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Background and objective: To develop a computational algorithm that detects and identifies different arte-
fact types in neonatal electroencephalography (EEG) signals.

Methods: As part of a larger algorithm, we trained a Residual Deep Neural Network on expert human
annotations of EEG recordings from 79 term infants recorded in a neonatal intensive care unit (112 h of
18-channel recording). The network was trained using 10 fold cross validation in Matlab. Artefact types
included: device interference, EMG, movement, electrode pop, and non-cortical biological rhythms. Per-
formance was assessed by prediction statistics and further validated on a separate independent dataset
of 13 term infants (143 h of 3-channel recording). EEG pre-processing steps, and other post-processing
steps such as averaging probability over a temporal window, were also included in the algorithm.
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Results: The Residual Deep Neural Network showed high accuracy (95%) when distinguishing periods
of clean, artefact-free EEG from any kind of artefact, with a median accuracy for individual patient of
91% (IQR: 81%-96%). The accuracy in identifying the five different types of artefacts ranged from 57%-92%,
with electrode pop being the hardest to detect and EMG being the easiest. This reflected the proportion of
artefact available in the training dataset. Misclassification as clean was low for each artefact type, ranging
from 1%-11%. The detection accuracy was lower on the validation set (87%). We used the algorithm to
show that EEG channels located near the vertex were the least susceptible to artefact.

Conclusion: Artefacts can be accurately and reliably identified in the neonatal EEG using a deep learning
algorithm. Artefact detection algorithms can provide continuous bedside quality assessment and support
EEG review by clinicians or analysis algorithms.

© 2021 Elsevier B.V. All rights reserved.

1. Introduction quality EEG, and how to provide real-time interpretation for treat-

ing clinicians [11]. In this study, we focus on the problem of ensur-

Monitoring with electroencephalography (EEG) is a standard of
care in many neonatal intensive care units (NICU) [1]. It is fre-
quently used to detect neurological abnormalities, evaluate matu-
ration, and predict neurodevelopmental outcome [2-10]. The rapid
uptake of long term EEG monitoring in the NICU has uncovered
two, as yet unresolved bottlenecks: how to record reliable, high
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ing that a reliable, high quality EEG signal is recorded for clinical
review [3,12-14].

Recording reliable EEG requires real-time surveillance of EEG
signal quality. This is traditionally achieved by visual signal in-
spection at the cotside. However, it requires constant attention and
substantial expertise in EEG reading, neither of which can be ex-
pected from nursing staff whose chief responsibility is immediate
care of the patient. The only practically feasible solution would be
to develop an automated measure of signal quality that allows real
time feedback to the nursing staff. In practise, such an automated
tool will identify the type of artefact so that the nursing staff can
troubleshoot the signal quality issues.
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Several methods for have been developed for the detection
[15,16] and removal [17-19] of artefacts in adult EEG. These meth-
ods have limited applicability to neonatal EEG due to: (i) the dif-
ference in manifestation, variability and susceptibility of artefacts,
(ii) fundamental differences in predominant EEG patterns, and (iii)
a lower number of recording electrodes. To overcome these chal-
lenges, researchers have attempted to develop artefact detection
methods specific to neonatal EEG, but these methods have used
(i) small datasets, (ii) infants without pathology, and (iii) not accu-
rately classified the type of artefact [5,14,20,21]. Recent advances
in machine learning (notably, deep neural networks [22]) provide
an opportunity to improve the detection performance towards clin-
ical applicability if sufficiently large datasets of annotated neonatal
EEG can be acquired.

Here, we present an algorithm for detecting artefacts in neona-
tal EEG using a deep residual neural network. The performance
of this algorithm was evaluated on datasets representative of data
typically obtained in a NICU setting. We also validated the algo-
rithm on an independent dataset.

2. Material and methods
2.1. Data acquisition

2.1.1. EEG recordings

This study consists of continuous multichannel EEG recordings
from 79 term neonates with the average gestational age (GA) of
40 weeks (range 35-44 weeks). The recordings were performed in
the neonatal intensive care unit in the Hospital District of Helsinki
and Uusimaa, and the Helsinki University Central Hospital (HUCH)
specialist medical care area. EEGs were recorded using the Nico-
letOne VEEG system with sampling frequency of 256 Hz. A total
of 21 electrodes were placed according to the international 10—
20 system using a referential montage. A bipolar montage with 18
channels (Fp2-F8, F8-T4, T4-T6, T6-02, Fp1-F7, F7-T3, T3-T5, T5-01,
Fp2-F4, F4-C4, C4-P4, P4-02, Fp1-F3, F3-C3, C3-P3, P3-01, Fz-Cz,
Cz-Pz) was used for analysis. The average length of the recordings
for each patient was 85 min (range 52-257 min). This dataset was
initially compiled to evaluate seizure detection by human experts
and computer algorithms and is publicly available [23,24]. These
infants represent a typical cohort that would be monitored in the
NICU.

A validation dataset (n = 13) was collected from a series of in-
fants monitored for seizures with subsequent detection of stroke
in a clinical database of long-term monitoring (Helsinki Univer-
sity Central Hospital, Finland). Elements of this patient cohort have
been described and published earlier [25]. EEGs were recorded us-
ing frontal and parietal electrodes (F3, F4, P3, P4) with a Nico-
letOne VEEG system (same recording device) resampled to a fre-
quency of 256 Hz (median recording duration 9 h, IQR: 8 h to
16 h).

2.1.2. Data annotation

A human reviewer (NJS) initially identified obvious periods of
clean artefact-free EEG and several types of artefacts, annotating
the start and end times. An experienced clinical neurophysiologist
(SV) then reviewed these annotations and accepted, modified, or
deleted each accordingly (5% disagreement on identified events). A
final reviewer (LW) selected the specific EEG derivations that pre-
sented with artefact or clean EEG, i.e. assigned the event annota-
tion to the specific channels. Artefact classes identified included:
Device Interference artefacts (DI; interfering electromagnetic radia-
tion from nearby devices), Electromyography artefact (EMG; mus-
cle activation), Movement (MO; long, sustained movement of the
head), Electrode Pop (EL; transients due to poor electrode contact),
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Fig. 1. Exemplar segments of EEG recording for different types of artefact. (A) Mus-
cle artefact on predominantly on the temporal regions (EMG). (B) Device Interference
on T4. (C) Movement artefact on F8, F7, T3, and P3 (muscle artefact is also present).
(D) Electrode pop artefact predominantly on T3. (E) ECG artefact (example of the
Biological Rhythm class) on P4-02. The calibration scale markers denote 1 s hori-
zontally and 70 pV vertically.

and repetitive Biological Rhythm artefact (BIO; cardiac or respiratory
origin) [6]. Examples are shown in Fig. 1.

Out of the 112 h of 18-channel EEG recordings (2014 h of sin-
gle channel recordings), 44 h of annotated events (Supplementary
Table S.1) resulted in 277 h of single-channel EEG data, distributed
across 6 classes.

The annotated periods of EEG were then further divided into
segments of 4 s in duration with 50% (2 s) overlap (See Table 1,
Unbalanced). Given the imbalance in the prevalence of each class
of event, and a balanced dataset being more conducive to training
the deep neural network, different levels of overlap were used for
each class to achieve a more balanced dataset for training. Clean
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Table 1.
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Segment descriptive statistics. The Unbalanced Data has all segments with 50% overlap. The Balanced Data has artefact class specific overlap
and half of the Clean segments removed. Labels are: Clean EEG (Clean), Device Interference (DI), Electromyography (EMG), Movement (MO),

Electrode Pop (EL), and Biological Rhythms (BIO).

Labelled Unbalanced

Balanced

signal ~ Number of 4 s segments (%)  Patients with event (n)  Avg. number segments, median (IQR)' Number of 4 s segments (%)
Clean 337,130 (69.8%) 79 3458 (2059 - 5386) 84,760 (21.0%)
DI 8601 (1.8%) 16 191 (18 - 572) 62,302 (15.4%)
EMG 80,361 (16.6%) 74 708 (215 - 1469) 80,361 (19.9%)
MO 35,452 (7.3%) 52 211 (86 - 719) 68,893 (17.1%)
EL 14,099 (2.9%) 73 54 (27 - 171) 48,434 (12.0%)
BIO 7493 (1.6%) 14 228 (119- 952) 59,044 (14.6%)

" average number in patients with event type.

EEG was the most common class, and so not only had no overlap,
but a random half of the data were also deleted. The EMG seg-
ments had 2 s (50%) overlap, and MO artefact segments had 3 s
(75%) overlap. EL events had a 3.5 s (87.5%) overlap, and the re-
maining artefacts (BIO and DI) had a 3.75 s (93.75%) overlap.

For the validation data, a section of recording that contained
several types of artefact was extracted from each EEG. The section
was continuously annotated (F3-P3, F4-P4, P3-P4) for artefacts and
periods of artefact-free EEG by an experienced clinical neurophys-
iologist (SV). The type of artefacts to be annotated were limited
to the 5 classes used in the training dataset. This process of an-
notation of the validation dataset was different to that used when
acquiring the training dataset. While the trained dataset extracted
obvious, exemplar segments of artefact and clean EEG from record-
ings, the continuous annotation of the validation dataset required
increased decision making relating to less obvious artefacts result-
ing in increased ambiguity.

2.2. Artefact detection algorithm

The artefact detection algorithm input was a 4 s EEG segment
and the output was a class label: Clean uncontaminated EEG, DI,
EMG, MO, EL, and BIO. The algorithm consisted of a pre-processing
of raw EEG data stage, a neural network, and a post-processing
stage (Fig. 2).

Our pre-processing steps took the 4 s segments of EEG data and
applied a clamping function (Eq. (1)) to limit the dynamic ampli-
tude range of the segments, yielding clamped segments EEG(t) at
time t, given by

250[In (x(t)) — In (250) + 1]
EEG:(t)= x(t)
—250[In (=x(t)) — In (250) + 1]

x(t) > 250 pVv,
|x(t)| <250 pv,
Xx(t) < =250 pVv.

(1)

where x(t) is is the EEG signal at time t.

These EEG segments were then filtered with a Butterworth high
pass filter (2-poles, cut-off frequency of 0.5 Hz) and a 50 Hz notch
filter (2-pole, IIR filter). Each EEG segment was then processed by
a neural network. Several network architectures were trialled (see
Section 2.3).

In our post-processing stage, the output of the softmax layer
(a vector the length of the number of event classes representing
the probability of the processed segment belonging to a particu-
lar class) was averaged over a time period specific to each arte-
fact type (temporal smoothing) to take into account the fact that
nearby segments in time are more likely to have the same label
and some artefact types present with different durations. The arte-
fact class with the highest smoothed probability was chosen as the
final artefact label [26].

2.3. Training, testing and evaluation of the artefact detector

Two different neural network architectures were considered, a
deep residual network [27] and a classical deep neural network
[28]. A number of depth and filter size combinations were con-
sidered for each architecture (see Table S.3). The performance of
these networks was also compared to a ‘bag of features’ classified
by a Support Vector Machine (SVM) [5].

Artefact detection algorithms were evaluated using 10-fold
cross-validation on the Balanced Dataset. As the dataset contained
EEG recordings from 79 infants, the 10-fold cross-validation used
nine groups of eight patients and one of seven patients. The pa-
tients were randomly assigned to the 10 groups, i.e. all data from
an individual patient is in one fold, though a seed was selected
to ensure that each fold contained all event types. The number
of segments used in each training fold are summarized in Supple-
mentary material (Table S.2).

Deep neural networks were trained using the “Stochastic Gra-
dient Descent with Momentum” algorithm (SGDM) [29]. Data was
trained for 50 epochs with a Minibatch Size of 1024 and momen-
tum set to 0.9. The learning rate was initially set at 0.1 and then
reduced by a factor of 0.2 every 30 epochs. The MATLAB function
trainNetwork was used to train the network in each fold.

The optimal network was selected based on a criteria of net-
work size, binary and 6-class accuracy (see Section 2.4 for defini-
tions of accuracy). The optimal network was further tested with
and without the pre-processing stage and several different training
options (minibatch size, solver type, See Table S.3).

The typical event duration differs between classes, with arte-
facts like Electrode typically lasting 4 s and Biological Rhythms
lasting 40 s (see Supplementary Table S.1). Temporal averaging was
trialled by taking the average of the artefact class probabilities in
surrounding segments. A greedy algorithm was used to find the
optimal temporal window size for each event class on the entire
Balanced Dataset. For each artefact class, several window durations
(0-30 s) were applied, while all other classes were not windowed.
The window duration and class that maximized the 6 Class accu-
racy was then selected, and the process repeated until all artefact
classes had an optimal window. The greedy algorithm was also ap-
plied separately to each fold in the Balanced Data.

2.4. Algorithm performance assessment

We visualized the performance of the artefact detection sys-
tem by calculating the confusion matrix of the pooled data (six
by six). Initial evaluation was based on the Balanced Dataset. We
further summarized the performance by calculating the 6 Class ac-
curacy, defined as the percentage of segments correctly classed as
either Clean or correctly classed as one of the five artefact classes
(Eq. (2)). We also evaluated the performance of the algorithm for
differentiating between clean EEG and artefact (a binary decision
combining all artefacts types). Formulae for the statistics consid-
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ered a 4 s segment of data that was correctly identified as Clean
as True Positive (TP), a correctly identified segment of artefact as
True Negative (TN), a segment misclassified as Clean as False Pos-
itive (FP), and a segment misclassified as artefact a False Negative
(FN). These binary statistics included accuracy (Eq. (3)), sensitiv-
ity (the ratio of true clean segments over all the segments labelled
as Clean, Eq. (4)), area under the receiver operating characteristic
curve (AUC, based on the probability of the Clean label in the soft-
max layer), and F1 (a measure combining sensitivity and precision
(Eq. (5)), where precision is the ratio of segments correctly labelled
as clean out of the all the segments annotated as clean, Eq. (6))
[30]. All measures were calculated on the pooled data (n = 79).

6 Class Accuracy = Z True ) /Total, (2)
where j=[Clean, DI, EMi;, MO, EL, BIO],

Accuracy = (TP + TN)/Total, (3)
Sensitivity = TP/ (TP + FN), (4)
Precision = TP/(TP + FP), (5)
F1=2 x (Sensitivity x Precision) (6)

(Sensitivity + Precision)’

To provide a visualisation of the separation of the artefacts by
the deep residual network, we took the output from a late stage
of the network (fully connected layer, see Fig. S.1) for 10% of the
data (Balanced Data). This 6 dimensional output was reduced to
2 using UMAP [31] to visualise classifier performance. In the 2D
space of the UMAP output, high performing classification manifests
as clusters of similarly-identified points.

To simulate a potential application of the artefact detection al-
gorithm (trained on the Balanced Dataset), we applied it in con-
junction with a seizure detection algorithm [32] to the complete
EEG recordings from all 79 patients to estimate the level of con-
tamination within our database. The level of contamination was
compared between channels in the bipolar montage.

The performance measures were also calculated for the valida-
tion dataset to show how the algorithm performed on a separate
dataset. Bootstrapped confidence intervals were calculated to com-
pare the 6-Class and binary accuracy between training and valida-
tion dataset.

3. Results

Results from the optimization of network architecture and
training options (trained on the Balanced Dataset) were calculated
from both the Balanced and Unbalanced Dataset. We tested the al-
gorithm on the Unbalanced Dataset as this best reflects the real
world clinical setting where the majority of data is typically clean
and artefact types have different occurrence frequencies. We show
example recordings where the algorithm correctly and incorrectly
identifies artefacts, and visualize the network outputs to show the
separation and overlap of the classes to support the distribution of
accuracy within the confusion matrix.

We show the usefulness of the algorithm by estimating the
amount of artefact present in typical EEG recordings and then
validate the artefact detection algorithm on an independent, un-
seen dataset that was annotated under a continuous monitoring
paradigm rather than the exemplar paradigm used to generate the
training set. Finally, we show differences in EEG characteristics be-
tween the two annotation paradigms that help to explain the re-
duction in validation performance.



L. Webb, M. Kauppila, J.A. Roberts et al.

F4-C4 | [
P4-02 A A\ AT
F3-C3
P3-01
T6-02
T5-01 ety

Fp2-F4 B
P4-02 frrmtmfnri e
C3-P3
F8-T4

F7-T3
T3-T5 n n n n n

= o s

Fp2-F4
F4-C4
F7-T3
T3-T5
T5-01
P4-02

F3-C3 L .

C3-p3 | "'

T4-T6 <) W‘W‘* W " A.m.‘mm,m

T6-02 P
F7-T3 I
T3-T5 { :
0 5 10 15 20 25
Time (sec) EClean
[EDevice
-

[ Movement
Electrode

Computer Methods and Programs in Biomedicine 208 (2021) 106194

Fp2-F4 . A== E
F4-C4promommmeooo— L —
Fp2-F§ v E P —
F8-T4 fp . e
T4-T6 L A

T6-02 R ey |
C4-P4 F
T6-02

F7-T3

T3-T5 W’MV\JWMWW
Fp2-F4 G
Fpl-F3

Fp2-FS S

F3-T4 e

T5-01 I
F8-T4 I
T4-T6
F7-T3 Y e e
T3-TS M«—MWW
0 5 10 15 20 25 30
Time (sec)

Fig. 3. Examples of accurately detected artefacts and algorithm misclassifications. Colours denote the algorithm classifications. (A) Biological Rhythm correctly identified.
Annotation was on P4-02, P3-01, T6-02, and T5-01, with the clearest annotation on T5-01 for the entire segment. (B) Device Interference correctly identified. The annotation
was on P4-02, C3-P3, F8-T4, F7-T3 (0-18 s). (C) Electrode pop correctly identified. Electrode pop annotated on F7-T3 and T3-T5 (13-20 s). (D) Movement and EMG correctly
identified. EMG annotated on T4-T6, T6-02, F7-T3, T3-T5 (entire segment). Movement annotated on F3-C3 and C3-P3 (entire segment). (E) Electrode annotated on Fp2-F4,
FA-C4, Fp2-F8, F8-T4, T4-T6, T6-02 (12 to 16 s) was labelled by the algorithm as Device Interference on Fp2-F4, F4-C4, F8-T4, T4-T6. The Electrode artefact on Fp2-F8 was
correctly identified. (F) EMG annotated on T6-02 (8 to 22 s) was labelled by the algorithm as Movement. Movement annotated on F7-T3 and T3-T5 (0 to 30 s) was labelled
by the algorithm as Electrode and EMG. (G) Device Interference was annotated on Fp2-F4, Fp2-F8, F8-T4 (8 to 20 s) was labelled as Electrode artefact on Fp2-F8, F8-T4 and
correctly identified on Fp2-F4. (H) Biological Rhythm annotated on P4-02, P3-01, T3-T5, T5-O1 (entire segment) was labelled, in part, by the algorithm as EMG and Clean on
T3-T5. (1) Electrode annotated on F8-T4, T4-T6 (14 to 18 s) was labelled as Movement. The calibration scale bars denote 2 s horizontally and 100 uV vertically.

Table 2.

Artefact detection performance statistics for the Residual Neural Network (RNN) on Bal-
anced Data (BD) and Unbalanced Data (UD), with and without temporal smoothing (TS).
The results from the Bag of Features Method (SVM) [5] are also included and best com-
pared to the Residual Neural Network trained on Balanced Data.

6 Class Clean vs Artefact

Accuracy(%)  Accuracy(%)  Sensitivity(%)  AUC F1
RNN BD 82.0 94.5 95.0 0.947  0.880
RNN BD TS 84.8 95.5 97.5 0.962  0.900
RNN UD 91.9 95.4 95.0 0.957  0.966
RNN UD TS 94.5 97.2 97.4 0.971 0.980
SVM 68.8 89.2 87.5 0.886  0.773

3.1. Training results

The primary results from the Balanced Dataset show the opti-
mal implementation of the algorithm was achieved using a resid-
ual neural network with pre-processing and temporal smoothing
(Network 2 in Supplementary Fig. S.2).

The optimal network was trained with SGDM and a minibatch
size of 2048 (Supplementary Fig. S.2). The majority of permuta-
tions of network architecture and training options gave similar re-
sults with the binary accuracy ranging from 92% to 95%, and 6-
Class accuracy from 75% to 82%. Residual networks consistently
outperformed networks without feed forward stages.

The binary accuracy of the artefact detection algorithm (trained
on the Balance Dataset) for differentiating between artefactual EEG
and clean, uncontaminated EEG was 95% and 97% when applied to
the Balanced and Unbalanced Datasets, respectively. Temporal aver-
aging improved the accuracy further with the largest improvement
seen in the Balanced Dataset (Table 2). The median binary accuracy

(for Clean vs any artefact) with temporal averaging applied across
the cohort of 79 was 98% (IQR: 95% - 99%) for the Balanced Dataset
and 99% (IQR: 95% - 100%) for the Unbalanced Dataset. The Clean
EEG and EMG artefact were the most accurately detected (95% and
92%, Fig. 5), while DI and EL artefacts were detected with the low-
est accuracy (75% and 57%; Fig. 5). The algorithm accuracy reflects
the low proportion of DI and EL in the training dataset. While the
accuracy for correctly identifying the type of artefact was low for
DI and EL artefact, the binary accuracy with the true event type
for detecting any type of artefact was high (97% and 91%, Fig. 5).
Hence, the artefacts are reliably detected, but their specific type
may be identified at lower accuracy.

The optimal window lengths (in order: Clean, DI, EMG, MO, EL,
and BIO) were 8, 12, 12, 28, 12, and 56 s which correspond to du-
rations of 3, 5, 5, 13, 5, and 27 segments respectively. These val-
ues were supported by the results from applying the greedy al-
gorithm to each fold separately (Table S.4). These window lengths
align with the median length of the annotated artefact events (Ta-
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Fig. 4. Examples of algorithm misclassifications. Colours denote the algorithm classifications. (A) Electrode annotated on Fp2-F4, F4-C4, Fp2-F8, F8-T4, T4-T6, T6-02 (12 to
16 s) was labelled by the algorithm as Device Interference on Fp2-F4, F4-C4, F8-T4, T4-T6. The Electrode artefact on Fp2-F8 was correctly identified. (B) EMG annotated on T6-
02 (8 to 22 s) was labelled by the algorithm as Movement. Movement annotated on F7-T3 and T3-T5 (0 to 30 s) was labelled by the algorithm as Electrode and EMG. (C) Device
Interference was annotated on Fp2-F4, Fp2-F8, F8-T4 (8 to 20 s) was labelled as Electrode artefact on Fp2-F8, F8-T4 and correctly identified on Fp2-F4. (D) Biological Rhythm an-
notated on P4-02, P3-01, T3-T5, T5-01 (entire segment) was labelled, in part, by the algorithm as EMG and Clean on T3-T5. (E) Electrode annotated on F8-T4, T4-T6 (14 to
18 s) was labelled as Movement. The calibration scale bars denote 2 s horizontally and 100 pV vertically.

Table 3.

Proportion of each event type as classified by the artefact detection algorithm in complete EEG recordings,
after processing by seizure detection. Labels are: Clean EEG (Clean), Device Interference (DI), Electromyog-
raphy (EMG), Movement (MO), Electrode Pop (EL), and Biological Rhythms (BIO).

Labelled signal ~ Overall Proportion (%)

Proportion per patient Median (IQR)

Range Min - Max

Clean 64.6 65.7% (52.1% - 82.6%) 13.0% - 97.6%
DI 1.4 0.1% (0% - 0.4%) 0% - 18.6%
EMG 15.8 12.6% (4.9% - 22.6%) 0% - 72.9%
MO 8.8 4.2% (0.2% - 11.2%) 0% - 65.9%
EL 2.0 1.3% (0.6% - 2.2%) 0% - 16.7%
BIO 1.9 0.1% (0% - 1.4%) 0% - 24.7%
Seizure 5.4 2.7% (0.5% - 5.6%) 0% - 43.8%

ble S.2), with MO and BIO typically being longer in duration. Ex-
ample outputs of the algorithm superimposed over a period of EEG
recording are shown in Figs. 3 and 4.

The separation of each artefact class by the residual neural net-
work is shown in Fig. 5. The MO and EMG clusters overlap (Fig. 6)
supporting the finding that EMG artefact is most commonly mis-
classified as MO artefact, and vice-versa (Fig. 5). Similarly, the EL
cluster has considerable overlap with the EMG, MO, and DI clus-
ter, with these classes representing the majority of misclassified EL
artefacts (Fig. 5).

Confusion Matrix of Combined 10-fold Testing Results

Applying the artefact detection algorithm to the entire EEG
recordings resulted in an overall artefact burden of 30% over all
of the channels (sum of five artefact types, Table 3). A seizure de-

tection algorithm was initially used as an additional layer of au-
tomated annotation to exclude seizure events [32]. Fig. 7 shows
the amount of data labelled as Clean by the artefact detection al-
gorithm for each channel in the Double Banana bipolar montage,
with Table S.5 showing the distribution of events for each channel.
The channels at the top of the head (F4-C4, C4-P4, F3-C3, C3-P3,
Fz-Cz, Cz-Pz) had a greater proportion of clean data (> 75%) than
other channels.

3.2. Validation results
The accuracy of our artefact detection algorithm (trained on all

of the Balanced Dataset) when applied to the validation dataset is
shown in Fig. 8B. A 6 Class accuracy of 73% was achieved, with
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Confusion Matrix of Validation Data Results
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Fig. 5. Confusion matrix of event classification on (A) the Balanced Data, summarised over all folds in the ten-fold cross validation, and (B) event classification on the
validation data. The blue cells along the main diagonal represent correct labelling, with the darkness of the colours representing the size of the percentage in the cell.
Percentages are calculated as row percentages, representing the proportion of the true labels in each predicted label. The numbers below the percentages are the number of
segments that were annotated by an expert as the row event type, and labelled as the column type by the algorithm. (For interpretation of the references to colour in this

figure legend, the reader is referred to the web version of this article.)

- Incorrect
—Clean
—Device

—Movement
——Electrode

Fig. 6. Visualization of the algorithms separation of artefact classes using 10% of the
dataset and UMAP dimension reduction. Late stage (fully connected layer) used as
an input into the UMAP algorithm. Points shaded grey represent segments correctly
identified, and black represents incorrect identification. Coloured contours are used
to show the density of annotated artefact classes in the 2 dimensional space.

a binary accuracy of 87%, sensitivity of 86%, AUC of 0.872 and F1
of 0.899. The accuracy was significantly lower than estimated with
10-fold cross-validation on the developmental set (the 95% boot-
strapped confidence intervals for differences in both 6 Class accu-
racy and binary accuracy did not contain zero, with [2.09, 27 0.05]
for 6 Class and [2.72 16.22] for binary).

A potential explanation for the reduction in algorithm perfor-
mance was the differences in process of annotation between the
training and validation datasets. For example, the median average
duration for each event type annotated was longer in the valida-
tion dataset, with median duration of 38 s for EMG, 28 s for MO
compared to 15 and 12 s in the training dataset (Table S.1).

The annotated segments from the training data also had dif-
ferent EEG characteristics compared to the annotated segments in
the validation dataset (Fig. 9). For a number of the artefact classes
in the validation data, the mean frequency is closer to that of
the clean segments in the training dataset. In the majority of the
classes, including Clean, the mean amplitude is increased in the
validation data.

NASION
N

53% 78% 81% 76% 51%

@ @

a8% 83% 83% 83% 50%

®
59% - 55%

INION

Fig. 7. Proportion of clean data in each bipolar channel from the international 10—
20 system in the Double Banana montage. Estimated from applying the artefact de-
tection algorithm to the entire training dataset.

4. Discussion

We have developed an algorithm for detecting several types of
common artefacts in the neonatal EEG. This algorithm uses a deep
residual net trained on EEG data annotated by a human expert. The
main innovation of this paper lies in the development of a unique
system of artefact detection that not only detects the presence of
artefact in neonatal EEG but also classifies the type of artefact. This
algorithm can be used i) to aid bedside nursing staff in monitoring
EEG quality in real time, in order to take corrective actions (e.g.
detection of EL artefact can suggest poor contact of specific elec-
trodes), and ii) to support EEG review by clinician’s and comple-
ment future diagnostic tools, such as seizure detectors, lesion de-
tectors, or EEG background classifiers [28,32-35].

The detection algorithm differentiated between artefact and
artefact-free EEG with an accuracy of 95% and identified the type
of artefact with an accuracy of 85% on a developmental subset of
79 EEG recordings. Applying the artefact detection algorithm to the
entire EEG dataset showed that the commonly used electrode po-
sitions used in long-term, limited channel monitoring (frontal, cen-
tral, and parietal locations) were the least susceptible to artefacts.
The detection accuracy of the algorithm on an independent valida-
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Fig. 8. Confusion matrix of event classification on the validation data. The blue
cells along the main diagonal represent correct labelling, with the darkness of the
colours representing the size of the percentage in the cell. Percentages are calcu-
lated as row percentages, representing the proportion of the true labels in each
predicted label. The numbers below the percentages are the number of segments
that were annotated by an expert as the row event type, and labelled as the col-
umn type by the algorithm. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)

tion set was 87% (temporal averaging was not applied in this case),
suggesting practical utility.

The accuracy of the neural net stage of the algorithm to detect
artefact in general was high (95% accuracy, Table 2 and Fig. 5), al-
though the performance of the neural net in terms of identifying
specific artefacts varied with the type of artefact to be detected
(from 57% to 92%, Fig. 5). Artefacts that were the most difficult to
detect were those that were (i) rarer in the dataset such as DI and
BIO (Table S.1), (ii) more variable with several distinct phenomena
represented with a class such as BIO and EL, (iii) contained periods
of uncontaminated EEG activity such as EL and BIO, or (iv) con-
tained a mixture of artefact types such as EMG and MO (Fig. 3B).
These deficits may be overcome by improving the classifier de-
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sign and implementation, improving the time resolution of the an-
notation and redefining the artefact classes, e.g. either combining
movement and EMG or adding a separate EMG + movement class.

The accuracy of the artefact detection algorithm was signifi-
cantly reduced in the validation data compared to results obtained
using cross-validation on the developmental set. Inspection of the
quantitative summary measures between correct and incorrect de-
tections (Fig. 9) suggests that portions of the validation data within
several artefact classes have different EEG characteristics to those
present in the training/development dataset. While both datasets
were obtained from the same hospital and using the same EEG
machine, there are several technical and practical differences be-
tween datasets: EEG acquisition, annotation, and lastly the gener-
alizability of the training data. We have shown that the 4-channel
montage used in the validation dataset is particularly robust to the
presence of artefact, which (i) reduces the probability of artefact
(Fig. 7) and (ii) potentially dilutes the manifestation of artefact on
the EEG. The annotation of artefact is also not trivial and suscep-
tible to different interpretations (subjective). The reliance on hu-
man annotations is the main challenge and limitation for devel-
oping computational artefact detectors/classifiers. There are no ob-
jective criteria for the minimal presence (i.e., detection threshold)
of artefacts, and it is also well known that several artefacts are
often seen at the same time (e.g. MO and EMG). More annotated
recordings using a consistent process of annotations from multiple
centers would improve the performance and generalisability of the
algorithm.

There is a dearth of methods available for artefact detection
in the neonatal EEG. Neonatal EEG is different from the EEG of
children and adults, it has significant power in lower frequencies
unique patterns relating to normal and abnormal function and can
provide useful information to clinicians when recorded with lim-
ited channel montages [6,36]. These differences mean that arte-
fact detection methods based on the analysis of adult EEG (a more
mature field), at best, need to be re-trained on neonatal training
data and, at worst, cannot be effectively implemented. Neverthe-
less, there have been attempts at detecting artefact in neonatal
EEG. Schetinin and Schult [20] use a ‘bag of features’ classified by
a hybrid decision tree/polynomial neural network to detect arte-
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Fig. 9. A comparison of (A) the Mean Frequency of the EEG, and (B) the Mean Amplitude of the EEG in the annotated segments between training and validation datasets.
One tenth of the training data compared to all of the validation annotations. Distributions of Clean segments from the training dataset is only one tenth of dataset. Training
(T) and Validation (V) datasets for the Clean segments, and artefact segments Device Interference (DI), Electromyography (EMG), Movement (MO), Electrode (EL), and Biological
Rhythm (BIO). (A) Clean, DI, MO and EL segments are similar in Mean Frequency in both training and validation, with substantial differences seen in EMG and BIO segments.
(B) The distribution of Mean Amplitude differs largely for BIO, as well as other differences in centre for DI
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facts during sleep in the neonatal EEG with a binary accuracy of
73.5 + 2.8%. In this paper, we achieve comparable accuracy (me-
dian binary accuracy 92%, IQR: 86% - 95%) using a similar process
(bag of features classified by a support vector machine) based on
our earlier work [5]. We show that the use of neural networks sig-
nificantly improves the accuracy beyond these methods (median
binary accuracy 98%, IQR: 95% - 99%) to a level that is comparable
to the state of the art in children and adults [37].

We have developed a neonatal EEG artefact detection algorithm
based on a residual neural network. The algorithm achieves good
accuracy for both identifying the presence and type of artefact con-
taminating an EEG recording. Future work includes: (i) the inves-
tigation of different neural network architectures, data augmen-
tations, training options and data processing, (ii) developing po-
tential improvements to the process of annotating EEG artefacts,
(iii) performing studies of inter-rater agreement to set appropriate
performance benchmarks, and (iv) the acquisition of larger, multi-
centre datasets to allow algorithms to experience a large diversity
of artefacts and compensate for potential sources of heterogeneity.
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