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Abstract 18 

Degradation of permafrost damages infrastructure and can jeopardize the sustainable 19 

development of polar and high-altitude regions. Warming and thawing of ice-rich 20 

permafrost is related to several natural hazards, which can pose a serious threat to the 21 

integrity of constructions and the economy. In this Review, we explore the extent and costs 22 

of observed and predicted infrastructure damages, and methods to mitigate adverse 23 

consequences of permafrost degradation. We also present the diversity of permafrost 24 

hazards and problems associated with construction and development in permafrost areas. 25 

Finally, we highlight seven topics to support sustainable infrastructure in the future. The 26 

observed damages are substantial and cumulative problems of infrastructure can be 27 

exacerbated owing to the increasing human activity in permafrost areas and climate change. 28 

It has been estimated that from one-third to more than half of critical circumpolar 29 

infrastructure could be at risk by mid-century. Permafrost degradation-related 30 

infrastructure costs could rise to tens of billion US dollars by the second half of the century. 31 

To successfully manage with climate change effects in permafrost areas a better 32 

understanding is needed about which constructions are likely to be affected by permafrost 33 

degradation. Especially, mitigation measures are needed to secure existing infrastructure 34 

and future development projects.  35 
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Key points 36 

 37 

• Operational infrastructure is critical for sustainable development of Arctic and high-38 

altitude communities, but the integrity of constructions is jeopardized by degrading 39 

permafrost. 40 

 41 

• The extent of observed damages is substantial (up to tens of percentages of infrastructure 42 

elements) and is likely to increase with climate warming. 43 

 44 

• From one-third to more than 50% of fundamental circumpolar infrastructure is at risk by 45 

mid-century. 46 

 47 

• Engineering solutions to mitigate the effects of degrading permafrost exist but their 48 

economic cost is high at regional scales. 49 

 50 

• There is a need to quantify the economic impacts of climate change on infrastructure and 51 

occurrence of permafrost-related infrastructure failure across the permafrost areas. 52 

 53 

• Future development projects should conduct local-scale infrastructure risk assessments 54 

and apply mitigation measures to avoid detrimental effects on constructions, socio-55 

economic activities, and ecosystems in permafrost areas under rapidly changing climatic 56 

conditions.  57 
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Introduction 58 

Polar and high-altitude regions have received increased attention in research, media and 59 

political discussion owing to the observed unprecedentedly rapid and substantial changes in 60 

the environment1,2. While there have been numerous reports on shrinking glaciers and 61 

ecosystems changes3,4, less attention has been devoted to permafrost degradation 62 

(warming and thawing of permafrost)5,6 and its implications7-12. As more than one-fifth of 63 

the Northern Hemisphere’s exposed land surface is classified as permafrost region13, the 64 

lack of documentation and guidance is clearly a shortage. 65 

 66 

In addition to the potential adverse effects on climate, ecosystems and earth surface 67 

processes, permafrost degradation will damage infrastructure, the backbone of human 68 

activities in remote regions2,14-16 (FIG. 1). Especially, degradation of ice-rich permafrost 69 

increases the risk of various gradual and abrupt natural hazards, which can impair roads, 70 

buildings, pipelines, airports and other types of infrastructure6,17-19. At least 120,000 71 

buildings, 40,000 km of roads and 9,500 km of pipelines were estimated to be located in 72 

permafrost areas of the Northern Hemisphere20. Negative effects of permafrost degradation 73 

on infrastructure are already evident6,21. In the near future, cumulative problems of 74 

infrastructure damage can be exacerbated, if recent projections of infrastructure risks are 75 

materialised20,22,23. Up to 70% of fundamental circumpolar infrastructure could be at risk by 76 

mid-century20. 77 

 78 

Beyond the permafrost research community, permafrost-infrastructure interaction has 79 

received relatively little consideration in focusing on the impacts of climate warming. This 80 
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lack of attention is a significant shortage as the Arctic and high-altitude regions are 81 

undergoing significant changes in community patterns and economic activities, creating 82 

challenges for decision-makers, planners, and engineers8,24. Despite a general desire to 83 

meet the climate targets of the Paris Agreement, the extraction of oil and other natural 84 

resources can, in addition to other human activities, increase in the permafrost regions8-10. 85 

Thus, operational infrastructure is critical to the development and economy of permafrost 86 

regions and the environment2,15,19,20,23,25,26. In response to the experienced and projected 87 

impacts, communities and decision makers are identifying opportunities for adaptation to 88 

manage the impacts of permafrost degradation on infrastructure27-30.  89 

 90 

In this Review, we provide a stand-alone forward-looking assessment focused first on the 91 

fundamental problems associated with construction in permafrost areas, second on 92 

permafrost degradation-related hazards affecting infrastructure, third on the extent and 93 

costs of observed and predicted infrastructure damages, and fourth on methods to mitigate 94 

adverse consequences of permafrost degradation. In the end, we highlight seven topics that 95 

should be considered to support operational infrastructure in permafrost areas in the 96 

future. Owing to the increasing economic and environmental relevance of the permafrost 97 

areas8,19,23,24,31, such a review is of a vital importance for sustainable development of Arctic 98 

and high-altitude cold regions. 99 

 100 

 101 

 102 

 103 

 104 
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Building on permafrost 105 

Infrastructure construction faces many challenging problems in permafrost areas27-29. As a 106 

special foundation soil beneath infrastructure in cold regions, the major difference between 107 

permafrost and non-permafrost is the presence of ground ice of variable types and 108 

thickness32. Variable ice content and thermal state makes permafrost sensitive to 109 

environmental factors, engineering activities and changing properties during the process of 110 

freezing and thawing33. Therefore, infrastructure stability must consider and predict the 111 

impact of climatic and environment factors and engineering activities on 112 

permafrost21,27,28,34. 113 

 114 

Permafrost soil exhibits vastly changeable properties of engineering from thawed to frozen 115 

state due to the phase change of water to ice, and vice versa32. Soils, especially fine-grained 116 

soils, can show heaving (from less than one cm to 40 cm/a) during the freezing process of 117 

the wet soils within the active layer32. Under the action of frost heaving, significant forces 118 

(up to 300 kPa) can be generated leading to infrastructure deformation and failure32,33. 119 

Conversely, frozen soil with high ice content will show significant strength and volume 120 

changes during the thawing process resulting in potential infrastructure deformation and 121 

damage33. In general, frozen soil has higher strength increasing with decreasing 122 

temperature due to the ice cement role within the frozen soils. But as the soil temperature 123 

increases the strength rapidly decreases35. As the soil temperature rises, the un-frozen 124 

water in the ice matrix can exhibit compression and increasing creep rate properties. When 125 

the soil temperature surpasses the freezing point, the bearing capacity is greatly reduced 126 
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due to increases in excess water and volume displacement, and the soil can no longer satisfy 127 

the engineering stability, leading to differential settlement and infrastructure failure36. 128 

  129 

Spatial distribution and thickness (up to 1500 m in Russia, 500 m in Canada and 700 m in 130 

Alaska) of permafrost varies substantially11,13,32. Additionally, permafrost temperatures 131 

(from 0 to about -20 °C) are variable due to climate and local factors such as topography, 132 

soil properties, vegetation, snow, and hydrology6,11,37. Local features are highly influential in 133 

discontinuous and sporadic permafrost areas, increasing the difficulty of site surveys and 134 

engineering solutions. Therefore, engineering geological conditions are required to be 135 

accurately explored and spatially predicted to guide engineering design and construction in 136 

permafrost areas, to include evaluation of thaw settlement and frost heaving potential as 137 

well as changing bearing capacity34,38. Generally additional cost is required for adequate 138 

survey in engineering geological conditions39. 139 

 140 

Infrastructure in permafrost areas with different types of foundations and architecture leads 141 

to highly variable thermal impacts, with potentially large differences for the effects on the 142 

underlying permafrost33,40. Deep foundations rely on adfreeze of ground ice and soil with a 143 

pile or pier, and rising ground ice temperature decreases the adfreeze bond, therefore 144 

design needs to account for permafrost conditions during entire life span of the structure 145 

based on heat source of infrastructure types. Consideration of change in adfreeze bond can 146 

alter the design principle of engineering and choice of expected engineering measures of 147 

preventing freezing-thawing damage. Structures with high loads can require slab-on-grade 148 

design, imparting high heat flux to the frozen ground, while lighter load structures can 149 
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utilize an elevated design to decouple the structure from the terrain and maintain the 150 

frozen condition21,34. 151 

 152 

While thermal disturbance caused by construction or operation of any particular structure 153 

can contribute to the degradation of the underlying permafrost, rapidly changing climatic 154 

conditions and associated permafrost warming and increase in active layer thickness may 155 

exacerbate the problem further leading to reduced strength of frozen soils41. Thus, climate 156 

warming must be properly accounted for during engineering design in permafrost areas42. 157 

However, choosing the right climatic input to estimate changes in permafrost geotechnical 158 

properties is not a trivial task as it requires understanding of biases and uncertainties in 159 

climate models9,10. While engineering design can account for the worst case projected 160 

climatic scenario (such as Representative Concentration Pathway (RCP) 8.5) such design is 161 

not always economically feasible as it requires additional capital expenditures. At the same 162 

time, downplaying role of climate change (for example use of RCP 2.6 or not accounting for 163 

climate warming) can translate to higher operational expenses during the lifespan of the 164 

structure. Meanwhile, protection of the environment also needs to be considered for 165 

engineering design and construction because permafrost degradation alters environmental 166 

conditions (for example hydrology)32. For some particularly sensitive areas, the additional 167 

cost of environmental protection can increase significantly in engineering construction of 168 

permafrost areas39. Moreover, climate warming increases the vulnerability of the 169 

infrastructure in permafrost areas to resist and/or adjust with the environment changes43. 170 

Thus, future infrastructure design and construction practices need to consider the issue of 171 

permafrost stability, have the ability to adjust to changing conditions but at the same time 172 

evaluate in the context of other factors such as increase in extreme events (such as 173 
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flooding) and slope instability44. Failure to account for other environmental variables can 174 

increase the susceptibility of infrastructure built on permafrost, and increase maintenance 175 

and replacement costs15,23. 176 

 177 

 178 

Permafrost degradation-related hazards 179 

Proactive planning in permafrost area requires knowledge of ground and climate 180 

conditions32,34. Moreover, it is important to consider permafrost degradation-related natural 181 

hazards (hereafter permafrost hazards) that can jeopardize the integrity of infrastructure 182 

under projected warmer and wetter climates11,45-48. Mutually related permafrost hazards 183 

include warming of permafrost, thickening of active layer, development of taliks (thawed 184 

layers), and thaw-related hazards (thermokarst, mass-wasting processes on slopes, and 185 

water-related thermal erosion) (FIG. 2).  186 

 187 

Warming of permafrost. It is evident that permafrost warming is a global phenomenon49,50. 188 

For example, ground temperatures have increased by 0.29 °C across the permafrost area 189 

between 2007 and 2016 (REF11). Increasing ground temperatures are likely to increase the 190 

unfrozen water content of the active layer and decrease the ice bonding (cohesion) of soil 191 

particles, resulting in a gradual loss of bearing strength33 (FIG. 2). Moreover, warming of 192 

near-surface ice-rich permafrost increases creep rates of common types of foundations and 193 

eventual loss of adfreeze bond support for pilings41,51. These changes can greatly reduce 194 

permafrost’s capacity to carry structural loads imposed by buildings and structures for the 195 
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longer term (FIG. 2). In some of the Russian Arctic cities, bearing capacity has decreased by 196 

even more than 40% between 1960s and 2000s (REF41). 197 

 198 

Owing to higher rates of warming in the Arctic and high-altitude regions and the thermal 199 

properties of frozen ground (for example latent heat associated with phase change) the rise 200 

of ground temperatures has been more pronounced in areas characterized by cold 201 

permafrost (< -5 °C) when compared to areas with relatively warm permafrost (> -3 °C)11. 202 

The rise of temperature in cold permafrost is not as critical as the rise in warm permafrost 203 

because ground temperatures close to the melting point are the most detrimental for 204 

infrastructure51. For example, adfreeze bond strength can decrease less than 10% when the 205 

temperature rises from -6 to -4 °C, whereas the decrease is ca. 50% when the temperature 206 

rises from -3 to -1 °C (REF51). Because of the projected warming of permafrost46,52, there will 207 

be increasing number of engineered structures in hazardous regions with ground 208 

temperatures close to 0 °C in the future11. 209 

 210 

Thickening of active layer. Along with the higher ground temperatures thicker active layers 211 

have been observed across the permafrost areas49, although the relationship between 212 

permafrost degradation and active layer thickness is not straightforward53. Reported 213 

regionally variable but dominantly increasing active layer thicknesses across the circumpolar 214 

area during 1990–2015 (REF54). The highest observed rates were over 10 cm per year in 215 

Central Asian mountains54. Thickness of active layer could increase from 0.8 to 6.5 cm per 216 

decade by the end of this century, when averaged over all permafrost areas (REF55). At the 217 

highest, the total increase in active layer thickness could be 120–200 cm on the Qinghai–218 

Tibetan Plateau by 2100 REF55. Thickening of active layer could result in increased thaw 219 
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settlement during summer and frost heave during winter, and lead to frost-jacking of piles56. 220 

Moreover, higher active layer thickness could lead to a decrease in frozen-ground adfreeze 221 

strength, resulting in an increase in the creep settlement rate of existing piles and 222 

footings57. The thickened active layer can expose critical foundation elements designed for 223 

direct frozen ground bearing or adfreeze, to newly thawed low bearing strength and poorly 224 

consolidated soils. However, high variability of active layer response to climate warming 225 

limits our understanding of the potential effects of active layer dynamics on infrastructure. 226 

 227 

Development of thawed layers. Extreme weather conditions, for example heatwaves and 228 

heavy rainfall during the thaw season, are more likely under climate change45. An 229 

abnormally warm summer can lead to the development of taliks in the top of the 230 

permafrost, which decreases the load-bearing strength of the ground and systems 231 

supporting infrastructure57 (FIG. 2). These residual thaw layers can lead to progressive 232 

surface settlement and slope movements. Moreover, current climate models depict an 233 

increase in high-latitude precipitation45. Therefore, potentially broad and long-lasting 234 

impacts of increased precipitation on hydrology and ground thermal conditions should be 235 

taken into consideration when estimating infrastructure hazard potential in different 236 

regions37,48. 237 

 238 

Permafrost thaw hazards. Thaw of frozen ground is critical for engineered constructions 239 

because the strength of soil drops substantially as the temperature rises above the melting 240 

point and ground ice melts58  (FIG. 2). The amount of thaw settlement is mostly related to 241 

the soil moisture content (especially ground-ice) and bulk density58. If permafrost is ice-rich, 242 

the melt of ice can result in thermokarst (and uneven terrain) that threatens the existing 243 
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infrastructure but also complicates new construction projects59. Based on climate change 244 

projections an substantial amount (>30–60%) of near-surface permafrost can be lost by the 245 

end of this century46,52,60,61. It is evident that the most pronounced changes in permafrost 246 

distribution will occur in warmer permafrost areas. These areas are often the most densely 247 

built and populated stressing the high infrastructure risk potential in the near-future62. 248 

 249 

Periglacial slope processes are common factors affecting constructions with shallow 250 

foundations, especially transportation infrastructure47 (FIG. 2). Slope processes range from 251 

slow mass-movements such as permafrost creep and solifluction to more rapid ones like 252 

landslides and earthflows (retrogressive thaw slumps and active-layer detachment slides). 253 

Potential hotspots of landslides are sites with abrupt permafrost thaw (that can cover up to 254 

20% of the circumpolar permafrost area)63, particularly close to sea-, lake- and riverbanks 255 

where water-induced thermal erosion and abrasion is effective64 (FIG. 2). For example, a 60-256 

fold increase in retrogressive thaw slumps was observed in the Canadian Arctic in a 30-year 257 

period, mainly owing to particularly warm summer conditions (REF65). Thus, the projected 258 

increase in summer temperatures and precipitation can increase thermal erosion and mass-259 

wasting related infrastructure hazards, especially in coastal66 and topographically complex 260 

regions47,65. Under projected hydrological changes the existing water pathways cannot be 261 

adequately designed resulting in overflow and damages to infrastructure29,67. 262 

 263 

 264 

Observed infrastructure damages 265 

Although several reports have linked widespread damage to infrastructure with climate 266 

change, the infrastructure damages on permafrost can easily misattributed to climate 267 
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change68. For example, the majority of damage to structures in the Russian permafrost 268 

areas in the period 1980 to 2000 resulted mainly from poor maintenance rather than 269 

climatic change69. Consequently, building on permafrost and maintaining operational 270 

infrastructure is a highly challenging task even without climate change, but climate warming 271 

induced permafrost degradation can exacerbate engineering challenges beyond feasible 272 

solutions18,70. While indigenous peoples for centuries had developed intimate knowledge of 273 

living and building structures on permafrost, rapidly changing climatic conditions, 274 

accelerating rates of costal erosion, permafrost warming and ground subsidence have 275 

recently threatened traditional lifestyles, subsistence economies, food security and 276 

accessibility among others71,72. 277 

 278 

Russia, North America, and Qinghai–Tibet Plateau are central permafrost areas with varying 279 

infrastructure features. Russian permafrost regions contain substantial population 280 

concentrated mainly in large industrial centres with dense multi-storey buildings whereas 281 

other regions on permafrost have less concentrated population residing in one-two storey 282 

residential houses. While having smaller housing stock on permafrost, North America and 283 

Qinghai–Tibet Plateau are characterized by higher proportion of transportation 284 

infrastructure27,29. Trans-Alaska pipeline system, Qinghai–Tibet engineering corridor and 285 

Canada's Arctic airports and airstrips are examples of transportation infrastructure that are 286 

central for the operation of communities in these permafrost areas8,27-29. Owing to the main 287 

infrastructure and socio-economic differences between the regions Russia is characterized 288 

by damage of various engineered structures whereas damages of linear infrastructure 289 

dominate North America and Qinghai–Tibet Plateau. 290 

 291 
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Russia and Europe. Almost 65% of land areas of Russia is underlain by permafrost73. More 292 

than 60% of settlements and vast majority of population (nearly 90%) in the Arctic 293 

permafrost areas are located in Russia62. Greenland and Svalbard have a few notable 294 

settlements and other infrastructure on permafrost whereas other parts of Europe have 295 

relatively little infrastructure in the permafrost area62,74. Russian expansion to the eastern 296 

and northern regions have led to permafrost encounters documented as early as 16th 297 

century. Centuries of error and trial allowed to gain knowledge and experience of 298 

construction on permafrost, which was summarized in the textbooks, construction manuals 299 

and regulations as early as the beginning of 20th century32,34. To this date, the Russian 300 

permafrost area is unique in unparalleled degree of industrialization and urbanization and 301 

host several large cities, such as Vorkuta, Yakutsk, and Norilsk among others75. Unlike other 302 

parts of permafrost area, that generally characterized by small individual houses and light-303 

weight administrative and industrial facilities that have only few floors, Russia is 304 

characterized by large apartment buildings, and heavy-built industrial facilities. It also 305 

characterized by focal areas with high population density, and centralized network of 306 

heating and utilities all of which makes impacts of human activities on permafrost more 307 

concentrated and damages more pronounced. Historically, the ability of foundations to 308 

support structures on permafrost was estimated using the climatological data available prior 309 

to construction. However, rapidly changing climatic conditions and increasing technogenesis 310 

challenged the paradigm76,77.   311 

 312 

The development of geographic information system (GIS) -based approach to geotechnical 313 

modelling allowed to bridge the gap between climate change and permafrost geotechnical 314 

environment. Using various types of climate input in combination with permafrost 315 
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modelling it became possible to provide regional assessments of changes in permafrost 316 

bearing capacity under various climatic condition41. Using gridded-climate input and 317 

detailed parameterization of soil conditions in Northwest Siberia REF78 found that ability of 318 

foundations to support structures have already decreased by 17 % on average with some 319 

locations experienced up to 45% decrease relative to 1960-1990 period due to the 320 

increasing permafrost temperatures and active layer thickness. Further analysis focused on 321 

the Russian cities found that foundation stability has decreased by more than 15–20% in 322 

several towns (for example in Salekhard, Noviy Urengoy, and Nadym)79. 323 

 324 

Climatically-induced permafrost degradation exacerbated by socio-economic 325 

transformations leading to dismantling of adequate permafrost monitoring after collapse of 326 

the Soviet Union resulted in neglect of the infrastructure in Russian permafrost areas. By the 327 

beginning of 21st century majority of buildings on permafrost had deformations, from ca. 328 

10% in Yakutsk and Noril’sk up to 80 % in Vorkuta69, with later studies revealing even higher 329 

numbers of structures affected by permafrost degradation21,76 (Supplementary Table 1; FIG. 330 

3a–c). In Greenland, Svalbard and European mountains, thaw damages are clearly less 331 

extensive and common, this owing to the terrain inherently reduced ground ice content, 332 

differences in type and size of engineered structures and higher investments to construction 333 

and maintenance80-84. For example, of the ca. 1000 infrastructure elements located on 334 

permafrost in the French Alps, less than 3% were identified to be damaged owing to 335 

permafrost degradation84. 336 

 337 

North America. More than half of Canadian and 80% of Alaskan’s land surfaces are 338 

characterized by the presence of permafrost. With sparse population (only ca. 7% of the 339 
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Arctic permafrost areas62) and abundant natural resources, the social and economic 340 

development of these vast territories depends heavily on a reliable transportation 341 

infrastructure85, although coastal erosion and relocation of settlements are also 342 

issues66,71,72. North America does not have the large industrial centres with densely arranged 343 

vertical structures like Russia. Therefore, most of the infrastructure problems are related to 344 

horizontal or linear infrastructure. For example, there exist ca. 6800 kms of road and 270 345 

airstrips on permafrost20. Construction of roads, airstrips, railways or other linear 346 

infrastructure where snow is removed leads to local ground cooling and formation of 347 

artificial dams affecting the surface hydrology, at the same time snow accumulation along 348 

the linear types of infrastructure leads to waterlogging and permafrost degradation29. These 349 

consequences are naturally common across permafrost areas with various types of linear 350 

infrastructure.  351 

 352 

Signs of degradation of structures and adjacent land are becoming increasingly evident in 353 

Northern Canada and Alaska (FIG. 3). In the North-West Territories, the estimated value of 354 

infrastructure at risk due to climate warming is equivalent to 25% of the value of the 355 

assets86. Surface distortions, depressions and cracks at the edge of embankments, sinkholes, 356 

longitudinal cracks, lateral embankment spreading and water ponding along roadside and 357 

drainage ditches are the most common problems observed along embankments built on 358 

thaw-sensitive permafrost (FIG. 3 d–f; synthesis of several publications in REFs87,88. Several 359 

types of degradations are also observed in areas adjacent to linear structures. Amongst 360 

others, retrogressive thaws slumps, active layer detachment slides, thermal erosion gullies, 361 

and newly developed icing (‘aufeis’) zones are increasingly threatening the integrity of linear 362 

infrastructures. More circumscribed problems such as differential settlement caused by 363 
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creeping of ice-rich warm and/or saline permafrost under thick embankments89; sudden 364 

collapse due to the erosion or melting of ice-wedge90 have also been documented recently. 365 

 366 

There has been an increase in the frequency and severity of issues related to permafrost 367 

degradation and slope stability along the Alaska Highway (Yukon) (FIG. 3 d and e) as well as 368 

the Dempster highway (Yukon and Northwest Territories)91-93. Most of these highways are 369 

on permafrost and several sensitive areas have been documented and are monitored by 370 

both highway administrations. For example, The Alaska Transportation and Public Facilities, 371 

estimated that the state spends 11 million US dollars ($) annually on permafrost related 372 

problems with roads. Several issues, including thermal erosion, ice-wedge degradation and 373 

thaw slumps related to permafrost degradation have also been documented on the newly 374 

constructed Inuvik to Tuktoyaktuk Highway (Northwest Territories)94, on roads and airstrips 375 

in Nunavik (Quebec)95, and on the Iqaluit airstrip (Nunavut) (FIG. 3 f). In the North-West 376 

Territories, thawing permafrost is causing approximately $41 million (ca. 51 million 377 

Canadian dollars) worth of damage to public infrastructure every year86. 378 

 379 

Qinghai–Tibet Plateau. About 40% of Qinghai–Tibet Plateau is characterized by the 380 

presence of permafrost96. In Qinghai-Tibet Plateau, including Qinghai Province and Tibet 381 

Autonomous Region, the total length of roads and railways is more than 200,000 kms and 382 

3,900 kms, respectively97. Climate warming along with thermal influences from engineering 383 

construction foster permafrost degradation, seriously threatening the stability of 384 

infrastructure on Qinghai-Tibet Plateau98,99 (FIG. 3 g–i). In the past years, many economically 385 

and societally important transportation infrastructure were constructed, the Qinghai-Tibet 386 

Highway (QTH), the Qinghai-Kangding Highway, the Gong-Yu Express Highway, the Qinghai-387 
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Tibet Railway (QTR), and the Qinghai-Tibet DC power transmission line. These 388 

infrastructures experienced different extent of distresses and even failure due to rapid 389 

degradation of underlying permafrost40.  390 

 391 

The QTH underwent major repairs between 1991 and 2011 to stabilize the underlying 392 

permafrost, for a total cost of nearly $0.7 billion (4.5 billion Yuan), about six times of the 393 

total costs for building and paving the QTH during 1950-1954 and 1979-1985, respectively. 394 

The costs for mitigating damages associated with permafrost have significantly increased 395 

the QTH operation cost, up to ca. $64 million (420 million Yuan) between 1986 and 2007, 396 

1.5 times of total maintenance costs from 1955 to 1985. Although QTH has been maintained 397 

and reconstructed several times in the last decades, embankment damages due to the 398 

underlying permafrost degradation are evident at 30% of total road length in permafrost 399 

areas100 (FIG. 3 h and i). Majority (85%) of the road damages were produced by thaw 400 

settlement and less (15%) by frost heave100,101. For example, QTH was reconstructed from 401 

1991 to 1999 by increasing the thickness of the embankments, which resulted in new 402 

damages (longitudinal and road shoulder cracks)100-102. These damages were mainly caused 403 

by thaw consolidation within roadbed soil under embankments. Meanwhile, QTR opened to 404 

traffic in 2006, embankment experienced deformations ranging from 25 mm/a to 75 405 

mm/a99,103 due to thawing of underlying permafrost. Also transition sections between 406 

bridges and embankments experienced substantial (10–160 cm) deformations from 2006 to 407 

2014 owing to degradation of permafrost104.    408 

 409 

 410 

 411 
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Projected impacts 412 

Spatial information of permafrost and infrastructure hazards are of importance to enable 413 

planners and policy-makers to identify both high- and low-risk areas when planning future 414 

infrastructure at settlement and transport route scales. For example, investments and 415 

developments in industry and extraction of natural resources requires extensive maps of 416 

permafrost hazards. Moreover, sustainable regional planning and infrastructure 417 

management require information on the costs of maintaining current and planning new 418 

constructions under climate change105,106. 419 

 420 

Since early 2000’s the number of geographical hazard assessments has increased along with 421 

the development of climate projections8,27,28. The existing circumpolar infrastructure could 422 

be affected by degrading permafrost under global warming was first presented 423 

geographically by REF17 (see also REF107). Comparable regional and national-scale 424 

infrastructure hazard mappings with developed data and methodologies have been 425 

presented for Russia41,51,108,109, Greenland110, Qinghai–Tibet44,111,112 and Alaska113. For 426 

example, REF114 estimated substantial reduction in stability of infrastructure on permafrost 427 

in Russia by the mid-21st century. The cities of Salekhard, Norilsk, Yakutsk, and Anadyr were 428 

estimated to lose on average 20, 30, 26, 20% of bearing capacity respectively by 2050 under 429 

RCP 8.5 scenario. Most of the studies have considered hazard areas by mid or late 21st 430 

century acknowledging the relatively short lifespan (often 20–50 years) of infrastructure in 431 

the permafrost areas27,39. 432 

 433 
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Many of the seminal geographical hazard assessments were based on the exploration of 434 

changes in active layer thickness in combination with ground ice content17,107,108,111. More 435 

recently, other environmental factors such as surficial geology, temperature and thaw of 436 

permafrost, and slope gradient have been included into the explorations44,110,112,113. In 437 

coastal environments, coastline erosion rates can be used in hazard assessments66. Recent 438 

circumpolar hazard explorations were presented in REFs20,23,115. The circumpolar distribution 439 

of high-hazard areas depend on the considered environmental factors. On one hand, if we 440 

consider thickening of active layer and thaw settlement, the high-hazard areas occur in the 441 

mid and northern parts of the circumpolar permafrost area with abundant ground ice and 442 

pronounced climate warming20,22,23,115 (FIG. 4a and d). On the other hand, if we emphasize 443 

the thaw of near-surface permafrost and loss of structure bearing capacity, the high-hazard 444 

areas form a ‘hazard belt’ close to the southern margin of polar permafrost20,22,23 (FIG. 4b, c, 445 

and e). Considering permafrost degradation, ground ice conditions, and surficial geology the 446 

most critical areas with high hazard potential for infrastructure damage are the Pechora 447 

region, the northwestern parts of the Ural Mountains, northwest and central Siberia, 448 

northwest Canada as well as the yedoma areas of Alaska where regional and local scale 449 

infrastructure risk assessments are important when planning new infrastructure in future 450 

decades20,22,23,115 (FIG. 4 and 5b). For example, the Yamal-Nenets region in northwestern 451 

Siberia is essential because of the extensive oil and natural gas production fields and high 452 

level of industrialization22. 453 

 454 

Despite the seminal nature of the permafrost thaw risk assessments presented in REFs17,107 455 

they did not include quantitative estimates of the amount infrastructure in high hazard 456 

areas or at risk of damage. Recently, REF20 quantified the detailed amount of infrastructure 457 
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elements potentially at risk across the circumpolar permafrost area under climate change. 458 

The results showed that 69% of the residential, transportation, and industrial infrastructure 459 

is located in areas with high potential for near-surface permafrost thaw by the mid-century 460 

(FIG. 5a; Supplementary FIG. 1). Considering ground properties (such as ground ice and frost 461 

susceptibility of ground material) in addition to permafrost thaw one-third of the pan-Arctic 462 

infrastructures and 45% of the hydrocarbon extraction fields in the Russian Arctic were 463 

located in areas where permafrost hazards could jeopardize current infrastructure and 464 

future developments20 (FIG. 5b; Supplementary FIG. 2). Owing to the uncertainty in 465 

circumpolar geospatial datasets and statistically-based modelling methods, and the fact that 466 

the effect of engineered structures on ground thermal regime was not considered, local 467 

errors in the determination of hazard potential are likely20,115. In a population study, 42% of 468 

the 1162 permanent settlements will become permafrost-free due to thawing by 2050 469 

(REF62). Among the settlements remaining on permafrost, ca. 40% are in high hazard 470 

areas62. 471 

 472 

The replacement costs and damages due to projected changes, including permafrost 473 

degradation are available for Alaska15,39, Canada116 and Russia117-119. Maintaining stable and 474 

safe transportation infrastructure in Alaska and Northern Canada is an important 475 

engineering challenge. For example, the costs of permafrost damage to Alaska’s publicly 476 

owned infrastructure are expected to grow by an estimated 10 to 20 percent, or $3.6 billion 477 

to $6.1 billion, by 203087. REF15 estimate the cost due to near surface permafrost thaw for 478 

the period 2015–2099 at $2.1 billion for RCP 8.5 and $1.6 billion for RCP 4.5.  479 

 480 
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In the Yukon, nearly 50% of the North Alaska Highway is considered to be highly vulnerable 481 

to permafrost thaw and is showing important signs of degradation91. The cost to maintain 482 

these sections of road is estimated to be eight times more expensive than equivalent 483 

sections on stable ground120. In Russia, the total cost of support and maintenance of road 484 

infrastructure due to permafrost degradation from 2020 to 2050 was estimated at ca. $7.0 485 

billion (422 billion RUB) for the existing network (no additional development), and ca. $14.4 486 

billion (865 billion RUB) for the modernization scenario based on the additional cost of the 487 

construction of new roads and engineering facilities according to development goals 488 

outlined in the Transport Strategy of Russian Federation, which is about  0.2 to 0.5  billion 489 

per year118. Another study estimated the cost of residential housing replacement due to 490 

permafrost degradation and decrease of foundation bearing capacity about $0.5-0.6 billion 491 

per year (30–36 billion RUB) between 2020–2050121.  492 

 493 

The only pan-Arctic study to estimate the costs of permafrost degradation is focused on 494 

critical infrastructure such as roads, railways, pipelines, ports, airports and buildings23. The 495 

estimated lifecycle replacement costs to maintain infrastructure on permafrost will require 496 

$15.5 billion by 2059 under RCP 8.5 scenario23. Linear infrastructure (roads, railways, and 497 

pipelines) is expected to be the most affected with pipelines being the most vulnerable type 498 

of infrastructure. In addition, damages associated with thaw subsidence and decrease of 499 

permafrost bearing capacity were estimated to add additional $21.6 billion23. However, the 500 

presented estimate was largely constrained by the availability of infrastructure data, 501 

especially in the case of Russia. The sustainable development of the permafrost regions 502 

urgently requires more detailed assessments of infrastructure costs and risks associated 503 

with permafrost degradation and their impacts on communities and the economy. 504 
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 505 

 506 

Mitigation methods 507 

Methods to stabilize infrastructure constructed on permafrost have been used in Russia 508 

since well before World War II, and since the 1940’s in North America35. The type of 509 

permafrost terrain, either thaw-stable or thaw-unstable, can be determined by the inherent 510 

ground ice content and by the soil type. Soils are considered ‘thaw-unstable’ when 511 

volumetric ice content is in excess of the natural porosity of the unfrozen soil and when 512 

hydraulic conductivity of the soil does not allow for effective dissipation of excess pore 513 

pressures during the thawing process. This information on ice content and hydraulic 514 

conductivity is critical to determine the type of foundation and the type of adaptation to be 515 

used. A common classification of adaptation methods used in North America is ‘active’ and 516 

‘passive’ protection systems35. Active systems involve the use of an external source of 517 

power to refrigerate permafrost, while passive systems use natural phenomena such as 518 

convection, evaporation and/or condensation to cool the ground. 519 

 520 

Two main approaches are used in Russia for construction design in permafrost-affected 521 

environments34,41. According to ‘Principle I’ permafrost is used as the foundation and is 522 

protected from degradation during the construction and during the life of the structure 523 

which is accomplished by decoupling structures from permafrost, such as creating of crawl 524 

spaces under the buildings, using passive and active cooling methods. Principle I can be used 525 

and developed further for considering climate warming in engineering design in areas with 526 

warm permafrost122. For example, in Qinghai-Tibet Plateau, 36% of permafrost is considered 527 

to be especially warm and extra-unstable (ground temperature > -0.5 °C)123. Under these 528 
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conditions, engineering must cool permafrost to ensure stability under climate warming. 529 

Alternatively, ‘Principle II’ can be used, involving thawing the permafrost before or during 530 

the construction and protecting the ground from permafrost aggradation during the life of 531 

the structure.  532 

 533 

There exist several mitigation methods (see below and FIG. 6 for different 534 

examples)29,38,124,125 that can be classified into three main categories: methods based on 535 

preventing heat intake to permafrost; methods enhancing ground heat extraction; and 536 

embankment reinforcement or ground improvement to help the structure resist permafrost 537 

degradation29. The methods can also be classified based on heat transfer mode: methods 538 

based on adjusting and controlling heat conduction; methods based on adjusting and 539 

controlling heat convection; methods based on heat radiation; and comprehensive 540 

methods124. In areas of warm-discontinuous permafrost with variable ground ice 541 

characteristics alternatives routs either with complete avoidance and/or minimalized 542 

encounter of high ice content and warm permafrost soils can be developed. Alternatives are 543 

being developed providing methods for full-scale ground ice and permafrost temperature 544 

characterization across the project areas38,125, via combined geophysical surveys and 545 

prescribed geotechnical drilling. In some cases, proper characterization can prescribe full 546 

removal of the ice-rich material when depth of excess ground ice and structural fill material 547 

availability are favorable to the project budget and timeline.  548 

 549 

Transportation infrastructure. Considering the impact of climate warming, transportation 550 

infrastructure built on thaw sensitive permafrost should be protected, either by cooling the 551 

underlying permafrost or by considering pre-thawing to adapt and mitigate the impact of 552 
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climate warming40,124,126-128 (FIG. 6). Several techniques have been experimented and have 553 

proven to be effective in cooling permafrost under transportation embankments. Some of 554 

these techniques are now used for large scale applications across the circumpolar high-555 

altitude areas (Supplementary FIG. 3). 556 

 557 

Heat removal techniques have been widely tested and used. Different types and shapes of 558 

air convection embankments (ACEs) have been used in Alaska (Thompson Drive129), Canada 559 

(Alaska Highway130; Puvirnituk airstrip131), and China29,132. For QTR observations showed that 560 

embankments with crushed rock structure can adapt to a climate warming of 1.0°C40,133.  561 

Thermosyphons have been used within transportation infrastructures in Russia134, Alaska135, 562 

Canada136, and China123,137. Other techniques such as the heat drain131 have also been 563 

successfully used to enhance ground heat extraction (FIG. 6). In most cases, the heat 564 

extraction systems have successfully cooled the ground during winter, improving thus 565 

significantly the heat budget at the ground surface. Recent monitoring results show that 566 

beneath a U-shaped ACE, the ground temperature of the permafrost from 4 to 10 m in 567 

depth was lowered by 0.5 °C138. Based on the experimental work at Beaver Creek in Canada, 568 

the presence of a 3 m thick ACE layer across the highway embankment has reduced winter 569 

temperatures at the contact between the embankment and natural ground by 570 

approximately 5 °C29. Under a heat drain at the Tasiujaq test section in Canada, the mean 571 

annual temperature at the contact of the embankment and the natural ground was reduced 572 

by 2.2 °C, and, at the end of the monitoring period, the permafrost table had risen more 573 

than 2 m compared with the reference section29. It should be noted that the cost of these 574 

systems is high and their application is generally restricted to limited areas of highly 575 

sensitive soils. 576 
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 577 

Methods based on the reduction of heat intake during summer have been used to protect 578 

permafrost underneath transportation infrastructure, of which can adapt the impact of 579 

climate warming and stabilize permafrost (FIG. 6). The most common method is 580 

embankment insulation used successfully at several locations in permafrost areas, of which 581 

can only mitigate permafrost thawing due to climate warming139-140. The use of sunsheds to 582 

protect embankment slopes126,130,141, and high albedo surfaces to protect paved 583 

embankments140,142.143 have also proved to be very effective to impede heat intake during 584 

summer. Reduction in the annual average surface temperature by approximately 1 °C and to 585 

permafrost aggradation of between 0.5 and 1.0 m under pavements with high-albedo 586 

surfaces have been reported by different authors29. For sunsheds, temperatures at the 587 

surface of embankment slopes were observed to be 4 to 5 °C lower in summer and 3 °C 588 

lower in winter when compared with an unprotected slope. In QTP, the difference was from 589 

8 to 15 °C29,144. Special techniques such as the use of gentle slopes to reduce the adverse 590 

effect of snow accumulatio on slopes and the replacement of embankments by a ‘dry 591 

bridge’ widely used on the QTR to minimize disturbance and protect permafrost40 can also 592 

be considered in special conditions. 593 

 594 

Some new mitigation techniques have been applied in the Gongyu express highway 595 

construction in China, for example the combination technique of oriented heat-transfer 596 

asphalt pavement and crushed-rock structure123. The first three years of monitoring show 597 

that these new techniques prevented rapid permafrost thaw. A field experiment showed 598 

that embankment with hollow concrete bricks and ventilation ducts can effectively decrease 599 

permafrost temperature at deeper than 15 m depth145. Moreover, numerical model shows 600 
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that embankment with crushed-rock interlayer and perforated ventilation ducts can 601 

effectively prevent permafrost thawing for an area where the mean annual air temperature 602 

is -4.0 °C and air temperature increases by 0.052 °C/year146. Although these approaches 603 

increase the engineering cost, they can well adapt the underlying permafrost degradation 604 

driven by long-term warming of climate.  605 

 606 

Pipeline stability depends on its construction mode, elevated or buried, in permafrost areas. 607 

Thaw settlement and subsequent frost heave often lead to pipeline deformation, even lose 608 

pipeline service function147,148. Heat removal techniques, for example, thermosyphons, 609 

different air ventilated duct systems, and energy storage systems, are tested and used to 610 

adjust and control the thermal regime of permafrost under the pipelines149. 611 

 612 

Buildings and other vertical structures. Proper characterization of ground ice content and 613 

extent through rigorous geotechnical studies provides great advantages for the planning 614 

and the design of foundations for vertical infrastructure, whether it is a house, industrial 615 

facility, or an elevated road. Selection of construction site in areas of low thaw sensitivity 616 

permafrost reduces risk of poor structure performance in a context of warming climate. A 617 

good knowledge of permafrost characteristics and conditions is essential to reduce the risk 618 

of foundation failure due to permafrost degradation27,38,150. Complete understanding of the 619 

subsurface conditions allows the selection of the appropriate foundation techniques38,140,151. 620 

 621 

During the Soviet time, rapid urbanization and industrialization of Russian permafrost areas 622 

revolutionized permafrost research and engineering152. One of the most significant 623 

developments was introduction of piling foundations (buildings are constructed on elevated 624 
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piles that are anchored in permafrost) in Norilsk in mid-1950s109. Piling foundations allowed 625 

to minimize the disturbance of permafrost due to construction and allowed to maintain the 626 

permafrost temperature under the buildings as buildings provide shade in the summer and 627 

have no snow accumulation in the crawl spaces in the winter therefore protecting the 628 

permafrost153. Natural ventilation of crawl spaces can be enhanced by various types of 629 

passive or active cooling devises, such as thermosyphons. In QTP, pile foundation is usually 630 

used by considering permafrost temperature, ground ice and sites conditions154.  631 

Thermosyphons are used to stabilize permafrost surrounding the piles, if required due to 632 

impacts of climate warming or human activities leading to permafrost degradation154.       633 

 634 

 635 

Summary and future perspectives 636 

Functional infrastructure is critical for sustainable development of Arctic and high-altitude 637 

regions, but the integrity of constructions is jeopardized by degrading permafrost2,8,17,28. The 638 

extent of observed damages is considerable and is likely to increase under projected climate 639 

change. It should be noted that a substantial proportion of permafrost degradation around 640 

infrastructure is caused by the modification of the landscape and disturbance of thermal 641 

equilibrium caused by the construction and maintenance of the structure, and not as a 642 

result of climate change. In future, cumulative problems of infrastructure damage in 643 

permafrost areas can be exacerbated owing to the increasing utilization of natural 644 

resources, construction, and climate change. It has been estimated that from one-third to 645 

more than half of fundamental circumpolar and high-altitude infrastructure could be at risk 646 

by 2050 REF20. Permafrost degradation-related infrastructure costs could rise to some tens 647 

of billion US dollars by the mid and late century15,22,23,118,121. 648 
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 649 

To effectively cope with climate change effects and support sustainable development in 650 

permafrost areas, it is critical to firstly develop relevant data resources such as permafrost 651 

characteristic, temperature and geotechnical monitoring with proper data archival and 652 

exchange, secondly improve permafrost and geotechnical modelling across space and time, 653 

thirdly comprehensively map permafrost hazards, fourthly evaluate the economic value of 654 

constructions and natural resources at risk across the permafrost area, fifthly improve 655 

infrastructure risk assessment approaches, sixthly develop new mitigation measures as well 656 

as design and construction practices, and seventhly improve communication and 657 

distribution of information among scientists and stakeholders (FIG. 7). 658 

  659 

First, it is important to produce high-resolution geospatial data on climate (air temperature) 660 

and ground conditions (ground ice content). Different datasets are currently collected by a 661 

wide variety of scientists, governmental agencies, and other groups, but coordination and 662 

harmonization of data products and accessible (open) publication of datasets need 663 

improvements. Moreover, spatial resolution of climate, ground ice, surficial geology and 664 

vegetation data are commonly too coarse or observations too scattered for high-resolution 665 

modelling of permafrost. Forecasting the changes in environmental conditions for 666 

infrastructure in permafrost area is particularly difficult due to the lack of long-term 667 

monitoring data (for example ground temperatures in human-disturbed environments). 668 

Thus, approaches that enable accurate mapping, monitoring, and prediction of fine-scale 669 

climate and ground conditions across large spatio-temporal scales urgently require 670 

development and subsequent integration into planning and construction methods on 671 

permafrost. 672 
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 673 

Second, the forthcoming construction projects and infrastructure risk assessments would 674 

significantly benefit from high-resolution process-based models of ground thermal regime 675 

and of ground ice distribution applicable for large areas. Moreover, there is a practical need 676 

for bridging the spatial gap between computationally expensive, short timescale 677 

geotechnical models and coarse scaled land surface models. Results of REF155 suggest that 678 

current model-based approaches which do not explicitly consider engineered structures in 679 

their designs are likely to underestimate the timing of future damage. Thus, further 680 

improved models would be essential in assessing potential infrastructure damages under 681 

climate change. 682 

 683 

Third, engineering solutions to mitigate the effects of degrading permafrost exist but their 684 

economic cost is high at regional scales. Consequently, high-resolution maps of permafrost 685 

hazards are of importance to identify risk areas and make provision for mitigation 686 

techniques, but detailed engineering solutions need to be based on detailed geotechnical 687 

investigation. To identify areas of permafrost hazards process-based methods could be 688 

applied at local and regional scales and geospatial data-based methodologies (remote 689 

sensing and statistical modelling) at circumpolar scale. For example, detailed hazard maps 690 

are needed in land use planning and could be used to identify risks related to the storage of 691 

toxic substances (fuels, chemicals, and industrial waste products) to avoid environmental 692 

pollution comparable to the diesel spill near the Norilsk City in the Taimyr region in May 693 

2020 REF156. Moreover, hazard maps are required in economic assessments.   694 

 695 



31 

 

Fourth, there is an urgent need for more detailed calculations of the costs associated with 696 

permafrost degradation and its impacts on communities and infrastructure. However, lack 697 

of comprehensive and readily available data on infrastructure attributes and location as well 698 

as costs of construction and repair limit the development of such assessments. Further 699 

complications arise from the general lack of long-term socio-economic and demographic 700 

projections targeting permafrost regions. Improved permafrost projections, detailed hazard 701 

maps and verified infrastructure databases with construction costs, will enable to assess the 702 

economic impacts of permafrost degradation on infrastructure at a circumpolar scale and to 703 

justify the cost of mitigation measures. 704 

 705 

Fifth, future construction projects should be based on infrastructure risk assessment and 706 

management approaches to minimize the risk of failure or poor infrastructure performance 707 

under climate stress. Risk assessment can be used to determine the suitability of a project, 708 

the appropriate design as well as appropriate maintenance practices. All decisions of this 709 

nature are dependent upon the risk tolerance of the project stakeholders. The risk can be 710 

reduced either by reducing the probability of occurrence of a hazard or by mitigating its 711 

consequences. Mitigation methods reduce the probability of occurrence of permafrost 712 

related hazards, compared to traditional design methods, by decreasing the likelihood of 713 

permafrost degradation and its associated problems. Alternatively, intensive maintenance 714 

can be a good management strategy to minimize the consequences of poor infrastructure 715 

performance. 716 

 717 

Sixth, new mitigation measures as well as design and construction concepts are needed to 718 

control the thermal impacts of climate warming and engineering construction, especially for 719 
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discontinuous ice-rich warm-permafrost. It is also important to monitor the effects of 720 

mitigation measures on ground thermal regime in different environmental and construction 721 

settings. At the same time, new designs are considered to accommodate movements as the 722 

permafrost destabilizes, especially for critical infrastructures, for example bridges, tunnels, 723 

and large buildings. These creative ideas are critical important for high-speed railway and 724 

express highway in permafrost areas under the impact of climate warming. 725 

 726 

Finally, more collaboration and better communication between scientists, local people and 727 

authorities, industry, and governments are needed for promoting sustainable and resource- 728 

efficient infrastructure in the future. Especially, scientists need to be more active in 729 

distributing data and study results for engineers and decision-makers. A better dialog 730 

between scientists and engineers would help to create design criteria that offer the best 731 

alternatives for construction choices and maintenance options. Standardizing best practices 732 

for planning, designing, and constructing infrastructure for permafrost conditions, now and 733 

in the future, will help balance sustainable growth and development for local community 734 

and wider stakeholder needs. 735 

 736 

In conclusion, to successfully manage climate change impacts in Arctic and high-altitude, a 737 

better understanding is needed about which constructions are likely to be affected by 738 

permafrost degradation, where they are located, and how to implement adaptive 739 

management, considering the changing environmental conditions. Appropriate mitigation 740 

measures are needed to secure existing infrastructure and future development projects, 741 

and to protect the nature and societies from environmental disasters.  742 
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Figure legends 743 

 744 

 745 

 746 

 747 

 748 

 749 

 750 

 751 

 752 

 753 

 754 

 755 

 756 

 757 

 758 

Fig. 1. Degrading permafrost threatens environment and societies by damaging infrastructure. A schematic 759 

presentation of degrading permafrost (thickening of active layer and warming and thawing of permafrost) 760 

causing natural hazards and environmental and societal risks such as damage of critical infrastructure in polar 761 

and high-altitude regions.  762 
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 764 

 765 

 766 

 767 

 768 

 769 

 770 

 771 

 772 

 773 

 774 

 775 

Fig. 2. Permafrost hazards damaging infrastructure. A schematic presentation of permafrost 776 

degradation related natural hazards that threatens the integrity of critical infrastructure (roads, 777 

pipelines, buildings, and industrial facilities) in permafrost areas (see text for further details on 778 

permafrost hazards). 779 
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 780 

Fig. 3. Infrastructure damages owing to degradation of permafrost. a and b Damaged buildings due to 781 

permafrost degradation in Yakutia, Russia (Photos by Ivan Khristoforov). c Below-ground pipeline in crossing an 782 

area with ice-rich permafrost and thermokarst development in Yamal-Nenets, Russia. d Longitudinal cracking 783 

due to shoulder rotation along the Alaska Highway in Yukon, Canada. e Thermokarst affecting partly the 784 

embankment of the Alaska Highway in the Yukon, Canada (Photo by Eva Stephani). f Sinkhole in the Iqaluit 785 

runway (Nunavut, Canada). g Embankment deformation of the Gongyu express highway, China (Photo by Chen 786 

Ji). h Collapsed bridge of Qinghai-Tibet Highway, China. i Longitudinal cracks of Qinghai-Tibet Highway, China. 787 

  788 
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 789 
 790 
Fig. 4. Geography of permafrost hazards across the circumpolar area. Distribution of high-hazard areas 791 

depend on the considered indices and environmental factors. Maps depict a settlement index115, b risk 792 

zonation index115, c analytic hierarchy process (AHP) based index115, d ground subsidence23, and e loss of 793 

structure bearing capacity23. Geohazard indices (a–c) show near-surface permafrost degradation related risks 794 

to infrastructure under Representative Concentration Pathway (RCP) 4.5 scenario by the middle of the century 795 

(2041–2060)20,115. Settlement index (a) is computed based on the relative increase of active layer thickness and 796 

ground ice content, risk zonation index (b) considers type of surface geology (sediment or bedrock), frost 797 

susceptibility of ground material, ground ice content and permafrost thaw potential, and AHP based index (c) 798 

is based on different factors with varying weights. The factors considered in AHP are ground temperature, 799 

ground ice content, relative increase of active layer thickness, fine-grained sediment content and slope 800 

gradient (see REF20,115 for further details). Modelled ground subsidence (d) and change in bearing capacity (e) 801 

are shown between 2005–2010 and 2050–2059, under RCP8.5 scenario (for further details, see REF23). World 802 

Borders dataset is distributed under CC BY-SA 3.0 license (https://creativecommons.org/licenses/by-sa/3.0/) 803 

on http://thematicmapping.org/downloads/world_borders.php. 804 
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 808 

 809 

 810 

 811 

 812 

 813 

 814 

 815 

 816 

 817 

 818 

 819 

Fig. 5. Circumpolar infrastructure at risk by 205020. a Proportion of settlements, railways, and industrial 820 

infrastructure in areas of near-surface permafrost thaw (orange) and b hazard zones (shades of brown; high-821 

medium-low) based on Representative Concentration Pathway 4.5 scenario by the middle of the century 822 

(2041–2060). In b, the hazard potential depicts permafrost degradation related risks of infrastructure damage 823 

and the zones were determined based on a consensus of three different geohazard indices (see FIG. 4a–c). 824 

Factors considered in the determination of hazard potential were relative increase of active layer thickness, 825 

ground ice content, permafrost temperature and thaw, surficial ground materials, and slope gradient (see 826 

REF20,115 for further details). Owing to the fact that the effect of engineered structures on ground thermal 827 

regime and potential abrupt thaw of permafrost were not considered in the infrastructure risk computations in 828 

REF20 the presented risk estimates can be conservative.  829 
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 830 

Fig. 6. Schematic illustration summarizing different mitigation methods for transportation infrastructure. 831 

Heat extraction in the winter can be promoted by preventing snow accumulation and its insulative effect 832 

(gentle slopes) or by enhancing heat transfer by using mechanisms such as convection (air convection 833 

embankment, heat drain or air ducts) or phase change (thermosyphons). Heat intake in soils during summer 834 

can be reduced by reducing heat transfer by solar radiation (modified surface albedo or sun sheds), or by 835 

impeding heat flux to permafrost using thick gravel layers or insulation boards. Advection from surface or 836 

subsurface water flow van be reduced by intercepting water at some distance from the embankment or by 837 

using impervious membranes. Finally, mechanical performance of embankments can be improved by using 838 

reinforcement layers or by using induced thawing to improve soil conditions. (Modified from REF157) 839 

  840 
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 843 

 844 

 845 

 846 

 847 

 848 

 849 

 850 

 851 

Fig. 7. Potential topics to support sustainable infrastructure in permafrost areas in the future. A schematic 852 

presentation with simplified connections between issues that should be considered to secure existing and 853 

future infrastructure under climate change (see text for further details). For example, spatially and temporally 854 

high-resolution data of permafrost characteristics, including temperature and ground ice content are needed 855 

for mapping, planning, and construction purposes. Developed permafrost models could be used to assess 856 

infrastructure hazards and economic consequences of climate warming. Moreover, geotechnical models could 857 

be used in infrastructure risk assessments and when developing new mitigation methods for construction.  858 
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Glossary 1573 

Permafrost: Ground with a temperature remaining at or below 0 °C for at least two 1574 

consecutive years. 1575 

 1576 

Warming of permafrost: An increase of permafrost temperature (ground temperature 1577 

remains at or below 0 °C also after the warming). 1578 

 1579 

Thaw of permafrost: Increase of permafrost temperature accompanied by melting of ground 1580 

ice. 1581 

 1582 

Infrastructure: Facilities with permanent foundations on ice-free land. 1583 

 1584 

Natural hazard: A natural phenomenon that can have a negative effect on humans or the 1585 

environment. 1586 

 1587 

Ground ice: A general term referring to all types of ice contained in freezing and frozen 1588 

ground. 1589 

 1590 

Active layer: The layer of ground that is subject to annual thawing and freezing in areas 1591 

underlain by permafrost. 1592 

 1593 

Bearing capacity: The maximum load a soil or rock, frozen or unfrozen, can support from an 1594 

applied load, within a defined measure of accepted strain (movement due to loading). 1595 
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 1596 

Bearing strength: The ability of a soil, sediment, or rock to support the direct application of a 1597 

load or stress, either concentrated or diffused, and is measured in force. 1598 

 1599 

Near-surface permafrost: Permafrost in the topmost ground layers (<10–15 m depth). 1600 

 1601 

Mass-wasting: Downslope movement of soil or rock on, or near, the earth's surface under 1602 

the influence of gravity. 1603 

 1604 

Adfreeze: The process by which two objects are bonded together by ice formed between 1605 

them. 1606 

 1607 

Frost-jacking: Cumulative upward displacement of objects embedded in the ground, caused 1608 

by frost action. 1609 

 1610 

Permafrost creep: The slow deformation that results from long-term application of a stress 1611 

too small to produce failure in the permanently frozen material. 1612 

 1613 

Solifluction: Slow downslope flow of saturated unfrozen earth materials. 1614 

 1615 

Retrogressive thaw slump: A slope failure resulting from thawing of ice-rich permafrost. 1616 

 1617 

Active-layer detachment slide: A slope failure in which the thawed or thawing portion of the 1618 

active layer detaches from the underlying frozen material. 1619 
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 1620 

Thermal erosion: The erosion of ice-bearing permafrost by the combined thermal and 1621 

mechanical action of moving water. 1622 

 1623 

Thermokarst: The process by which characteristic landforms result from the thawing of ice-1624 

rich permafrost or the melting of massive ice. 1625 

 1626 

Bulk density: The weight of soil in a given volume. 1627 

 1628 

Critical infrastructure: A general term for engineered structures (residential, transportation, 1629 

and industrial) important for Arctic and high-altitude communities and the economy. 1630 

 1631 

Sinkhole in permafrost: A small depression in the ground caused by collapse of the surface 1632 

layer due to thaw of ice-rich permafrost. 1633 

 1634 

Ice-wedge: A massive, generally wedge-shaped body with its apex pointing downward, 1635 

composed of foliated or vertically banded ice. 1636 

 1637 

Talik: A layer or body of unfrozen ground occurring in a permafrost area due to a local 1638 

anomaly in thermal, hydrological, hydrogeological, or hydrochemical conditions. 1639 

 1640 

Yedoma: An organic-rich permafrost with high ground ice content. 1641 

 1642 
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Excess ice: The volume of ice in the ground which exceeds the total pore volume that the 1643 

ground would have under natural unfrozen conditions  1644 

 1645 

Permafrost table: The upper boundary surface of permafrost. 1646 


