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Abstract

Given a connected compact Riemannian manifold (M, g) without bound-
ary, dimM ≥ 2, we consider a space–time fractional diffusion equation
with an interior source that is supported on an open subset V of the
manifold. The time-fractional part of the equation is given by the
Caputo derivative of order α ∈ (0, 1], and the space fractional part
by (−∆g)

β , where β ∈ (0, 1] and ∆g is the Laplace–Beltrami oper-
ator on the manifold. The case α = β = 1, which corresponds to
the standard heat equation on the manifold, is an important special
case. We construct a specific source such that measuring the evolution
of the corresponding solution on V determines the manifold up to a
Riemannian isometry.

Keywords: inverse problem, space–time fractional diffusion equa-
tion, regularity, uniqueness

AMS subject classifications: 35R11, 35R30.

1 Introduction

1.1 Statement of the problem and main results

Throughout this paper, (M, g) will denote a connected compact smooth
Riemannian manifold without boundary, with metric g and dimM ≥ 2,
and V ⊂ M will be a nonempty open subset with smooth boundary. Also,
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0 < α ≤ 1 and 0 < β ≤ 1 will be fixed parameters. An important special case
that we also consider is the heat equation that corresponds to α = β = 1.
We note that to the knowledge of the authors, the main results (Theorems 1
and 3, and Proposition 2) are new also in this special case.

We consider the following space–time fractional diffusion equation:

∂αt u(x, t) + (−∆g)
βu(x, t) = f(x, t), (x, t) ∈M × (0,∞), (1a)

u(x, 0) = 0, x ∈M. (1b)

Here the source term f is supported on V ×(0, T ), for some T > 0, and ∂αt is
the Caputo (also known as the Djrbashian–Caputo) fractional-derivative of
order α. For a smooth function y defined on [0,∞), the Caputo fractional-
derivative is defined by ∂1

t y = y′ for α = 1, and

∂αt y(t) :=
1

Γ(1− α)

∫ t

0
(t− τ)−αy′(τ) dτ (t ≥ 0, 0 < α < 1), (2)

where Γ is the Euler’s gamma function. In the second term of (1a), ∆g

is the Laplace–Beltrami operator, and the fractional power is taken in the
sense of functional calculus. The precise definition of ∂αt and (−∆g)

β can
be found in Section 2.

We show that for a smooth compactly supported source f there exists
a unique so-called strong solution uf of (1). The local source-to-solution
operator LV is then defined as the operator

f 7→ LV f := uf |V×[0,∞).

In this paper we consider an inverse problem for the space–time frac-
tional diffusion equation (1), namely does LV determine the manifold (M, g)
uniquely? Note that the input f to the local source-to-solution operator LV ,
i.e., the source term in equation (1a), is supported on V . Also, the value
LV f , i.e., the evolution of the solution uf of (1), is observed only on V .
Hence LV is determined by information residing on V only.

We show that LV indeed determines (M, g) up to an isometry. In fact,
we show the stronger result that we do not need to know the operator LV
completely, but it is enough to know the value of LV h on some nonempty
time interval [0, T ) with only one source h, provided the source h is chosen
appropriately. Below, cl(V ) denotes the closure of the set V .

Theorem 1. Let (M, g) be a connected compact smooth Riemannian man-
ifold without boundary, with metric g and dimM ≥ 2, let V ⊂ M be a
nonempty open subset with smooth boundary and let T > 0. Then it is
possible to construct a source h ∈ C∞c ((0, T );L2(V )) such that the data

(V, uh|V×[0,T ))

2



determines the manifold (M, g) up to a Riemannian isometry. More pre-
cisely this means the following:

Let (M̃, g̃) be another smooth, connected and compact Riemannian man-

ifold without boundary, with metric g̃, and let Ṽ ⊂ M̃ be an open and
nonempty set with smooth boundary. Then it is possible to construct a source
h ∈ C∞c ((0, T );L2(V )) that has the following property: If there exists a dif-
feomorphism

θ : cl(Ṽ )→ cl(V )

such that the solutions uh of (1) with source h and the solution ũθ
∗h of the

corresponding equation on (M̃, g̃) with source θ∗h satisfy

(θ∗uh)|
Ṽ×[0,T )

= (ũθ
∗h)|

Ṽ×[0,T )
, (3)

then (M, g) and (M̃, g̃) are Riemannian isometric.

Remark 1. The pullback θ∗ of the diffeomorphism θ acts on an L2(V )-valued
function f by

(θ∗f)(t) := θ∗(f(t)).

Above, an open set with smooth boundary refers in local coordinates to
definition given in [15, Appendix C.1].

Remark 2. An explicit expression for the source h is given in Definition 14.

In Section 3.2 we show that the local source-to-solution operator LV is
well-defined as an operator

LV : C2
c ((0,∞);L2(V ))→ C1([0,∞);L2(V )) ∩ L∞([0,∞);L2(V )). (4)

As in (4), instead of considering functions depending on both the space
variable x ∈ M and the time variable t ∈ R, it is convenient to consider
them as functions of time t ∈ R taking values in the Hilbert space of square-
integrable functions on M . For the convenience of the reader, we review the
necessary definitions and results of calculus of Hilbert space valued functions
in the Appendix.

The proof of Theorem 1 consists of two parts. The first part is to show
that the function LV h|[0,T ) ∈ C1([0, T );L2(V ))∩L∞([0, T );L2(V )) uniquely
determines the operator LV . The second part is to show that the operator
LV determines the manifold (M, g) up to a Riemannian isometry. These
steps are formulated below as two independent results.

In the following, let T > 0 be a constant, (M, g) and (M̃, g̃) be Rieman-

nian manifolds, V ⊂M and Ṽ ⊂ M̃ be open sets, and θ : cl(Ṽ )→ cl(V ) be a
diffeomorphism, and assume they all satisfy the assumptions of Theorem 1.
Furthermore, let

L
Ṽ

: C2
c ((0,∞);L2(Ṽ ))→ C1([0,∞);L2(Ṽ )) ∩ L∞([0,∞);L2(Ṽ ))

be the local source-to-solution operator on the manifold (M̃, g̃).
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Proposition 2. Let h ∈ C∞c ((0, T );L2(V )) be the source defined in Defini-
tion 14. If

(θ∗ LV h)|[0,T ) = (L
Ṽ
θ∗h)|[0,T ), (5)

then
θ∗ LV f = L

Ṽ
θ∗f (6)

for every f ∈ C2
c ((0,∞);L2(V )).

Theorem 3. If the equality (6) holds for every f ∈ C2
c ((0,∞);L2(V )), then

the manifolds (M, g) and (M̃, g̃) are Riemannian isometric.

1.2 Motivation and literature

Einstein’s celebrated paper [14] introduced the classical explanation of Brow-
nian motion as a random walk, in which the dynamics of a particle suspended
in a fluid is described by an uncorrelated, Markovian, Gaussian stochastic
process. A key result of this theory is that the mean-square displacement
of the random walk is proportional to time, i.e., 〈x2〉 ∝ t for large t. At
the continuum limit, it follows that the concentration of a large number of
independent particles is governed by the diffusion equation.

Despite the success of standard diffusion model, there are a number
of experimental observations of diffusion processes, where the mean-square
displacement does not scale linearly. A random walk interpretation can
also be given to such processes: In a standard discrete random walk the
step length is a fixed distance and the steps occur at discrete times. In
a more general walk (Continuous Time Random Walk, CTRW) a waiting
time and step length are sampled from given probability distributions. At
the continuum limit, a suitable power law distribution for the waiting time
results to subdiffusive processes, where 〈x2〉 ∝ tα, 0 < α < 1. Analogous
to the classical diffusion, the concentration of random particles satisfies a
model where the time derivative in the diffusion equation is replaced by a
fractional time derivative of order α. Similarly, a suitable power law step
length distribution replaces the Laplacian in the diffusion equation by a
fractional power (−∆)β. The variability of these distributions gives rise to
the class of fractional PDEs in (1).

Anomalous diffusion processes described by equation (1) appear in spa-
tially disordered systems such as porous media, in turbulent fluids and
plasma, biological systems and finance (see, e.g., [2, 34, 21, 56, 49, 5, 11, 8,
9, 67, 13]). Following the random walk analogy, our main result in Theorem
1 can be interpreted as follows: we introduce a rigorous strategy to inject
new particles into a diffusion process taking place in an unknown medium
so that a single long-term observation of the concentration determines the
properties of the medium.

Mathematical work on fractional calculus is extensive. For a general
overview, see textbooks [33, 59], reviews [25, 7] and references therein.
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Without providing a comprehensive list, we mention that classical prop-
erties for the fractional diffusion equations, such as the fundamental solu-
tions, the regularity estimates and the maximum principles are established
in [57, 46, 45, 44, 47]. Moreover, numerical analysis for fractional PDEs is
considered in [28, 29, 10, 64, 42].

Inverse problems for fractional PDEs have gained major attention in re-
cent years. The review [30] summarizes work on some common fractional
inverse problems and collects some open problems. Uniqueness and recon-
struction of unknown parameters are considered in [55, 66, 43, 60, 61]. In
particular, we mention the article [32] by Y. Kian, L. Oksanen, E. Soccorsi,
and M. Yamamoto, where the uniqueness of the Riemannian metric is proved
for time-fractional PDE given Dirichlet-to-Neumann map at a fixed time at
the boundary of the manifold. For techniques based on Carleman estimates,
we refer to [63, 27].

There are a number of other interesting setups for fractional inverse
problems: In the static case, the fractional Calderon problems are inves-
tigated in [53, 16, 17, 58, 18]. If a more general waiting time probability
distribution is considered, then ∂αt may need to be replaced by a weighted
mixture of fractional derivatives. This leads to the so-called multi-term time
fractional diffusion equations and the distributed order differential equations
[54, 39, 37, 40, 38]. Also, there is recent effort to study statistical fractional
inverse problems [62, 20, 48, 65, 50].

The work in this paper is connected to geometric inverse problems out-
side fractional PDEs through many aspects of the observational setup. In
wave propagation models with finite speed of propagation single measure-
ment data has been studied in [22, 23]. The setup with multiple measure-
ments is better understood: in such a case geometric version of bound-
ary control method can be used for deriving uniqueness and reconstruction
[4, 3, 31, 1, 6]. Finally, let us mention that closed manifolds have been
studied also in the framework of inverse spectral problems [35].

1.3 Outline of the paper

This paper is organized as follows. In Section 2 we record some preliminary
definitions and present some well-known results regarding the Mittag–Leffler
function Ea,b, which plays a central role in representing the solution to (1).

We investigate the direct problem for (1) in Section 3, where the ex-
istence, uniqueness and representation results of the solution are proved.
Also, the source-to-solution operator LV is defined, which will be studied in
the inverse problem part.

The inverse problem is considered in Section 4. First, we prove that
the operator LV can be uniquely determined given a single measurement
(Proposition 2). Second, we prove that the operator LV determines the
manifold up to an isometry (Theorem 3). The main result, Theorem 1,
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immediately follows from these two results.

2 Preliminaries

This section contains some technical tools that are required in understanding
equation (1). We recall the definition of the Caputo derivative of fractional
order, and we review the Laplace–Beltrami operator ∆g, as well as some
basic functional calculus to define its fractional powers. We also give a
definition of the strong solution of (1).

2.1 The Mittag–Leffler function and fractional derivatives

The (two-parameter) Mittag–Leffler function Ea,b has a role in the fractional
differential equations analogous to the role of the exponential function in the
case of the integer order differential equations. The function is defined as

Ea,b(z) :=

∞∑
k=0

zk

Γ(ka+ b)
(a > 0, b > 0, z ∈ C). (7)

In particular, E1,1(z) = ez. For a treatise of the Mittag–Leffler function,
see [19].

The radius of convergence of the power series (7) is infinite, so Ea,b is an
entire function. A recurrence relation for the gamma function together with
termwise differentiation of the power series shows that E′a,1(z) = a−1Ea,a(z).
For every λ ∈ C, the function

Gλ(z) := Ea,1(−λza) (z ∈ C+ := {z ∈ C : Re(z) > 0}) (8)

is holomorphic on C+, and therefore above reasoning shows that

G′λ(z) = −λza−1Ea,a(−λza) (z ∈ C+). (9)

Proposition 4. For 0 < a ≤ 1, the following hold:

(i) There exists a constant Ca > 0 (that depends on a) such that

|Ea,a(z)| ≤ Ca (z ∈ C \ C+).

(ii) Let λ ≥ 0 and define a function Fλ : (0,∞)→ C by

Fλ(t) := ta−1Ea,a(−λta) (t > 0).

Then the Laplace transform LFλ(s) of Fλ exists at every point s ∈ C+,
and

LFλ(s) =
1

sa + λ
(s ∈ C+). (10)
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Proof. 1. For a = 1 the boundedness is evident, because E1,1(z) = ez.
For 0 < a < 1, see Theorem 1.6 in [51].

2. For s ∈ C with Re s > λ1/a, formula (10) is proved in [51] (cf. for-
mula (1.80) there). By the boundedness of Ea,a on C\C+, the Laplace
transform of Fλ exists on the whole half-plane C+. It follows from the
uniqueness of analytic continuation that (10) holds for every s ∈ C+.

Recall that 0 < α ≤ 1 and consider a complex-valued function y ∈
C1([0,∞)). Here the space is the space of continuously differentiable func-
tions on [0,∞), with the derivative at the left endpoint being the appro-
priate one-sided derivative. The Caputo derivative of order α of y at point
t ∈ [0,∞), denoted by ∂αt y(t), is defined as

∂αt y(t) :=

{
1

Γ(1−α)

∫ t
0 (t− τ)−αy′(τ) dτ, 0 < α < 1,

y′(t), α = 1.
(11)

In particular, if α = 1, then ∂αt y is just the standard first order derivative
of y.

Another commonly used fractional derivative is the Riemann–Liouville
fractional derivative. The Riemann–Liouville fractional derivative of order
α of y ∈ C1([0,∞)) at point t ∈ [0,∞), denoted by ∂αt,RLy(t), is defined by

∂αt,RLy(t) :=

{
1

Γ(1−α)
d
dt

∫ t
0 (t− τ)−αy(τ) dτ, 0 < α < 1,

y′(t), α = 1.
(12)

It is clear from (12) that the Riemann–Liouville derivative can be defined
for a larger class of functions than the continuously differentiable ones. It
can also be shown that

∂αt y(t) = ∂αt,RL(y(t)− y(0)) (t ≥ 0), (13)

(see, e.g., Chapter 3 in [12]), and often (13) is in fact taken as the definition
of the Caputo derivative, because the right-hand side of (13) is defined for
a larger class of functions than (11).

In this paper we mainly consider continuously differentiable functions
y ∈ C1([0,∞)) with y(0) = 0. For such functions (13) shows that the Ca-
puto fractional derivative and the Riemann–Liouville fractional derivative
coincide. For consistency of notation, we use the Caputo fractional deriva-
tive ∂αt throughout the paper.

For a scalar nonhomogeneous linear fractional differential equation, there
are the following existence and uniqueness results (see [12]):

7



Proposition 5. Let 0 < α ≤ 1, λ ∈ R, b ∈ C1
c ((0,∞)), and consider the

fractional differential equation

∂αt y(t) + λy(t) = b(t), (t ≥ 0), (14a)

y(0) = 0. (14b)

There exists a unique function y ∈ C1([0,∞)) for which equations (14a)
and (14b) are valid. This function can be represented as

y(t) =

∫ t

0
(t− τ)α−1Eα,α(−λ(t− τ)α)b(τ) dτ (t ≥ 0). (15)

Proof. By Corollary 6.9 in [12], there exists at most one continuously dif-
ferentiable function for which (14a) and (14b) are valid. Some standard
properties of convolutions and the assumed regularity of b imply that y as
defined by (15) is continuously differentiable. Theorem 7.2 in [12] states
that this function satisfies (14a) and (14b).

Of course, in the case α = 1, the existence and uniqueness of a solu-
tion to (14a) and (14b) follow from the standard theory of linear ordinary
differential equations, and (15) is just the variation of parameters formula.

2.2 The Laplace–Beltrami operator

The Laplace–Beltrami operator ∆g is an unbounded self-adjoint operator on
L2(M) with domain of definition D(∆g) = H2(M). The operator is defined
in local coordinates by

∆gξ := |g|−1/2∂j(|g|1/2gjk∂kξ) (ξ ∈ H2(M)),

where |g| is the determinant of the metric g and (gjk) is the inverse matrix
of g. Here and below, we use Einstein’s summation convention and sum over
indexes appearing as sub- and superindexes.

Let 0 = λ1 < λ2 ≤ λ3 ≤ · · · be the eigenvalues of −∆g, listed accord-
ing to their multiplicities, and let (ϕk)

∞
k=1 be some complete orthonormal

sequence of associated eigenfunctions. The exponent (−∆g)
β of (−∆g) is

then defined by

(−∆g)
βξ :=

∞∑
k=1

λβk〈ξ, ϕk〉L2(M)ϕk (ξ ∈ L2(M)),

(see [41]) with domain

D((−∆g)
β) :=

{
ξ ∈ L2(M) :

∞∑
k=1

λ2β
k |〈ξ, ϕk〉L2(M)|2 <∞

}
= H2β(M).

8



2.3 Fractional derivatives of L2(M)-valued functions and the
strong solution of (1)

Let 0 < T ≤ ∞ and recall that 0 < α ≤ 1. Let y ∈ C1([0, T );L2(M)).
The Caputo derivative of order α of the L2(M)-valued function y at point
t ∈ [0, T ), denoted by ∂αt y(t), is defined analogously to the scalar case:

∂αt y(t) :=

{
1

Γ(1−α)

∫ t
0 (t− τ)−αy′(τ) dτ, 0 < α < 1,

y′(t), α = 1.
(16)

Here the derivative y′ is in the sense of the derivative of an L2(M)-valued
function of a real variable, and the integral is in the sense of Bochner. Note
that the existence of the integral is guaranteed by the assumption of con-
tinuous differentiability of y.

We are now ready to give a definition of a solution of the fractional
diffusion equation (1). Let f : [0,∞) → L2(M). We say that a function
u ∈ C1([0,∞);L2(M)) is a strong solution of the fractional diffusion equa-
tion (1), if

(i) u(0) = 0,

(ii) u(t) ∈ D((−∆g)
β) for every t ≥ 0, and

(iii) ∂αt u(t) + (−∆g)
βu(t) = f(t) for every t ≥ 0.

3 Analysis of the direct problem

Here we prove an existence and uniqueness result for the fractional diffusion
equation (1). We also establish a representation of the solution, which will
later be used in solving the inverse problem. Furthermore, we define the
local source-to-solution operator LV .

3.1 Uniqueness and existence of a strong solution

Let 0 = λ1 < λ2 ≤ λ3 ≤ · · · be the eigenvalues of −∆g, listed according to
their multiplicities, and let (ϕk)

∞
k=1 ⊂ C∞(M) be some complete orthonor-

mal sequence of corresponding eigenfunctions.

Proposition 6. Suppose that f ∈ C2
c ((0,∞);L2(M)). Then there exists

a unique strong solution u ∈ C1([0,∞);L2(M)) of the fractional diffusion
equation (1). The strong solution can be represented as

u(t) =

∞∑
k=1

uk(t)ϕk (t ≥ 0), (17)
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where the series converges in L2(M) for every t ≥ 0, and

uk(t) :=

∫ t

0
(t− τ)α−1Eα,α(−λβk(t− τ)α) 〈f(τ), ϕk〉L2(M) dτ (t ≥ 0).

(18)

The proposition is proved by an eigenfunction expansion analogously
to [57]. As we use spectral theoretical approach to consider direct and
inverse problem for fractional power operator (−∆g)

β, instead of theory of
integral operators, we provide the detailed proof for the convenience of the
reader.

The proof is split in several steps, starting with uniqueness of the solu-
tion, which holds without any assumptions on the source function f .

Proposition 7. There exists at most one strong solution of the fractional
diffusion equation (1).

Proof. Suppose u, ũ : [0,∞) → L2(M) are two strong solutions of the frac-
tional diffusion equation (1), and define v := u − ũ. Then v is a strong
solution of (1) with the zero source term.

Fix k ∈ Z+ := {1, 2, 3, . . .} and define a complex-valued function vk :
[0,∞) → C by vk(t) := 〈v(t), ϕk〉L2(M). It is evident that vk ∈ C1([0,∞))
and v′k = 〈v′, ϕk〉L2(M), because v ∈ C1([0,∞);L2(M)) by the definition
of a strong solution. If 0 < α < 1, combining the previous result with
Proposition 23 shows that

〈∂αt v(t), ϕk〉L2(M) =
1

Γ(1− α)

∫ t

0
(t− τ)−αv′k(τ) dτ = ∂αt vk(t) (t ≥ 0).

Note that v(t) ∈ D((−∆g)
β). Then the definition of (−∆g)

β implies that

〈(−∆g)
βv(t), ϕk〉L2(M) = λβkvk(t) (t ≥ 0).

Above considerations show that

∂αt vk(t) + λβkvk(t) = 0, (t ≥ 0)

vk(0) = 0.
(19)

By Proposition 5 the unique continuous solution of (19) is the zero func-
tion. Because k ∈ Z+ is arbitrary, v = 0, and therefore u = ũ.

Following lemma provides useful estimates for the component functions
uk of u.

Lemma 8. Let T > 0 and f ∈ C2
c ((0, T );L2(M)), and let uk be defined

by (18). Then the following hold:

10



(i) The functions uk satisfy uk ∈ C1([0,∞)), and there exists a constant
ε > 0 such that suppuk ⊂ (ε,∞), for every k ∈ Z+.

(ii) For every k ∈ Z+, it holds that

λβkuk(t) =

∫ t

0

(
1−Eα,1(−λβk(t− τ)α)

)
〈f ′(τ), ϕk〉L2(M) dτ (t ≥ 0),

(20)
and

λ2β
k |uk(t)|

2 ≤ min{t, T}
∫ t

0
|〈f ′(τ), ϕk〉L2(M)|2 dτ (t ≥ 0). (21)

(iii) If in (20) and (21) the functions uk and f ′ are replaced by u′k and f ′′,
respectively, (20) and (21) remain valid.

Proof. (i) If ε > 0 is small enough so that f(t) = 0 for 0 ≤ t ≤ 2ε, then
uk(t) = 0 for 0 ≤ t ≤ 2ε. Therefore suppuk ⊂ (ε,∞).

Define

Fk(t) :=

{
tα−1Eα,α(−λβk t

α), t > 0,

0, t ≤ 0.
(22)

Then Fk is locally integrable, and uk is the convolution

uk(t) =
(
Fk ∗ 〈f, ϕk〉L2(M)

)
(t) (t ≥ 0). (23)

It follows that uk ∈ C1([0,∞)).

(ii) If λk = 0, then both sides of (20) vanish, and (21) holds trivially.
Therefore we may assume λk > 0.

Note that as f(0) = 0, (9) and integration by parts show that

λβkuk(t) = lim
ε→0+

∫ t−ε

0
λβk(t− τ)α−1Eα,α(−λβk(t− τ)α)〈f(τ), ϕk〉L2(M) dτ

= lim
ε→0+

Eα,1(−λβkε
α)〈f(t− ε), ϕk〉L2(M)

−
∫ t−ε

0
Eα,1(−λβk(t− τ)α)〈f ′(τ), ϕk〉L2(M) dτ

= 〈f(t), ϕk〉L2(M) −
∫ t

0
Eα,1(−λβk(t− τ)α)〈f ′(τ), ϕk〉L2(M) dτ.

By combining above with the fact that

〈f(t), ϕk〉L2(M) =

∫ t

0
〈f ′(τ), ϕk〉L2(M) dτ, (24)

we obtain (20).

11



Set t∗ := min{t, T}. The Cauchy–Schwarz inequality applied to (20)
shows that

λ2β
k |uk(t)|

2 ≤
∫ t∗

0
|1−Eα,1(−λβk(t− τ)α)|2 dτ

∫ t

0
|〈f ′(τ), ϕk〉L2(M)|2 dτ.

(25)

The function

(0,∞) 3 τ 7→M(τ) := Eα,1(−λβkτ
α)

is completely monotonic, meaning that (−1)k( d
dτ )kM(τ) ≥ 0 for k =

0, 1, 2, . . . and τ > 0 (for α = 1 this is immediate from differentiating
the exponential function, for 0 < α < 1 see Theorem 7.3 in [12]). In
particular

0 ≤M(τ) ≤M(0) = 1 (τ > 0).

It follows that the first integrand in (25) has values in [0, 1], and (ii) is
proved.

(iii) From (23) and properties of convolution it follows that (18) holds if
uk and f are substituted by u′k and f ′, respectively. This implies that
(20) and (21) also hold under the same substitution.

Next two lemmas prepare for the proof of Proposition 6.

Lemma 9. The series (17) converges in L2(M) for every t ≥ 0. The limit
function u is in C1([0,∞);L2(M)), and

u′(t) =
∞∑
k=1

u′k(t)ϕk (t ≥ 0), (26)

where the convergence is pointwise in L2(M). Moreover, u(t) ∈ D((−∆g)
β)

for every t ≥ 0, and suppu ⊂ (0,∞).

Proof. Fix t ≥ 0. Inequality (21) implies that

∞∑
k=1

λ2β
k |uk(t)|

2 ≤ t
∫ t

0
‖f ′(τ)‖2L2(M) dτ <∞. (27)

Because λk → ∞ as k → ∞, inequality (27) implies that
∑∞

k=1 |uk(t)|2 <
∞, and therefore the series (17) converges in L2(M). It also follows that
u(t) ∈ D((−∆g)

β).
The first part of Lemma 8 implies that suppu ⊂ (0,∞). Therefore on a

neighborhood of the origin u is smooth and (26) holds.
Because uk ∈ C1([0,∞)), the partial sums of (17) satisfy (

∑N
k=1 ukϕk)

′ =∑N
k=1 u

′
kϕk. Hence to prove u ∈ C1([0,∞)) and (26), it is enough to prove

12



that the series on the right-hand side of (26) converges uniformly on every
subinterval (0, T ) ⊂ (0,∞).

For N large enough so that λN ≥ 1, (iii) of Lemma 8 yields

∞∑
k=N

|u′k(t)|2 ≤ T
∫ T

0

∞∑
k=N

|〈f ′′(τ), ϕk〉L2(M)|2 dτ (0 ≤ t < T ).

The integrand converges to zero pointwise as N → ∞, and it is dominated
by the integrable function ‖f ′′‖2L2(M). By the Lebesgue’s dominated conver-
gence theorem, the integral tends to zero as N →∞. This implies uniform
convergence of

∑∞
k=1 u

′
kϕk on (0, T ).

Lemma 10. The Caputo derivative of order α ∈ (0, 1] of the L2(M)-valued
function u defined by (17) and (18) exists on [0,∞), and

∂αt u(t) =

∞∑
k=1

[∂αt uk(t)]ϕk =

∞∑
k=1

(
−λβkuk(t) + 〈f(t), ϕk〉L2(M)

)
ϕk (t ≥ 0).

(28)

Proof. By Lemma 9 we have u ∈ C1([0,∞);L2(M)), hence the Caputo
derivative of order α of u exists at every point t ≥ 0.

If α = 1, the first equality of (28) is true by Lemma 9. If 0 < α < 1, the
first equality follows from an application of (ii) of Proposition 23 and (26)
in the definition of ∂αt .

The second equality follows from Proposition 5.

Proving the existence and uniqueness of a strong solution of (1) is now
straightforward:

Proof of Proposition 6. Proposition 7 implies that a strong solution, should
it exist, is unique. Lemma 9 proves that the function u specified by (17)
and (18) is a well-defined function with range in D((−∆g)

β) and u(0) = 0.
By Lemma 10 the Caputo derivative of order α of u exists on [0,∞), and

∂αt u(t) = −(−∆g)
βu(t) + f(t) (t ≥ 0).

Therefore a strong solution exists, and the solution is given by (17).

3.2 The local source-to-solution operator LV

Given f ∈ C2
c ((0,∞);L2(M)), let uf ∈ C1([0,∞);L2(M)) denote the strong

solution of the fractional diffusion equation (1).

Proposition 11. Let T > 0. There exists a constant CT,M,α > 0 (that
depends on T , α, and the manifold (M, g)) such that

sup
t≥0
‖uf (t)‖L2(M) ≤ CT,M,α

(∫ T

0
‖f ′(τ)‖2L2(M) dτ

)1/2

, (29)

13



for every f ∈ C2
c ((0, T );L2(M)).

Proof. We have the representation of uf given by (17) and (18). Let us first
estimate the first term u1 of the representation.

Since λ1 = 0, for every t ≥ 0 it holds that

|u1(t)| ≤ 1

Γ(α)
sup
τ≥0
|〈f(τ), ϕ1〉L2(M)|

∫ min{t,T}

0
(t− τ)α−1 dτ. (30)

The inner product in (30) can be estimated with (24). Applying the Cauchy–
Schwarz inequality to (24) and noticing that the integral in (30) as a function
of t obtains its maximum at t = T show that

|u1(t)|2 ≤ 1

Γ(α)2

∫ T

0
|〈f ′(τ), ϕ1〉L2(M)|2 dτ

T 2α+1

α2
. (31)

If k > 1, then λk ≥ λ2 > 0. Therefore (ii) of Lemma 8 can be used to
estimate |uk(t)|2. These estimates together with (31) readily yield (29).

Recall that in the inverse problem we consider sources supported on an
open set V ⊂ M , and observe the evolution of the corresponding solutions
of the fractional diffusion equation (1) on the set V . From this information
we want to recover the manifold (M, g).

In what follows, we identify L2(V ) as a subset of L2(M) by identi-
fying functions with their zero extensions. Also, by an abuse of nota-
tion, uf |V denotes the function [0,∞) 3 t 7→ uf (t)|V . Then Proposi-
tion 6 and Proposition 11 imply that if f ∈ C2

c ((0,∞);L2(V )), then uf |V ∈
C1([0,∞);L2(V )) ∩ L∞([0,∞);L2(V )).

Definition 12. Let V ⊂M be a nonempty open set with smooth boundary.
The local source-to-solution operator on V , denoted by LV , is the operator

LV : C2
c ((0,∞);L2(V ))→ C1([0,∞);L2(V )) ∩ L∞([0,∞);L2(V ))

defined by
LV f := uf |V .

For T > 0, the truncated local source-to-solution operator on V , denoted
by LV,T , is the operator

LV,T : C2
c ((0,∞);L2(V ))→ C1([0, T );L2(V )) ∩ L∞([0, T );L2(V ))

defined by LV,T f := (LV f)|[0,T ).

Note that as a topological vector space, the space L2(V ) is independent
of the Riemannian metric g|V . Therefore the domain and codomain of LV
and LV,T do not depend on g.

14



If (ϕk)
∞
k=1 and (λk)

∞
k=1 are as in Section 3.1, the local source-to-solution

operator can be represented as

LV f(t) =
∞∑
k=1

[∫ t

0
(t− τ)α−1Eα,α(−λβk(t− τ)α)〈f(τ), ϕk〉L2(V ) dτ

]
ϕk|V ,

(32)
where the sum converges in L2(V ), for every t ≥ 0.

As a consequence of Proposition 11, we obtain the following continuity
result for the local source-to-solution operator:

Proposition 13. Let T > 0. Suppose that

f ∈ C2
c ((0, T );L2(V )) and (fk)

∞
k=1 ⊂ C2

c ((0, T );L2(V ))

are such that f ′k(t)→ f ′(t) in L2(V ) as k →∞, for every t ∈ (0, T ), and

sup
k∈Z+,
t∈(0,T )

‖f ′k(t)‖L2(V ) <∞.

Then
LV fk(t)→ LV f(t) in L2(V ) as k →∞,

uniformly in t ≥ 0.

Proof. From the definition of the local source-to-solution operator and in-
equality (29) of Proposition 11, it follows that for every t ≥ 0

‖LV f(t)− LV fk(t)‖L2(V ) ≤ ‖uf−fk(t)‖L2(M)

≤ CT,M,α

(∫ T

0
‖(f − fk)′(τ)‖2L2(M) dτ

)1/2

.

(33)

By assumption f ′k(τ)→ f ′(τ) in L2(V ) as k →∞, for every τ ∈ (0, T ), and
the same holds for their zero extensions in L2(M).

Because the integrand is uniformly bounded with respect to τ ∈ (0, T )
and k ∈ Z+, the Lebesgue’s dominated convergence theorem can be applied.
This concludes the proof.

4 Analysis of the inverse problem

We begin by showing that the local source-to-solution operator can be de-
termined with a single measurement, provided the source is chosen appro-
priately. After that we show that the manifold is determined up to a Rie-
mannian isometry by this operator.
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h1(t) h2(t) h3(t) h4(t)

Figure 1: Examples of functions hk, k ≥ 1, are plotted in blue with the choice
of n being a Gaussian bump. The exponential decay of the amplitude of hk
as k increases is illustrated by the red dashed line. The values of hk are not
presented in scale.

4.1 The local source-to-solution operator LV can be deter-
mined with one measurement

We construct a source h ∈ C∞c ((0, T );L2(V )) such that the local source-to-
solution operator LV is completely determined by the single function LV,T h.

Definition 14. Fix a constant T > 0 and let V ⊂M be a nonempty open set
with smooth boundary. Choose a number 0 < S < T , a nonzero non-negative
function n ∈ C∞c (−1, 1), a bounded sequence (ψk)

∞
k=1 ⊂ L2(V ) of functions

that spans a dense subspace of L2(V ), and a sequence (r(k))∞k=1 ⊂ Z+ which
contains every positive integer infinitely many times. Then define the source
h by

h(t) :=
∞∑
k=1

Sk

2k(k+2)mk
· n
(

2k+1

(
t

S
− 1

)
+ 3

)
︸ ︷︷ ︸

=:hk(t)

ψr(k) (t ∈ R), (34)

where mk := max0≤l≤k ‖n(l)‖∞.

We provide illustration of the decay of functions hk as k increases in
Figure 4.1.

Remark 3. Boundedness and denseness in L2(V ) are qualities that are in-
dependent of the metric g|V , because all Riemannian metrics on M induce
the same topology on L2(V ).

Remark 4. An example of a sequence that contains every positive integer
infinitely many times is the sequence that begins

1, 1, 2, 1, 2, 3, 1, 2, 3, 4, . . .
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In order to prove Proposition 2, consider a manifold (M̃, g̃) and an open

set Ṽ ⊂ M̃ with smooth boundary, and suppose they satisfy the conditions
of Theorem 1. Let θ : cl(Ṽ ) → cl(V ) be a diffeomorphism. Because of
the compactness of cl(Ṽ ) and cl(V ), the pullback θ∗ is a continuous op-
erator from L2(cl(V )) onto L2(cl(Ṽ )). By the diffeomorphism invariance
of the boundary, θ∗ is also a continuous operator from L2(V ) onto L2(Ṽ ).
Therefore, if h ∈ C∞c ((0, T );L2(V )), then θ∗h ∈ C∞c ((0,∞);L2(Ṽ )).

It is convenient to introduce the conjugated operators L̃
Ṽ

and L̃
Ṽ ,T

de-

fined for f ∈ C2
c ((0,∞);L2(V )) by

L̃
Ṽ
f := (θ∗)−1 L

Ṽ
(θ∗f) and L̃

Ṽ ,T
f := (θ∗)−1 L

Ṽ ,T
(θ∗f).

Then

L̃
Ṽ

: C2
c ((0,∞);L2(V ))→ C1([0,∞);L2(V )) ∩ L∞([0,∞);L2(V ))

and

L̃
Ṽ ,T

: C2
c ((0,∞);L2(V ))→ C1([0, T );L2(V )) ∩ L∞([0, T );L2(V )),

and (5) and (6) are equivalent to LV,T h = L̃
Ṽ ,T

h and LV = L̃
Ṽ

, respectively.
Proposition 2 will be proved in several steps. Let us first prove the

compactness and smoothness of h.

Proposition 15. The terms hk ∈ C∞c ((0,∞)) in the series (34) satisfy

supphk ⊂
(
(1− 21−k)S, (1− 2−k)S

)
(k ∈ Z+). (35)

In particular, their supports are pairwise disjoint. Furthermore, the series
converges uniformly in t ∈ R, and defines a function h ∈ C∞c ((0, T );L2(V )).

Proof. Inclusion (35), which is seen to hold by a straightforward calculation,
implies that h is defined pointwise and supported in (0, S] ⊂ (0, T ). For

l = 0, 1, 2, . . ., the l-th derivative h
(l)
k with k large enough so that k ≥ l and

2k+1 ≥ S can be estimated as

|h(l)
k (t)| = 2(k+1)l

Sl
Sk|n(l)(2k+1t/S − 2k+1 + 3)|

2k(k+2) max0≤l≤k ‖n(l)‖∞
≤ 1

2k
(t ∈ R). (36)

Therefore
∑∞

k=1 ‖h
(l)
k ‖∞ <∞, for every l = 0, 1, 2, . . . Estimate (36) together

with Proposition 24 stated in the Appendix implies the remaining claims.

Lemma 16. If f ∈ C2
c ((0,∞);L2(V )) and t0 ∈ R is a such that ft0 :=

f(· − t0) ∈ C2
c ((0,∞);L2(V )), then

LV ft0(t) =

{
0, 0 ≤ t < t0,

LV f(t− t0), t ≥ max{0, t0}.
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Proof. This follows from a straightforward change of variables in (32).

Following proposition states the essential fact that if the support of the
source f is included in the time interval (0, T ′), then the future evolution of
uf |V is determined completely by its evolution up to time T ′.

Proposition 17. Let T ′ > 0 and consider f ∈ C2
c ((0, T ′);L2(V )). If

LV,T ′ f = L̃
Ṽ ,T ′f , then LV f = L̃

Ṽ
f .

Proof. The proposition will be proved by extending LV f holomorphically
onto a region of the complex plane and applying the uniqueness of holomor-
phic continuation. For properties of vector-valued holomorphic functions,
we refer to [52].

Fix ε > 0 small enough so that supp f ⊂ (0, T ′ − 2ε). We show that the
L2(V )-valued mapping

R ⊃ (T ′ − ε,∞) 3 t 7→ LV f(t) ∈ L2(V )

extends holomorphically onto the complex region {z ∈ C : Re(z) > T ′ − ε}.
This is enough to prove the claim. Namely, in this case also L̃

Ṽ
f extends

holomorphically onto the region, and by assumption the extensions agree on
(T ′− ε, T ′). By uniqueness of holomorphic extension, they agree everywhere
on the region, so in particular also on (T ′ − ε,∞).

Consider complex-valued functions gk on C+ × [0,∞), where k ∈ Z+,
defined by

gk(z, τ) := 〈f(τ), ϕk〉L2(M)(z + T ′ − ε− τ)α−1Eα,α(−λβk(z + T ′ − ε− τ)α).

By assumption f(τ) = 0 if τ ≥ T ′ − 2ε, therefore the functions are well-
defined. In addition, an inspection shows that

LV f(z + T ′ − ε) =
∞∑
k=1

∫ T ′

0
gk(z, τ) dτ ϕk|V (z ∈ (0,∞)). (37)

We show that the right-hand side of (37) is an L2(V )-valued holomorphic
function on C+.

By (i) of Proposition 4, Eα,α is bounded on C \C+. It follows that with
a constant C = C(α, ε) > 0 we have

|gk(z, τ)| ≤ C|〈f(τ), ϕk〉L2(M)| (z ∈ C+, τ ≥ 0, k ≥ 1). (38)

Consequently∣∣∣∣∣
∫ T ′

0
gk(z, τ) dτ

∣∣∣∣∣
2

≤ C2T ′
∫ T ′

0
|〈f(τ), ϕk〉L2(M)|2 dτ (z ∈ C+, k ≥ 1).

(39)
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Let Dk ≥ 0 denote the right-hand side of (39). Then for all N > M > 0
and z ∈ C+ it holds that∥∥∥∥∥

N∑
k=1

∫ T ′

0
gk(z, τ) dτ ϕk −

M∑
k=1

∫ T ′

0
gk(z, τ) dτ ϕk

∥∥∥∥∥
2

L2(M)

≤
N∑

k=M+1

Dk,

and
∞∑
k=1

Dk = C2T ′
∫ T ′

0
‖f(τ)‖2L2(M) dτ <∞.

It follows from the Cauchy criterion for uniform convergence that for every
z ∈ C+ the series

∞∑
k=1

∫ T ′

0
gk(z, τ) dτ ϕk (40)

converges in the topology of L2(M), and that the convergence is uniform in
z ∈ C+.

Using the fact that for every τ ≥ 0 the function gk(·, τ) is holomorphic
on C+ , it is straightforward to verify with Morera’s theorem and Fubini’s
theorem that the function

C+ 3 z 7→
∫ T ′

0
gk(z, τ) dτ ∈ C

is also holomorphic. As a uniform limit of holomorphic functions, the
L2(M)-valued function defined on C+ by the series (40) is holomorphic.
Consequently also the function

C+ 3 z 7→
∞∑
k=1

∫ T ′

0
gk(z, τ) dτ ϕk|V ∈ L2(V ) (41)

is holomorphic. Because (41) extends (37) from (0,∞) onto C+, the proof
is finished.

The following two results prepare for the proof of Proposition 2.

Lemma 18. If
LV,T h = L̃

Ṽ ,T
h, (42)

then LV (hkψr(k)) = L̃
Ṽ

(hkψr(k)) for every k ∈ Z+.

Proof. Assume that (42) holds. Consider an integer j ≥ 0 and for induction
purposes assume that LV (hkψr(k)) = L̃

Ṽ
(hkψr(k)) for 1 ≤ k ≤ j. For j = 0

this is vacuously true.
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Suppose j > 0 and let T ′ := (1− 2−(j+1))S < T . Inclusion (35) implies
that for every l > j+ 1 the function hlψr(l) vanishes on (0, T ′). This implies
that

j+1∑
k=1

LV,T ′(hkψr(k)) = LV,T ′ h, (43)

and an analogous equality holds for L̃
Ṽ ,T ′ . Now equalities (42) and (43) and

the fact that T ′ < T imply

j+1∑
k=1

LV,T ′(hkψr(k)) =

j+1∑
k=1

L̃
Ṽ ,T ′(hkψr(k)). (44)

By induction hypothesis the first j terms in the sums of (44) agree,
therefore the last terms have to agree, also. This, and Proposition 17 imply
LV (hj+1ψr(j+1)) = L̃

Ṽ
(hj+1ψr(j+1)), and the induction is finished.

Lemma 19. If LV,T h = L̃
Ṽ ,T

h, then LV (aξ) = L̃
Ṽ

(aξ) for every a ∈
C2
c ((0,∞)) and ξ ∈ L2(V ).

Proof. The first step is to show that

LV (aψl) = L̃
Ṽ

(aψl) (l ∈ Z+, a ∈ C2
c ((0,∞))). (45)

For that purpose, let us fix an integer l ∈ Z+ and a function a ∈ C2
c ((0,∞)),

and choose a constant δ = δ(a) > 0 such that a(t) = 0 for t ∈ (−∞, δ].
For every k ∈ Z+, define a scaled translate dk of hk by setting

dk(t) :=
hk(t+ S)∫
R hk(τ) dτ

(t ∈ R).

Then dk is a non-negative function and following hold:∫
R
dk(τ) dτ = 1 and supp dk ⊂

(
− S

2k−1
,− S

2k

)
(k ∈ Z+). (46)

It follows that the sequence (dk ∗ a)∞k=1 of convolutions and the sequence
((dk ∗ a)′)∞k=1 of their derivatives satisfy

dk ∗ a(t)→ a(t) and (dk ∗ a)′(t)→ a′(t) as k →∞ (t ∈ R), (47)

where both convergences are uniform in t ∈ R.
From the inclusion of the support of dk in (46), it follows that

a(t0)dk(· − t0) ∈ C∞c ((0,∞)) (2k−1 ≥ S/δ, t0 ∈ R). (48)

From (48), Lemma 16, and Lemma 18, it follows that

LV (a(t0)dk(· − t0)ψr(k)) = L̃
Ṽ

(a(t0)dk(· − t0)ψr(k)) (2k−1 ≥ S/δ, t0 ∈ R).
(49)
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By the assumed property of the sequence r, there exists some k ∈ Z+

such that 2k−1 ≥ S/δ and r(k) = l. Choose any such k, and define a
sequence (bm)∞m=1 ∈ C∞c ((0,∞)) of functions by setting

bm(t) :=
1

m

∑
j∈Z

a(j/m)dk(t− j/m) (t ∈ R, m ∈ Z+). (50)

Note that the sum is always in fact finite, and by (49) it holds that

LV (bmψl) = L̃
Ṽ

(bmψl) (m ∈ Z+). (51)

The Riemann sums (50) satisfy

bm(t)→ dk ∗ a(t) and b′m(t)→ (dk ∗ a)′(t) as m→∞ (t ∈ R), (52)

uniformly in t ∈ R (see, e.g., Lemma 4.1.3 in [26]). Because all supports
of the functions bm as well as the support of dk ∗ a are included in some
bounded interval, the uniform convergence (52) together with Proposition 13
and equality (51) imply that in L2(V ) it holds that

LV (dk ∗ aψl) = lim
m→∞

LV (bmψl) = lim
m→∞

L̃
Ṽ

(bmψl) = L̃
Ṽ

(dk ∗ aψl). (53)

Once more we use the assumed property of the sequence r to choose an
increasing sequence (kj)

∞
j=1 of indices such that 2k1−1 ≥ S/δ and r(kj) = l

for every j ∈ Z+. Then (53) holds for every index kj . If we let j → ∞,
using (47) and the same reasoning as above, we obtain

LV (aψl) = lim
j→∞

LV (dkj ∗ aψl) = lim
j→∞

L̃
Ṽ

(dkj ∗ aψl) = L̃
Ṽ

(aψl).

Finally we can use the denseness of span{ψl : l ∈ Z+} ⊂ L2(V ) and (45)
to conclude by Proposition 13 that (45) holds also if ψl is replaced by an
arbitrary function ξ ∈ L2(V ).

We are now ready to prove Proposition 2:

Proof of Proposition 2. We need to prove that LV = L̃
Ṽ

.
Pick f ∈ C2

c ((0,∞);L2(V )) and let (ξk)
∞
k=1 ⊂ L2(V ) be an orthonormal

basis. Define

fN (t) :=

N∑
k=1

〈f(t), ξk〉L2(V )ξk (t ∈ R, N ∈ Z+).

Then for T ′ > 0 large enough it holds that

(fN )∞N=1 ⊂ C2
c ((0, T ′);L2(V )),

sup
N∈Z+,
t∈(0,T ′)

‖f ′N (t)‖L2(V ) ≤ sup
t∈R
‖f ′(t)‖L2(V ) <∞, and

f ′N (t)→ f ′(t) as N →∞, for every t ∈ R.
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Consequently the conditions of Proposition 13 hold, and therefore for every
t ≥ 0 we have

LV f(t) = lim
N→∞

LV fN (t) = lim
N→∞

L̃
Ṽ
fN (t) = L̃

Ṽ
f(t).

Here the convergence is in the topology of L2(V ), the middle equality is due
to Lemma 19 and the linearity of LV and L̃

Ṽ
, and other equalities are due

to Proposition 13. Because f ∈ C2
c ((0,∞);L2(V )) is arbitrary, the proof is

finished.

4.2 The local source-to-solution operator LV determines the
manifold

Let (λk)
∞
k=1 and (ϕk)

∞
k=1 be as in Section 3.1. Let (qk)

∞
k=1 ⊂ Z+ be a

sequence such that (λqk)∞k=1 is the strictly increasing sequence that contains
all distinct eigenvalues of −∆g, and let Ek ⊂ L2(M) be the eigenspace
corresponding to the eigenvalue λqk . Furthermore, let Pk : L2(M)→ L2(M)
be the orthogonal projection onto Ek, and define PV,k : L2(V )→ L2(V ) by

PV,ku := (Pku)|V (u ∈ L2(V ) ⊂ L2(M)).

Then Pk ∈ B(L2(M)) and PV,k ∈ B(L2(V )), where the sets are the spaces
of bounded linear operators on L2(M) and L2(V ), respectively. We consider
these spaces as normed spaces with the operator norm.

Suppose that ϕK+1, ϕK+2, . . . , ϕK+dimEk is the subsequence of the or-
thonormal basis (ϕk)

∞
k=1 that spans the eigenspace Ek. Then

Pku =

K+dimEk∑
k=K+1

〈u, ϕk〉L2(M)ϕk (u ∈ L2(M)).

It follows from (32) that the local source-to-solution operator can be written
as

LV f(t) =
∞∑
k=1

∫ t

0
(t− τ)α−1Eα,α(−λβqk(t− τ)α)PV,kf(τ) dτ (t ≥ 0),

where the sum converges in L2(V ), for every t ≥ 0.

Proposition 20. Consider the region Ω := C \ (−∞, 0] and the B(L2(V ))-
valued mapping HV on Ω defined by

HV (z) :=
∞∑
k=1

1

z + λβqk
PV,k (z ∈ Ω). (54)

Then the following hold:
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1. For every z ∈ Ω the series (54) converges in B(L2(V )) in the operator
norm topology, and the B(L2(V ))-valued function HV is holomorphic
on Ω.

2. For every z0 ∈ C the following limit holds:

lim
z→−z0,
z∈Ω

(z + z0)HV (z) =

{
0, z0 /∈ {λβqk : k ∈ Z+},
PV,k, z0 = λβqk .

(55)

Note that as every complex number is a limit point of Ω, the limit (55)
can be considered also for z0 ∈ [0,∞).

Proof. In what follows, it is convenient to explicitly write out the zero ex-
tension and restriction operators. Thus, let Z : L2(V ) → L2(M) and
Z∗ : L2(M) → L2(V ) be the operators that extend a function with zero
from V to M , and restrict a function on M to V , respectively.

1. It follows from limk→∞ λ
β
qk = ∞ and the fact that the operators Pk

project onto mutually orthogonal subspaces, that the function

Ω 3 z 7→ H(z) :=
∞∑
k=1

1

z + λβqk
Pk ∈ B(L2(M)) (56)

is holomorphic on Ω. As

HV (z) = Z∗H(z)Z, (57)

the function HV is holomorphic on Ω, as well.

2. Suppose that z0 /∈ {λβqk : k ∈ Z+}. Then there exists a constant δ > 0
such that if |z + z0| < δ, then

|z + λβqk | > δ (k ∈ Z+). (58)

It is easy to see that for every z ∈ Ω for which (58) holds, also

‖(z + z0)H(z)‖B(L2(M)) <
|z + z0|

δ

holds. Letting z → −z0 in Ω and using the boundedness of Z and Z∗

in (57) prove the first case of (55).

If z0 = λβqk , we can write

(z + λβqk)HV (z) = PV,k + (z + λβqk)

∞∑
l=1,
l 6=k

1

z + λβql
PV,l. (59)

As z → −λβqk in Ω, the right-hand side of (59) tends to PV,k by the
same reasoning as above.
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The following proposition relates the function HV to the Laplace trans-
forms of LV f and f . It plays an essential part in the proof of Theorem 3:

Proposition 21. Let HV be as in Proposition 20. For every source f ∈
C2
c ((0,∞);L2(V )) and complex number s ∈ C+, the Laplace transform of f

and LV f exist at the point s, and they are related by the equality

LLV f(s) = HV (sα)Lf(s) (s ∈ C+). (60)

Proof. In this proof it is also convenient to use the extension and restriction
operators Z and Z∗ from the proof of Proposition 20.

Let f ∈ C2
c ((0,∞);L2(V )) and let

uZf ∈ C1([0,∞);L2(M)) ∩ L∞([0,∞);L2(M))

be the strong solution of (1) with the source Zf ∈ C2
c ((0,∞);L2(M)). The

boundedness of the function uZf implies that for every s ∈ C+, the L2(M)-
valued function [0,∞) 3 τ 7→ e−sτuZf (τ) is integrable, so that the Laplace
transform

LuZf (s) :=

∫ ∞
0

e−sτuZf (τ) dτ

is defined for all s ∈ C+. Due to the compact support of f , an analogous
reasoning shows that the Laplace transform LZf(s) is defined for all s ∈ C.

We can write

uZf (t) =
∞∑
k=1

(
Fk ∗ 〈Zf, ϕk〉L2(M)

)
(t)ϕk (t ≥ 0),

where the functions Fk are defined in (22). By Proposition 23, we can take
the Laplace transform of uZf componentwise. With (ii) of Proposition 4
and H as defined in (56), this results in

LuZf (s) =

∞∑
k=1

L
(
Fk ∗ 〈Zf, ϕk〉L2(M)

)
(s)ϕk

=

∞∑
k=1

1

sα + λβk
〈LZf(s), ϕk〉L2(M)ϕk

=

∞∑
k=1

1

sα + λβqk
PkLZf(s)

= H(sα)LZf(s) (s ∈ C+).

Using the fact that L commutes with Z and Z∗, we obtain

LLV f(s) = LZ∗uZf (s)

= Z∗H(sα)LZf(s)

= HV (sα)Lf(s) (s ∈ C+).
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To consider Theorem 3, let (M̃, g̃), Ṽ ⊂ M̃ , θ : cl(Ṽ ) → cl(V ), L
Ṽ

,

and L̃
Ṽ

be as in Section 4.1. Let (λ̃k)
∞
k=1 ⊂ [0,∞) be the sequence of

eigenvalues of −∆g̃ (counted with multiplicities), and let (q̃k)
∞
k=1 ⊂ Z+

be a sequence such that (λ̃q̃k)∞k=1 is the strictly increasing sequence of all

distinct eigenvalues of −∆g̃. Define operators (P
Ṽ ,k

)∞k=1 ⊂ B(L2(Ṽ )) and

function H
Ṽ

: Ω → B(L2(Ṽ )) analogously to (PV,k)
∞
k=1 ⊂ B(L2(V )) and

HV : Ω→ B(L2(V )), respectively.
Let

P̃
Ṽ ,k

:= (θ∗)−1P
Ṽ ,k

θ∗ ∈ B(L2(V )) (k ∈ Z+)

be the conjugated operators, and let H̃
Ṽ

be the pointwise conjugatedB(L2(V ))-
valued function defined by

H̃
Ṽ

(z) := (θ∗)−1H
Ṽ

(z)θ∗ =
∞∑
k=1

1

z + λ̃βq̃k

P̃
Ṽ ,k

(z ∈ Ω).

Proposition 22. The local source-to-solution operator LV uniquely deter-
mines the pairs (λqk , PV,k), i.e., if LV = L̃

Ṽ
, then

{(λqk , PV,k) : k ∈ Z+} = {(λ̃q̃k , P̃Ṽ ,k) : k ∈ Z+}. (61)

Proof. The pointwise conjugated function H̃
Ṽ

is holomorphic on Ω, and the

limit (55) holds if HV , PV,k and λqk are replaced by H̃
Ṽ

, P̃
Ṽ ,k

and λ̃q̃k ,

respectively. Also, equality (60) holds if LV and HV are replaced by L̃
Ṽ

and

H̃
Ṽ

, respectively.
Fix a nonzero non-negative function a(t) ∈ C2

c ((0,∞)) and pick an arbi-
trary function ξ ∈ L2(V ). If LV (a(t)ξ) = L̃

Ṽ
(a(t)ξ), then(

La(s)
)
HV (sα)ξ = L

(
LV (a(t)ξ)

)
(s)

= L
(
L̃
Ṽ

(a(t)ξ)
)
(s)

=
(
La(s)

)
H̃
Ṽ

(sα)ξ (s ∈ C+),

(62)

where the first and last equality are due to (60). Because ξ ∈ L2(V ) is
arbitrary and La(s) > 0 for every s ∈ R+, equality (62) implies

HV (s) = H̃
Ṽ

(s) (s ∈ R+). (63)

Proposition 20 states that both sides of (63) are holomorphic functions
on Ω. Because Ω is a region and the functions agree on (0,∞), they must
agree everywhere on Ω.

Due to the unique continuation principle, note that the functions (ϕk|V )∞k=1

are linearly independent, and therefore PV,k 6= 0. From (55) and the fact
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that HV = H̃
Ṽ

on Ω it follows that

PV,k = lim
s→−λβqk ,
s∈Ω

(s+ λβqk)HV (s)

= lim
s→−λβqk ,
s∈Ω

(s+ λβqk)H̃
Ṽ

(s)

=

{
0, λβqk /∈ {λ̃

β
q̃l

: l ∈ Z+},
P̃
Ṽ ,l
, λβqk = λ̃βq̃l .

Thus there must exist an index l ∈ Z+ such that λqk = λ̃q̃l and PV,k = P̃
Ṽ ,l

.

We have shown that the left-hand side of (61) is a subset of the right-
hand side. The other direction follows from symmetry.

In order to prove Theorem 3, we reduce the situation from the fractional
diffusion equation (1) to that of the wave equation on the same manifold
(M, g):

(∂2
t −∆g)w(x, t) = p(x, t), (x, t) ∈M × (0,∞),

w(x, 0) = 0, x ∈M,

∂tw(x, 0) = 0, x ∈M.

(64)

For a source p ∈ C∞c (V × (0,∞)), let wp ∈ C∞(M × (0,∞)) denote the
unique solution of (64), and define the hyperbolic local source-to-solution

operator Lhyp
V : C∞c (V × (0,∞))→ C∞(V × (0,∞)) by

Lhyp
V p := wp|V×(0,∞).

Proof of Theorem 3. Consider p ∈ C∞c (V × (0,∞)). The solution wp of the
wave equation (64) can be written as

wp(x, t) =
∞∑
k=1

∫ t

0
sk(t− τ)〈p(·, τ), ϕk〉L2(M)ϕk(x) dτ (t ≥ 0), (65)

where

s1(t) := t and sk(t) :=
sin(
√
λk t)√
λk

, for k ≥ 2,

and the series (65) converges in L2(M × [0, T ]), for every T > 0 (see Corol-
lary 2 of [24]). Thus

Lhyp
V p(x, t) =

∞∑
k=1

∫ t

0
sqk(t− τ)PV,k p (x, τ) dτ (t ≥ 0), (66)

where the series converges in L2(V × [0, T ]), for every T > 0.
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By Proposition 22, the local source-to-solution operator LV for the frac-
tional diffusion equation (1) uniquely determines the eigenvalues (λqk)∞k=1 ⊂
[0,∞) of −∆g and the corresponding operators (PV,k)

∞
k=1 ⊂ B(L2(V )).

From (66) it follows that these in turn uniquely determine the hyperbolic

local source-to-solution operator Lhyp
V for the wave equation (64). By The-

orem 2 of [24], Lhyp
V determines the manifold (M, g) up to a Riemannian

isometry. The proof is finished.

Proof of Theorem 1. Let h ∈ C∞c ((0, T );L2(V )) be a source as defined in
Definition 14, and suppose (3) of Theorem 1 holds with this source. Then (5)
of Proposition 2 holds, and consequently (6) holds for every source f ∈
C2
c ((0,∞);L2(V )). Therefore, by Theorem 3, the manifolds (M, g) and

(M̃, g̃) are Riemannian isometric.

A Calculus of Hilbert space valued functions of a
real variable

Consider a measurable subset I ⊂ R and a function y : I → L2(M). We say
that y is integrable if it is strongly measurable and

∫
I ‖y(τ)‖L2(M) dτ < ∞.

The measure on I is the Lebesgue measure, and measurability of the norm
is a consequence of the strong measurability of y. For 1 ≤ p ≤ ∞, the
space Lp(I;L2(M)) consists of those strongly measurable functions y : I →
L2(M) for which ‖y‖L2(M) ∈ Lp(I). We recall that for y ∈ L1(I;L2(M))
the (Bochner) integral

∫
I y(τ) dτ ∈ L2(M) is defined. For general theory of

integration of functions with values in a Banach space, we refer the reader
to [36].

Suppose then that I ⊂ R is an interval with at least two points and fix
a point t ∈ I. We recall that y is said to be differentiable at the point t, if
there exists a function ξ ∈ L2(M) such that

lim
h→0

∥∥∥y(t+ h)− y(t)

h
− ξ
∥∥∥
L2(M)

= 0.

If t is an endpoint of I, the limit is the appropriate one-sided limit.
The derivative of y at t, denoted by y′(t), is defined to be the function

ξ ∈ L2(M). If y is differentiable at every point of I and the so obtained
function y′ : I → L2(M) is continuous, y is continuously differentiable. The
space of all continuously differentiable functions is denoted by C1(I;L2(M)).
Higher order derivatives and spaces Ck(I;L2(M)) are defined recursively
exactly as in the case of scalar functions.

Proposition 23. Consider a function y : I → L2(M), y(t) =
∑∞

k=1 yk(t)ψk,
where I ⊂ R is measurable, yk : I → C are complex-valued functions,
(ψk)

∞
k=1 ⊂ L2(M) is an orthonormal basis, and the series converges in

L2(M) for every t ∈ I. Then the following hold:
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(i) The L2(M)-valued function y is strongly measurable, if and only if all
the complex-valued functions yk : I → C are measurable.

(ii) If y ∈ L1(I;L2(M)), then∫
I
y(τ) dτ =

∞∑
k=1

[∫
I
yk(τ) dτ

]
ψk. (67)

Note that the integrals on the right-hand side of (67) are ordinary
Lebesgue integrals of complex-valued functions.

Proof. If y is strongly measurable and k ∈ Z+, the component function
yk = 〈y, ψk〉L2(M) is strongly measurable as the composition of a continuous
function with a strongly measurable function. A scalar strongly measurable
function on I is measurable.

On the other hand, if yk : I → C is measurable, it is an almost ev-
erywhere limit of complex-valued step functions, and therefore the L2(M)-
valued map ykψk : I 3 t 7→ yk(t)ψk ∈ L2(M) is an almost everywhere limit
of L2(M)-valued step maps. In other words, ykψk is strongly measurable.
It follows that the partial sums

∑N
k=1 ykψk are strongly measurable, and

therefore y as their pointwise limit in L2(M) is strongly measurable.
If y ∈ L1(I;L2(M)), it is a property of the integral that〈∫

I
y(τ) dτ, ξ

〉
L2(M)

=

∫
I
〈y(τ), ξ〉L2(M) dτ (ξ ∈ L2(M)).

Applying this with ξ = ψk proves (67).

Proposition 24. Let X be a Banach space, (ξk)
∞
k=1 ⊂ X be a bounded

sequence, and (hk)
∞
k=1 ⊂ C∞(I) be a sequence of complex-valued functions,

where I ⊂ R is an open set. Suppose that the derivatives h
(l)
k satisfy

∞∑
k=1

‖h(l)
k ‖∞ <∞ (l = 0, 1, 2, . . .). (68)

Then the series f :=
∑∞

k=1 hkξk converges uniformly on I, and f ∈ C∞(I;X).
Furthermore, the derivatives of f are obtained by term-wise differentiation,
and also those series converge uniformly on I.

Proof. The terms hkξk : I → X are continuous, and by the Weierstrass M-
test (using the boundedness of ξk and (68)), the series

∑∞
k=1 hkξk converges

uniformly to f . It follows that f is continuous.
For N ∈ Z+ we have (

N∑
k=1

hkξk

)′
=

N∑
k=1

h′kξk,
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and the same reasoning as above implies that(
N∑
k=1

hkξk

)′
→

∞∑
k=1

h′kξk

uniformly as N → ∞. It follows from standard results of differentiation
(see, e.g., [36], Theorem 9.1) that f is differentiable and f ′ =

∑∞
k=1 h

′
kξk.

An easy induction finishes the proof.
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