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Abstract
As deforestation breaches into new tropical frontiers, proactive conservation strategies require a
trifecta of information on where deforestation is accelerating (emergent), how drivers of
deforestation vary spatiotemporally, and where to focus limited conservation resources in
protecting the most integral yet threatened forested landscapes. Here we introduce Emergent
Threat Analysis, a process integrating Emerging Hot Spot Analysis of deforestation, visual
classification of deforestation outcomes over time, and spatial quantification of contemporary
forest condition. We applied Emergent Threat Analysis to tropical Southeast Asia, a global
epicentre of biodiversity threatened by deforestation. We found that emergent hot spots
(EHS)—a subset of hot spots characterized by strong, recent, and clustered patterns of
deforestation—accounted for 26.1% of total forest loss from 1992 to 2018, with deforestation
within EHS proceeding at 2.5 times the regional rate of gross loss. Oil palm and rubber plantation
expansion were the principal drivers of deforestation within EHS of insular and mainland SE Asia,
respectively. Over the study period, oil palm shifted in importance from Sumatra and Sarawak to
Papua and Kalimantan, whereas rubber became prominent in Cambodia and Tanintharyi from
2006 to 2015. As of 2019, more than 170 000 km2 of SE Asia’s remaining forest occurred within
EHS, of which 21.7% was protected. High and medium-integrity forest constituted 19.2% and
49.1% of remaining EHS forest, respectively, but of these, 35.0% of high-integrity and 23.9% of
medium-integrity EHS forest were protected. Because we anticipate that tree plantation expansion
will continue to drive deforestation in SE Asia, significantly heightened protection is needed to
secure the long-term preservation of high and medium-integrity forest, especially in highly
contested forest frontier regions. Finally, as a flexible, integrated process, Emergent Threat Analysis
is applicable to deforestation fronts across the global tropics.

1. Introduction

Deforestation is the most pervasive, imminent, exist-
ential threat to tropical forests worldwide; it results in
amyriad of negative environmental outcomes includ-
ing biodiversity loss, ecosystem service degradation,
greenhouse gas emissions, and climate change (Gibbs
and Herold 2007, Baccini et al 2012, Lawrence and
Vandecar 2015, Giam 2017). In response, national
policies along with international coalitions, treaties,

and campaigns have evolved with the objectives of
halting and reversing deforestation trends (IUCN,
UNEP, andWCMC 2021, NYDF Assessment Partners
2021). The success of these campaigns is contin-
gent in part, on the capacity to measure and track
progress towards achieving deforestation reduction
goals, which highlights an increasing need to lever-
age geospatial approaches to efficiently and effectively
monitor, evaluate, and report deforestation trends at
multiple scales. Even more pressing is the need to
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know where deforestation threats to tropical forest
frontiers are accelerating, what the drivers of defor-
estation are and how they vary across space and time,
and where research, policy, and conservation inter-
ventions should proactively target to mitigate those
new threats.

Numerous studies have quantitatively analysed
the spatiotemporal variation in deforestation patterns
across the tropics (Hansen et al 2010, 2013, Achard
et al 2014, Nowosad et al 2019, to name a few); how-
ever, owing to the historical nature of geospatial data,
they are typically retrospective in scope. While useful
in deepening our understanding of landscape change
processes, reliance on these analyses can render con-
servation science, policy, and intervention reactive to
rapidly emerging trends. Significant efforts have been
made to make geospatial data contemporaneous with
deforestation occurrence (Hansen et al 2016, Reiche
et al 2021); nevertheless, tools are urgently needed to
identify emerging frontiers of deforestation so that
proactive policy and intervention strategies can be
developed. One such tool is Emerging Hot Spot Ana-
lysis (Harris et al 2017), a method that integrates spa-
tial statistics and trend analysis to identify areas of
recent and accelerating deforestation concern (which
we refer to as ‘emergent hot spots’).

Far from being a homogeneous process, deforest-
ation results from complex interactions of proximate
and underlying drivers that vary considerably across
spatial, temporal, and institutional scales (Geist and
Lambin 2002, Bürgi et al 2005, Hersperger et al 2010,
Hosonuma et al 2012, Lim et al 2017, De Alban
et al 2020, Verma et al 2021). This is particularly
true for dynamic deforestation environments such
as emergent hot spots (EHS), which are likely to be
subjected to rapidly changing deforestation drivers
(Ramankutty andCoomes 2016,DeAlban et al 2019).
To respond to these dynamic threats, precise spa-
tiotemporal attribution of proximate deforestation
drivers is needed, which can be further linked to
underlying drivers of deforestation and translated
into targeted policy responses or interventions (Finer
et al 2018). Indeed, although land cover data sets
have greatly improved in temporal resolution, they
remain unable to offer the same level of land use
and land cover discrimination as very high-resolution
(VHR) satellite imagery, which can be visually classi-
fied with high accuracy and efficiency, and at increas-
ingly reduced barriers to availability and accessibility
(Schepaschenko et al 2019).

Besides information on emergent trends and
drivers of deforestation, conservation interven-
tion must also strategically prioritize efforts and
resources to where they are most needed. For
example, the expansion of protected areas has been—
and is expected to remain—the gold standard for
conservation (Dudley and Phillips 2006, Maxwell
et al 2020). Moreover, conservation organizations
require enhanced information on where integral, yet

threatened landscapes are, to justify directing lim-
ited conservation funding. To effectively safeguard
biodiversity in landscapes facing emergent patterns
and drivers of deforestation, conservation deploy-
ment requires a spatially informed understanding on
contemporary forest health/condition, and its contri-
bution to ecosystem function (Dinerstein et al 2017).
This can be combined with information on existing
levels of protection (Grantham et al 2020), which
can then guide conservation planning to focus on
the most threatened, high-value landscapes in a more
proactive, rather than reactive, manner.

Here we introduce the Emergent Threat Analysis,
which we define as the combined process of quanti-
fying EHS of deforestation, precisely attributing the
spatiotemporal drivers of deforestation, and identi-
fying the most threatened high-conservation-value
forests within those EHS. Emergent Threat Analysis
differs from previous approaches to studying defor-
estation by virtue of its novel combination of meth-
ods that have all been utilized independently (Harris
et al 2017, Grantham et al 2020), but which have yet
to be fully integrated with the purpose of using dense,
historical geospatial information to indicate priority
regions for proactive and enhanced research, policy,
and conservation attention.

Emergent Threat Analysis is critically needed
in Southeast Asia, a region where globally import-
ant forests for biodiversity and carbon sequestra-
tion (Myers et al 2000, Sodhi et al 2004, Mitchard
2018) continue to face an emergent deforestation
threat (Feng et al 2021, Hoang and Kanemoto 2021);
the region is also where the highest rates of trop-
ical deforestation have occurred in the past four dec-
ades (Miettinen et al 2011, Hansen et al 2013, Stibig
et al 2014). Deforestation in SE Asia is driven primar-
ily by agricultural expansion (Lepers et al 2005,
Rudel et al 2009, Stibig et al 2014), with commodity-
driven deforestation in the region outpacing all oth-
ers worldwide from 2000 to 2015 (Curtis et al 2018).
Indeed, SE Asia now accounts for the vast majority
of global production of palm oil and natural rub-
ber (Kenney-Lazar and Ishikawa 2019), two com-
modities that have been central in shaping regional
and global agrarian economies. In addition to agri-
culture, deforestation in SE Asia is attributable to a
wide range of spatiotemporally variable drivers that
include logging, mining, aquaculture, and urbaniz-
ation (Richards and Friess 2016, Hughes 2017, Lim
et al 2017, Prescott et al 2017, De Alban et al 2020,
Jayathilake et al 2020).

In this study we apply Emergent Threat Ana-
lysis across the entire region of SE Asia. First, we
identify and quantify EHS of deforestation, which
we contextualize using annual, historical patterns of
deforestation from 1992 to 2018. Second, we char-
acterize how land cover outcomes of deforestation
within EHS have changed over time, to implicate
the spatiotemporal dynamics of deforestation drivers.
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Third, we combined the EHS analysis with forest
landscape integrity to highlight conservation prior-
ities and opportunities in the most threatened forest
frontiers.

2. Methods

2.1. Quantifying dynamics of forest cover and
change
Our analyses used the 1992–2018 European Space
Agency (ESA) 300-m annual land cover dataset. We
used this data because its long temporal domain
was favourable for long-term trend analyses of forest
change dynamics (De Alban et al 2019, Mousivand
and Arsanjani 2019), and because it allowed us to
incorporate pre-2000 deforestation data, which rep-
resented a period of intense deforestation in many
parts of SE Asia. We projected the ESA data to the
Equal-Area Scalable Earth Grid-2.0 cylindrical equal-
area projection, which maximally preserved areal
attributes over large geographical extents (Brodzik
et al 2012).

To quantify forest change, we reclassified the ESA
data into binary maps of forest and non-forest. Using
the Intergovernmental Panel on Climate Change
categorization in the ESA classification scheme
(ESA 2017), we aggregated the eight ESA forest cat-
egories (broadleaved evergreen, broadleaved decidu-
ous, needleleaved evergreen, needleleaved deciduous,
mixed broadleaved/needleleaved, mosaic tree/shrub,
flooded freshwater/brackish, and flooded saline
water) into a single ‘Forest’ category, and reclassified
all others as ‘Non-forest’. We then differenced pairs
of binary forest/non-forest maps using Google Earth
Engine to create 26 interannual forest change maps,
and one for the entire 1992–2018 interval (i.e. differ-
encing 1992 and 2018). The 1992–2018 forest change
map was used to quantify overall forest change stat-
istics over the 26-year period, while the interannual
change maps were used to construct the annual time
series of net and gross forest change, and to quantify
the amount of loss that occurred within EHS.

We then tessellated the SE Asian region into 5-km
circumradius hexagons to aggregate data on interan-
nual gross forest loss (supplementary methods (SM)
1.2, 1.3, and figure S1 available online at stacks.
iop.org/ERL/17/054046/mmedia). Aggregating pixel
data into hexagons facilitated spatial analysis of forest
cover and change. Further, the hexagons provided
spatially equivalent analytical units as required for hot
spot analysis (next section). Given the area of each
hexagon (∼65 km2), they are referred to as ‘land-
scapes’ in the results (section 3) (Nowosad et al 2019).

To investigate the spatial relationships between
initial forest cover and gross deforestation across SE
Asia for the 26-year period, we created a bivari-
ate classification of initial (1992) forest cover and
1992–2018 gross loss. Initial forest cover was calcu-
lated as the percentage of hexagon area while gross

loss was calculated as the percentage of initial forest
cover. Based on the respective data distributions for
each metric, initial forest cover was binned into mar-
ginally (<30%), moderately (30%–72%), and heav-
ily (>72%) forested hexagons, whereas gross loss
area was binned into weak (<10%), moderate (10%–
42%), and intense (>42%) deforestation (SM 1.1).
Binning was performed in R using the classInt pack-
age (Bivand et al 2020).

Quantification and data visualization was per-
formed in R (R Core Team 2020) using the raster,
sf, tidyr, dplyr, landscapemetrics, and ggplot2 packages
(Hesselbarth et al 2019, Hijmans et al 2021, Pebesma
et al 2021, Wickham 2021, Wickham et al 2021a,
2021b), and cartography was done in QGIS (QGIS
Development Team 2021).

2.2. Identifying EHS of deforestation
We identified and quantified EHS deforestation using
the Emerging Hot Spot Analysis (Harris et al 2017,
hereafter referred to as Hot Spot Analysis). Hot spots
were identified by analysing the amount of forest loss
in a hexagon neighbourhood in relation to the total
amount of loss within a predetermined landscape,
using Getis-Ord Gi

∗ to test for spatial clustering of
deforestation within a hexagon neighbourhood, and
the Mann-Kendall trend test to evaluate for temporal
trends of deforestation (Mann 1945, Kendall andGib-
bons 1990, Getis and Ord 1992, Harris et al 2017,
ArcGIS 2021).

Following Harris et al (2017), we analysed SE
Asia by subregions in order to identify hot spots
that were likely driven by and related to subregion-
specific social, political, and economic contexts. We
defined subregions using national-level boundaries
from the Global Administrative Areas data, except for
the following Indonesian island subregions: Sumatra,
Kalimantan, Java and Nusa Tenggara, Sulawesi and
Maluku, and Papua (adapted from Margono et al
2014). Singapore, Brunei, and Timor Leste were sub-
sumed within their neighbouring regions owing to
their small land areas. In total, there were 12 sub-
regions for Hot Spot Analysis. For each subregion,
we aggregated pixel-scale information from the forest
change maps into the hexagonal grid, resulting in a
spatially explicit, annual time series of subregional
deforestation density from 1992 to 2018 (SM 1.4).We
then performed Hot Spot Analysis for each subregion
andmasked out areas of forest/non-forest persistence
(table S1, and SM 1.5).

Hot Spot Analysis categorizes deforestation pat-
terns per hexagon into hot spots (eight types), cold
spots (eight types), or without a pattern (ArcGIS
2021). As our emphasis was on areas of recent
and accelerating deforestation, we focused on con-
secutive, intensifying, and persistent hot spots.
Consecutive hot spots meant that deforestation
trends developed over an uninterrupted series of
time intervals (ArcGIS 2021). Persistent hot spots
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were identified when deforestation was consistently
clustered over time (ArcGIS 2021). Intensifying hot
spots were similar to persistent hot spots, but in
addition, they were identified when the intensity of
deforestation clustering increased over time (ArcGIS
2021).We consolidated consecutive, intensifying, and
persistent hot spots into EHS because these three hot
spot types exhibited (1) strong patterns of clustered
deforestation over time, and (2) were identified in
the final time step, thereby including an element
of recency (table S2 and figure S2). The other hot
spot types (i.e. diminishing, historical, oscillating,
sporadic, and new) did not reflect strong, recent,
and developing trends of clustered forest loss, and
thus did not represent as much of a growing defor-
estation threat (SM 1.6). We then merged the 12
subregional Hot Spot Analysis outputs together to
create the EHS map for SE Asia, which was used for
subsequent analyses.

2.3. Classifying land cover outcomes of hot spot
deforestation
We conducted a sample-based visual assessment of
land cover changes associated with hot spot deforest-
ation. Using a stratified random sampling approach,
we selected interannual forest loss pixels within each
EHS region, and grouped them into three-year inter-
vals (e.g. 2000–2003, 2003–2006, etc; the 2015–2017
period only contained two interannual intervals).
Distance between selected pixels was⩾5 km to ensure
independence. The initial sample count of 1146 was
distributed across subregions in proportion to the
total amount of interannual forest loss from 2000
to 2017; no samples were allocated in the EHS of
Java, Nusa Tenggara, Timor Leste, and the Philip-
pines, each of which accounted for∼1.0%of total loss
during this period (table S3). Samples were filtered to
include those with sufficient, interpretable images to
confidently ascertain both (1) the deforestation event
(false positives were rejected) and (2) the resultant
land cover following deforestation. After filtering, 571
samples were used in the visual assessment of land
cover outcomes (figure S3).

We classified 14 deforestation land cover out-
comes under general themes of tree plantations,
farming systems, degraded landscapes, and other
land (figure S4). Tree plantations consisted of oil
palm, rubber, pulpwood, cashew, and coconut.
Farming systems included rice cultivation, mixed
farming/homegardens, and shifting cultivation.
Degraded landscapes consisted of shrub/grassland
and bare ground that could be intermediate or per-
manent; a special category of this was degraded forest,
where reductions in forest cover were observed over
time without evidence of deforestation. Other land
included built up areas, artificial water bodies, and
mining.

We set five years post-deforestation as the win-
dow to classify land cover outcomes of deforestation

because our preliminary assessment revealed that
oil palm, rubber, and pulpwood plantations were
identifiable within that time frame if the land was
immediately cultivated. In this case, the immediate
post-deforestation outcome was assumed to be the
deforestation driver because the conversion was likely
driven by an intended land use outcome. In some
cases, however, the conversion of forest into a long-
term land cover outcome may be delayed, inducing
a transitory intermediate land cover in the process.
To include these transitions, we also evaluated the
land cover of all samples in 2021; however, we did
not assess 2021 land cover for samples deforested in
2017 because the initial and final outcomes would
have been synonymous.

Classification of land cover outcomes was per-
formed using Collect Earth (Bey et al 2016), in which
visual interpretation of VHR imagery inGoogle Earth
was the primary analysis, supplemented when neces-
sary by annual Landsat and Sentinel imagery in
Google Earth Engine. Infrared false colour compos-
ites from Landsat and Sentinel offered contextual
information regarding the evolution of land cover
over time and allowed us to discriminate between
rubber and pulpwood plantations, which have sim-
ilar canopy morphologies. Data entry was achieved
through a customized survey form inOpen Foris Col-
lect (https://openforis.org/tools/collect/). Land cover
outcomes were quantified as a percentage of subre-
gional samples in each three-year interval.

2.4. Evaluating contemporary forest integrity and
protection
We leveraged the 2019 Forest Landscape Integrity
Index (FLII) to quantify the integrity of naturally
occurring or regenerating forest that remained in
EHS. FLII delivered 300-m information on forest
integrity that was calculated as a function of forest
extent, human pressure, and landscape connectivity
(Grantham et al 2020). Before integrating the FLII
data, we used the 2018 ESA forest cover map as a
mask to exclude tree plantations and urban green-
ery from that dataset (SM 1.7). We then discretized
the continuous FLII data into high, medium, and low
integrity, using the thresholds defined by Grantham
et al (2020). High-integrity forest (FLII ⩾ 9.6) rep-
resented core areas that were largely unmodified and
with ecosystems functioning at near-natural levels.
Medium-integrity forest (FLII > 6.0 and < 9.6) had
sustained higher degrees of modification, resulting
in lower provisioning of ecosystem services. Low-
integrity forest (FLII⩽ 6.0) referred to areas that were
extensively modified, fragmented, and were expec-
ted to have weak contributions to ecosystem func-
tion. Given that the FLII categories carry signific-
ant ecological relevance, we were able to identify the
areas of highest conservation priority in landscapes
threatened by deforestation.
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We then quantified protected area coverage
within EHS and stratified this analysis by forest integ-
rity to identify where current gaps in the protection
of threatened high and medium-integrity forest exis-
ted. Protected area data were primarily sourced from
the International Union for Conservation of Nature
World Database on Protected Areas (IUCN, UNEP-
WCMC 2020), and theWildlife Conservation Society
Myanmar. We dissolved the protected area data into
a single layer to prevent double-counting (UNEP-
WCMC 2015), and clipped it to each EHS region.
By spatially joining protected area and forest integ-
rity data within EHS, we were able to quantify the
amount of protected and unprotected forest that was
threatened with emergent deforestation.

3. Results

3.1. Spatiotemporal dynamics of deforestation,
1992–2018
In 1992, forest cover in SE Asia was 2343 773 km2,
of which 65.7% was in insular SE Asia (table 1).
From 1992 to 2018, gross forest loss was 219 833 km2,
balanced by a gain of 143 215 km2 for a net loss
of 76 618 km2 (−0.13% yr−1, table 1). Insular SE
Asia accounted for 98.7% of total net loss and 65.2%
of total forest change (gross losses + gross gains)
(table 1). Thus, total forest change in insular and
mainland SE Asia was proportional to the amount of
1992 forest cover, but net losses were almost all con-
tained in insular SE Asia (figure S5). Cambodia was
an outlier in mainland SE Asia, with annual net losses
of−0.60%, comprising a unique combination of high
gross loss and almost no gross gain (table 1).

Interannual forest change varied considerably
across the subregions, exhibiting six temporal traject-
ories (figure 1). Consistent net losses occurred for
more than 80% of the time period in Sumatra, Kali-
mantan, East Malaysia, and Sulawesi and Maluku.
Attenuating losses, which indicated reduced deforest-
ation rates over time, occurred in Cambodia, Viet-
nam, and Singapore. Thailand exhibited a period of
consistent net forest loss until 2003 followed by con-
sistent net forest gain, i.e. a ‘forest transition’ sensu
(Mather 1992). Oscillating patterns, which occurred
when forest change cycled between periods of net
losses and gains were observed in Papua, Brunei, and
Laos. West Malaysia exhibited a short period of net
gain thatwas succeeded by anuninterrupted period of
net loss that spanned 75% of the time series. Finally,
net gains for more than 60% of the time period were
recorded in Myanmar, Java and Nusa Tenggara, Phil-
ippines, and Timor Leste.

Throughbivariatemapping of forest cover in 1992
and gross forest losses for 1992–2018 (figure 2), we
found that heavily forested landscapes (i.e. hexagons
with > 72.0% forest cover) contained 70.3% of total
forest cover in 1992 and accounted for 48.1% of gross
losses (table S4). Moderately forested landscapes (i.e.

hexagons with 30.0%–72.0% forest cover) were tar-
geted for deforestation, as evidenced by the fact
that they contained 24.5% of initial forest cover but
accounted for 42.4% of gross loss (table S4). Heav-
ily and moderately forested landscapes that exper-
ienced intense deforestation—defined as ⩾ 42.0%
reduction in initial cover—contained 7.0% of all SE
Asia’s forest in 1992 and accounted for 50.6% of
gross loss from 1992 to 2018 (table S4). These were
the areas where deforestation over the 26-year period
was most concentrated; observed in Sumatra, Kali-
mantan, Sarawak, south Myanmar (i.e. Tanintharyi),
Cambodia, and central Vietnam (figure 2).

3.2. EHS of deforestation
Gross forest loss occurred in a diverse mosaic of hot
and cold spots that indicated a complex mélange of
deforestation dynamics across SE Asia (figures S6
and S7). Interannual gross forest loss from 1992 to
2018 totalled 233 950 km2 (table S5), of which EHS
accounted for 61 140 km2, i.e. 26.1% (table 2). EHS
deforestation led to a 24.0% gross reduction in 1992
forest cover, with gross losses occurring at a rate of
0.92% yr−1, which was 2.5 times the regional rate of
gross loss (0.36% yr−1, table 1).

EHS deforestation impacted insular SE Asia pro-
portionately more than mainland SE Asia: whereas
63.9% of EHS forest cover was insular (consistent
with 65.6% of all of SE Asia’s forest being insu-
lar), it accounted for 71.9% of EHS deforestation
(table 2). The greatest gross decline was 48.9%,
in the Sumatran EHS, while other EHS experi-
encing gross declines greater than 20% included
Kalimantan (36.2%), Malaysia (32.8%), Cambodia
(29.6%), Vietnam (23.4%), and Myanmar (20.5%).
Altogether, these six regions accounted for 84.9% of
total EHS deforestation in SE Asia (table 2).

3.3. Land cover outcomes of deforestation within
EHS
Themost prevalent land cover outcome of EHS defor-
estationwas tree plantations, which comprised 45.7%
of initial and 62.2% of final outcomes (table 3). Tree
plantations, mostly in the form of oil palm planta-
tions, dominated in all insular EHS (53.2%→ 67.4%,
initial to final, table 3) except Sulawesi, which
was dominated by conversions into shrub/grassland
(50.0%, table S6). Over time, the importance of oil
palm as a deforestation outcome declined in Sumatra
and Sarawak, whereas it increasingly drove deforest-
ation in Papua and Kalimantan (figure 3). In main-
land SE Asia, tree plantation outcomes had an ini-
tial occurrence rate of 21.5%, but this increased to
45.2% by 2021 (table 3). Rubber plantations were
the primary tree plantation type across mainland
EHS (11.1% → 23.0%, table 3). They were most
prominent in EHSofCambodia andTanintharyi, pre-
dominating from2006 to 2015 (figure 3)when rubber
prices were increasing (figure S8).
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Table 1. Forest cover and change statistics for SE Asia, 1992–2018. Losses and gains are reported as gross statistics. Annual change rate is
the percentage of 1992 forest that underwent change by 2018, divided by 26 years. Areas were calculated using projected ESA data.

Forest area (km2) Forest change (km2) Annual change rate (%)

Region Area (km2) 1992 2018 Loss Gain Net Loss Gain Net

Insular SE Asia
Kalimantan 533 937 367 983 333 019 49 977 15 013 −34 964 0.52 0.16 −0.37
Sumatra 475 383 231 265 197 146 48 485 14 366 −34 118 0.81 0.24 −0.57
East Malaysia 197 607 156 833 145 925 20 810 9903 −10 907 0.51 0.24 −0.27
Sulawesi and Maluku 264 240 187 858 184 016 11 585 7743 −3842 0.24 0.16 −0.08
West Malaysia 131 776 66 649 64 420 8449 6221 −2228 0.49 0.36 −0.13
Papua 412 305 373 968 372 331 5629 3992 −1637 0.06 0.04 −0.02
Singapore 697 128 90 53 15 −38 1.60 0.46 −1.14
Brunei 5778 4868 4952 79 164 85 0.06 0.13 0.07
Timor Leste 14 915 2055 2255 87 288 201 0.16 0.54 0.38
Philippines 295 857 100 877 103 717 8679 11 519 2840 0.33 0.44 0.11
Java and Nusa Tenggara 204 379 46 723 55 688 2344 11 310 8965 0.19 0.93 0.74

Subtotal 2536 875 1539 206 1463 562 156 177 80 533 −75 644 0.39 0.20 −0.19

Mainland SE Asia
Cambodia 181 360 99 459 83 862 16 402 804 −15 598 0.63 0.03 −0.60
Vietnam 329 276 127 329 116 555 16 631 5857 −10 774 0.50 0.18 −0.33
Thailand 514 055 129 553 131 460 7222 9130 1908 0.21 0.27 0.06
Laos 230 002 125 365 128 993 7073 10 702 3628 0.22 0.33 0.11
Myanmar 669 297 322 861 342 723 16 327 36 189 19 862 0.19 0.43 0.24

Subtotal 1923 989 804 567 803 592 63 655 62 681 −974 0.30 0.30 0.00

Total SE Asia 4460 865 2343 773 2267 154 219 833 143 215 −76 618 0.36 0.24 −0.13

Figure 1. Interannual patterns of net and gross forest change in subregions of SE Asia. Gross (grey) and net (blue for gain; red for
loss) forest change, with Y-axis representing

√
Forest change area(km2) over 26 interannual time intervals for the subregions of

SE Asia. Trends were characterized into six temporal patterns; (a) consistent losses, (b) attenuating losses, (c) forest transition,
(d) oscillating, (e) short period of gain followed by consecutive losses, and (f) consistent gains.

Degraded landscapes accounted for 44.0% of
all initial outcomes and was predominately shrub/-
grassland in all EHS regions (except Papua, table
S6), followed by bare ground and degraded forest
(table 3). However, 49.0% of degraded land-
scapes were subsequently converted to another land
cover (figure 4), reducing its importance to 27.7%
(table 3). Such conversions from intermediate to

final outcomes generally followed the subregional
trends of direct deforestation, i.e. towards oil palm
and rubber plantations (figure 4, tables S7 and S8).
A notable exception was cashew, in which a major-
ity of outcomes arose from six types of intermediate
transitions in mainland EHS (table S8), reflecting
its growing prominence amongst other land cover
outcomes.
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Figure 2. Forest cover in 1992 and gross forest loss from 1992 to 2018, where each map unit is a 5-km circumradius hexagon
(∼65 km2). Y-axis breaks were defined using a head-tails (heavy-skew) method, while X-axis breaks were defined using a natural
breaks (jenks) method to suit their respective data distributions.

Table 2. Forest cover and interannual gross loss in emergent hot spots (EHS) of SE Asia. EHS area refers to the geographical area covered
by EHS. Percentage of gross loss was calculated with respect to 1992 cover. The following values are appended here to support
interpretation: (a) total interannual gross loss in SE Asia was 233 950 km2, and (b) total 2018 forest area in SE Asia was 2267 154 km2.
Note that this table does not include gross gains or net forest change. Areas were calculated using projected data.

Forest area (km2) Gross loss, 92–18

Region EHS area (km2) 1992 2018 km2 %

Insular SE Asia
Kalimantan 27 133 16 358 11 750 5930 36.2
Sumatra 79 886 45 166 24 805 22 082 48.9
Malaysia 44 629 32 462 24 123 10 650 32.8
Sulawesi 31 478 25 223 23 180 2528 10.0
Papua 40 436 32 947 31 920 2043 6.2
Java and Nusa Tenggara 30 811 9470 11 228 575 6.1
Philippines 3236 1208 1125 151 12.5

Subtotal 257 609 162 835 128 132 43 959 27.0

Mainland SE Asia
Cambodia 11 110 8224 5724 2433 29.6
Vietnam 37 604 29 493 22 851 6895 23.4
Thailand 18 939 12 992 11 092 1379 10.6
Laos 29 525 22 214 20 628 2527 11.4
Myanmar 22 257 19 238 15 051 3947 20.5

Subtotal 119 434 92 162 75 346 17 181 18.6

Total 377 043 254 997 203 478 61 140 24.0

Of the farming-related outcomes, shifting
cultivation made only a minor contribution to EHS
deforestation (table 3), and was most prominent
in southern Laos (table S6). Further, of all initial

outcomes identified as shifting cultivation, 55.6%
were converted into rubber (33.3%) and cashew
(11.1%) plantations, and mixed farming/homegar-
dens (11.1%), while the remainder were identified
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Table 3. Percentage of initial and final land cover outcomes of deforestation in insular and mainland SE Asia. Initial outcomes refer to
the land cover at five years post-deforestation, while final outcomes refer the 2021 land cover. ‘n’ denotes the number of samples.

Insular (n= 436) Mainland (n= 135) All (n= 571)

Land cover outcome Initial Final Initial Final Initial Final

Tree plantation
Oil palm 46.1 60.3 5.2 8.1 36.4 48.0
Rubber 1.1 0.9 11.1 23.0 3.5 6.1
Pulpwood 4.4 5.3 — — 3.3 4.0
Cashew — — 4.4 12.6 1.1 3.0
Coconut 0.5 0.5 — — 0.4 0.4
Immature tree crop 1.1 0.5 0.7 1.5 1.1 0.7

Subtotal 53.2 67.4 21.5 45.2 45.7 62.2

Farming
Rice cultivation — — 2.2 2.2 0.5 0.5
Mixed farming 2.8 2.5 8.9 11.9 4.2 4.7
Other crop 0.5 0.5 0.7 4.4 0.5 1.4
Shifting cultivation 0.5 0.5 6.7 1.5 1.9 0.7

Subtotal 3.7 3.4 18.5 20.0 7.2 7.4

Degraded
Shrub/grassland 33.0 22.5 40.0 21.5 34.7 22.2
Degraded forest 3.0 1.6 6.7 3.0 3.9 1.9
Bare ground 3.9 2.3 10.4 7.4 5.4 3.5

Subtotal 39.9 26.4 57.0 31.9 44.0 27.7

Other
Built up area 0.9 0.5 0.7 0.7 0.9 0.5
Mining 2.1 2.1 1.5 1.5 1.9 1.9
Water body 0.2 0.2 0.7 0.7 0.4 0.4

Subtotal 3.2 2.8 3.0 3.0 3.2 2.8

Total percentage 100 100 100 100 100 100

as active swidden or shrub/grassland that arose from
swidden abandonment or fallow.

3.4. Forest integrity and protection in EHS
As of 2018, EHS contained 9.0% of total remain-
ing forest in SE Asia (table 2). Based on the FLII,
170 737 km2 of forest remained within EHS, of which
64.4% occurred in insular SE Asia (table 4). Overall,
19.2% of remaining EHS forest in SE Asia exhibited
high integrity, 49.1% medium integrity, and 31.7%
low integrity; these percentages were similar for both
insular and mainland EHS (table 4).

High-integrity forests comprised<10.0%of forest
area in most EHS regions (table 4). Notable excep-
tions of EHS with substantial proportions of high-
integrity forest were Papua (47.8%, 15 117 km2),
Sulawesi (20.6%, 4636 km2), southern Myanmar
(36.0%, 4319 km2) and western Thailand (50.2%,
4191 km2) (the latter two encompass the Dawna
Tenasserim landscape, figure 5). A majority of the
remaining EHSwere dominated bymedium-integrity
forest, such as in central Sumatra, southern Laos, and
central Vietnam (table 4); only a small proportion

of high-integrity forest remained in these areas
(figure 5).

As of 2019, protected areas covered 36 980 km2

(21.7%) of remaining forest in EHS across SE Asia;
they covered 35.0% of high-integrity forest, 23.9% of
medium-integrity forest, and 10.1% of low-integrity
forest (table 4). At the subregional level, however,
protection status varied widely by forest integrity
(figure 6). Protected areas covered >30% of EHS
forest in Sumatra (30.2%),Myanmar (41.1%), Brunei
(45.2%), Cambodia (46.6%), and Thailand (84.9%);
however, only in Thailand andMyanmar did this rep-
resent more than 2000 km2 of high-integrity forest
(table 4).

The largest area of unprotected high-integrity
forest was 14 045 km2, in Papua’s EHS where
only 7.1% of high-integrity forest was protected
(table 4). Other EHS with >1000 km2 of unprotected
high-integrity forest include Sulawesi, Laos, and
Myanmar. Medium and low-integrity forest formed
the bulk of unprotected forest (table 4), but the
proportional contributions of these forest types
varied considerably across EHS subregions (figure 6).
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Figure 3. Initial land cover outcomes of deforestation in emergent hot spots, 2000–2017. Stacked bar plots reflect the per cent of
each forest loss outcome in three-year intervals (bars) from 2000 to 2017, for 571 randomly selected forest loss samples. The
absence of bars in 2012–2015 for Cambodia and 2015–2017 for Laos were because forest loss in each of the two regions accounted
for only 0.1% of total interannual 2000–2017 loss in SE Asia.

Figure 4. Land cover trajectories of deforestation in emergent hot spots of insular and mainland SE Asia. Sankey diagrams depict
the initial (five-year post-deforestation) and final (2021) land cover outcomes of forest loss. In both insular and mainland SE Asia,
degraded habitat served as a major intermediate land cover, prior to conversion to the final land cover outcome.
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Figure 5. State of SE Asia’s remaining forest in emergent hot spots (EHS). Regional map (top) showing the amount of remaining
2018 ESA forest that occur inside and outside EHS, where each map unit is a 5 km circumradius hexagon (∼65 km2). Insets show
the distribution of high, med (medium), and low integrity forest using the 2019 Forest Landscape Integrity Index (FLII) data for
hot spots in (a) Papua, (b) Borneo, (c) Sulawesi, (d) Sumatra, (e) Tenasserim, and (f) southern Laos and central Vietnam.

4. Discussion

Oil palm and rubber plantations were the predom-
inant drivers of EHS deforestation in SE Asia, cor-
roborating a large literature on their contributions
to deforestation in the region (Ziegler et al 2009,
Gunarso et al 2013, Abood et al 2015, Gaveau et al
2016, Hurni and Fox 2018). We found, further, that

oil palm-related deforestation in the Sumatra and
Sarawak EHS has been on the decline since 2012,
but expansion has shifted to Papua and Kalimantan,
a trend in line with the suggestion that oil palm
expansion is being displaced to new forest frontiers to
meet rising global demand (Kongsager and Reenberg
2012, Pirker et al 2016, Vijay et al 2016, Austin et al
2017). Given that recent palm oil production volumes
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Figure 6. Integrity of protected and unprotected forest in emergent hot spots (EHS), as of 2019. Stacked bars depict the
percentage contribution of high, medium, and low-integrity forest inside and outside protected areas (PA), within EHS.

and futures are increasing (FAOSTAT 2021, USDA-
FAS 2021), there is an emergent threat of oil-palm
driven deforestation in SE Asia, especially in the Pap-
uan frontier that presently remains largely intact.
Heightened protection is thus needed to effectively
mitigate against the loss of such forests, but these
could be coupledwith alternative strategies to develop
oil palm on underutilized or degraded land (Goh
et al 2018), orwith appropriate oversight and enforce-
ment pursuant to strict certification standards such as
No Deforestation, No Peat, No Exploitation commit-
ments (European Palm Oil Alliance 2021).

In the case of rubber plantations in mainland
SE Asia, we show that rubber-driven deforestation
was prominent in EHS of Tanintharyi and Cam-
bodia, particularly after 2006when rubber priceswere
increasing (figure S8). Given that there is a demon-
strable link between rubber prices and deforestation
(Grogan et al 2019), and that rubber is typically
considered a long-term investment that smallholder
farmers—who form the bulk of rubber production
(Fox and Castella 2013)—are reluctant to convert, it
is plausible that rubber will remain a major driver of
deforestation, particularly when prices trend upward,
as has been the case since early 2019 (figure S8).
Based on our analysis, we expect future expansion

to occur in EHS along the Tenasserim and Annam-
ite mountain ranges, thus supporting previous stud-
ies that forewarned of rubber expansion towardsmar-
ginal environments and higher elevations (Ahrends
et al 2015, Zeng et al 2018). Considering that these
regions still possess substantial forest cover, a resur-
gence of rubber-driven deforestation would present
a double threat of habitat loss and localized warm-
ing (Zeng et al 2020) that would increasingly threaten
biodiversity.

Our analyses revealed shifting cultivation as a
minor driver of EHS deforestation, which contrasts
with narratives identifying it as the primary cause
of widespread deforestation across SE Asia (see Fox
2000, Fox et al 2009). Where swidden occurred, we
found that a majority were converted to tree plant-
ations and mixed farming systems, reflecting the
regionwide transition of traditional swidden to more
permanent and intensified forms of agricultural pro-
duction (Vongvisouk et al 2014, Suhardiman et al
2019). The low importance of shifting cultivation as
a deforestation driver in this study may in part be
because swidden fields tend to have a small indi-
vidual footprint (i.e. smaller than an ESA 9-ha pixel),
and do not characteristically exhibit spatiotemporal
clustering.
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Of all remaining forest in SE Asia, 9.0% were
found in EHS; these are the areas most actively
threatened with habitat loss, indicating a need for
conservation prioritization. However, only 35.0% of
high-integrity and 23.9% of medium-integrity EHS
forest is protected; these values are lower than the
global averages reported by Grantham et al (2020),
where 52.3%of high-integrity and 30.3%ofmedium-
integrity forest are protected globally. Our results fur-
ther demonstrate that this shortfall in existing protec-
tion of high and medium integrity forests is severely
pronounced in EHS of insular SE Asia, where only
∼15% of both high and medium-integrity forest are
presently protected, which contrasts starkly with EHS
of mainland SE Asia where 69.9% of high-integrity
and 37.8% of medium-integrity forest are protec-
ted. These findings therefore suggest—solely from a
standpoint of spatial coverage—that the current pro-
tected area network is likely to be insufficiently poised
to deal with frontier deforestation in the region, espe-
cially in insular SE Asia.

Despite only comprising 19% of all threatened
forest, high-integrity forest should be prioritized
due to their unrivalled importance in the provi-
sion of multifarious ecosystem services (Grantham
et al 2020). Indeed, their loss represents a keystone
environmental problem in that it would trigger
disproportionately large and long-term consequences
that could offset decades of conservation progress and
climate action, particularly in areas containing vul-
nerable, yet irreplaceable carbon stocks (Noon et al
2021). By contrast, medium-integrity forest, which
contribute substantially to ecosystem function—
albeit at reduced levels due to their semi-disturbed
state (Grantham et al 2020)—constituted 49% of all
threatened EHS forest. Therefore, conservation pri-
oritization must carefully balance the trade-offs in
securing safeguards for invaluable, yet less extensive
high-integrity forest, versus administering immedi-
ate interventions for more expansive, yet relatively
less protected medium-integrity forest. These find-
ings underscore the importance of systematic conser-
vation planning (Maxwell et al 2020, De Alban et al
2021) to address emergent deforestation in the region,
especially in highly contested forest frontiers where
we anticipate tree-plantation expansion to continue
driving deforestation.

5. Significance of Emergent Threat
Analysis

Emergent Threat Analysis supports proactive conser-
vation strategies through the integration of Emer-
ging Hot Spot Analysis, visual classification of
deforestation outcomes over time, and spatial quan-
tification of contemporary forest condition and
protection to identify increasingly threatened, high

value forested landscapes. Individually, each method
provides useful geospatial information on land cover
and change; however, Harris et al (2017) noted
the opportunity to combine metrics of forest loss
clustering with contextual information, and Emer-
gent Threat Analysis integrates and synergizes those
information flows. Importantly, the underlying data
sets are replaceable according to research needs and
data availability. For example, the identification of
EHS would remain effective with other forest loss
datasets (e.g. Harris et al 2017, Pacheco et al 2021).
Further, we use VHR imagery to visually discrim-
inate between deforestation outcomes over time,
but this could be substituted with increasingly finer
scale imagery (e.g. Planet Team 2017), or augmented
with automated classification techniques. Similarly,
whereas we used the FLII because it delivered the
most contemporary data relevant to the long-term
preservation of forest connectivity and ecosystem
function (Grantham et al 2020), other geospatial
databases relating to the present state, quality, and/or
value of extant forest could be used. Given this flex-
ibility, Emergent Threat Analysis is highly relevant
to a diverse set of stakeholders ranging from conser-
vation scientists, practitioners, legislators, lobbyists,
and donors, who, in congruence with the 2030 global
sustainability agenda, share cooperative interests in
targeting deforestation fronts across the global tropics
(Pacheco et al 2021).
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