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Abstract 16 

Large-scale multiparameter screening has become increasingly feasible and straightforward to perform thanks to 17 

developments in technologies such as high-content microscopy and high-throughput flow cytometry. The 18 

automated toolkits for analyzing similarities and differences between large numbers of tested conditions have 19 

not kept pace with these technological developments. Thus, effective analysis of multiparameter screening 20 

datasets becomes a bottleneck and a limiting factor in unbiased interpretation of results. Here we introduce 21 

compaRe, a toolkit for large-scale multiparameter data analysis, which integrates quality control, data bias 22 

correction, and data visualization methods with a mass-aware gridding algorithm-based similarity analysis 23 

providing a much faster and more robust analyses than existing methods. Using mass and flow cytometry data 24 

from acute myeloid leukemia and myelodysplastic syndrome patients, we show that compaRe can reveal 25 

interpatient heterogeneity and recognizable phenotypic profiles. By applying compaRe to high-throughput flow 26 

cytometry drug response data in AML models, we robustly identified multiple types of both deep and subtle 27 

phenotypic response patterns, highlighting how this analysis could be used for therapeutic discoveries. In 28 
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conclusion, compaRe is a toolkit that uniquely allows for automated, rapid, and precise comparisons of large-29 

scale multiparameter datasets, including high-throughput screens. 30 

Introduction 31 

Technological developments have accelerated the generation of large-scale multiparameter screening data 32 

through methodologies such as high-content microscopy and high-throughput flow cytometry (1-3). These 33 

technologies can test hundreds of samples (such as drug treatments) each with tens of thousands of events (e.g., 34 

cells) labeled for numerous biomarkers (such as cytoplasmic or membrane markers). However, analyzing this 35 

massive multiparameter data to provide an overview of similarities and differences between hundreds of 36 

samples is still a challenge (1-3). This analytical challenge is further complicated by various sources of bias and 37 

noise often existing in the data, such as batch effect and signal drift (a gradual shift in the marker intensity 38 

across a multi-well plate) (1-3). 39 

There have been efforts to cluster samples from large-scale multiparameter (multidimensional) screening data. 40 

A simple approach is to use a representative value for each cell marker such as median fluorescence intensity 41 

(MFI) for clustering samples (4). However, using a single representative value can easily lead to loss of 42 

information about biologically relevant variance within and between cell subpopulations. Meta-clustering with 43 

single-cell clustering algorithms has been suggested to cluster samples based on the similarity of the centroids of 44 

cell subpopulations identified in the individual samples (5-8). While these algorithms are widely used in single-45 

cell data analysis for clustering cells, they are not efficient for clustering of samples. This is because centroid-46 

based analysis can be misleading when subclusters are not sufficiently distinct or the number of sub-clusters 47 

varies. Additionally, the heavy computing cost of meta-clustering makes it poorly suited for analyses of large 48 

datasets with many samples. Manual gating and machine learning based on prior knowledge have been used to 49 

cluster samples (9, 10), but using prior knowledge for subpopulation identification can both lead to biased 50 

interpretations and failure to make de novo discoveries. Dimension reduction methods (11-13) coupled with the 51 

Jensen-Shannon divergence (JSD) metric have also been used to cluster multidimensional samples (12). These 52 

algorithms including factor analysis and principal component analysis (PCA) still require excessive computing 53 

costs with an inherent information loss. It is also important to note that none of the methodologies developed so 54 

far efficiently correct for sources of bias and noise in large-scale multiparameter screening data. 55 

Available computational toolkits (14-16) mostly allow for single-parameter or unautomated analyses of 56 

large-scale screening data using the aforementioned methods. In these toolkits, each well should be first 57 
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represented by a single parameter such as cell counts or centroids or they require manual intervention. To 58 

provide a useful toolkit for precise and effective interpretation of small- to large-scale multiparameter screening 59 

data, we developed compaRe. This toolkit has several unique modules for quality control, bias correction, 60 

pairwise comparisons, clustering, and data visualization. The quality control and bias correction modules can 61 

effectively reveal and remove various sources of bias in the screening data. compaRe clusters samples by 62 

measuring the similarity between them using a dynamic mass-aware gridding algorithm. This algorithm 63 

increases the robustness of the toolkit to the size of data and signal shift (a technical term referring to batch 64 

effect and signal drift), while guaranteeing fast clustering, as it does not bear the computing cost of dimension 65 

reduction and subsampling. The toolkit is available both as a command-line version and a graphical user 66 

interface (GUI) version that provides various visualizations to help with the interpretation of its readouts. 67 

compaRe performed robustly in the presence of background noise and batch effects even where these input 68 

data artifacts could not be corrected. compaRe analyses of multiparameter mass and flow cytometric data from 69 

acute myeloid leukemia (AML) and myelodysplastic syndrome (MDS) patient samples revealed interpatient 70 

heterogeneity and recognizable phenotypic profiles. When applied to high-throughput flow cytometry of the 71 

dose response of AML samples treated with various drugs, compaRe successfully corrected for various sources 72 

of bias and clustered the samples based on their response to treatment, allowing for detection of both drastic and 73 

subtle phenotypic responses. 74 

Results 75 

compaRe is a comprehensive toolkit for multiparameter screening data 76 

compaRe is designed to analyze the data from small to large-scale multiparameter screening assays such as 77 

high-throughput flow cytometry, high-content microscopy, mass cytometry, and standard flow cytometry. The 78 

toolkit comprises several modules for quality control, bias correction, clustering, and visualization. Figure 1 79 

shows the modules for a high-throughput flow cytometry of AML samples taken from a mouse model treated 80 

with various drugs. During quality control, several sources of bias such as autofluorescence, bioluminescence, 81 

carryover effect, edge effect, signal drift, and cell viability drift (drift in the number of live cells across the plate) 82 

were identified. The bias correction module could effectively correct for signal and cell viability drifts (two 83 

main sources of bias in high-throughput screening with fluorescent markers) using regression analysis (Figure 1, 84 

Materials and Methods). 85 
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At the core of the compaRe toolkit is a module for pairwise comparisons of samples. It measures the 86 

similarity between two samples using a dynamic mass-aware gridding algorithm (Figure 1, Materials and 87 

Methods). Given two samples, the algorithm divides the higher dimensional space (formed by, for example, cell 88 

surface markers) of the samples individually into several spatial units called hypercubes. The average difference 89 

between proportions of data points present in corresponding hypercubes across the samples is used to represent 90 

similarity. In this setting, the module becomes robust to signal shift and data size difference between the two 91 

samples (Appendix 1). This module generates a similarity (affinity) matrix for the clustering module. 92 

Clustering

Bias correctionQC

Similarity calculationVisualization in GUI

Figure 1 compaRe is a comprehensive suite for multiparameter screening data. High-throughput flow 

cytometry generates massive multidimensional data from hundreds of samples. compaRe’s quality control (QC) 

module reveals several sources of bias in the assay such as signal (intensity difference between the top left and 

bottom right corners) and cell viability drifts. These two are corrected for in the bias correction modules within 

and between the plates. compaRe performs a pairwise similarity calculation between the samples using dynamic 

gridding and forming hypercubes (represented by distinct colors). The portions of the data within individual 

hypercubes are used to calculate similarity. Clustering is performed based on similarity. The graphical user 

interface (GUI) provides several ways to thoroughly explore and visualize the read-outs. 
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The clustering module uses a graphical algorithm (Figure 1, Materials and Methods). Initially, all nodes 93 

(samples) are connected forming a complete weighted graph wherein weights represent similarity values. The 94 

graph is then pruned to remove potential false positive edges using a threshold inferred from negative controls 95 

(untreated samples). After constructing a linked graph, clustering is tantamount to finding maximal cliques 96 

(complete subgraphs that cannot be extended), each containing samples with similar responses. compaRe 97 

benefits from parallel computing and modular design. Its modular design allows the modules to run 98 

independently; thus, the similarity and clustering modules of compaRe can be potentially applied to any 99 

problem space. 100 

compaRe is ultra-fast and robust to background noise and batch effect 101 

To evaluate the robustness of compaRe’s comparison module to noise and batch effect, we benchmarked it 102 

against JSD with UMAP (for simplicity just JSD) and meta-clustering with PhenoGraph (for simplicity just 103 

meta-clustering) (6). We analyzed the publicly available mass cytometry data of a total of 21 bone marrow 104 

aspirate samples collected from 16 pediatric AML patients and 5 healthy adult donors labeled for detection of 16 105 

cell surface markers (6). We introduced random noise with Gaussian distribution to the 16 parameters of each 106 

sample to simulate a batch effect. In this setting, although the added noise undermines similarity, the overall cell 107 

population configuration remains intact, and consequently the simulated samples will still have the highest 108 

similarity with their original samples. 109 

Even with the added noise, the comparison module correctly identified similar samples (Figure 2a). 110 

Conversely, the batch effect seriously compromised the performance of both meta-clustering and JSD, showing 111 

several maximum similarities other than the originals (Figure 2b, C). In additional comparison with FlowSOM 112 

and SPADE, other commonly used tools for flow cytometry, compaRe’s performance far exceeded their 113 

performance (Appendix 1-figure 31). This result demonstrates the advantage of using dynamic gridding for 114 

comparison of samples in the presence of noise or batch effect. 115 

Notably, compaRe took only 25 min to analyze the 21 samples (210 pairwise comparisons), without 116 

subsampling or dimension reduction.  Meanwhile, meta-clustering and JSD took 39 h and 10 h respectively. For 117 

the feasibility of JSD, we subsampled each sample to 100,000 cells (default value suggested in (12)). When we 118 

fixed this limit to 60% of each sample, the computing time of JSD increased to 3 days. To investigate the 119 

relation between run time and sample size, we compared each sample to itself and sorted measured times based 120 
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on sample size (Figure 2d). The run time increased steeply for both meta-clustering and JSD as the sample size 121 

increased, while the increase for compaRe was almost unnoticeable. 122 

To further show that compaRe can identify phenotypic changes from a high-dimensional dataset, 123 

we used a subset of the data with 3 healthy and 2 AML samples stained with 29 (15 membrane and 14 124 

intracellular signaling) markers (Appendix 1-figure 32). Taking H1 as reference, we gradually removed 125 

25%, 50%, 75% and 100% of cells from a target cluster identified by PhenoGraph. The gradual removal 126 

can be regarded as a phenotypic change and the 75% reduction can potentially resemble a rare cell 127 

population (a small cluster of cells). As shown in the UMAP projections, the similarity decreased 128 

concurrently and more drastically after 100% reduction when phenotypic changes were detected, 129 

indicating compaRe is sensitive to phenotypic changes and the existence of rare cell populations. 130 
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Figure 2 compaRe robustly measures the similarity between samples in the presence of batch effect. 

Similarity matrix generated by compaRe is shown in (a). Size and color of dots represent the level of similarity. 

Self-comparisons were removed. Noise was added (marked with *) to the original 21 mass cytometry samples 

of bone marrow aspirates from 16 pediatric AML patients (S) and 5 healthy adult donors (H). Similarity 

matrices using JSD with UMAP and meta-clustering with PhenoGraph are shown in (b) and (c) respectively. 

The run time of comparing each sample to itself is shown in (d). Samples were sorted based on their size. 
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compaRe reveals interpatient similarity 131 

Non-AML myeloid neoplasias such as MDS can evolve to become AML. Over time, about one-third of all MDS 132 

cases develop into AML (17, 18). The risk of developing AML largely depends on the MDS subtype at the time 133 

of diagnosis, with high-risk MDS developing into AML more often than the lower-risk MDS subtypes (19). As 134 

many immunophenotypic abnormalities are not unique to MDS, several diagnostic flow cytometric antibody 135 

panels have been proposed (20, 21). The EuroFlow AML/MDS antibody panel (20) aims at the parallel 136 

identification and categorization of AML and MDS. Both diseases are heterogeneous, affecting multiple cell 137 

lineages and multiple maturation stages. Therefore, this panel concerns major myeloid lineages (neutrophilic, 138 

monocytic and erythroid) and the detection of abnormal lymphoid maturation profiles in 4 tubes. The panel uses 139 

4 backbone markers to identify myeloblasts and an additional set of 15 markers devoted to the characterization 140 

of myeloid lineages (Supplementary Files 1 and 2). 141 

Unlike the backbone markers, the characterization markers are divided into each tube exclusively. This 142 

design was made so that characterization markers from different tubes can be inferred on the same backbone 143 

marker subpopulations, but the design makes it impossible to form a multiparameter dataset which is required 144 

for clustering methods. However, as compaRe’s comparison module can compare cell population morphologies 145 

even in subspaces, we were able to use it to measure similarities between patient samples. 146 

We analyzed 25 bone marrow mononuclear cell samples collected from 16 MDS patients and 9 AML 147 

patients (Supplementary File 3). The comparison module provided a detailed overview of similarities of 148 

samples. As expected, the AML samples exhibited a great amount of interpatient heterogeneity compared to the 149 

MDS samples (Figure 3a, b) with all MDS samples clustered together, and the AML samples spread over three 150 

clusters. To verify the performance of the module, we visualized the pairwise comparisons using UMAP 151 

projection (Figure 3c and Appendix 1-figures 2-25). The measured similarities perfectly matched the projections 152 

so that from top left to bottom right, as the similarity decreases, the degree of overlap decreases, and the number 153 

of exclusive cell populations increases. 154 

We further investigated how different the three groups of the AML samples were (Figure 4 and Appendix 1-155 

figure 26). AML samples 1 and 9 of the blue cluster were confirmed to have a high degree of monocytic 156 

differentiation with marked expression of the monocytic maturation markers CD14, CD35, CD64 and CD300e. 157 

The AML samples of the green cluster, on the other hand, represented a cluster of poorly differentiated AML 158 

cases with low expression of differentiation markers and high expression of the stem cell/progenitor markers 159 

CD34 and CD117. Unlike the blue cluster with high monocytic differentiation, and the green cluster with poor 160 
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monocytic differentiation, the AML samples 2 and 5 of the red cluster included both positive and negative 161 

Figure 3 compaRe highlights immunophenotypic similarities. (a) The similarity band plot visualizes the 

similarity between a sample specified by its row (band) and other samples measured by compaRe (H: higher-

risk MDS, L: lower-risk MDS and A: AML). Each band was independently transformed by an exponential 

function to emphasize the highest and the lowest similarity values. (b) A graphical representation of the 

similarities. The graph nodes (samples) were clustered by a random walk. (c) The UMAP projection of A1 

sample against the other patient samples is provided as an example. The other projections are given in Appendix 

1-figures 2-25. The projections were sorted based on similarity. 
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populations of CD11b which is a common granulocytic and monocytic maturity marker, a feature observed in 162 

Figure 4 Immunophenotypic profiles of two different groups of AML patients. Each row shows the UMAP 

projection of AML samples 1 and 9 (red and orange) vs AML samples 3, 4, 6-8 (blue) of the green cluster of 

Figure 3b stained by the markers available in each tube. 
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all MDS samples as well (Appendix 1-figure 26). 163 

In conclusion, compaRe’s comparison module can be used to optimize true cytometric n-dimensional 164 

immunophenotypic characterization of patient samples. Interpretation can then be performed in a conventional 165 

manner assisted by lower-dimensional projection tools such as PCA and UMAP that promptly provide a 166 

phenotypic profile of the patient samples. 167 

Identifying cell-subtype-specific drug responses in mouse AML cells 168 

We applied compaRe to high-throughput flow cytometry data to identify cell subtype-specific responses evoked 169 

by antineoplastic agents in leukemic spleen cells from an AML mouse model. Splenic cells were sorted for c-Kit 170 

cell surface expression, allowing for the enrichment of stem/progenitor-type leukemic cells. On ex vivo 171 

expansion, these cells continuously expand and differentiate in a similar way as in vivo with a clear stem 172 

cell/progenitor population and partial differentiation towards CD11b/Gr-1 or CD16/CD32-expressing myeloid 173 

cells. After ex vivo expansion, the leukemic cells were plated onto multi-well plates containing a library of 116 174 

antineoplastic agents including surface and nuclear receptor inhibitors and activators, enzyme inhibitors and, 175 

cytotoxic chemotherapy in a five-point concentration range, as well as 20 negative control wells (Supplementary 176 

File 4). After 72 h of drug exposure, we stained the cells with fluorescently labeled antibodies against three cell 177 

surface markers (CD16/32, Gr-1 and CD11b) and quantified cell surface marker expression using a high-178 

throughput flow cytometer. 179 

compaRe corrected the intraplate signal drift, sources of bias in cell numbers, as well as inter-plate sources 180 

of bias (Appendix 1-figure 1). After clustering and clique analysis, we obtained 134 cliques, each sharing 181 

similar drug responses (Supplementary File 5). 182 

To get an overview of the assay, we generated a dispersion map of the clusters (Figure 5a, b and Materials 183 

and Methods). We identified a distinct response group characterized with decreased Gr-1 and concomitant 184 

increase of CD16/CD32 as compared to control (Group 1 in Figure 5a). Most of the cliques included in this 185 

response group consisted of drugs in high concentrations with cytotoxic/cytostatic effects. However, some drugs 186 

in this group had a milder effect on live cell numbers, and these were enriched for mitogen-activated protein 187 

kinase (MAPK) pathway-associated inhibitors (Figure 5c, Supplementary File 6). For instance, trametinib (2.5 188 

nM) in clique 23 (C23) showed a marked decrease of Gr-1 and increase of CD16/CD32, further confirming the 189 

results of compaRe (Figure 5d). The MAPK pathway is a regulator of diverse cellular processes such as 190 
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proliferation, survival, differentiation, and motility (22). Our findings suggest that MAPK signaling controls the 191 
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differentiation and/or proliferation towards Gr-1-/CD16+ cells. 192 

In high concentration, molibresib and birabresib, inhibitors of BET proteins BRD2, BRD3, and BRD4, 193 

caused a reduction in live cell counts but also a reduction of MFI in all the measured markers, which 194 

corresponds to the loss of differentiation marker positive cells (Gr-1+, CD11b+, CD16/CD32 high) (Figure 5b: 195 

C100, C110, Figure 5d). The BRD2/3/4 proteins regulate transcription via recognition of acetylated lysines on 196 

histones and concomitant recruitment of other transcription and chromatin remodeling factors to enhance 197 

transcriptional activity (23). The enrichment of undifferentiated cells could therefore be due to an early block in 198 

differentiation or that inhibition of BRD2/3/4 has led to a general decrease of cell surface protein transcription. 199 

In this cell model, the leukemic stem-like cells are expected to be present within the differentiation marker 200 

negative population. These cells are potential targets for treatments against leukemia. We observed response 201 

group 2 (Figure 5a) had a higher MFI in marker Gr-1 as compared to control, the increase was very slight and 202 

seemed to be linked to toxic drug concentrations. However, three drugs, vincristine (C80), tazemetostat, and 203 

tretinoin clearly reduced the proportion of differentiation marker negative cells (Figure 5d). Interestingly, these 204 

three drugs have distinct modes of action: vincristine is a microtubule polymerization inhibitor, tazemetostat 205 

inhibits the histone methyltransferase EZH2, and tretinoin is a retinoic acid receptor agonist (Supplementary 206 

File 6). 207 

Taken together, compaRe analysis of the high-throughput flow cytometry screening data allowed rapid 208 

identification of several distinct phenotypic responses in this mouse AML model, as well as the cellular signals 209 

that drive them. Drugs of different mechanism of action can still cluster together if the cellular processes they 210 

affect converge in a specific model. Drug response in association with genetic alterations can be one of the 211 

applications of compaRe. The genetic alteration could be visualized in the clusters that compaRe identifies. 212 

Figure 5 compaRe analysis identifies several distinct cell subtype-specific responses in a high-throughput 

flow cytometry screening of mouse AML cells. (a) A UMAP plot of cliques identified by compaRe. Cliques 

are colored by Gr-1 and CD16/CD32 MFIs. Group 1 is characterized with reduced Gr-1 and increased 

CD16/CD32 as compared with control. Group 2 has increased Gr-1 expression compared with control. (b) 

Heatmap of marker MFIs. Values are normalized between 0 and 1 per marker to make cross-comparisons 

possible. Cliques containing control, trametinib (2.5 nM) (C23), molibresib and birabresib (C100 and C110), 

and vincristine (C80) are marked. (c) Waterfall plot of compounds belonging to response group 1, showing live 

cell count as a percentage of control treatment (DMSO). (d) Density scatter plots for Control (DMSO), C23, 

C100, and C80. 
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Identifying highly selective signal transduction inhibitors in human AML cells 213 

We further applied compaRe to the drug screening data from an AML patient sample. Primary AML bone 214 

marrow mononuclear cells were dispensed into a 384-multiwell plate containing a library of 40 drugs and drug 215 

combinations in 7-point concentration ranges (Supplementary File 7). After 72 h of drug exposure, the cells 216 

were stained with fluorescently labeled antibodies against a panel of AML-related cell surface markers (CD45, 217 

CD34, CD38, CD117, HLA-DR, CD45-RA, CD3 and a mix of myeloid differentiation-related markers). A 218 

high-throughput flow cytometer was used to quantify cell surface marker expression. 219 

compaRe analysis identified several distinct response groups (Figure 6a, Supplementary File 8). Response 220 

group 1 had notably higher MFIs in the CD34 and CD38 channels compared to controls. Interestingly, the 221 

increase in MFIs was due to a drug concentration-dependent appearance of a CD34+/CD38+ cell population that 222 

was barely detectable in the DMSO control samples (Figure 6b). The appearance of this CD34+/CD38+ 223 

population was also concomitant to a general increase in live cell count (Figure 6c). Altogether, seven different 224 

drugs had the same effect (Figure 6d), most of them being selective signal transduction inhibitors such as 225 

trametinib (MEK inhibitor), copanlisib (PI3K inhibitor) and PIM447 (PIM kinase inhibitor). 226 

Response group 2 consisted of two drugs: birabresib and lenalidomide in different concentrations. These 227 

induced a decrease in the MFI of CD45-RA and CD45 channels (Appendix 1-figure 27a). In the case of 228 

lenalidomide, this response was likely due to cell toxicity and/or growth inhibition (Appendix 1-figure 27b). 229 

Interestingly, the birabresib response was very pronounced without the loss of live cell numbers, (Appendix 1-230 

figure 27b) but with a decrease in the MFI in the cell differentiation marker mix channel (Appendix 1-figure 231 

27c). 232 

compaRe also detected response group 3 as distinct from the controls. This group includes treatment with 233 

tretinoin (several concentrations), navitoclax, and mitoxantrone (low dose). Further validation showed the 234 

phenotypic response in group 3 is subtle but with a distinct increase in CD34+ cells (Appendix 1-figure 27d). 235 

This result highlights compaRe analysis is sensitive enough to identify these subtle changes. 236 

Discussion 237 

Technological advancements in multiparameter high-throughput screening have enabled testing thousands of 238 

biological conditions in a short amount of time. This requires algorithmic development to analyze the large 239 
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amount of data generated by such technologies. We developed an automated comprehensive toolkit, compaRe, 240 

for robust analysis of small- to large-scale multidimensional screening data with several modules for quality 241 

control, bias correction, comparison, clustering, and visualization. 242 
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Figure 6 Identification of drugs that induce expansion of CD34+/CD38+ cells in an AML patient sample. 

(a) UMAP of cliques identified by compaRe. Cliques are colored by CD34 and CD38 MFIs. Response groups of 

interest are indicated using a dashed line. (b) Example of response group 1: density scatter plot of markers 

CD34 and CD38 in different concentrations of PIM kinase inhibitor PIM447. (c) Count of live cells after 72 h 

exposure to different concentrations of PIM kinase inhibitor PIM447. (d) Table of drugs that induced expansion 

of the CD34+/CD38+ cell population. 
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The toolkit is unique in many ways. Its quality control and bias correction modules can correct for signal and 243 

cell viability drifts in large-scale fluorescence-based screening assays using regression analysis. Its comparison 244 

module utilizes a dynamic mass-aware gridding algorithm, which substantially reduces the computing cost and 245 

provides robustness to signal shift (batch effect and signal drift). Alternative approaches such as meta-clustering 246 

and JSD require both sub-sampling of the data, with the possible loss of valuable subpopulations, and 247 

considerably more computing time. 248 

We tested the robustness of the comparison module to batch effect and noise through simulation. The 249 

module effectively circumvented the batch effect while JSD and meta-clustering significantly suffered from it. 250 

The poor accuracy of meta-clustering demonstrates the drawback of using cluster centroids for similarity 251 

comparison across samples while the poor performance of JSD indicates that this approach can work well only 252 

in the absence of signal shift. It is of particular note that compaRe does not need subsampling or dimension 253 

reduction of the input data. 254 

Multiparameter cytometric analysis of immunophenotypes of AML and MDS patient samples by the 255 

comparison module coupled with the EuroFlow AML/MDS antibody panel revealed interpatient heterogeneity 256 

and recognizable phenotypic profiles. Even though EuroFlow markers are divided into several discrete tubes, 257 

compaRe’s comparison module can compare the cell population distribution to measure similarities between 258 

patient samples. 259 

We investigated several types of responses evoked by different doses of antineoplastic agents in two high-260 

throughput flow cytometry screening assays of an AML mouse model and an AML human patient. We could 261 

identify subtle but distinct phenotypic drug-induced changes. We also identified drugs with different mechanism 262 

of action but similar responses. In general, we showed that drugs will cluster together if the cellular processes 263 

they affect converge in a specific model. 264 

The quality control and bias correction modules could successfully correct for signal and cell viability drifts 265 

in these studies. In our explored assays, signal drift was obviously associated with the order in which wells were 266 

read. It was caused by the time differences in antibody incubation across the plate as the high-throughput flow 267 

cytometer requires more than one hour to sample all wells in a 384-well plate. For high-density assay plate 268 

formats with large numbers of wells, this can cause gradual incremental influences in intensity and cell viability. 269 

Therefore, when aligning wells along the order that the flow cytometer sampled the wells, we found a linear 270 

trend in MFIs. We benefited from regression analysis to remove the effect of signal shifts. 271 
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During the analyses, the compaRe toolkit made it easy to explore and compare highly complex datasets in a 272 

substantially reduced timeline. It is equipped with multithreading and can run through command-line interface 273 

on a computer server or GUI on a desktop. The GUI provides the investigator with numerous interactive 274 

visualization tools including cell staining, graphical representation, and gating. In sum, it provides a total 275 

package for fast, accurate, and readily interpretable multiparameter screening data analysis. 276 

Materials and Methods 277 

Mass cytometry of healthy and pediatric AML bone marrow aspirates 278 

Mass cytometry dataset for 21 samples labeled with 16 surface markers collected from 16 pediatric AML 279 

patients obtained at diagnosis and 5 healthy adult donors (6) were downloaded from Cytobank Community with 280 

the experiment ID 44185. There are 378 FCS files in this experiment with one FCS file for each of 21 patients 281 

for each of 17 conditions (2 basal replicates and 16 perturbations). All FCS files from a single patient had been 282 

pooled then clustered with the PhenoGraph algorithm. Each file includes a column named PhenoGraph that 283 

specifies the PhenoGraph cluster to which each event was assigned as an integer. A value of 0 indicates no 284 

cluster was assigned because the cells were identified as outliers during some stage of analysis. Using the 285 

PhenoGraph column, we determined centroids of cell clusters, and used PhenoGraph to meta-cluster them as 286 

described in (6). To generate the similarity matrix, we adapted an approach similar to that of compaRe such that 287 

each meta-cluster as a spatial unit was treated like a hypercube. We set compaRe’s n to 4 for this assay 288 

(Materials and Methods and Appendix 1). 289 

High-throughput flow cytometry of AML mouse model 290 

AML primary splenic cells from Npm1+/cA (24); Flt3+/ITD (25); Dnmt3a+/- (26); Mx1-Cre+ (27) moribund mice 291 

were sorted for c-Kit positivity and expanded ex vivo. AML cells were treated with a library of 116 292 

chemotherapy and immunotherapy antineoplastic agents in a five-point concentration range (Supplementary File 293 

4). Treated samples were stained with three informative cell surface antibodies (Supplementary File 9) and 294 

fluorescence was detected using a high-throughput flow cytometer iQue Screener Plus (Intellicyt). We set 295 

compaRe’s n to 5 for this assay. 296 

High-throughput flow cytometry of an AML human patient sample 297 
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Mononuclear cells were isolated from a donated human bone marrow aspirate from an AML patient (Danish 298 

National Ethical committee/National Videnskabsetisk Komité permit 1705391). The cells were treated with a 299 

library of 40 chemotherapy and targeted antineoplastic agents in a seven-point concentration range 300 

(Supplementary File 7) for 72 h. Cells were subsequently incubated with fluorescently labeled antibodies 301 

targeting 11 informative cell surface proteins in 8 fluorescence channels (Supplementary File 10). Samples were 302 

read using a high-throughput flow cytometer (iQue Screener Plus, Intellicyt). We set compaRe’s n to 3 for this 303 

assay. 304 

Flow cytometry of AML and MDS patients 305 

Clinical flow cytometry data using a slightly modified AML panel as described by the Euroflow Consortium 306 

(20) from 25 bone marrow aspirates from MDS and AML patients from Rigshospitalet (Copenhagen, DK) were 307 

used for analysis. Each sample was analyzed using a total of four tubes (Euroflow AML panel tubes 1-4) with 308 

eight antibodies in each tube (Supplementary Files 1 and 2). Acquisition of data was performed on a FACS 309 

Canto (Becton Dickinson Immunocytometry Systems), and data analysis was done in the Infinicyt software 310 

(Cytognos, Salamanca, Spain). We set compaRe’s n to 5 for this assay. 311 

Quality control (QC) 312 

Multiwell plate heatmaps of medians come in handy in QC to reveal issues such as signal and cell viability drifts 313 

occurring during screening. However, as a typical heatmap has an equally spaced color palette, small but 314 

significant differences between wells may be obscured and not visible. Therefore, we normalized the color 315 

palette by the distribution of the medians. Also, before clustering, we removed outliers in the negative controls 316 

that were different from the others in terms of similarity values measured by compaRe. 317 

Correcting signal and cell viability drifts 318 

Depending on the protocol by which wells are processed, time may become a major concern so that some 319 

specific wells may have lower or higher values than expected. To correct for these sources of bias, we employed 320 

a two-step correction: intra-plate shift (signal drift) correction and inter-plate shift (batch effect) correction. For 321 

a given plate, we first fit a linear regression model and then vertically translate points (well values) with respect 322 

to the learned line as it rotates to the slope zero. After correcting for the intra-plate bias, the inter-plate bias is 323 

corrected by aligning medians of the plates, that is, translating to a common baseline. 324 
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Similarity calculation using dynamic gridding 325 

To measure the similarity between two datasets, compaRe divides each dimension into n subsets for each dataset 326 

individually so that a dataset with d dimensions (markers) will be gridded into at most nd spatial units called 327 

hypercubes. compaRe grids only the part of the space encompassing data points, avoiding empty regions. It then 328 

measures the proportion of data points for either dataset within each of the corresponding hypercubes. The 329 

difference between the two proportions is indicative of the similarity within that relative spatial position 330 

represented by each hypercube. The similarity in the exclusive hypercubes is considered 0. We employed local 331 

outlier factor (28) for anomaly detection and removing noise cells. Averaging these differences across all the 332 

hypercubes indicates the amount of similarity between the two datasets. 333 

compaRe captures the configuration of data enabling it to measure similarity even without correcting for 334 

signal drift or batch effect (Appendix 1). This way, two technical replicates analyzed by two different 335 

instruments or configurations suffering from signal shift will still have the highest similarity. To generate a 336 

similarity matrix of multiple input samples, compaRe runs in parallel. The similarity matrix could then be used 337 

for identifying clusters of samples such as drugs with similar dose responses. 338 

Graphical clustering of samples 339 

To cluster samples, we developed a graphical clustering algorithm in which initially all nodes (samples) are 340 

connected forming a weighted complete graph wherein edges represent similarity between nodes. This graph is 341 

then pruned to remove potential false positive edges for a given cutoff inferred from negative controls. The 342 

optimal cutoff turns out to be the minimum weight in the maximum spanning tree of negative control nodes. 343 

After pruning, some samples may end up being connected to the negative controls (biologically inactive agents) 344 

and some disconnected (active agents). After constructing this graph, clustering is tantamount to finding 345 

maximal cliques among potent agents. In addition to maximal cliques, it also reports communities (a clique is a 346 

subset of a community). Communities can be seen as loose clusters. In a community, unlike a clique, similarity 347 

is not necessarily transitive meaning that if A is similar to B and B is similar to C, A is not necessarily similar to 348 

C. If these were three drugs within a community, concluding they had an equal response was not necessarily 349 

right unless they would form a clique. 350 

Dispersion graph and Dispersion map 351 
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compaRe visualizes the similarity of samples in the form of a dispersion graph by constructing their maximum 352 

spanning tree (Appendix 1, Appendix 1-figure 28). compaRe also uses UMAP to represent a dispersion map of 353 

clusters. The map is constructed using the centroid (median) of each clique. An informative map shows different 354 

groups by coloring the centroids according to their value. These groups are mostly the identified communities 355 

the cliques come from. 356 

Availability of data 357 

Mass cytometry datasets were downloaded from Cytobank Community with the experiment ID 44185. AML 358 

mouse and human high-throughput flow cytometry data have been deposited in FLOWRepository with the 359 

repository IDs FR-FCM-Z357 and FR-FCM-Z3DP respectively. Flow cytometry data of AML and MDS 360 

patients have been deposited in FLOWRepository with the repository ID FR-FCM-Z3ET. Acquisition, 361 

installation and more technical details are available in compaRe’s online tutorial on 362 

(https://github.com/morchalabi/COMPARE-suite). Similarity measurement and clustering modules as stand-363 

alone tools have been merged into a separate R package and are available for download at 364 

(https://github.com/morchalabi/compaRe). 365 
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Appendix 1 26 

High-throughput flow cytometry of AML mouse model 27 

Leukemic spleen cells were sorted for c-Kit positivity from Npm1+/cA; Flt3+/ITD; Dnmt3a+/-; Mx1-Cre+ moribund 28 

mice. Shortly, c-Kit+ splenic cells were expanded for two passages in StemPro-34 SFM media (Gibco) with 100 29 

µM 2-Mercaptoethanol (Gibco), 20 ng/ml murine SCF, 10 ng/ml murine IL-3 and 10 ng/ml IL-6 added 30 

(Peprotech), with complete media change every two/three days. Aliquots of one million cells were frozen down 31 

in 90% media 10% DMSO. Frozen aliquots were taken up and expanded for one week before drug screening. 32 

5000 cells in 25 µl of media per well was seeded into 384-well plates (Greiner) containing a library of 116 33 

compounds (Supplementary File 4) in a five-point concentration range. After 72 h incubation at 37°C, 15 µl of 34 

medium was aspirated from each well and antibodies (Supplementary File 9) were added to drug plates using 35 

acoustic dispensing. Plates were incubated 40 min at RT, covered from light. Next, dead cell dye 7-AAD (BD) 36 

was added, and samples were read using a high-throughput flow cytometer iQue Screener Plus (Intellicyt). To 37 

remove noise from the data by excluding the most broadly toxic treatments, doublets and dead cells were 38 

omitted (Appendix 1-figure 30) and only samples with at least 1000 live cells were selected for further analyses 39 

(selected 465 wells out of 600). 40 

High-throughput flow cytometry of human AML 41 

Donated MNCs from human bone marrow aspirates (Danish National Ethical committee/National 42 

Videnskabsetisk Komité permit 1705391) were thawed and allowed to rest overnight in assay media: StemSpan 43 

II-SFEM (StemCell), 100U/ml penicillin/streptomycin (Thermo), including the following human recombinant 44 

cytokines from Preprotech (unless otherwise stated), 50 ng/ml Flt3 ligand (StemCell), 10 ng/ml IL3, 10 ng/ml 45 

IL-1beta, 20 ng/ml IL6, 20 ng/ml G-CSF, 20 ng/ml GM-CSF, and 10 ng/ml SCF, and the following compounds 46 

diluted in DMSO (Merck) 1 µM UM729 (Selleckchem) and 500 nM StemRegenin-1 (MedChemExpress). 47 

Before being counted and re-suspended in fresh assay media at a density of 5×105 cells/ml. 20 µl/well was 48 

plated in 384-well conical bottom plates (Greiner Bio-One) containing 25 nl of compounds (Supplementary File 49 

7) in DMSO. After 72 h incubation at 37°C, 95% RH, 5% CO2 antibodies and viability dye were added to the 50 

plates using acoustic dispensing (Echo, Labcyte). Plates were incubated for 1.5 h covered from light at RT. The 51 

samples were then run on an iQue Screener Plus (Intellicyt) high-throughput flow cytometer. The data was 52 

gated to remove noise, doublets, and dead cells (Appendix 1-figure 30). The antibodies and stains used are 53 

described in Supplementary File 10. 54 
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Signal and cell viability drifts correction in compaRe 55 

To correct signal drift, we employed a two-step correction: intra-plate correction and inter-plate correction. For 56 

a given plate, we first fit a linear regression model and then vertically translate points (MFIs) with respect to the 57 

leaned line as it rotates to slope zero. This is because the relative distance between the points must be retained as 58 

much as possible, and no point must be translated to 𝑥!𝑦" quadrant after correction. To make sure the learned 59 

line is not affected by outliers, we first removed them using the interquartile range. In this way, a point at (𝑦, 𝑥) 60 

is translated to &𝑦 #
$%!#

, 𝑥' after intra-plate correction. The correction coefficient #
$%!#

 derives from the ratio of 61 

y-coordinates of any point on the regression line before and after translation: &
∗

&
= #

$%!#
 where 𝑦∗ is translated 62 

𝑦, 𝑚 is the slope and 𝑏 is the intercept of the line. This ratio holds true for all other points in the 𝑥𝑦-plane. 63 

After correcting for intra-plate signal drift, inter-plate signal drift is corrected by aligning MFI medians of the 64 

plates, that is, translating to a common baseline. Let 𝑏∗ be the baseline, and 𝑏 be the median of corrected MFIs 65 

in a plate, then the inter-plate correction coefficient is given by #
∗

#
, and a point at (𝑦, 𝑥) is translated to &𝑦 #∗

#
, 𝑥'. 66 

The same approach is employed for correcting cell viability bias (Appendix 1-figure 1). 67 

Similarity measurement in compaRe 68 

compaRe can measure the similarity between two datasets with many variables (dimensions) and observations 69 

(data points). compaRe divides each dimension into 𝑛 subsets so that a dataset with 𝑑 dimensions will be 70 

divided into at most 𝑛( spatial units called hypercubes. The hypercubes are formed for either dataset 71 

individually. It, then measures the proportion of the observations within each of the corresponding hypercubes. 72 

The difference between the two proportions is indicative of the similarity within that relative spatial position 73 

represented by that hypercube so that for two similar datasets this difference is near zero in the majority of the 74 

hypercubes. Averaging these differences across all the hypercubes indicates the amount of similarity between 75 

the two datasets. 76 

It is important to compare two samples across their corresponding hypercubes representing the same relative 77 

spatial positions. This means a universal numbering rule is required to ensure having corresponding hypercubes 78 

for the two samples in the end. This problem can be modeled as a tree that at each level 𝑙 (dimension) grows 𝑛) 79 

new branches (divisions) (Appendix 1-figure 29). However, as the number of branches increases exponentially 80 

with 𝑙, implementing the tree is infeasible. To overcome this problem, we instead employed a dynamic 81 
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algorithm in which the hypercube number of each observation is dynamically updated at each iteration. In this 82 

approach, the child node number must be found from its parent’s, i.e., previous iteration. 83 

Rewriting the branch numbers to include more information reveals that if 𝑟)"* = (𝑛+ +⋯+ 𝑛)",) + 𝑓)"* +84 

𝑠)"*𝑛)", is the parent node’s number, the child node’s number will be 𝑟) = (𝑛+ +⋯+ 𝑛)", + 𝑛)"*) +85 

(𝑛𝑓)"* + 𝑠)"*) + 𝑠)𝑛)"* where 𝑙 is the child’s level, 𝑓) = 0,… , 𝑛)"* − 1 is the number of families behind, and 86 

𝑠) = 0, . . . , 𝑙 − 1 is the number of siblings behind. Therefore, to find child node 𝑟), we first need to calculate 𝑓)"* 87 

and 𝑠)"* of its parent as follows: 88 

𝑠)"* = ⌊
𝑟)"* − (𝑛 +⋯+ 𝑛)",)

𝑛)", ⌋ 
(1) 

𝑓)"* = 𝑟)"* − (𝑛+ +⋯+ 𝑛)",) − 𝑠)"*𝑛)", (2) 

It can be noticed that 𝑟)"* and 𝑠) are always known,	𝑓) = 𝑛𝑓)"* + 𝑠)"*, and (𝑛++. . . +𝑛)"*) − 1 is actually the 89 

largest node number at the 𝑙th level. Therefore, the problem we need to dynamically solve for each child at each 90 

dimension as the tree grows is: 91 

𝑟) = (𝑛+ +⋯+ 𝑛)"*) + 𝑓) + 𝑠)𝑛)"* (3) 

Since the similarity metric decreases for each exclusive hypercube, it is important to rid the two samples of 92 

outliers lying significantly far from the subpopulations of observations. However, at the same time we need to 93 

make sure smaller subpopulations (like rare cell subpopulations) are not mistaken for outliers. We employed 94 

local outlier factor which is a powerful tool for anomaly detection. Figure 1 shows an actual AML dataset with 95 

three surface markers dissected by compaRe wherein each distinct color corresponds to data points within one 96 

abstract hypercube. 97 

compaRe captures the morphology of high dimensional data enabling it to measure similarity even in the 98 

presence of moderate signal shift. For example, two technical replicates analyzed by two different instruments 99 

or configurations suffering from signal shift will still have the highest similarity by compaRe unless the shift is 100 

severe or has modified the morphology of the cell populations which practically does not happen as a result of 101 

batch effect or signal drift. This strategy helps compaRe circumvent signal drift or batch effect left uncorrected. 102 

Considering that any signal drift correction is essentially an approximate method, this feature is an advantage 103 

for compaRe, because together with the correction method they create a synergistic effect. 104 

compaRe is a mass-aware approach meaning it forms hypercubes only around concentrations of data points 105 

avoiding areas which are devoid of data points. This substantially speeds up the process by saving a lot of CPU 106 

time and memory space making it feasible to compare datasets with numerous variables. As an example, 107 

dividing each dimension blindly into just 3 regions yields more than 1.5 billion regions for consideration for a 108 
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dataset with as few as 19 surface markers. In practice, however, it turns out many of these regions are empty so 109 

using a mass-aware gridding instead of blind gridding improves the comparison complexity from 𝛷(𝑛() to 110 

𝑂(𝑛(). Even if no region is empty, since compaRe benefits from dynamic programming, it can still finish the 111 

process quite fast. Changing 𝑛 tunes the level of smoothing so that a value between 3 to 5 works for most 112 

assays. 113 

Dynamic programming is key for reducing processing power. In general, the goal is to bin/grid data into 114 

relative expression groups (hypercubes). Gridding can be implemented by a simple algorithm dividing 115 

each dimension in each iteration. However, as pointed out above, after a couple of rounds, this naïve 116 

algorithm turns out to be infeasible. Therefore, one need a more efficient algorithm for implementing 117 

gridding. Dynamic programming turned out to be quite effective. What makes dynamic programming very 118 

effective is its ability to memorize the values computed in the previous iterations avoiding recomputing 119 

potentially expensive algebraic operations (Appendix 1-equation 3). 120 

To generate a similarity matrix of multiple input samples, compaRe runs in parallel for the samples in the 121 

upper-triangular submatrix using a multithreading approach. The similarity matrix could then be used for 122 

identifying clusters of samples such as drugs with similar dose responses like predicting the mechanism of 123 

action of drugs in development. 124 

 125 
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Appendix 1-figure 1 Correcting signal and cell viability drift. (a) Intra- and inter-plate signal drift correction. 135 

Accumulation of green-blue tiles in the bottom right corner of the left heatmap shows signal drift in CD11b 136 

expression for drugs in plate 1. Sorting median expressions (MFIs) of wells into reading order (column wise left 137 

to right) reveals a linear slope. After correction, the slope becomes non-positive (intra-plate correction). Still, 138 

there are different baselines between the two plates. Matching median lines of corrected values of all plates 139 

correct for this bias (inter-plate correction). (b) Intra- and inter-plate cell viability correction. Accumulation of 140 

green tiles in the bottom right corner of the left heatmap shows cell viability drift (7-AAD marker). We follow 141 

similar steps with (a) for cell viability correction. 142 

Before correction After correction

b
Viability in Plate 1

Before correction

Viability in Plate 1

After correction

a
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Appendix 1-figure 2 UMAP projections of A2 sample against all other patient samples. From top left to 143 

bottom right, the similarity measured by compaRe decreases as the degree of overlap decreases and the number 144 

of exclusive cell populations increases. 145 
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Appendix 1-figure 3 UMAP projections of A3 sample against all other patient samples. From top left to 146 

bottom right, the similarity measured by compaRe decreases as the degree of overlap decreases and the number 147 

of exclusive cell populations increases. 148 
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Appendix 1-figure 4 UMAP projections of A4 sample against all other patient samples. From top left to 149 

bottom right, the similarity measured by compaRe decreases as the degree of overlap decreases and the number 150 

of exclusive cell populations increases. 151 
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Appendix 1-figure 5 UMAP projections of A5 sample against all other patient samples. From top left to 152 

bottom right, the similarity measured by compaRe decreases as the degree of overlap decreases and the number 153 

of exclusive cell populations increases. 154 
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Appendix 1-figure 6 UMAP projections of A6 sample against all other patient samples. From top left to 155 

bottom right, the similarity measured by compaRe decreases as the degree of overlap decreases and the number 156 

of exclusive cell populations increases. 157 
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Appendix 1-figure 7 UMAP projections of A7 sample against all other patient samples. From top left to 158 

bottom right, the similarity measured by compaRe decreases as the degree of overlap decreases and the number 159 

of exclusive cell populations increases. 160 
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Appendix 1-figure 8 UMAP projections of A8 sample against all other patient samples. From top left to 161 

bottom right, the similarity measured by compaRe decreases as the degree of overlap decreases and the number 162 

of exclusive cell populations increases. 163 
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Appendix 1-figure 9 UMAP projections of A9 sample against all other patient samples. From top left to 164 

bottom right, the similarity measured by compaRe decreases as the degree of overlap decreases and the number 165 

of exclusive cell populations increases. 166 
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Appendix 1-figure 10 UMAP projections of H1 sample against all other patient samples. From top left to 167 

bottom right, the similarity measured by compaRe decreases as the degree of overlap decreases and the number 168 

of exclusive cell populations increases. 169 
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Appendix 1-figure 11 UMAP projections of H2 sample against all other patient samples. From top left to 170 

bottom right, the similarity measured by compaRe decreases as the degree of overlap decreases and the number 171 

of exclusive cell populations increases. 172 
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Appendix 1-figure 12 UMAP projections of H3 sample against all other patient samples. From top left to 173 

bottom right, the similarity measured by compaRe decreases as the degree of overlap decreases and the number 174 

of exclusive cell populations increases. 175 
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Appendix 1-figure 13 UMAP projections of H4 sample against all other patient samples. From top left to 176 

bottom right, the similarity measured by compaRe decreases as the degree of overlap decreases and the number 177 

of exclusive cell populations increases. 178 
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Appendix 1-figure 14 UMAP projections of H5 sample against all other patient samples. From top left to 179 

bottom right, the similarity measured by compaRe decreases as the degree of overlap decreases and the number 180 

of exclusive cell populations increases. 181 
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Appendix 1-figure 15 UMAP projections of L1 sample against all other patient samples. From top left to 182 

bottom right, the similarity measured by compaRe decreases as the degree of overlap decreases and the number 183 

of exclusive cell populations increases. 184 
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Appendix 1-figure 16 UMAP projections of L2 sample against all other patient samples. From top left to 185 

bottom right, the similarity measured by compaRe decreases as the degree of overlap decreases and the number 186 

of exclusive cell populations increases. 187 
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Appendix 1-figure 17 UMAP projections of L3 sample against all other patient samples. From top left to 188 

bottom right, the similarity measured by compaRe decreases as the degree of overlap decreases and the number 189 

of exclusive cell populations increases. 190 
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Appendix 1-figure 18 UMAP projections of L4 sample against all other patient samples. From top left to 191 

bottom right, the similarity measured by compaRe decreases as the degree of overlap decreases and the number 192 

of exclusive cell populations increases. 193 
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Appendix 1-figure 19 UMAP projections of L5 sample against all other patient samples. From top left to 194 

bottom right, the similarity measured by compaRe decreases as the degree of overlap decreases and the number 195 

of exclusive cell populations increases. 196 
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Appendix 1-figure 20 UMAP projections of L6 sample against all other patient samples. From top left to 197 

bottom right, the similarity measured by compaRe decreases as the degree of overlap decreases and the number 198 

of exclusive cell populations increases. 199 
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Appendix 1-figure 21 UMAP projections of L7 sample against all other patient samples. From top left to 200 

bottom right, the similarity measured by compaRe decreases as the degree of overlap decreases and the number 201 

of exclusive cell populations increases. 202 
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Appendix 1-figure 22 UMAP projections of L8 sample against all other patient samples. From top left to 203 

bottom right, the similarity measured by compaRe decreases as the degree of overlap decreases and the number 204 

of exclusive cell populations increases. 205 
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Appendix 1-figure 23 UMAP projections of L9 sample against all other patient samples. From top left to 206 

bottom right, the similarity measured by compaRe decreases as the degree of overlap decreases and the number 207 

of exclusive cell populations increases. 208 
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Appendix 1-figure 24 UMAP projections of L10 sample against all other patient samples. From top left to 209 

bottom right, the similarity measured by compaRe decreases as the degree of overlap decreases and the number 210 

of exclusive cell populations increases. 211 
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Appendix 1-figure 25 UMAP projections of L11 sample against all other patient samples. From top left to 212 

bottom right, the similarity measured by compaRe decreases as the degree of overlap decreases and the number 213 

of exclusive cell populations increases. 214 
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Appendix 1-figure 26 Band plots AML and MDS patient samples. The immunophenotype of each patient 215 

sample is shown in a multiparameter band-dot plot (HrMDS: higher-MDS, LrMDS: lower-MDS). Rectangles 216 

gate positive and/or negative populations of monocytic maturation markers as well as the CD11b marker. 217 
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Appendix 1-figure 27 Birabresib treatment leads to loss of CD45 and CD45-RA expression without loss of 218 

live cell numbers. (a) Birabresib response as density scatter plot, CD45 vs CD45-RA. (b) Count of live cells 219 

per different concentrations of lenalidomide and birabresib. (c) Heatmap of birabresib response in all marker 220 
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b
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channels. (d) Example of response group 3: density scatter plots of DMSO-control vs. tretinoin 375 nM in 221 

different marker channels. 222 
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Appendix 1-figure 28 Dispersion graph. The (maximum spanning) tree demonstrates the dispersion of tens of 223 

potent antineoplastic agents around the control node containing negative controls (DMSO) and impotent agents. 224 
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The drug library was analyzed by high-throughput flow cytometry coupled with compaRe in an AML human 225 

sample. Edge color and label show the amount of similarity between the agents. Impotent drugs are those which 226 

were similar enough to negative controls for a cutoff inferred during clustering. As the tree branches and 227 

spreads, drugs with stronger potency, usually with higher doses, tend to lie farther from the control node. Using 228 

the graph, the investigator can easily pick potent agents such as hits. The graph may also be potentially used to 229 

investigate different paths for mechanism of action, leading to different branches. 230 

 231 

 232 

 233 

 234 
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Appendix 1-figure 29 Demonstration of compaRe algorithm using a 2-dimensional table. It first forms an 235 

abstract square grid (red) encompassing all the data points within the range (1.1, 9.6). At the top level, all the 236 

cells (table rows) are in the region number (RN) 0. First iteration divides the first dimension formed by CD1 237 

marker into 3 (= 𝑛) subsets. Assuming a left-first numbering rule, the RN column is dynamically updated (blue 238 

column) for each subset using some information such as current RN (grey column), current dimension and 239 

possible number of families and siblings behind. For instance, child node 12 has parent node 3, could have 2 240 

siblings (node 6, node 9) and 2 families (parent 1, parent 2) behind, although children 11 and 9 were never born 241 

as marked with ☓. Final leaves are called hypercubes (HCs). The corresponding grid on the biplot demonstrates 242 

that two regions which were devoid of data points have not been assigned any hypercube. For comparing two 243 

samples, they are first jointly normalized between a range. The tree graph is just for better visualization and will 244 

not be implemented. 245 
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Appendix 1-figure 30 Removal of noise, dead cells and doublet cells from mouse and human AML sample 246 

drug screening data. (a) AML mouse model drug screening. (b) AML human sample drug screening. Cells 247 

were separated from debris using a side scatter height (SSC-H) vs forward scatter height (FSC-H) plot. Singlet 248 

cells were determined from FSC-H vs forward scatter area (FSC-A) plot. Live cells were separated from dead 249 

cells using a dead-cell-labelling dye, either 7-AAD or DRAQ7. 250 
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Appendix 1-figure 31 Performance of meta-clustering with SPADE FlowSOM in the presence of batch 259 

effect. Similarity matrices generated by FlowSOM and SPADE are shown in (a) and (b) respectively. Size and 260 

color of dots represent the level of similarity. Self-comparisons were removed. Noise was added (marked with 261 

*) to the original 21 mass cytometry samples of bone marrow aspirates from 16 pediatric AML patients (S) and 262 

5 healthy adult donors (H). 263 

 264 

 265 

 266 

 267 

 268 

 269 

 270 

 271 

 272 

 273 

 274 

 275 

 276 

 277 

H1
*

H2
*

H3
*

H4
*

H5
*

SJ
01

*
SJ

02
*

SJ
03

*
SJ

04
*

SJ
05

*
SJ

06
*

SJ
07

*
SJ

08
*

SJ
09

*
SJ

10
*

SJ
11

*
SJ

12
*

SJ
13

*
SJ

14
*

SJ
15

*
SJ

16
*

H1 H2 H3 H4 H5 SJ
01

SJ
02

SJ
03

SJ
04

SJ
05

SJ
06

SJ
07

SJ
08

SJ
09

SJ
10

SJ
11

SJ
12

SJ
13

SJ
14

SJ
15

SJ
16

H1* 

H2* 

H3* 

H4* 

H5* 

SJ01* 

SJ02* 

SJ03* 

SJ04* 

SJ05* 

SJ06* 

SJ07* 

SJ08* 

SJ09* 

SJ10* 

SJ11* 

SJ12* 

SJ13* 

SJ14* 

SJ15* 

SJ16*

H1
*

H2
*

H3
*

H4
*

H5
*

SJ
01

*
SJ
02

*
SJ
03

*
SJ
04

*
SJ
05

*
SJ
06

*
SJ
07

*
SJ
08

*
SJ
09

*
SJ
10

*
SJ
11

*
SJ
12

*
SJ
13

*
SJ
14

*
SJ
15

*
SJ
16

*
H1 H2 H3 H4 H5 SJ
01

SJ
02

SJ
03

SJ
04

SJ
05

SJ
06

SJ
07

SJ
08

SJ
09

SJ
10

SJ
11

SJ
12

SJ
13

SJ
14

SJ
15

SJ
16

H1* 

H2* 

H3* 

H4* 

H5* 

SJ01* 

SJ02* 

SJ03* 

SJ04* 

SJ05* 

SJ06* 

SJ07* 

SJ08* 

SJ09* 

SJ10* 

SJ11* 

SJ12* 

SJ13* 

SJ14* 

SJ15* 

SJ16*

a b



 

 39 

Appendix 1-figure 32 Phenotypic characterization in a high-parameter heterogeneous population of cell 278 

types. Cells from a target cluster (an immunophenotypic cell population) were gradually removed to contort its 279 

configuration. We used a dataset of 3 healthy and 2 pediatric AML bone marrow mononuclear cell samples 280 

from the data provided in the 6th reference. Samples were stained with 29 (15 membrane and 14 intracellular 281 

signaling) markers. Taking H1 as reference, we gradually removed 25%, 50%, 75% and 100% (phenotypic 282 

changes) of cells from the target cluster identified by PhenoGraph. The similarity decreased concurrently and 283 

more drastically when phenotypic changes were detected. 284 
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