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Abstract
Aims: Human- induced pressures such as deforestation cause anthropogenic range 
contractions (ARCs). Such contractions present dynamic distributions that may en-
gender data misrepresentations within species distribution models. The temporal 
bias of occurrence data— where occurrences represent distributions before (past bias) 
or after (recent bias) ARCs— underpins these data misrepresentations. Occurrence– 
habitat mismatching results when occurrences sampled before contractions are 
modelled with contemporary anthropogenic variables; niche truncation results when 
occurrences sampled after contractions are modelled without anthropogenic vari-
ables. Our understanding of their independent and interactive effects on model per-
formance remains incomplete but is vital for developing good modelling protocols. 
Through a virtual ecologist approach, we demonstrate how these data misrepresenta-
tions manifest and investigate their effects on model performance.
Location: Virtual Southeast Asia.
Methods: Using 100 virtual species, we simulated ARCs with 100- year land- use data 
and generated temporally biased (past and recent) occurrence datasets. We modelled 
datasets with and without a contemporary land- use variable (conventional model-
ling protocols) and with a temporally dynamic land- use variable. We evaluated each 
model's ability to predict historical and contemporary distributions.
Results: Greater ARC resulted in greater occurrence– habitat mismatching for datasets 
with past bias and greater niche truncation for datasets with recent bias. Occurrence– 
habitat mismatching prevented models with the contemporary land- use variable from 
predicting anthropogenic- related absences, causing overpredictions of contemporary 
distributions. Although niche truncation caused underpredictions of historical distri-
butions (environmentally suitable habitats), incorporating the contemporary land- use 
variable resolved these underpredictions, even when mismatching occurred. Models 
with the temporally dynamic land- use variable consistently outperformed models 
without.
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1  |  INTRODUC TION

As global changes increasingly threaten biodiversity and ecosys-
tems, there is a need to model and understand the effects of these 
changes on species distributions (Guisan & Thuiller, 2005; Guisan 
et al., 2013; Newbold, 2018). The most extensive and prevalent 
changes in recent times are caused by human pressures such as 
poaching or deforestation, which manifests in anthropogenic range 
contractions (ARCs) (Maxwell et al., 2016; Newbold et al., 2015). 
Hence, predictions of biodiversity scenarios need to integrate spe-
cies responses to such pressures through anthropogenic variables 
such as land- use/land- cover (Titeux et al., 2016).

A common approach towards measuring and predicting changes 
in species distributions are species distribution models (SDMs), 
which estimate habitat suitability by correlating species’ occurrences 
to prevailing environmental conditions (Soberon & Peterson, 2005). 
However, SDMs typically assume distributions to be at equilibrium 
with their environment (Araújo & Pearson, 2005), which may lead to 
data misrepresentations when modelling species already affected by 
ARCs. The crux of these data misrepresentations stems from the in-
congruence between static occurrence data and temporally dynamic 

distributions, where occurrence datasets will inevitably exhibit some 
form of temporal bias relative to the progression of ARC (Boakes 
et al., 2010; Ryo et al., 2019). Datasets biased to the past or to more 
recent times, respectively, are more likely to have occurrences sam-
pled before or after an ARC.

Consider the occurrence records of a forest- dependent species 
sampled from forests in the decades prior to clearance in the year 
1980 for urban land- use (Figure 1). When an SDM using those oc-
currence data incorporate a land- use variable from the year 2000, 
occurrence– habitat mismatching occurs, as occurrences are mis-
matched with the unsuitable urban land- use class (Milanesi et al., 
2020; Pang et al., 2021; Ryo et al., 2019). Thus, the resultant model 
may wrongly infer urban land- use as suitable and underestimate the 
true impact of deforestation on the species’ range. This situation 
arises because of the lack of temporal range and resolution for many 
anthropogenic variables, and conventional use of static predictors 
in most SDM studies; hence, contemporary anthropogenic variables 
are often utilized in SDM studies despite possible mismatching with 
historical occurrences (Garcia et al., 2013; Marshall et al., 2018; 
Seaborn et al., 2021). Although modelling without anthropogenic 
variables avoids potential mismatching, where range contractions 

Main conclusions: We showed how these data misrepresentations can degrade model 
performance, undermining their use for empirical research and conservation science. 
Given the ubiquity of ARCs, these data misrepresentations are likely inherent to most 
datasets. Therefore, we present a three- step strategy for handling data misrepre-
sentations: maximize the temporal range of anthropogenic predictors, exclude mis-
matched occurrences and test for residual data misrepresentations.

K E Y W O R D S
data quality, ecological niche model, habitat loss, land cover change, model performance, niche 
reduction, species distribution model, temporal misalignment, temporal sampling bias

F I G U R E  1  Concept chart illustrating the processes through which differential sampling across time, relative to when anthropogenic range 
contraction had occurred, can lead to occurrence– habitat mismatching or niche truncation within an occurrence dataset
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can be accounted for post- hoc (see Gomes et al., 2019; Manchego 
et al., 2017; Newbold, 2018), excluding anthropogenic variables fa-
cilitates niche truncation when occurrences are sampled after an 
ARC.

Consider alternatively, the same species and deforestation sce-
nario, but wherein occurrences were sampled in 1990, that is, after 
land- use conversions (Figure 1). Those occurrences would represent 
only a subset of the species’ historical range, and by extension, a 
subset of the species’ historically realized niche (Colwell & Rangel, 
2009; Hutchinson, 1957; Scheele et al., 2017). When an SDM using 
those occurrence data lack a land- use variable, niche truncation oc-
curs, because absences due to urban land- use are being erroneously 
attributed to the available environmental variables (Barve et al., 
2011; Owens et al., 2013). This truncated estimate of the niche may 
undermine model transferability, leading to inaccurate predictions 
of species distribution across space (e.g. invasive potential) and 
time (e.g. climate change) (Guisan et al., 2014; Peterson et al., 2018). 
Occurrence– habitat mismatching and niche truncation are thus con-
ceptually related outcomes of ARCs but arise out of opposing tem-
poral biases and modelling protocols.

Despite extensive research into misrepresentations of suit-
able habitats due to a suite of factors (Chen et al., 2012; Guélat 
& Kéry, 2018; Guillera- Arroita, 2017; Soley- Guardia et al., 2016), 
occurrence– habitat mismatching due to temporal biases remains 
poorly explored, especially within the increasingly pervasive context 
of ARCs (Boakes et al., 2010; Milanesi et al., 2020; Ryo et al., 2019). 
In comparison, multiple real species studies have found evidence 
for niche truncation due specifically to ARCs (Faurby & Araújo, 
2018; Gibson et al., 2019; Martínez- Freiría et al., 2016; Rutrough 
et al., 2019). However, utilizing real species hinders assessments 
of model performance because knowledge on historical distribu-
tions and the full extent of ARCs are incomplete. Indeed, neither 
data misrepresentation can be accurately quantified for real species 
datasets, making it difficult to disentangle their effects on SDMs. 
Furthermore, because previous studies had investigated either data 
misrepresentation in isolation, possible interactions between them 
have gone unstudied. Specifically, although studies have shown 
that incorporating an anthropogenic variable allows SDMs to ac-
count for niche truncation (Gibson et al., 2019; Nüchel et al., 2018; 
Requena- Mullor et al., 2019; Silva et al., 2012), occurrence– habitat 
mismatching may undermine the effectiveness of such an approach. 
Developing effective solutions for overcoming these data misrepre-
sentations requires a thorough understanding of their independent 
and interactive effects on SDM performance (Araújo et al., 2019); in 
other words, evaluating these data misrepresentations in tandem.

In this study, we explore how data misrepresentations may arise 
from interactions between ARCs and temporal sampling bias and 
evaluate them simultaneously to isolate their independent and in-
teractive effects on SDM performance. We overcome limitations 
associated with incomplete knowledge on historical distributions 
and extent of ARC by adopting a virtual ecologist approach (Austin 
et al., 2006; Meynard et al., 2019; Zurell et al., 2010). Using 100 vir-
tual species, we simulated ARCs with real anthropogenic land- use 

data, and generated occurrence datasets with temporal biases based 
on real- world trends. First, we quantify and characterize these data 
misrepresentations as a function of both ARC and the temporal bias. 
Second, we model datasets with and without a contemporary an-
thropogenic variable and with a temporally dynamic anthropogenic 
variable, before comparing model predictions against the true his-
torical and contemporary distributions of our virtual species. Based 
on the findings, we then propose strategies to tackle these data mis-
representations and improve model reliability.

2  |  METHODS

The study encompasses Southeast Asia west of Wallace's Line for 
the period 1900– 2000. The workflow was divided into six phases: 
(1) create virtual species; (2) simulate ARCs; (3) generate temporally 
explicit occurrence datasets; (4) model virtual species distributions; 
(5) evaluate model performance and (6) quantify data misrepresenta-
tions and their effects on model performance (Figure 2) (for detailed 
workflow, see Supporting Information Figure S1.1).

2.1  |  Create virtual species

The virtual ecologist approach works by simulating species distri-
butions and observer models to generate virtual occurrence data 
(Zurell et al., 2010). The virtual occurrence data can be modelled and 
evaluated against the ‘true’ distribution, thus supporting an assess-
ment of factors contributing to data quality, and a quantification of 
SDM performance (Austin et al., 2006; Meynard et al., 2019). The 
true distribution of virtual species, henceforth referred to as species 
unless otherwise specified, was based on environmental suitability 
and fractional cover of anthropogenic land- use. Environmental suit-
ability was determined by the species’ environmental niche, which 
was created from 15 bioclimatic (5 arc min resolution) and nine 
soil variables (250 m resolution) sourced from WorldClim.org and 
SoilGrid.org respectively (Fick & Hijmans, 2017; Hengl et al., 2017) 
(Table S1.2). These variables were first resampled (bilinear) to 5 arc 
min resolution before a principal component analysis was conducted, 
where the first five PC- axes (~85% variance) were retained (Table 
S1.3). Retained PC- axes were then used to randomly create envi-
ronmental niches through the ‘generateRandomSp’ function from 
the ‘virtualspecies’ package in R, which produced continuous esti-
mates of environmental suitability in geographical space based on 
realistically viable responses (for details see Leroy et al., 2016). One 
hundred environmental niches and their corresponding estimates 
of environmental suitability were generated, which were allowed a 
maximum pairwise Pearson’s correlation coefficient of .85 to pre-
vent duplicate results. Although distributional shifts due to intra- /
inter- annual climate variability may also result in misrepresentation 
of suitable habitats (Milanesi et al., 2020), we kept environmental 
variables static across the entire study period as this study focused 
on distributional changes caused by anthropogenic pressures.
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2.2  |  Simulate anthropogenic range contractions

Annual land- use maps (0.25° resolution rasters) from 1900 to 2000 
were obtained from the Land Use Harmonization dataset (LUH2 
v2h; <https://luh.umd.edu/data.shtml>), which indicated fractional 
cover for several classes (Hurtt et al., 2020). We generated an an-
thropogenic land- use class by summing urban, rangelands, managed 
pastures, C3 and C4 annual crops, C3 and C4 perennial crops, and C3 
nitrogen- fixing crops land- use classes for each year. The maps were 
resampled (bilinear) to 5 arc min resolution to match environmental 
variables. Fractional cover of anthropogenic land- use was the only 
land- use class considered for this study, which was simulated to neg-
atively affect habitat suitability. The negative effect was defined by a 
negative logistic regression that interacted with environmental suit-
ability on a multiplicative scale, which replicated the contagion- like 

spread of extinction forces observed to induce ARCs (Figure S1.4) 
(Channell & Lomolino, 2000). This produced the final, annual, true 
distribution maps of continuous habitat suitability for the 100 spe-
cies, based on their environmental niche and the fractional cover of 
anthropogenic land- use. The continuous true distribution maps of 
habitat suitability for each species were then converted to binary 
presence– absence distributions using species- specific thresholds of 
habitat suitability. Using the ‘convertToPA’ function from the ‘vir-
tualspecies’ package in R (Leroy et al., 2016; R Core Team, 2013), 
thresholds were determined by fixing the initial prevalence (year 
1900) of species at 0.25. Additionally, four other prevalence values 
were used to test for sensitivity (Figure S2.3– S2.6).

Anthropogenic range contraction (proportion of initial range 
lost) for a species was calculated as the proportion of ‘presence’ pix-
els that changed to ‘absence’ from 1900 to 2000, due to an increase 

F I G U R E  2  Methods flowchart for this study indicating the six phases of this study: 1) create virtual species; 2) simulate anthropogenic 
range contractions; 3) generate temporally explicit occurrence datasets; 4) model virtual species distributions; 5) evaluate model 
performance and 6) quantify data misrepresentations and their effects on model performance. A more detailed version can be found in 
Figure S2.1
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in fractional cover of anthropogenic land- use. We utilized the ‘raster’ 
package in R for the resampling of variables and the summation of 
the different land- use classes (Hijmans & Etten, 2012; R Core Team, 
2013).

2.3  |  Generate temporally explicit 
occurrence datasets

We simulated six temporal sampling patterns— two temporal sam-
pling distributions and three temporal sampling biases— based on 
generalizations of real species occurrence datasets (Figure 3; Figures 
S1.5 and S1.6) (GBIF.org, 2020). This ensured realistically possible 
data misrepresentations within each generated occurrence data-
set. Temporal sampling distributions were either clustered (sampled 
over a short period) or spread (sampled more evenly across time). 
Temporal sampling biases were either past (majority sampled near 
the start of the study period), recent (near the end), or intermedi-
ate (neither near the start nor end). Two extreme sampling patterns 
were also included to act as both positive and negative controls: 
only start (all occurrences sampled in 1900) served as the positive 
control for occurrence– habitat mismatching and the negative con-
trol for niche truncation; and vice versa for only end (all occurrences 
sampled in 2000). Positive controls should maximize their respective 
data misrepresentations.

To generate temporally explicit species occurrence datasets 
(i.e. presence- only), 2000 points were randomly sampled across 
the study region. For each point, the probability of sampling from a 

particular year was based on the simulated sampling frequencies of 
a temporal sampling pattern (Figure 3). This was repeated for each 
temporal sampling pattern (including controls), which generated 
eight temporally unique datasets. Lastly, the occurrence probabil-
ity for each sampling point was derived from the suitability of the 
habitat (both environment and land- use) and the binary range of the 
species for that year; occurrence probability outside the range was 
always zero. As replicates, this entire process was repeated 10 times. 
In total, 8000 occurrence datasets were generated (8 temporal sam-
pling patterns × 100 species × 10 replicates).

2.4  |  Model virtual species distributions

Species distributions models were developed for each occurrence 
dataset using the MaxEnt algorithm with its default settings (Phillips 
et al., 2006). The SDMs included the same environmental variables 
used to generate species as predictors (first five PC- axes), with 
10,000 randomly sampled background points (Chefaoui & Lobo, 
2008; VanDerWal et al., 2009). Models were trained under three 
protocols: without a land- use predictor, with a contemporary land- 
use predictor, and with a temporally dynamic land- use predictor. 
Land- use predictors here were the same fractional cover of anthro-
pogenic land- use used to simulate ARC. Models using a contem-
porary land- use predictor had occurrence and background points 
associated with land- use values from the year 2000, whereas mod-
els using a temporally dynamic land- use predictor had occurrence 
and background points associated with land- use values from the 

F I G U R E  3  The six temporal sampling patterns (and median sampling year) visualized using sampling frequency (relative to the total 
number of occurrences for that species’ dataset); simulated sampling frequencies in red and observed sampling frequencies for an example 
species in black. Patterns followed either a clustered or spread distribution (rows) and either a past, intermediate, or recent bias (columns). The 
simulated sampling frequencies for the six temporal sampling patterns were used to determine the probability of sampling from a specific 
year. Sampling frequency/probability for the controls (not shown) was 1 for their respective year
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year of their collection (background points were temporally sampled 
to match the temporal sampling pattern of the occurrence dataset). 
For models trained with a land- use predictor, the land- use variable 
for the year 2000 was used to predict contemporary distributions 
and for the year 1900 to predict historical distributions. To delineate 
species’ ranges, the probability distributions were converted to bi-
nary presence– absence using the maximizing sum of sensitivity and 
specificity threshold (Liu et al., 2005). All models were built with the 
‘sdmtune’ package using the ‘maxnet’ function in R (Phillips et al., 
2017; Vignali et al., 2019).

2.5  |  Evaluate model performance

To evaluate model performance, resultant probability and binary 
distribution maps were compared against the true contemporary 
(year 2000) and historical (year 1900) distributions. Because models 
without a land- use predictor produced only one output, the same 
modelled distribution was compared against the true contempo-
rary and historical distributions. For probability distributions, area 
under the curve (AUC) was used to evaluate discriminatory accu-
racy (Fielding & Bell, 1997), and Pearson correlation for functional 
accuracy (Warren et al., 2020) (Table 1). Functional accuracy refers 
to a model's ability to predict relative suitability values correctly, 
which relates to the reliability of biological inferences made based 
on those values (Warren et al., 2020). To identify the specific bi-
nary errors in model predictions, underprediction rates (i.e. omission 
rate or false negative rate) and overprediction rates (i.e. commission 
rate or false positive rate) were calculated (Leroy et al., 2018). While 
the underprediction rate measures the proportion of true presence 
falsely predicted by the model, the overprediction rate measures 
the proportion of predicted presence falsely predicted by the model 
(Table 1). For comparison, we also calculated two other common 
performance metrics, true skill statistic (TSS) and Cohen’s kappa 
(Allouche et al., 2006) (Figure S2.4– S2.6).

2.6  |  Quantify data misrepresentations and their 
effects on model performance

We used two indices to quantify occurrence– habitat mismatching 
and niche truncation within each occurrence dataset: mean differ-
ence in habitat suitability and niche dissimilarity respectively. For 
each occurrence point, a mismatch between the occurrence and as-
sociated habitat was calculated by subtracting the true suitability 
of the habitat for the year 2000 from its true suitability at the time 
of sampling, that is, the difference in habitat suitability. Difference 
values were then averaged across points to quantify occurrence– 
habitat mismatching within a dataset.

Niche dissimilarity was calculated as 1 –  I, where I is the overlap 
between niches represented by the true historical distribution (year 
1900) and occurrence dataset for each species (Warren et al., 2008). 
The niches were derived from environmental variables only (five 

PC- axes), using the ‘nicheOverlap’ function from the ‘dismo’ package 
in R (Hijmans et al., 2017; R Core Team, 2013). The niche dissimilar-
ity score from the 10 negative controls for each species served as a 
baseline value for species- specific correction (Figure S1.7). Because 
of this correction, negative values resulted, which indicates that the 
calculated niche truncation was less than the established baseline.

The two indices, mean difference in habitat suitability and niche 
dissimilarity (hereafter simply occurrence– habitat mismatching and 
niche truncation), were plotted against ARC (proportion of range 
lost) for each temporal sampling pattern. Generalized linear models 
(GLMs) were used to assess the effects of data misrepresentations 
on the performance of SDMs under the three modelling protocols. 
GLMs were built separately to evaluate model predictions of con-
temporary and historical distributions, for each model evaluation 
metric. The GLMs were built in R using the ‘stats’ package (R Core 
Team, 2013).

3  |  RESULTS

3.1  |  The manifestation of occurrence– habitat 
mismatching and niche truncation

Our results showed that the proportion of range lost during ARC 
was positively correlated to both data misrepresentations (Figure 4). 
This was clearest for the positive controls, which maximized their 
respective misrepresentations and had regression lines against ARC 
with the highest slope and R2 values (slope = 0.352, R2 = .73 for 
occurrence– habitat mismatching; slope = 0.232, R2 = .44 for niche 
truncation). Regression slopes, however, varied among temporal 
sampling biases: datasets with a past bias exhibited a higher slope 
for occurrence– habitat mismatching but a lower slope for niche 
truncation and vice versa for datasets with a recent bias (Figure 4). 
This demonstrates ARC as the primary driver of both data misrepre-
sentations, while the temporal sampling bias determined the specific 
data misrepresentation that manifests. We also observed a signifi-
cant negative partial correlation between data misrepresentations 
when controlling for ARC (n = 8000, r = −.63, p < 0.001), indicating a 
negative relationship between them. For clarity and simplicity, clus-
tered and spread temporal sampling distributions were aggregated 
since trends between them were similar (for disaggregated results, 
see Figure S2.1).

3.2  |  Relationship between model 
performance and data misrepresentations

The effects of occurrence– habitat mismatching and niche trunca-
tion on model performance depended on the prediction scenario— 
that is, historical or contemporary distributions— and the modelling 
protocol. For predictions of historical distributions (Figure 5a), mod-
els without the land- use predictor were negatively affected by niche 
truncation. As niche truncation increased, predictions of models 
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without the land- use predictor were less correlated with historical 
distributions and more severely underpredicted them. Models with 
either land- use predictor, however, were relatively unaffected by in-
creases in either data misrepresentation; model correlation scores 
remained high while under-  and overprediction rates remained low. 
Notably, for models with the contemporary land- use predictor, this 
meant niche truncation was accounted for despite occurrence– 
habitat mismatching and its effects. The spatially explicit example 
also confirmed these results. When niche truncation was high, un-
derpredictions of the historical distribution only occurred for the 
model without the land- use predictor (Figure 6a). Although statisti-
cally significant, interaction between data misrepresentations were 
minor (for GLM coefficient estimates, see Figure S2.2).

On the other hand, for predictions of contemporary distribu-
tions (Figure 5b), reductions in model performance were observed 
primarily for models with and without the contemporary land- use 
predictor. For models without the land- use predictor, both data mis-
representations had a strong negative effect on model performance, 
whose increases resulted in predictions that were less correlated 
with contemporary distributions and more severely overpredicted 
them. This was because those models lacked the necessary predictor 
required to predict ARCs. For models with the contemporary land- 
use predictor, occurrence– habitat mismatching had strong negative 
and independent effects on model performance (lower correlation 
and higher overprediction). Niche truncation had no independent 
effects but interacted with occurrence– habitat mismatching to neg-
atively affect model performance. However, this negative effect, like 
models without the land- use predictor, was due to model inability 
to predict ARCs. Specifically, as occurrence– habitat mismatching 
increased, model performance became increasingly similar to those 
observed for models without the land- use predictor, suggesting a 
convergence in model predictions. The spatially explicit example 
confirmed this convergence between models with and without the 

contemporary land- use predictor, showing near- identical range esti-
mates of contemporary distribution when occurrence– habitat mis-
matching was high (Figure 6b). Additionally, in response to a linear 
increase in occurrence– habitat mismatching, an exponential reduc-
tion in the variable importance of the contemporary land- use pre-
dictor was observed (Figure S2.7). While the exponential reduction 
in variable importance suggests model sensitivity to mismatching, 
the near zero variable importance implies an uninformative contem-
porary anthropogenic predictor.

Although occurrence– habitat mismatching was also found to 
negatively affect models with the temporally dynamic land- use pre-
dictor, the effects were substantially reduced under even minor in-
creases in niche truncation (Figure 5b). This indicates that models 
with the temporally dynamic land- use variable generally performed 
well, except for predictions of contemporary distributions based 
on datasets almost entirely dominated by occurrence– habitat mis-
matching. This is because such datasets would not have captured 
any of the effects of ARC on species occurrences. Nevertheless, 
models with the temporally dynamic anthropogenic predictor typ-
ically outperformed the other two models, regardless of the predic-
tion scenario or data misrepresentations present (Figures 5b and 6b).

3.3  |  The insensitive AUC metric

Despite comparatively larger decreases in correlation scores and 
increases in either under-  or overpredictions, the AUC metric dis-
played only minor reductions in model performance when either 
data misrepresentation increased (Figure 5a,b). This occurred 
across predictions of historical and contemporary distributions, 
and modelling protocols of land- use variables. Furthermore, this 
trend persisted for binary ranges based on other prevalence values 
(AUC > 0.80; Figure S2.4– S2.6) and model fit (i.e. AUC calculated 

TA B L E  1  A summary table of the different evaluation metrics considered. For the evaluation of binary predictions: True Positives (TP) 
is the number of correctly predicted presence, False Positives (FP) is the number of falsely predicted presence, False Negatives (FN) is the 
number of falsely predicted absence and True Negatives (TN) is the number of correctly predicted absence; where (TP + FN) equals the true 
presence, (TP + FP) equals the predicted presence, and (TP + FP + FN + TN) equals the total number of sites (n)

Evaluates Metric Acronym Definition/Formula

Probabilistic Accuracy Area under the curve AUC Plot sensitivity against specificity –  1 and calculate 
the area under the curve

Functional accuracy Pearson FAP Correlation between the true and modelled 
probability distributions, measures the 
accuracy of relative habitat suitability

Binary Error Rates Underprediction rates UR Proportion of true presence falsely predicted by 
the model; FN

TP+ FN

Overprediction rates OR Proportion of predicted presence falsely predicted 
by the model; FP

TP+ FP

Binary Accuracy True Skill Statistic TSS Sum of model sensitivity and specificity;
TP

TP+ FN
+

TN

FP+ TN
− 1

Cohen's kappa KAPPA Overall accuracy corrected against the expected 
accuracy; 

(

TP + TN

n

)

−
(TP + FP)(TP + FN) + (FN + TN)(FP + TN)

n2

(TP + FP)(TP + FN) + (FN + TN)(FP + TN)

n2
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using the training data) (AUC > 0.74; Figure S2.8). This indicates that 
the AUC metric was relatively insensitive to model degradations due 
to occurrence– habitat mismatching and niche truncation. We did 
not find TSS nor KAPPA to be as insensitive to model degradations; 
TSS was insensitive to model overpredictions only (i.e. contempo-
rary predictions), whereas reductions in KAPPA reflected decreases 
in correlation scores and increases in either under-  or overpredic-
tions (Figure S2.4– S2.6).

4  |  DISCUSSION

Understanding the processes leading up to data misrepresenta-
tions and their subsequent effects on SDM performance is es-
sential for developing good modelling practices (Fourcade et al., 

2018; Guillera- Arroita, 2017; Peterson et al., 2018; Yates et al., 
2018). Yet, our understanding of occurrence– habitat mismatch-
ing and niche truncation, which arise out of interactions be-
tween ARCs and temporally biased data, remains incomplete. 
Importantly, their interactive effect on model performance is un-
known. A complete understanding of these data misrepresenta-
tions is especially pertinent considering the extent and prevalence 
of ARCs and the unavoidability of temporally biased data (Boakes 
et al., 2010; Maxwell et al., 2016; Newbold et al., 2015). Through 
the virtual ecologist approach, we demonstrated how ARCs and 
temporal sampling biases can result in occurrence– habitat mis-
matching and niche truncation, and significantly impact model 
performance.

4.1  |  Independent and (lack of) interactive effects 
on model performance

Using GLMs to evaluate the independent and interactive effect of 
data misrepresentations on model performance, two major find-
ings emerged. First, occurrence– habitat mismatching impeded the 
modelling of species responses to the anthropogenic variable; that 
is, predicting anthropogenic- related absences. Owing to mismatch-
ing, models that included a contemporary anthropogenic variable 
overpredicted contemporary distributions in human modified land-
scapes, in a manner that was nearly identical to models without the 
anthropogenic variable. The anthropogenic variable was thus un-
informative under circumstances of occurrence– habitat mismatch-
ing, specifically for predicting anthropogenic- related absences. In 
previous research, misrepresentations of environmentally suitable 
habitats due to vagrant individuals, imperfect detection, spatial bi-
ases or temporal biases, resulted in erroneous point– predictor as-
sociations (Chen et al., 2012; Guélat & Kéry, 2018; Guillera- Arroita, 
2017; Milanesi et al., 2020; Soley- Guardia et al., 2016). Although 
erroneous associations can skew variable importance, they seldom 
consistently and entirely reduce the informative capacity of the vari-
able with which mismatching occurs (Harisena et al., 2021; Smith 
& Santos, 2020). With the present study, however, mismatching 
related specifically to the anthropogenic variable; as a result, no 
erroneous associations with environmental variables arose since 
mismatched occurrences remained accurate representations of 
environmental suitability. Rather, occurrence– habitat mismatching 
only confounded anthropogenic- related absences, thereby reducing 
the informative capacity of the anthropogenic variable that served 
strictly to predict those absences (Channell & Lomolino, 2000; 
Requena- Mullor et al., 2019). Second, in agreement with past stud-
ies, we found incorporating a contemporary anthropogenic variable 
to account for niche truncation (Gibson et al., 2019; Nüchel et al., 
2018; Requena- Mullor et al., 2019; Silva et al., 2012); in addition, 
however, this also held true for models affected by occurrence– 
habitat mismatching.

Taken together, these findings suggest the use of the anthro-
pogenic variable to predict anthropogenic- related absences and 

F I G U R E  4  Linear regressions between anthropogenic range 
contractions and the two data misrepresentations, occurrence– 
habitat mismatching and niche truncation. Regression lines 
were disaggregated for each temporal sampling bias: past (blue), 
intermediate (yellow) and recent (red). Positive controls represent 
the theoretical maximum of each data misrepresentation (black 
dash): all occurrences sampled from the year 1900 (only start) for 
occurrence– habitat mismatching; and all occurrences sampled 
from the year 2000 (only end) for niche truncation. Anthropogenic 
range contraction was calculated as the proportion of the initial 
range (year 1900) lost by the end of the study period (year 2000). 
Note, niche truncation values here were after species- specific 
corrections, where a negative value indicates that the truncation 
was less than the established baseline

y = − 0.00961 + 0.352 x, R2 = 0.73
y = − 0.0106 + 0.295 x, R2 = 0.65
y = − 0.0037 + 0.161 x, R2 = 0.42
y = − 0.00137 + 0.0763 x, R2 = 0.15

y = − 0.0113 + 0.231 x, R2 = 0.44
y = − 0.000997 + 0.0276 x, R2 = 0.048
y = − 0.00207 + 0.0861 x, R2 = 0.17
y = − 0.00582 + 0.153 x, R2 = 0.27
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to account for niche truncation as independent processes; mis-
matching hinders the former but not the latter. This independence 
probably stems from the fact that range contractions due to an-
thropogenic pressures are spatially heterogenous and can spread 
independently of environmental suitability and demographic pro-
cesses (Channell & Lomolino, 2000; Scheele et al., 2017). As such, 
within the SDM itself, a species’ response to the anthropogenic 
variable is modelled independently of the species’ niche (Colwell 
& Rangel, 2009; Hutchinson, 1957; Scheele et al., 2017). Likewise, 
when modelling the niche, accounting for niche truncation through 
the anthropogenic variable is not based on the modelled response 
to that same variable.

4.2  |  Implications for modelling ARC- 
affected species

The effects of occurrence– habitat mismatching have important 
methodological implications for modelling distributions shaped by 
anthropogenic pressures. In terms of modelling protocols, simply 
incorporating a contemporary anthropogenic variable into an SDM 
does not assure accurate predictions of distributions after ARC, 
regardless of the accuracy or precision of the anthropogenic vari-
able, or its representativeness of the factors driving ARC. Should 
occurrence– habitat mismatching occur, models that incorporate a 
contemporary anthropogenic variable would severely underestimate 

F I G U R E  5  The plotted and modelled effects of occurrence– habitat mismatching and niche truncation on the performance of SDMs 
under different modelling protocols, for predictions of (a) historical and (b) contemporary distributions. Points represent the observed 
performance of SDMs, and regression lines indicate the estimated performance. Model performance was indicated by the y- axis, niche 
truncation by the x- axis, and occurrence– habitat mismatching by the spectral colours— specifically, 0.0 (blue), 0.1 (yellowish green) and 0.2 
(orange) for the regression lines. Plots were faceted for each modelling protocol (horizontal facet) and metric of model performance (vertical 
facet). The metrics of model performance were for probabilistic performance (AUC and Pearson Correlation; higher is better) and binary 
error rates (Underprediction rates and Overprediction rates; lower is better). Note, niche truncation values here were after species- specific 
corrections, where a negative value indicates that the truncation was less than the established baseline
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the impact of human activity on species distributions. This could 
lead to overly optimistic range estimates that obscure the true threat 
statuses of species (Pang et al., 2021; Requena- Mullor et al., 2019; 
Titeux et al., 2016). The biased assessment of species vulnerabilities 
may then divert conservation efforts and funds away from species 
that need it (Fuller et al., 2010). Using resultant model outputs to in-
form systematic conservation planning can also skew habitat prior-
itizations and undermine the effective demarcation or expansion of 
protected areas, or worse, result in the allocation of resources into 
protecting already degraded habitats (Guisan et al., 2013; McShea, 
2014; Struebig et al., 2015). Our result also suggests that models 
were sensitive to occurrence– habitat mismatching, where relatively 
minor mismatching could engender the problems described.

A key step towards ensuring model reliability is the detection 
of models affected by data misrepresentations (Araújo et al., 2019). 
Models affected by occurrence– habitat mismatching, however, will 
be challenging to detect. Without quality absence data, overpredic-
tions are notoriously difficult to verify (Leroy et al., 2018; Warren 
et al., 2019). This detection difficulty is exacerbated by the unin-
formative outcome of the anthropogenic variable, in that multiple 
factors other than mismatching may lower variable importance as 

well; whereas an erroneous response may be intuitively recognized 
(Gibson et al., 2019; Guevara et al., 2018; Soley- Guardia et al., 2016). 
It is also possible to misinterpret the uninformative anthropogenic 
variable as a legitimate response, resulting in false inference of 
species resilience. On a related note, the supposed uninformative 
contemporary anthropogenic variable is somewhat misleading since 
it could remain important for extrapolating truncated niches. This 
highlights a need to reconsider how we understand and evaluate 
variable importance within dynamic landscapes, especially for vari-
ables with atypical responses (i.e. constrain- only) (Fourcade et al., 
2018; Harisena et al., 2021; Smith & Santos, 2020).

Our findings reveal the viability and robustness of incorporat-
ing contemporary anthropogenic variables as a solution to niche 
truncation arising from ARC. The importance of this is twofold. 
First, data and technological constraints often restrict anthropo-
genic variables to relatively contemporary timescales, datasets 
with large temporal ranges generally lack spatial resolution (e.g. 
the LUH dataset used in this study; Hurtt et al., 2020) or coverage 
(e.g. SERVIR- Mekong Land Cover; Saah et al., 2020). Thus, con-
temporary anthropogenic variables are often all that is available. 
Second, although the alternative— incorporating historical data to 

F I G U R E  6  The spatially explicit binary accuracy of SDMs for predictions of an example species (a) historical and (b) contemporary 
distribution. Binary accuracy maps were faceted for each modelling protocol (horizontal facet) and for two different datasets (vertical facet). 
While one dataset exhibited high occurrence– habitat mismatching (0.25) but low niche truncation (0.02) (i.e. sampled following a clustered 
past temporal sampling pattern), the other exhibited high niche truncation (0.20) but low occurrence– habitat mismatching (0.00) (i.e. 
sampled following a clustered recent temporal sampling pattern). In this example, the selected species experienced a 62.5% contraction of its 
historical range (virtual species N27, see Supporting Information). For illustration purpose, only mainland Southeast Asia was shown as the 
main distribution of the selected species occurred there
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reduce niche truncation— was done in past studies, those same 
studies recognized the limitation of such an approach; a complete 
niche cannot be guaranteed unless data from times predating early 
human civilization is obtained (Faurby & Araújo, 2018; Martínez- 
Freiría et al., 2016; Rutrough et al., 2019). Additionally, given the 
paucity and imprecisions of available occurrence records (Chen 
et al., 2012; Feeley & Silman, 2011; Ficetola et al., 2015; Goodwin 
et al., 2015; Meyer et al., 2016), obtaining sufficient decades- old 
yet accurate data to substantially reduce niche truncation is an 
improbable luxury for most species. Incorporating contemporary 
anthropogenic variables is therefore the most feasible approach to 
overcome niche truncation.

Our observed underpredictions of historical distributions due 
to niche truncations emphasize the wide- ranging implications of 
leaving truncations unaccounted. When predicting potentially suit-
able habitats based on truncated niches: reforestation or rewilding 
projects will struggle to identify suitable habitats lost due to anthro-
pogenic pressures (Guisan et al., 2013; Jarvie & Svenning, 2018); in-
vasive species models may fail to map potential dispersal corridors 
or areas of invasion (Barbet- Massin et al., 2018; Liu et al., 2020); and 
model forecasts under climate change would exaggerate rates of 
range shift or loss (Faurby & Araújo, 2018; Martínez- Freiría et al., 
2016). We also found niche truncation to degrade the accuracy of 
continuous estimates of relative suitability. This implies erroneous 
response curves and skewed estimates of variable importance, mak-
ing SDMs affected by niche truncation inappropriate for empirical 
applications in general (Guevara et al., 2018; Harisena et al., 2021; 
Smith & Santos, 2020; Warren et al., 2019). Furthermore, although 
several studies for or against niche conservatism have accounted 
for geographical niche truncations, few have accounted for trun-
cations due to anthropogenic factors (Atwater et al., 2018; Guisan 
et al., 2014; Petitpierre et al., 2012; Zhu et al., 2017). In other words, 
previously observed deviations from niche conservatism may be 
an artefact of unresolved anthropogenic niche truncation instead. 
These examples show that anthropogenic niche truncation can lead 
to artefacts in SDM predictions, even in applications not focused on 
anthropogenic impacts.

4.3  |  A recommended strategy for handling data 
misrepresentations

Based on our findings, we propose a general strategy for model-
ling species affected by ARC. The three- step strategy of Maximize, 
Exclude and Test (MET) (Figure 7).

Maximize the temporal range of anthropogenic variables with-
out over- sacrificing spatial resolution and relevance to ARCs, 
among others. Practitioners will have options for representing the 
anthropogenic pressures that drive range contractions. Although 
our results support selecting anthropogenic variables that can 
maximize the temporal range of temporally dynamic models, we 
cannot neglect other variable qualities. High spatial resolution 

may be prioritized over temporal range for regional/local SDMs, 
or species responses better explained by fine- scale variables 
(Mangiacotti et al., 2013; Marshall et al., 2021). Alternatively, 
for ARCs due to other factors such as poaching, human- density 
estimates— regardless of its temporal range— may be more appro-
priate as a predictor than land- use/land- cover (Gibson et al., 2019). 
Therefore, it is important to select anthropogenic variables with 
large temporal ranges, while maintaining spatial resolutions aligned 
with the study objective(s) and representations of anthropogenic 
pressures relevant to the target species. Fortunately, the trade- off 
between temporal range and spatial resolution is being gradually 
reduced as the quality of anthropogenic variables like land- use/
land- cover continue to improve (e.g. see Cao et al., 2021; Chen 
et al., 2020; Winkler et al., 2021).

Exclude mismatched occurrences when incorporating the se-
lected anthropogenic variable to account for niche truncation. We 
demonstrated a negative relationship between occurrence– habitat 
mismatching and niche truncation; meaning, although problematic 
occurrence data are often removed (Guélat & Kéry, 2018; Guillera- 
Arroita, 2017; Soley- Guardia et al., 2016), excluding mismatched 
occurrences will exacerbate niche truncation. However, we also 
found that when models incorporated an appropriate anthropogenic 
variable, niche truncations were rendered relatively inconsequen-
tial. Hence, the recommended step of reducing occurrence– habitat 
mismatching while relying on the selected anthropogenic variable to 
account for niche truncation. Studies can identify these mismatches 
via inferred/informed species– habitat relationships or their time of 
sampling (e.g. a forest- dependent bird occurrence matched against 
an urban land- use class or sampled before the earliest anthropo-
genic variable and/or any major ARC). However, in cases where mis-
matched occurrence cannot be removed (e.g. too few occurrences or 
difficult to verify), species responses to anthropogenic pressures can 
still be accounted for post- hoc (see Gomes et al., 2019; Manchego 
et al., 2017; Newbold, 2018).

Test for residual data misrepresentations by validating model 
hindcasts and measuring variability in anthropogenic variable im-
portance. Because of real- world data limitations, studies must verify 
the anthropogenic variable selected in step ‘Maximize’, and the ap-
proach used to exclude mismatched occurrences in step ‘Exclude’. 
Model hindcasts— or projections onto a manually calibrated null/
zero anthropogenic pressure predictor— can be validated using those 
previously excluded mismatched occurrences (Dobrowski et al., 
2011; Maiorano et al., 2013), where high omission rates (underpre-
diction rates) would indicate residual niche truncation unresolved 
by the anthropogenic variable (Boyce's index as a continuous alter-
native; Boyce et al., 2002; Hirzel et al., 2006). For species without 
mismatched occurrences, spatial and temporal cross- validations are 
a viable alternative (Roberts et al., 2017). Next, although difficult 
to detect models affected by occurrence– habitat mismatching, it is 
possible to flag likely candidates using cross- validation or resampling 
techniques (Nisbet et al., 2018; Roberts et al., 2017; Ryo et al., 2019). 
Model sensitivity to mismatching asserts that minor differences in 
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mismatching between partitions/resamples could result in highly 
varied anthropogenic variable importance. Large deviations in, or 
multiple outliers of, anthropogenic variable importance would there-
fore suggest residual occurrence– habitat mismatching. Ultimately, 
evidence of residual data misrepresentations should prompt revalu-
ations of steps ‘Maximize’ and ‘Exclude’, rejection of the model, or at 
least reporting and caveating model reliability.

4.4  |  Study limitations

Our study was limited to the presence- background machine learn-
ing algorithm MaxEnt (Phillips et al., 2006, 2017). Hence, data mis-
representations might affect other statistical models differently, 
particularly those using dissimilar input data, such as demographic 
or presence– absence distribution models (Holden et al., 2021; 

F I G U R E  7  Decision flowchart detailing the three- step strategy of Maximize, Exclude and Test (MET), with four possible modelling 
protocols (differentiated by their outlined colour). Blue has the highest reliability since the temporal range of the anthropogenic variable 
matches that of the occurrence data. Green has high reliability as a temporally dynamic SDM; although the loss of data may affect model 
estimates of environmental niches, the validation of model hindcasts tests for niche truncation. Orange depends on the process used to 
exclude potential mismatched occurrences, which may be more reliable for range contractions driven by spatially observable pressures (e.g. 
deforestation as opposed to poaching). Red has the lowest reliability, which essentially bets on the incorporated anthropogenic variable to 
account for anthropogenic niche truncation
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Norberg et al., 2019). However, statistical models using background 
or pseudo- absence points like MaxEnt can be expected to behave 
somewhat similarly but be more, or less, robust against data misrep-
resentations. Nevertheless, our limited testing of statistical models 
does not diminish the importance of recognizing occurrence– habitat 
mismatching and niche truncation and their implications for model 
performance.

Our findings may not apply to anthropogenic variables that in-
tegrate natural factors. For example, in representing deforestation, 
variables like canopy structure or vegetation indices. Since such 
variables may contain information relating to environmental suitabil-
ity, mismatching with those variables may result in outcomes that 
differ from those observed in our study (Burns et al., 2020; Gibson 
et al., 2019; Girma et al., 2016). Moreover, while the anthropogenic 
land- use variable in this study perfectly represented our simulated 
ARCs, real- world anthropogenic variables will almost certainly have 
lower accuracy and precision (Prestele et al., 2016; Verburg et al., 
2011), or exist at spatial scales too coarse to properly reflect species 
responses (Mangiacotti et al., 2013; Mertes & Jetz, 2018). Because 
of these real- world data constraints, incorporating a contemporary 
or temporally dynamic anthropogenic variable, in practice, may not 
result in model improvements comparable to those observed in our 
study.

5  |  FUTURE PERSPEC TIVES AND 
CONCLUSION

Our study reveals substantial challenges in modelling species dis-
tributions shaped by anthropogenic pressures. We showed how 
ARCs and temporally biased data can result in occurrence– habitat 
mismatching that impedes the predictions of anthropogenic- related 
absences, and niche truncations that lead to underestimations of 
environmentally suitable habitats. The effects of both data misrep-
resentations have important implications for SDM applications in 
various fields (Guisan et al., 2013; McShea, 2014; Peterson et al., 
2018; Yates et al., 2018). These data misrepresentations may be 
underappreciated in part because of the relative insensitivity of 
the popular metric, AUC, which could have obscured the impacts 
of these data misrepresentations in past studies. Our findings also 
reveal that variables can be important on different fronts, which 
current methods seldom consider when evaluating variable impor-
tance (Elith et al., 2011; Harisena et al., 2021; Smith & Santos, 2020). 
Besides cross- validations and resampling techniques to examine de-
viations in variable importance, studies should consider measuring 
changes in predictive outcomes outside the training data, as well as 
within.

More research is equally required for developing and test-
ing modelling protocols to overcome the challenges associated 
with modelling ARC- affected species. Our study highlighted the 
limitations of conventional modelling protocols; simply incorpo-
rating a contemporary anthropogenic variable or relying only on 

environmental variables. Although our study demonstrated the po-
tential of temporally dynamic SDMs (Milanesi et al., 2020), selecting 
appropriate variables is but one facet of developing good modelling 
practices (Araújo et al., 2019). Methods regarding the handling of 
presences and absences will be a logical next step, such as restrict-
ing background points to enable niche extrapolations without the 
anthropogenic variable (as hinted by in geographical niche trunca-
tion studies; see Barve et al., 2011; Owens et al., 2013; Saupe et al., 
2012). For that matter, our recommended strategy aims to guide 
rather than dictate exact modelling processes and could serve as 
a precedent for future innovations. Crucially, with how ubiquitous 
ARCs are (Maxwell et al., 2016; Newbold et al., 2015), these data 
misrepresentations are likely the rule rather than the exception. 
Therefore, future studies should recognize occurrence– habitat mis-
matching and niche truncation borne from ARCs as highly pervasive 
and relevant and consider our recommended strategy for resolving 
them as an integral process of modelling species distributions.
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