the problem instance,
and therefore the time complexity of our implementation (linear for small alphabets, O(n ·
log(|Σ|) for alphabets larger than 12), our implementation was faster with sufficiently large
inputs. This indicates that the approximate SCS problem can be quickly solved even for
large inputs.

The hypothesis of the compression ratios of the RLZ was also answered. The results
indicate that for highly repetitive corpuses, the number of RLZ factors in the compressed
data is significantly reduced when using the SCS approach to construct the dictionaries.

The results of this thesis implicate that a speedy implementation of the greedy heuristic
of the shortest common superstring can be crafted. However, the comparisons of the
implementations lacked the measurement of the used memory. As the memory usage is
also a significant aspect of the computation, it would be interesting to study this matter
further. As future work, our implementation of Ukkonen’s algorithm could be further
developed. The version used in this thesis has given sufficient insight into the magnitudes

63

of time and memory usage. However, we assume that those values could be improved if
our implementation were further developed.

The datasets used in this thesis were all highly repetitive corpuses of real origin. Although
the number of RLZ factors was significantly decreased with the SCS approach, a further
research with more broad datasets would be interesting. Also, the proportion of the time
usage of Ukkonen’s algorithm compared to the total time of the RLZ factorization was not
measured. Performing this kind of study would be a natural continuation of this thesis.

Bibliography

Aho, A. V. and Corasick, M. J. (June 1975). “Efficient String Matching: An Aid to
Bibliographic Search”. In: Commun. ACM 18.6, pp. 333–340. issn: 0001-0782. doi:
10.1145/360825.360855. url: https://doi.org/10.1145/360825.360855.

Alanko, J. and Norri, T. (2017). “Greedy Shortest Common Superstring Approximation in
Compact Space”. In: String Processing and Information Retrieval - 24th International
Symposium, SPIRE 2017, Palermo, Italy, September 26-29, 2017, Proceedings. Ed. by
G. Fici, M. Sciortino, and R. Venturini. Vol. 10508. Lecture Notes in Computer Science.
Springer, pp. 1–13. doi: 10.1007/978-3-319-67428-5_1. url: https://doi.org/

10.1007/978-3-319-67428-5%5C_1.
Bentley, J. L. and Sedgewick, R. (1997). “Fast Algorithms for Sorting and Searching
Strings”. In: Proceedings of the Eighth Annual ACM-SIAM Symposium on Discrete
Algorithms, 5-7 January 1997, New Orleans, Louisiana, USA. Ed. by M. E. Saks.
ACM/SIAM, pp. 360–369. url: http://dl.acm.org/citation.cfm?id=314161.

314321.
Blum, A., Jiang, T., Li, M., Tromp, J., and Yannakakis, M. (1994). “Linear Approximation
of Shortest Superstrings”. In: J. ACM 41.4, pp. 630–647. doi: 10.1145/179812.179818.
url: https://doi.org/10.1145/179812.179818.

Bulteau, L., Hüffner, F., Komusiewicz, C., and Niedermeier, R. (2014). “Multivariate Al-
gorithmics for NP-Hard String Problems”. In: Bull. EATCS 114. url: http://eatcs.

org/beatcs/index.php/beatcs/article/view/310.
Commentz-Walter, B. (1979). “A String Matching Algorithm Fast on the Average”. In:
Automata, Languages and Programming, 6th Colloquium, Graz, Austria, July 16-20,
1979, Proceedings. Ed. by H. A. Maurer. Vol. 71. Lecture Notes in Computer Science.
Springer, pp. 118–132. doi: 10.1007/3-540-09510-1_10. url: https://doi.org/

10.1007/3-540-09510-1%5C_10.
Cormen, T. H. (2009). Introduction to algorithms. Cambridge, Masachusetts; London: The
MIT Press. isbn: 9780262033848 0262033844 9780262533058 0262533057. url: http:

//www.amazon.de/Introduction-Algorithms-Thomas-H-Cormen/dp/0262033844.
Crochemore, M. and Perrin, D. (1991). “Two-Way String Matching”. In: J. ACM 38.3,
pp. 651–675. doi: 10.1145/116825.116845. url: https://doi.org/10.1145/116825.

116845.

https://doi.org/10.1145/360825.360855
https://doi.org/10.1145/360825.360855
https://doi.org/10.1007/978-3-319-67428-5_1
https://doi.org/10.1007/978-3-319-67428-5%5C_1
https://doi.org/10.1007/978-3-319-67428-5%5C_1
http://dl.acm.org/citation.cfm?id=314161.314321
http://dl.acm.org/citation.cfm?id=314161.314321
https://doi.org/10.1145/179812.179818
https://doi.org/10.1145/179812.179818
http://eatcs.org/beatcs/index.php/beatcs/article/view/310
http://eatcs.org/beatcs/index.php/beatcs/article/view/310
https://doi.org/10.1007/3-540-09510-1_10
https://doi.org/10.1007/3-540-09510-1%5C_10
https://doi.org/10.1007/3-540-09510-1%5C_10
http://www.amazon.de/Introduction-Algorithms-Thomas-H-Cormen/dp/0262033844
http://www.amazon.de/Introduction-Algorithms-Thomas-H-Cormen/dp/0262033844
https://doi.org/10.1145/116825.116845
https://doi.org/10.1145/116825.116845
https://doi.org/10.1145/116825.116845

66

Crochemore, M. and Rytter, W. (2003). Jewels of stringology. New Jersey [u.a.]: World
Scientific. isbn: 9810248970.

Deorowicz, S. and Grabowski, S. (2011). “Robust relative compression of genomes with
random access”. In: Bioinform. 27.21, pp. 2979–2986. doi: 10.1093/bioinformatics/

btr505. url: https://doi.org/10.1093/bioinformatics/btr505.
Ferragina, P. and Navarro, G. (2005). The Pizza Chili corpus home page. url: http:

//pizzachili.dcc.uchile.cl/ (visited on 04/19/2022).
Gagie, T., Puglisi, S. J., and Valenzuela, D. (2016). “Analyzing Relative Lempel-Ziv Refer-
ence Construction”. In: String Processing and Information Retrieval - 23rd International
Symposium, SPIRE 2016, Beppu, Japan, October 18-20, 2016, Proceedings. Ed. by S.
Inenaga, K. Sadakane, and T. Sakai. Vol. 9954. Lecture Notes in Computer Science,
pp. 160–165. doi: 10.1007/978-3-319-46049-9_16. url: https://doi.org/10.

1007/978-3-319-46049-9%5C_16.
Gallant, J. K. (1982). “String Compression Algorithms”. AAI8221570. PhD thesis. USA.
Gallant, J., Maier, D., and Storer, J. A. (1980). “On Finding Minimal Length Super-
strings”. In: J. Comput. Syst. Sci. 20.1, pp. 50–58. doi: 10.1016/0022-0000(80)90004-

5. url: https://doi.org/10.1016/0022-0000(80)90004-5.
Gog, S., Beller, T., Moffat, A., and Petri, M. (2014). “From Theory to Practice: Plug and
Play with Succinct Data Structures”. In: Experimental Algorithms - 13th International
Symposium, SEA 2014, Copenhagen, Denmark, June 29 - July 1, 2014. Proceedings.
Ed. by J. Gudmundsson and J. Katajainen. Vol. 8504. Lecture Notes in Computer
Science. Springer, pp. 326–337. doi: 10.1007/978-3-319-07959-2_28. url: https:

//doi.org/10.1007/978-3-319-07959-2%5C_28.
Gusfield, D. (1997). Algorithms on Strings, Trees, and Sequences - Computer Science and
Computational Biology. Cambridge University Press. isbn: 9780511574931.

Gusfield, D., Landau, G. M., and Schieber, B. (1992). “An Efficient Algorithm for the All
Pairs Suffix-Prefix Problem”. In: Inf. Process. Lett. 41.4, pp. 181–185. doi: 10.1016/

0020-0190(92)90176-V. url: https://doi.org/10.1016/0020-0190(92)90176-V.
Hoobin, C., Puglisi, S. J., and Zobel, J. (2011). “Relative Lempel-Ziv Factorization for Ef-
ficient Storage and Retrieval of Web Collections”. In: Proc. VLDB Endow. 5.3, pp. 265–
273. doi: 10.14778/2078331.2078341. url: http://www.vldb.org/pvldb/vol5/

p265%5C_christopherhoobin%5C_vldb2012.pdf.
Horspool, R. N. (1980). “Practical Fast Searching in Strings”. In: Softw. Pract. Exp. 10.6,
pp. 501–506. doi: 10.1002/spe.4380100608. url: https://doi.org/10.1002/spe.

4380100608.

https://doi.org/10.1093/bioinformatics/btr505
https://doi.org/10.1093/bioinformatics/btr505
https://doi.org/10.1093/bioinformatics/btr505
http://pizzachili.dcc.uchile.cl/
http://pizzachili.dcc.uchile.cl/
https://doi.org/10.1007/978-3-319-46049-9_16
https://doi.org/10.1007/978-3-319-46049-9%5C_16
https://doi.org/10.1007/978-3-319-46049-9%5C_16
https://doi.org/10.1016/0022-0000(80)90004-5
https://doi.org/10.1016/0022-0000(80)90004-5
https://doi.org/10.1016/0022-0000(80)90004-5
https://doi.org/10.1007/978-3-319-07959-2_28
https://doi.org/10.1007/978-3-319-07959-2%5C_28
https://doi.org/10.1007/978-3-319-07959-2%5C_28
https://doi.org/10.1016/0020-0190(92)90176-V
https://doi.org/10.1016/0020-0190(92)90176-V
https://doi.org/10.1016/0020-0190(92)90176-V
https://doi.org/10.14778/2078331.2078341
http://www.vldb.org/pvldb/vol5/p265%5C_christopherhoobin%5C_vldb2012.pdf
http://www.vldb.org/pvldb/vol5/p265%5C_christopherhoobin%5C_vldb2012.pdf
https://doi.org/10.1002/spe.4380100608
https://doi.org/10.1002/spe.4380100608
https://doi.org/10.1002/spe.4380100608

67

Kaplan, H. and Shafrir, N. (2005). “The greedy algorithm for shortest superstrings”. In:
Inf. Process. Lett. 93.1, pp. 13–17. doi: 10.1016/j.ipl.2004.09.012. url: https:

//doi.org/10.1016/j.ipl.2004.09.012.
Karp, R. M. and Rabin, M. O. (1987). “Efficient Randomized Pattern-Matching Algo-
rithms”. In: IBM J. Res. Dev. 31.2, pp. 249–260. doi: 10.1147/rd.312.0249. url:
https://doi.org/10.1147/rd.312.0249.

Knuth, D. E., Jr., J. H. M., and Pratt, V. R. (1977). “Fast Pattern Matching in Strings”.
In: SIAM J. Comput. 6.2, pp. 323–350. doi: 10.1137/0206024. url: https://doi.

org/10.1137/0206024.
Kuruppu, S., Puglisi, S. J., and Zobel, J. (2010). “Relative Lempel-Ziv Compression of
Genomes for Large-Scale Storage and Retrieval”. In: String Processing and Information
Retrieval - 17th International Symposium, SPIRE 2010, Los Cabos, Mexico, October
11-13, 2010. Proceedings. Ed. by E. Chávez and S. Lonardi. Vol. 6393. Lecture Notes
in Computer Science. Springer, pp. 201–206. doi: 10.1007/978-3-642-16321-0_20.
url: https://doi.org/10.1007/978-3-642-16321-0%5C_20.

Lim, J. and Park, K. (2017). “Algorithm Engineering for All-Pairs Suffix-Prefix Matching”.
In: 16th International Symposium on Experimental Algorithms, SEA 2017, June 21-23,
2017, London, UK. Ed. by C. S. Iliopoulos, S. P. Pissis, S. J. Puglisi, and R. Raman.
Vol. 75. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 14:1–14:12. doi:
10.4230/LIPIcs.SEA.2017.14. url: https://doi.org/10.4230/LIPIcs.SEA.2017.

14.
Ma, B. (2008). “Why Greed Works for Shortest Common Superstring Problem”. In: Com-
binatorial Pattern Matching, 19th Annual Symposium, CPM 2008, Pisa, Italy, June 18-
20, 2008, Proceedings. Ed. by P. Ferragina and G. M. Landau. Vol. 5029. Lecture Notes
in Computer Science. Springer, pp. 244–254. doi: 10.1007/978-3-540-69068-9_23.
url: https://doi.org/10.1007/978-3-540-69068-9%5C_23.

Navarro, G. and Raffinot, M. (2000). “Fast and Flexible String Matching by Combining
Bit-Parallelism and Suffix Automata”. In: ACM J. Exp. Algorithmics 5, p. 4. doi: 10.

1145/351827.384246. url: https://doi.org/10.1145/351827.384246.
Paluch, K. E. (2014). “Better Approximation Algorithms for Maximum Asymmetric Trav-
eling Salesman and Shortest Superstring”. In: CoRR abs/1401.3670. arXiv: 1401.3670.
url: http://arxiv.org/abs/1401.3670.

Peltola, H., Söderlund, H., Tarhio, J., and Ukkonen, E. (1983). “Algorithms for Some
String Matching Problems Arising in Molecular Genetics”. In: Information Processing

https://doi.org/10.1016/j.ipl.2004.09.012
https://doi.org/10.1016/j.ipl.2004.09.012
https://doi.org/10.1016/j.ipl.2004.09.012
https://doi.org/10.1147/rd.312.0249
https://doi.org/10.1147/rd.312.0249
https://doi.org/10.1137/0206024
https://doi.org/10.1137/0206024
https://doi.org/10.1137/0206024
https://doi.org/10.1007/978-3-642-16321-0_20
https://doi.org/10.1007/978-3-642-16321-0%5C_20
https://doi.org/10.4230/LIPIcs.SEA.2017.14
https://doi.org/10.4230/LIPIcs.SEA.2017.14
https://doi.org/10.4230/LIPIcs.SEA.2017.14
https://doi.org/10.1007/978-3-540-69068-9_23
https://doi.org/10.1007/978-3-540-69068-9%5C_23
https://doi.org/10.1145/351827.384246
https://doi.org/10.1145/351827.384246
https://doi.org/10.1145/351827.384246
http://arxiv.org/abs/1401.3670
http://arxiv.org/abs/1401.3670

68

83, Proceedings of the IFIP 9th World Computer Congress, Paris, France, September
19-23, 1983. Ed. by R. E. A. Mason. North-Holland/IFIP, pp. 59–64.

Pu, I. M. (2005). Fundamental Data Compression. USA: Butterworth-Heinemann. isbn:
0750663103.

Romero, H. J., Brizuela, C. A., and Tchernykh, A. (2004). “An Experimental Comparison
of Approximation Algorithms for the Shortest Common Superstring Problem”. In: 5th
Mexican International Conference on Computer Science (ENC 2004), 20-24 September
2004, Colima, Mexico. IEEE Computer Society, pp. 27–34. doi: 10.1109/ENC.2004.

1342585. url: https://doi.org/10.1109/ENC.2004.1342585.
Salmela, Tarhio, J., and Kytöjoki, J. (2006). “Multipattern string matching with q-grams”.
In: ACM J. Exp. Algorithmics 11. doi: 10 . 1145 / 1187436 . 1187438. url: https :

//doi.org/10.1145/1187436.1187438.
Storer, J. A. and Szymanski, T. G. (1982). “Data compression via textual substitution”.
In: J. ACM 29.4, pp. 928–951. doi: 10.1145/322344.322346. url: https://doi.org/

10.1145/322344.322346.
Tarhio, J. and Ukkonen, E. (1988). “A Greedy Approximation Algorithm for Constructing
Shortest Common Superstrings”. In: Theor. Comput. Sci. 57, pp. 131–145. doi: 10.

1016/0304-3975(88)90167-3. url: https://doi.org/10.1016/0304-3975(88)

90167-3.
Ukkonen, E. (1990). “A Linear-Time Algorithm for Finding Approximate Shortest Com-
mon Superstrings”. In: Algorithmica 5.3, pp. 313–323. doi: 10.1007/BF01840391. url:
https://doi.org/10.1007/BF01840391.

Welch, T. A. (1984). “A Technique for High-Performance Data Compression”. In: Com-
puter 17.6, pp. 8–19. doi: 10.1109/MC.1984.1659158. url: https://doi.org/10.

1109/MC.1984.1659158.
Ziv, J. and Lempel, A. (1977). “A universal algorithm for sequential data compression”.
In: IEEE Trans. Inf. Theory 23.3, pp. 337–343. doi: 10.1109/TIT.1977.1055714. url:
https://doi.org/10.1109/TIT.1977.1055714.

– (1978). “Compression of individual sequences via variable-rate coding”. In: IEEE Trans.
Inf. Theory 24.5, pp. 530–536. doi: 10.1109/TIT.1978.1055934. url: https://doi.

org/10.1109/TIT.1978.1055934.

https://doi.org/10.1109/ENC.2004.1342585
https://doi.org/10.1109/ENC.2004.1342585
https://doi.org/10.1109/ENC.2004.1342585
https://doi.org/10.1145/1187436.1187438
https://doi.org/10.1145/1187436.1187438
https://doi.org/10.1145/1187436.1187438
https://doi.org/10.1145/322344.322346
https://doi.org/10.1145/322344.322346
https://doi.org/10.1145/322344.322346
https://doi.org/10.1016/0304-3975(88)90167-3
https://doi.org/10.1016/0304-3975(88)90167-3
https://doi.org/10.1016/0304-3975(88)90167-3
https://doi.org/10.1016/0304-3975(88)90167-3
https://doi.org/10.1007/BF01840391
https://doi.org/10.1007/BF01840391
https://doi.org/10.1109/MC.1984.1659158
https://doi.org/10.1109/MC.1984.1659158
https://doi.org/10.1109/MC.1984.1659158
https://doi.org/10.1109/TIT.1977.1055714
https://doi.org/10.1109/TIT.1977.1055714
https://doi.org/10.1109/TIT.1978.1055934
https://doi.org/10.1109/TIT.1978.1055934
https://doi.org/10.1109/TIT.1978.1055934

	Introduction
	Terminology and Definitions
	Ukkonen's Algorithm
	The Greedy Heuristic
	Aho-Corasick Machine
	The Approximation Algorithm

	Dictionary Compression: The LZ Family
	Lempel-Ziv77
	Relative Lempel-Ziv

	Empirical Evaluation
	Implementation
	Benchmark Data
	Benchmark Setups
	Results

	Conclusions
	Bibliography

