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a b s t r a c t 

Background and objective: To develop a computational algorithm that detects and identifies different arte- 

fact types in neonatal electroencephalography (EEG) signals. 

Methods: As part of a larger algorithm, we trained a Residual Deep Neural Network on expert human 

annotations of EEG recordings from 79 term infants recorded in a neonatal intensive care unit (112 h of 

18-channel recording). The network was trained using 10 fold cross validation in Matlab. Artefact types 

included: device interference, EMG, movement, electrode pop, and non-cortical biological rhythms. Per- 

formance was assessed by prediction statistics and further validated on a separate independent dataset 

of 13 term infants (143 h of 3-channel recording). EEG pre-processing steps, and other post-processing 

steps such as averaging probability over a temporal window, were also included in the algorithm. 

Results: The Residual Deep Neural Network showed high accuracy (95%) when distinguishing periods 

of clean, artefact-free EEG from any kind of artefact, with a median accuracy for individual patient of 

91% (IQR: 81%-96%). The accuracy in identifying the five different types of artefacts ranged from 57%-92%, 

with electrode pop being the hardest to detect and EMG being the easiest. This reflected the proportion of 

artefact available in the training dataset. Misclassification as clean was low for each artefact type, ranging 

from 1%-11%. The detection accuracy was lower on the validation set (87%). We used the algorithm to 

show that EEG channels located near the vertex were the least susceptible to artefact. 

Conclusion: Artefacts can be accurately and reliably identified in the neonatal EEG using a deep learning 

algorithm. Artefact detection algorithms can provide continuous bedside quality assessment and support 

EEG review by clinicians or analysis algorithms. 

© 2021 Elsevier B.V. All rights reserved. 
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. Introduction 

Monitoring with electroencephalography (EEG) is a standard of 

are in many neonatal intensive care units (NICU) [1] . It is fre- 

uently used to detect neurological abnormalities, evaluate matu- 

ation, and predict neurodevelopmental outcome [ 2–10 ]. The rapid 

ptake of long term EEG monitoring in the NICU has uncovered 

wo, as yet unresolved bottlenecks: how to record reliable, high 
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uality EEG, and how to provide real-time interpretation for treat- 

ng clinicians [11] . In this study, we focus on the problem of ensur- 

ng that a reliable, high quality EEG signal is recorded for clinical 

eview [ 3 , 12–14 ]. 

Recording reliable EEG requires real-time surveillance of EEG 

ignal quality. This is traditionally achieved by visual signal in- 

pection at the cotside. However, it requires constant attention and 

ubstantial expertise in EEG reading, neither of which can be ex- 

ected from nursing staff whose chief responsibility is immediate 

are of the patient. The only practically feasible solution would be 

o develop an automated measure of signal quality that allows real 

ime feedback to the nursing staff. In practise, such an automated 

ool will identify the type of artefact so that the nursing staff can 

roubleshoot the signal quality issues. 

https://doi.org/10.1016/j.cmpb.2021.106194
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Fig. 1. Exemplar segments of EEG recording for different types of artefact. (A) Mus- 

cle artefact on predominantly on the temporal regions ( EMG ). (B) Device Interference 

on T4. (C) Movement artefact on F8, F7, T3, and P3 (muscle artefact is also present). 

(D) Electrode pop artefact predominantly on T3. (E) ECG artefact (example of the 

Biological Rhythm class) on P4-O2. The calibration scale markers denote 1 s hori- 

zontally and 70 μV vertically. 
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Several methods for have been developed for the detection 

 15 , 16 ] and removal [ 17–19 ] of artefacts in adult EEG. These meth-

ds have limited applicability to neonatal EEG due to: (i) the dif- 

erence in manifestation, variability and susceptibility of artefacts, 

ii) fundamental differences in predominant EEG patterns, and (iii) 

 lower number of recording electrodes. To overcome these chal- 

enges, researchers have attempted to develop artefact detection 

ethods specific to neonatal EEG, but these methods have used 

i) small datasets, (ii) infants without pathology, and (iii) not accu- 

ately classified the type of artefact [ 5 , 14 , 20 , 21 ]. Recent advances

n machine learning (notably, deep neural networks [22] ) provide 

n opportunity to improve the detection performance towards clin- 

cal applicability if sufficiently large datasets of annotated neonatal 

EG can be acquired. 

Here, we present an algorithm for detecting artefacts in neona- 

al EEG using a deep residual neural network. The performance 

f this algorithm was evaluated on datasets representative of data 

ypically obtained in a NICU setting. We also validated the algo- 

ithm on an independent dataset. 

. Material and methods 

.1. Data acquisition 

.1.1. EEG recordings 

This study consists of continuous multichannel EEG recordings 

rom 79 term neonates with the average gestational age (GA) of 

0 weeks (range 35–44 weeks). The recordings were performed in 

he neonatal intensive care unit in the Hospital District of Helsinki 

nd Uusimaa, and the Helsinki University Central Hospital (HUCH) 

pecialist medical care area. EEGs were recorded using the Nico- 

etOne vEEG system with sampling frequency of 256 Hz. A total 

f 21 electrodes were placed according to the international 10–

0 system using a referential montage. A bipolar montage with 18 

hannels (Fp2-F8, F8-T4, T4-T6, T6-O2, Fp1-F7, F7-T3, T3-T5, T5-O1, 

p2-F4, F4-C4, C4-P4, P4-O2, Fp1-F3, F3-C3, C3-P3, P3-O1, Fz-Cz, 

z-Pz) was used for analysis. The average length of the recordings 

or each patient was 85 min (range 52–257 min). This dataset was 

nitially compiled to evaluate seizure detection by human experts 

nd computer algorithms and is publicly available [ 23 , 24 ]. These 

nfants represent a typical cohort that would be monitored in the 

ICU. 

A validation dataset ( n = 13) was collected from a series of in-

ants monitored for seizures with subsequent detection of stroke 

n a clinical database of long-term monitoring (Helsinki Univer- 

ity Central Hospital, Finland). Elements of this patient cohort have 

een described and published earlier [25] . EEGs were recorded us- 

ng frontal and parietal electrodes (F3, F4, P3, P4) with a Nico- 

etOne vEEG system (same recording device) resampled to a fre- 

uency of 256 Hz (median recording duration 9 h, IQR: 8 h to 

6 h). 

.1.2. Data annotation 

A human reviewer (NJS) initially identified obvious periods of 

lean artefact-free EEG and several types of artefacts, annotating 

he start and end times. An experienced clinical neurophysiologist 

SV) then reviewed these annotations and accepted, modified, or 

eleted each accordingly (5% disagreement on identified events). A 

nal reviewer (LW) selected the specific EEG derivations that pre- 

ented with artefact or clean EEG, i.e. assigned the event annota- 

ion to the specific channels. Artefact classes identified included: 

evice Interference artefacts ( DI ; interfering electromagnetic radia- 

ion from nearby devices), Electromyography artefact ( EMG ; mus- 

le activation), Movement ( MO ; long, sustained movement of the 

ead), Electrode Pop ( EL ; transients due to poor electrode contact), 
2 
nd repetitive Biological Rhythm artefact ( BIO ; cardiac or respiratory 

rigin) [6] . Examples are shown in Fig. 1 . 

Out of the 112 h of 18-channel EEG recordings (2014 h of sin- 

le channel recordings), 44 h of annotated events (Supplementary 

able S.1) resulted in 277 h of single-channel EEG data, distributed 

cross 6 classes. 

The annotated periods of EEG were then further divided into 

egments of 4 s in duration with 50% (2 s) overlap (See Table 1 ,

nbalanced). Given the imbalance in the prevalence of each class 

f event, and a balanced dataset being more conducive to training 

he deep neural network, different levels of overlap were used for 

ach class to achieve a more balanced dataset for training. Clean 
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Table 1. 

Segment descriptive statistics. The Unbalanced Data has all segments with 50% overlap. The Balanced Data has artefact class specific overlap 

and half of the Clean segments removed. Labels are: Clean EEG (Clean), Device Interference (DI), Electromyography (EMG), Movement (MO), 

Electrode Pop (EL), and Biological Rhythms (BIO). 

Labelled 

signal 

Unbalanced Balanced 

Number of 4 s segments (%) Patients with event (n) Avg. number segments, median (IQR) ̂ Number of 4 s segments (%) 

Clean 337,130 (69.8%) 79 3458 (2059 – 5386) 84,760 (21.0%) 

DI 8601 (1.8%) 16 191 (18 – 572) 62,302 (15.4%) 

EMG 80,361 (16.6%) 74 708 (215 – 1469) 80,361 (19.9%) 

MO 35,452 (7.3%) 52 211 (86 – 719) 68,893 (17.1%) 

EL 14,099 (2.9%) 73 54 (27 – 171) 48,434 (12.0%) 

BIO 7493 (1.6%) 14 228 (119– 952) 59,044 (14.6%) 

^ average number in patients with event type. 
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EG was the most common class, and so not only had no overlap, 

ut a random half of the data were also deleted. The EMG seg- 

ents had 2 s (50%) overlap, and MO artefact segments had 3 s 

75%) overlap. EL events had a 3.5 s (87.5%) overlap, and the re- 

aining artefacts ( BIO and DI ) had a 3.75 s (93.75%) overlap. 

For the validation data, a section of recording that contained 

everal types of artefact was extracted from each EEG. The section 

as continuously annotated (F3-P3, F4-P4, P3-P4) for artefacts and 

eriods of artefact-free EEG by an experienced clinical neurophys- 

ologist (SV). The type of artefacts to be annotated were limited 

o the 5 classes used in the training dataset. This process of an- 

otation of the validation dataset was different to that used when 

cquiring the training dataset. While the trained dataset extracted 

bvious, exemplar segments of artefact and clean EEG from record- 

ngs, the continuous annotation of the validation dataset required 

ncreased decision making relating to less obvious artefacts result- 

ng in increased ambiguity. 

.2. Artefact detection algorithm 

The artefact detection algorithm input was a 4 s EEG segment 

nd the output was a class label: Clean uncontaminated EEG, DI, 

MG, MO, EL , and BIO . The algorithm consisted of a pre-processing 

f raw EEG data stage, a neural network, and a post-processing 

tage ( Fig. 2 ). 

Our pre-processing steps took the 4 s segments of EEG data and 

pplied a clamping function ( Eq. (1) ) to limit the dynamic ampli- 

ude range of the segments, yielding clamped segments EEG c ( t ) at 

ime t , given by 

E G c ( t ) = 

{ 

250 [ ln ( x ( t ) ) − ln ( 250 ) + 1 ] x ( t ) > 250 μV , 

x ( t ) | x ( t ) | ≤ 250 μV 

−250 [ ln ( −x ( t ) ) − ln ( 250 ) + 1 ] x ( t ) < −250 μV . 

, 

(1

here x(t) is is the EEG signal at time t . 

These EEG segments were then filtered with a Butterworth high 

ass filter (2-poles, cut-off frequency of 0.5 Hz) and a 50 Hz notch 

lter (2-pole, IIR filter). Each EEG segment was then processed by 

 neural network. Several network architectures were trialled (see 

ection 2.3 ). 

In our post-processing stage, the output of the softmax layer 

a vector the length of the number of event classes representing 

he probability of the processed segment belonging to a particu- 

ar class) was averaged over a time period specific to each arte- 

act type (temporal smoothing) to take into account the fact that 

earby segments in time are more likely to have the same label 

nd some artefact types present with different durations. The arte- 

act class with the highest smoothed probability was chosen as the 

nal artefact label [26] . 
3 
.3. Training, testing and evaluation of the artefact detector 

Two different neural network architectures were considered, a 

eep residual network [27] and a classical deep neural network 

28] . A number of depth and filter size combinations were con- 

idered for each architecture (see Table S.3). The performance of 

hese networks was also compared to a ‘bag of features’ classified 

y a Support Vector Machine (SVM) [5] . 

Artefact detection algorithms were evaluated using 10-fold 

ross-validation on the Balanced Dataset. As the dataset contained 

EG recordings from 79 infants, the 10-fold cross-validation used 

ine groups of eight patients and one of seven patients. The pa- 

ients were randomly assigned to the 10 groups, i.e. all data from 

n individual patient is in one fold, though a seed was selected 

o ensure that each fold contained all event types. The number 

f segments used in each training fold are summarized in Supple- 

entary material (Table S.2). 

Deep neural networks were trained using the “Stochastic Gra- 

ient Descent with Momentum” algorithm (SGDM) [29] . Data was 

rained for 50 epochs with a Minibatch Size of 1024 and momen- 

um set to 0.9. The learning rate was initially set at 0.1 and then 

educed by a factor of 0.2 every 30 epochs. The MATLAB function 

rainNetwork was used to train the network in each fold. 

The optimal network was selected based on a criteria of net- 

ork size, binary and 6-class accuracy (see Section 2.4 for defini- 

ions of accuracy). The optimal network was further tested with 

nd without the pre-processing stage and several different training 

ptions (minibatch size, solver type, See Table S.3). 

The typical event duration differs between classes, with arte- 

acts like Electrode typically lasting 4 s and Biological Rhythms 

asting 40 s (see Supplementary Table S.1). Temporal averaging was 

rialled by taking the average of the artefact class probabilities in 

urrounding segments. A greedy algorithm was used to find the 

ptimal temporal window size for each event class on the entire 

alanced Dataset. For each artefact class, several window durations 

0–30 s) were applied, while all other classes were not windowed. 

he window duration and class that maximized the 6 Class accu- 

acy was then selected, and the process repeated until all artefact 

lasses had an optimal window. The greedy algorithm was also ap- 

lied separately to each fold in the Balanced Data. 

.4. Algorithm performance assessment 

We visualized the performance of the artefact detection sys- 

em by calculating the confusion matrix of the pooled data (six 

y six). Initial evaluation was based on the Balanced Dataset. We 

urther summarized the performance by calculating the 6 Class ac- 

uracy, defined as the percentage of segments correctly classed as 

ither Clean or correctly classed as one of the five artefact classes 

 Eq. (2) ). We also evaluated the performance of the algorithm for 

ifferentiating between clean EEG and artefact (a binary decision 

ombining all artefacts types). Formulae for the statistics consid- 
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Fig. 2. Flow diagram of artefact detection system. Green arrows denote the algo- 

rithm implementation of data pre-processing, the deep residual network, and post- 

processing. (For interpretation of the references to colour in this figure legend, the 

reader is referred to the web version of this article.) 

e

a

T

i

(

i

a

c

m

(

a  

[

6

w

A

S

P

F

t

o

d

2

s

a

g

j

E

t

c

t

d

p

t

3

t

f

g

w

a

e

i

s

a

a

v

s

p

t

t

d

4 
red a 4 s segment of data that was correctly identified as Clean 

s True Positive (TP), a correctly identified segment of artefact as 

rue Negative (TN), a segment misclassified as Clean as False Pos- 

tive (FP), and a segment misclassified as artefact a False Negative 

FN). These binary statistics included accuracy ( Eq. (3) ), sensitiv- 

ty (the ratio of true clean segments over all the segments labelled 

s Clean , Eq. (4) ), area under the receiver operating characteristic 

urve (AUC, based on the probability of the Clean label in the soft- 

ax layer), and F1 (a measure combining sensitivity and precision 

 Eq. (5) ), where precision is the ratio of segments correctly labelled 

s clean out of the all the segments annotated as clean, Eq. (6) )

30] . All measures were calculated on the pooled data ( n = 79). 

 Class Accu racy = 

( ∑ 

j 

True 

) 

/ Total , (2) 

here j = [Clean, DI, EMG, MO, EL, BIO], 

ccuracy = ( T P + T N ) /T otal, (3) 

ensit i v it y = T P/ ( T P + F N ) , (4) 

 recision = T P/ ( T P + F P ) , (5) 

 1 = 2 × ( Sensitivity × Precision ) 

( Sensitivity + Precision ) 
, (6) 

To provide a visualisation of the separation of the artefacts by 

he deep residual network, we took the output from a late stage 

f the network (fully connected layer, see Fig. S.1) for 10% of the 

ata (Balanced Data). This 6 dimensional output was reduced to 

 using UMAP [31] to visualise classifier performance. In the 2D 

pace of the UMAP output, high performing classification manifests 

s clusters of similarly-identified points. 

To simulate a potential application of the artefact detection al- 

orithm (trained on the Balanced Dataset), we applied it in con- 

unction with a seizure detection algorithm [32] to the complete 

EG recordings from all 79 patients to estimate the level of con- 

amination within our database. The level of contamination was 

ompared between channels in the bipolar montage. 

The performance measures were also calculated for the valida- 

ion dataset to show how the algorithm performed on a separate 

ataset. Bootstrapped confidence intervals were calculated to com- 

are the 6-Class and binary accuracy between training and valida- 

ion dataset. 

. Results 

Results from the optimization of network architecture and 

raining options (trained on the Balanced Dataset) were calculated 

rom both the Balanced and Unbalanced Dataset. We tested the al- 

orithm on the Unbalanced Dataset as this best reflects the real 

orld clinical setting where the majority of data is typically clean 

nd artefact types have different occurrence frequencies. We show 

xample recordings where the algorithm correctly and incorrectly 

dentifies artefacts, and visualize the network outputs to show the 

eparation and overlap of the classes to support the distribution of 

ccuracy within the confusion matrix. 

We show the usefulness of the algorithm by estimating the 

mount of artefact present in typical EEG recordings and then 

alidate the artefact detection algorithm on an independent, un- 

een dataset that was annotated under a continuous monitoring 

aradigm rather than the exemplar paradigm used to generate the 

raining set. Finally, we show differences in EEG characteristics be- 

ween the two annotation paradigms that help to explain the re- 

uction in validation performance. 
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Fig. 3. Examples of accurately detected artefacts and algorithm misclassifications. Colours denote the algorithm classifications. (A) Biological Rhythm correctly identified. 

Annotation was on P4-O2, P3-O1, T6-O2, and T5-O1, with the clearest annotation on T5-O1 for the entire segment. (B) Device Interference correctly identified. The annotation 

was on P4-O2, C3-P3, F8-T4, F7-T3 (0–18 s). (C) Electrode pop correctly identified. Electrode pop annotated on F7-T3 and T3-T5 (13–20 s). (D) Movement and EMG correctly 

identified. EMG annotated on T4-T6, T6-O2, F7-T3, T3-T5 (entire segment). Movement annotated on F3-C3 and C3-P3 (entire segment). (E) Electrode annotated on Fp2-F4, 

F4-C4, Fp2-F8, F8-T4, T4-T6, T6-O2 (12 to 16 s) was labelled by the algorithm as Device Interference on Fp2-F4, F4-C4, F8-T4, T4-T6. The Electrode artefact on Fp2-F8 was 

correctly identified. (F) EMG annotated on T6-O2 (8 to 22 s) was labelled by the algorithm as Movement. Movement annotated on F7-T3 and T3-T5 (0 to 30 s) was labelled 

by the algorithm as Electrode and EMG . (G) Device Interference was annotated on Fp2-F4, Fp2-F8, F8-T4 (8 to 20 s) was labelled as Electrode artefact on Fp2-F8, F8-T4 and 

correctly identified on Fp2-F4. (H) Biological Rhythm annotated on P4-O2, P3-O1, T3-T5, T5-O1 (entire segment) was labelled, in part, by the algorithm as EMG and Clean on 

T3-T5. (I) Electrode annotated on F8-T4, T4-T6 (14 to 18 s) was labelled as Movement . The calibration scale bars denote 2 s horizontally and 100 μV vertically. 

Table 2. 

Artefact detection performance statistics for the Residual Neural Network (RNN) on Bal- 

anced Data (BD) and Unbalanced Data (UD), with and without temporal smoothing (TS). 

The results from the Bag of Features Method (SVM) [5] are also included and best com- 

pared to the Residual Neural Network trained on Balanced Data. 

6 Class Clean vs Artefact 

Accuracy(%) Accuracy(%) Sensitivity(%) AUC F1 

RNN BD 82.0 94.5 95.0 0.947 0.880 

RNN BD TS 84.8 95.5 97.5 0.962 0.900 

RNN UD 91.9 95.4 95.0 0.957 0.966 

RNN UD TS 94.5 97.2 97.4 0.971 0.980 

SVM 68.8 89.2 87.5 0.886 0.773 
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.1. Training results 

The primary results from the Balanced Dataset show the opti- 

al implementation of the algorithm was achieved using a resid- 

al neural network with pre-processing and temporal smoothing 

Network 2 in Supplementary Fig. S.2). 

The optimal network was trained with SGDM and a minibatch 

ize of 2048 (Supplementary Fig. S.2). The majority of permuta- 

ions of network architecture and training options gave similar re- 

ults with the binary accuracy ranging from 92% to 95%, and 6- 

lass accuracy from 75% to 82%. Residual networks consistently 

utperformed networks without feed forward stages. 

The binary accuracy of the artefact detection algorithm (trained 

n the Balance Dataset) for differentiating between artefactual EEG 

nd clean, uncontaminated EEG was 95% and 97% when applied to 

he Balanced and Unbalanced Datasets, respectively. Temporal aver- 

ging improved the accuracy further with the largest improvement 

een in the Balanced Dataset ( Table 2 ). The median binary accuracy 
5 
for Clean vs any artefact) with temporal averaging applied across 

he cohort of 79 was 98% (IQR: 95% - 99%) for the Balanced Dataset 

nd 99% (IQR: 95% - 100%) for the Unbalanced Dataset. The Clean 

EG and EMG artefact were the most accurately detected (95% and 

2%, Fig. 5 ), while DI and EL artefacts were detected with the low- 

st accuracy (75% and 57%; Fig. 5 ). The algorithm accuracy reflects 

he low proportion of DI and EL in the training dataset. While the 

ccuracy for correctly identifying the type of artefact was low for 

I and EL artefact, the binary accuracy with the true event type 

or detecting any type of artefact was high (97% and 91%, Fig. 5 ).

ence, the artefacts are reliably detected, but their specific type 

ay be identified at lower accuracy. 

The optimal window lengths (in order: Clean, DI, EMG, MO, EL , 

nd BIO ) were 8, 12, 12, 28, 12, and 56 s which correspond to du-

ations of 3, 5, 5, 13, 5, and 27 segments respectively. These val- 

es were supported by the results from applying the greedy al- 

orithm to each fold separately (Table S.4). These window lengths 

lign with the median length of the annotated artefact events (Ta- 
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Fig. 4. Examples of algorithm misclassifications. Colours denote the algorithm classifications. (A) Electrode annotated on Fp2-F4, F4-C4, Fp2-F8, F8-T4, T4-T6, T6-O2 (12 to 

16 s) was labelled by the algorithm as Device Interference on Fp2-F4, F4-C4, F8-T4, T4-T6. The Electrode artefact on Fp2-F8 was correctly identified. (B) EMG annotated on T6- 

O2 (8 to 22 s) was labelled by the algorithm as Movement. Movement annotated on F7-T3 and T3-T5 (0 to 30 s) was labelled by the algorithm as Electrode and EMG . (C) Device 

Interference was annotated on Fp2-F4, Fp2-F8, F8-T4 (8 to 20 s) was labelled as Electrode artefact on Fp2-F8, F8-T4 and correctly identified on Fp2-F4. (D) Biological Rhythm an- 

notated on P4-O2, P3-O1, T3-T5, T5-O1 (entire segment) was labelled, in part, by the algorithm as EMG and Clean on T3-T5. (E) Electrode annotated on F8-T4, T4-T6 (14 to 

18 s) was labelled as Movement . The calibration scale bars denote 2 s horizontally and 100 μV vertically. 

Table 3. 

Proportion of each event type as classified by the artefact detection algorithm in complete EEG recordings, 

after processing by seizure detection. Labels are: Clean EEG (Clean), Device Interference (DI), Electromyog- 

raphy (EMG), Movement (MO), Electrode Pop (EL), and Biological Rhythms (BIO). 

Labelled signal Overall Proportion (%) Proportion per patient Median (IQR) Range Min - Max 

Clean 64.6 65.7% (52.1% - 82.6%) 13.0% - 97.6% 

DI 1.4 0.1% (0% - 0.4%) 0% - 18.6% 

EMG 15.8 12.6% (4.9% - 22.6%) 0% - 72.9% 

MO 8.8 4.2% (0.2% - 11.2%) 0% - 65.9% 

EL 2.0 1.3% (0.6% - 2.2%) 0% - 16.7% 

BIO 1.9 0.1% (0% - 1.4%) 0% - 24.7% 

Seizure 5.4 2.7% (0.5% - 5.6%) 0% - 43.8% 
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le S.2), with MO and BIO typically being longer in duration. Ex- 

mple outputs of the algorithm superimposed over a period of EEG 

ecording are shown in Figs. 3 and 4 . 

The separation of each artefact class by the residual neural net- 

ork is shown in Fig. 5 . The MO and EMG clusters overlap ( Fig. 6 )

upporting the finding that EMG artefact is most commonly mis- 

lassified as MO artefact, and vice-versa ( Fig. 5 ). Similarly, the EL 

luster has considerable overlap with the EMG, MO , and DI clus- 

er, with these classes representing the majority of misclassified EL 

rtefacts ( Fig. 5 ). 

Confusion Matrix of Combined 10-fold Testing Results 

Applying the artefact detection algorithm to the entire EEG 

ecordings resulted in an overall artefact burden of 30% over all 

f the channels (sum of five artefact types, Table 3 ). A seizure de-
6 
ection algorithm was initially used as an additional layer of au- 

omated annotation to exclude seizure events [32] . Fig. 7 shows 

he amount of data labelled as Clean by the artefact detection al- 

orithm for each channel in the Double Banana bipolar montage, 

ith Table S.5 showing the distribution of events for each channel. 

he channels at the top of the head (F4-C4, C4-P4, F3-C3, C3-P3, 

z-Cz, Cz-Pz) had a greater proportion of clean data ( > 75%) than 

ther channels. 

.2. Validation results 

The accuracy of our artefact detection algorithm (trained on all 

f the Balanced Dataset) when applied to the validation dataset is 

hown in Fig. 8 B. A 6 Class accuracy of 73% was achieved, with
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Fig. 5. Confusion matrix of event classification on (A) the Balanced Data, summarised over all folds in the ten-fold cross validation, and (B) event classification on the 

validation data. The blue cells along the main diagonal represent correct labelling, with the darkness of the colours representing the size of the percentage in the cell. 

Percentages are calculated as row percentages, representing the proportion of the true labels in each predicted label. The numbers below the percentages are the number of 

segments that were annotated by an expert as the row event type, and labelled as the column type by the algorithm. (For interpretation of the references to colour in this 

figure legend, the reader is referred to the web version of this article.) 

Fig. 6. Visualization of the algorithms separation of artefact classes using 10% of the 

dataset and UMAP dimension reduction. Late stage (fully connected layer) used as 

an input into the UMAP algorithm. Points shaded grey represent segments correctly 

identified, and black represents incorrect identification. Coloured contours are used 

to show the density of annotated artefact classes in the 2 dimensional space. 
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Fig. 7. Proportion of clean data in each bipolar channel from the international 10–

20 system in the Double Banana montage. Estimated from applying the artefact de- 

tection algorithm to the entire training dataset. 
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 binary accuracy of 87%, sensitivity of 86%, AUC of 0.872 and F1 

f 0.899. The accuracy was significantly lower than estimated with 

0-fold cross-validation on the developmental set (the 95% boot- 

trapped confidence intervals for differences in both 6 Class accu- 

acy and binary accuracy did not contain zero, with [2.09, 27 0.05] 

or 6 Class and [2.72 16.22] for binary). 

A potential explanation for the reduction in algorithm perfor- 

ance was the differences in process of annotation between the 

raining and validation datasets. For example, the median average 

uration for each event type annotated was longer in the valida- 

ion dataset, with median duration of 38 s for EMG , 28 s for MO

ompared to 15 and 12 s in the training dataset (Table S.1). 

The annotated segments from the training data also had dif- 

erent EEG characteristics compared to the annotated segments in 

he validation dataset ( Fig. 9 ). For a number of the artefact classes

n the validation data, the mean frequency is closer to that of 

he clean segments in the training dataset. In the majority of the 

lasses, including Clean , the mean amplitude is increased in the 

alidation data. 
7 
. Discussion 

We have developed an algorithm for detecting several types of 

ommon artefacts in the neonatal EEG. This algorithm uses a deep 

esidual net trained on EEG data annotated by a human expert. The 

ain innovation of this paper lies in the development of a unique 

ystem of artefact detection that not only detects the presence of 

rtefact in neonatal EEG but also classifies the type of artefact. This 

lgorithm can be used i) to aid bedside nursing staff in monitoring 

EG quality in real time, in order to take corrective actions (e.g. 

etection of EL artefact can suggest poor contact of specific elec- 

rodes), and ii) to support EEG review by clinician’s and comple- 

ent future diagnostic tools, such as seizure detectors, lesion de- 

ectors, or EEG background classifiers [ 28 , 32–35 ]. 

The detection algorithm differentiated between artefact and 

rtefact-free EEG with an accuracy of 95% and identified the type 

f artefact with an accuracy of 85% on a developmental subset of 

9 EEG recordings. Applying the artefact detection algorithm to the 

ntire EEG dataset showed that the commonly used electrode po- 

itions used in long-term, limited channel monitoring (frontal, cen- 

ral, and parietal locations) were the least susceptible to artefacts. 

he detection accuracy of the algorithm on an independent valida- 
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Fig. 8. Confusion matrix of event classification on the validation data. The blue 

cells along the main diagonal represent correct labelling, with the darkness of the 

colours representing the size of the percentage in the cell. Percentages are calcu- 

lated as row percentages, representing the proportion of the true labels in each 

predicted label. The numbers below the percentages are the number of segments 

that were annotated by an expert as the row event type, and labelled as the col- 

umn type by the algorithm. (For interpretation of the references to colour in this 

figure legend, the reader is referred to the web version of this article.) 
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ion set was 87% (temporal averaging was not applied in this case), 

uggesting practical utility. 

The accuracy of the neural net stage of the algorithm to detect 

rtefact in general was high (95% accuracy, Table 2 and Fig. 5 ), al-

hough the performance of the neural net in terms of identifying 

pecific artefacts varied with the type of artefact to be detected 

from 57% to 92%, Fig. 5 ). Artefacts that were the most difficult to

etect were those that were (i) rarer in the dataset such as DI and

IO (Table S.1), (ii) more variable with several distinct phenomena 

epresented with a class such as BIO and EL , (iii) contained periods 

f uncontaminated EEG activity such as EL and BIO , or (iv) con- 

ained a mixture of artefact types such as EMG and MO ( Fig. 3 B).

hese deficits may be overcome by improving the classifier de- 
ig. 9. A comparison of (A) the Mean Frequency of the EEG, and (B) the Mean Amplitud

ne tenth of the training data compared to all of the validation annotations. Distributions

T) and Validation (V) datasets for the Clean segments, and artefact segments Device Inter

hythm (BIO). (A) Clean , DI, MO and EL segments are similar in Mean Frequency in both t

B) The distribution of Mean Amplitude differs largely for BIO, as well as other difference

8 
ign and implementation, improving the time resolution of the an- 

otation and redefining the artefact classes, e.g. either combining 

ovement and EMG or adding a separate EMG + movement class. 

The accuracy of the artefact detection algorithm was signifi- 

antly reduced in the validation data compared to results obtained 

sing cross-validation on the developmental set. Inspection of the 

uantitative summary measures between correct and incorrect de- 

ections ( Fig. 9 ) suggests that portions of the validation data within 

everal artefact classes have different EEG characteristics to those 

resent in the training/development dataset. While both datasets 

ere obtained from the same hospital and using the same EEG 

achine, there are several technical and practical differences be- 

ween datasets: EEG acquisition, annotation, and lastly the gener- 

lizability of the training data. We have shown that the 4-channel 

ontage used in the validation dataset is particularly robust to the 

resence of artefact, which (i) reduces the probability of artefact 

 Fig. 7 ) and (ii) potentially dilutes the manifestation of artefact on 

he EEG. The annotation of artefact is also not trivial and suscep- 

ible to different interpretations (subjective). The reliance on hu- 

an annotations is the main challenge and limitation for devel- 

ping computational artefact detectors/classifiers. There are no ob- 

ective criteria for the minimal presence (i.e., detection threshold) 

f artefacts, and it is also well known that several artefacts are 

ften seen at the same time (e.g. MO and EMG ). More annotated 

ecordings using a consistent process of annotations from multiple 

enters would improve the performance and generalisability of the 

lgorithm. 

There is a dearth of methods available for artefact detection 

n the neonatal EEG. Neonatal EEG is different from the EEG of 

hildren and adults, it has significant power in lower frequencies 

nique patterns relating to normal and abnormal function and can 

rovide useful information to clinicians when recorded with lim- 

ted channel montages [ 6 , 36 ]. These differences mean that arte- 

act detection methods based on the analysis of adult EEG (a more 

ature field), at best, need to be re-trained on neonatal training 

ata and, at worst, cannot be effectively implemented. Neverthe- 

ess, there have been attempts at detecting artefact in neonatal 

EG. Schetinin and Schult [20] use a ‘bag of features’ classified by 

 hybrid decision tree/polynomial neural network to detect arte- 
e of the EEG in the annotated segments between training and validation datasets. 

 of Clean segments from the training dataset is only one tenth of dataset. Training 

ference (DI), Electromyography (EMG), Movement (MO), Electrode (EL), and Biological 

raining and validation, with substantial differences seen in EMG and BIO segments. 

s in centre for DI. 
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acts during sleep in the neonatal EEG with a binary accuracy of 

3.5 ± 2.8%. In this paper, we achieve comparable accuracy (me- 

ian binary accuracy 92%, IQR: 86% – 95%) using a similar process 

bag of features classified by a support vector machine) based on 

ur earlier work [5] . We show that the use of neural networks sig-

ificantly improves the accuracy beyond these methods (median 

inary accuracy 98%, IQR: 95% – 99%) to a level that is comparable 

o the state of the art in children and adults [37] . 

We have developed a neonatal EEG artefact detection algorithm 

ased on a residual neural network. The algorithm achieves good 

ccuracy for both identifying the presence and type of artefact con- 

aminating an EEG recording. Future work includes: (i) the inves- 

igation of different neural network architectures, data augmen- 

ations, training options and data processing, (ii) developing po- 

ential improvements to the process of annotating EEG artefacts, 

iii) performing studies of inter-rater agreement to set appropriate 

erformance benchmarks, and (iv) the acquisition of larger, multi- 

entre datasets to allow algorithms to experience a large diversity 

f artefacts and compensate for potential sources of heterogeneity. 
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