
https://helda.helsinki.fi

Spatial Aggregation of Global Dry and Wet Patterns Based on

the Standard Precipitation Index

Guan, Yanlong

2022-05

Guan , Y , Liu , J , Chen , A , Li , D , Jiang , Y , Cui , W , Lu , H , Pellikka , P , Heiskanen , J

& Maeda , E 2022 , ' Spatial Aggregation of Global Dry and Wet Patterns Based on the

Standard Precipitation Index ' , Earth's future , vol. 10 , no. 5 , e2022EF002720 . https://doi.org/10.1029/2022EF002720

http://hdl.handle.net/10138/344318

https://doi.org/10.1029/2022EF002720

cc_by_nc

publishedVersion

Downloaded from Helda, University of Helsinki institutional repository.

This is an electronic reprint of the original article.

This reprint may differ from the original in pagination and typographic detail.

Please cite the original version.



1.  Introduction
Extreme events, such as droughts or floods, can disturb regional agriculture, water availability, and ecosys-
tem processes, thereby affecting global human and natural systems (Ault, 2020; Dai, 2011b). Since the 2000s, 
the increasing frequency of extreme events has affected many areas with high ecological importance (e.g., the 
Amazon Rainforest; Maeda et al., 2015) and/or high population density (e.g., Northeast China; Yuan et al., 2019). 
Moreover, future climate change scenarios predict extreme events to increase (Anderegg et al., 2019; Chiang 
et  al.,  2021). Along with duration, magnitude, and severity, the spatial extent of events is an essential factor 
because such events can occupy large areas for extended periods as a regional phenomenon. Changes in spatial 
extent are the basis for quantitative evaluation of terrestrial and continental dry/wet trends (Scanlon et al., 2018; 

Abstract  Quantifying the spatial integrity and patterns of dry/wet events over land is essential to 
understand how the local hydrological regime responds to environmental changes. Spatial aggregation changes 
in dry and wet areas over land have not been studied extensively. Based on a patch-mosaic landscape model, 
we analyzed spatial aggregation changes at two levels corresponding to landscape design during 1949 and 
2018. At the landscape level, the global aggregation degree increased initially and then weakened around 2006. 
However, the spatial aggregation process between dry and wet patterns was inconsistent. For the dry pattern, 
spatial aggregation was mainly caused by area decline induced decreases in the patch number. For the wet 
pattern, spatial aggregation was caused by area enlargement induced decreases in the patch number. At the 
class level, with increases in the dry/wet magnitude, the correlation between the affected area and aggregation 
strengthened. Our results provide new insights to understand the spatial processes and future trends of dry/wet 
patterns over land. We argue that future vulnerability of agriculture and ecosystems to drought is likely to be 
further mediated by the changes in drought patterns' spatial structure.

Plain Language Summary  Quantifying the spatial variation characteristics of heterogeneous dry/
wet patches worldwide can provide an in-depth understanding of regional hydrological regimes. Previous 
studies have mainly focused on area-based statistics to quantify the changes in the dry/wet patterns, and 
neglected comprehensive information of the process. Further, whether a long-term spatial aggregation or 
fragmentation trend exists is also unknown. The patch-mosaic model of landscape ecology provides a new 
tool to explore this hypothesis at the landscape and class levels. Our results showed that at the landscape 
level, the global spatial aggregation degree increased initially and then weakened around 2006, including the 
dry landscape (all dry classes considered together), wet landscape (all wet classes considered together), and 
total landscape (all classes considered together). At the class level, greater the degree of dryness/wetness, 
stronger was the correlation between the affected area and aggregation. Our findings provide new insights into 
identifying the increasing exposure of climate change, which can be used to assess the potential impacts of 
spatial aggregation or disaggregation of droughts on agriculture and ecosystems, and to predict future changes 
in the spatial structure of drought patterns.

GUAN ET AL.

© 2022 The Authors.
This is an open access article under 
the terms of the Creative Commons 
Attribution-NonCommercial License, 
which permits use, distribution and 
reproduction in any medium, provided the 
original work is properly cited and is not 
used for commercial purposes.

Spatial Aggregation of Global Dry and Wet Patterns Based on 
the Standard Precipitation Index
Yanlong Guan1  , Junguo Liu1  , Aifang Chen1, Delong Li1, Yelin Jiang2  , 
Wenhui Cui1, Hongwei Lu3, Petri Pellikka4,5, Janne Heiskanen4,6, and Eduardo Maeda4,7

1School of Environmental Science and Engineering, Southern University of Science and Technology of China, Shenzhen, 
China, 2Department of Civil and Environmental Engineering, University of Connecticut, Storrs, CT, USA, 3Key Laboratory 
of Water Cycle and Related Land Surface Process, Institute of Geographic Science and Natural Resources Research, Chinese 
Academy of Science, Beijing, China, 4Department of Geosciences and Geography, University of Helsinki, Helsinki, Finland, 
5State Key Laboratory for Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, Wuhan, 
China, 6Faculty of Science, Institute for Atmospheric and Earth System Research, University of Helsinki, Helsinki, Finland, 
7Area of Ecology and Biodiversity, School of Biological Sciences, Faculty of Science, University of Hong Kong, Hong kong, 
China

Key Points:
•	 �A simplified patch-mosaic landscape 

framework was designed to 
characterize the spatial aggregation 
information of global drought patterns

•	 �At the landscape level, the global 
aggregation degree increased since 
the 1980s

•	 �At the class level, the correlation 
between total area and aggregation 
degree increased with an increase in 
dry/wet levels

Supporting Information:
Supporting Information may be found in 
the online version of this article.

Correspondence to:
J. Liu and H. Lu,
junguo.liu@gmail.com;
luhw@igsnrr.ac.cn

Citation:
Guan, Y., Liu, J., Chen, A., Li, D., 
Jiang, Y., Cui, W., et al. (2022). Spatial 
aggregation of global dry and wet patterns 
based on the standard precipitation index. 
Earth's Future, 10, e2022EF002720. 
https://doi.org/10.1029/2022EF002720

Received 12 FEB 2022
Accepted 9 MAY 2022

10.1029/2022EF002720
RESEARCH ARTICLE

1 of 12

http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://orcid.org/0000-0001-9243-4073
https://orcid.org/0000-0002-5745-6311
https://orcid.org/0000-0003-2676-575X
https://doi.org/10.1029/2022EF002720
https://doi.org/10.1029/2022EF002720
https://doi.org/10.1029/2022EF002720
https://doi.org/10.1029/2022EF002720
http://crossmark.crossref.org/dialog/?doi=10.1029%2F2022EF002720&domain=pdf&date_stamp=2022-05-23


Earth’s Future

GUAN ET AL.

10.1029/2022EF002720

2 of 12

Sheffield et al., 2012; Spinoni et al., 2018; Xu et al., 2019). However, previous assessments have not completely 
revealed the structural information hidden in dry/wet patterns.

Identifying and quantifying the spatial continuity of dry/wet events is a promising avenue to complement our 
understanding of spatial and temporal trends in extreme dry events (Andreadis et al., 2005; Nagarajan, 2009). 
Several cluster methods have been developed to identify continuous spatial structural changes in large-scale 
drought events. For example, the severity–area–duration method, first introduced by Andreadis et al. (2005), has 
been widely used to combine the spatial continuity of individual drought events with their severity (Blanchet & 
Mélèse, 2020; Satish Kumar et al., 2021; Sheffield et al., 2009; Wang et al., 2016). Although these efforts have 
revealed spatially continuous characteristics of large-scale drought events, the degree of aggregation or fragmen-
tation has not been independently quantified. Furthermore, whether long-term structural changes exist in global 
dry/wet patterns over land is unclear.

The occurrence of dry/wet events is spatially heterogeneous. In the context of climate change, when small-scale 
dry/wet patches develop into large-scale patches, the severity can be exacerbated, even if the total area and inten-
sity do not change significantly. However, traditional evaluations of the severity of dry/wet events are usually 
based on the relationship between duration (D) and magnitude (M), such as D × M or D/M, which ignore the 
impact of spatial aggregation. Therefore, exploring the spatial aggregation process on different spatial scales is 
necessary to widen our understanding of dry/wet events and their potential impacts.

This study aimed to reveal the spatial aggregation changes in the global dry/wet pattern from 1949 to 2018. 
Owing to the spatial heterogeneity of dry/wet events over land, we adopted a patch-mosaic model of landscape 
structure to design our framework (McGarigal & Cushman, 2005). First, we calculated the standard precipitation 
index (SPI) using seven widely used precipitation data sets. Second, we divided the SPI into nine dry/wet types 
in each grid box. Third, landscape aggregation metrics were applied to quantify spatial aggregation changes 
at the landscape level, including the dry (all dry classes considered together), wet (all wet classes considered 
together), and total landscapes (all classes considered together). Fourth, we further explored the relationship 
between area and aggregation at the class level of the SPI. Additionally, we revealed heterogeneous aggregation 
characteristics  at the landscape level on different zonal and temporal scales. Finally, the temporal effect of spatial 
aggregation in the global dry/wet pattern was explored based on the Climatic Research Unit (CRU) data set. Our 
characterization of aggregation changes in the dry/wet pattern will provide an in-depth understanding of the 
potential impacts of dry/wet events.

2.  Data and Methods
2.1.  Precipitation Data Sets

Multi-source precipitation products were used to reduce the uncertainty or error analysis owing to the irregular 
spatial distribution of observation stations worldwide (Sun et al., 2018; Trenberth, 2011; Trenberth et al., 2014). 
Considering the robustness of the spatial analysis, we collected seven common global precipitation products 

Data set a Spatial resolution Frequency Coverage Period Reference

CRU TS 4.03 0.5° × 0.5° Monthly Global land 1901–2018 Harris et al. (2014)

GPCC V2018 0.5° × 0.5° Monthly Global land 1901–2016 Rudolf et al. (2005)

PREC/L 0.5° × 0.5° Monthly Global land 1948–2011 Chen et al. (2002)

UD V4.01 0.5° × 0.5° Monthly Global land 1901–2014 Willmott and Matsuura (1995)

PGF V3 0.25° × 0.25° Monthly Global 1948–2016 Sheffield et al. (2006)

CMAP 2.5° × 2.5° Monthly Global land 1979–2018 Xie et al. (2007)

GPCP V2.3 2.5° × 2.5° Monthly Global 1979–2018 Adler et al. (2003)

 aCRU TS 4.03, Climatic Research Unit Time-series version 4.03; GPCC V2018, Global Precipitation Climatology Center full data product; PREC/L, National Oceanic 
& Atmospheric Administration (NOAA) Precipitation Reconstruction over Land; UD V4.01, University of Delaware, version 4.01; PGF V3, Princeton Global Forcings 
version 3; CMAP, Climate Prediction Center Merged Analysis of Precipitation; GPCP V2.3, Global Precipitation Climatology Center version 2.3.

Table 1 
Summary of Global Precipitation Data Sets



Earth’s Future

GUAN ET AL.

10.1029/2022EF002720

3 of 12

to conduct a landscape analysis. These precipitation data sets, which are 
established and widely used (Table 1), were collected from the CRU, Global 
Precipitation Climatology Center (GPCC), National Oceanic & Atmospheric 
Administration (NOAA), Precipitation Reconstruction over Land (PREC/L), 
University of Delaware (UD), Princeton Global Forcings (PGF), Climate 
Prediction Center Merged Analysis of Precipitation (CMAP), and monthly 
precipitation data set of the Global Precipitation Climatology Project 
(GPCP). Using the bilinear interpolation method, all the precipitation data 
were rescaled to a spatial resolution of 0.5°, on a monthly scale. Considering 
the lack of global observation stations before the 1950s and the temporal 
consistency of different data sets, our analysis was conducted between 1948 
and 2018. However, PREC/L, PGF, GPCC, and UD were not included for the 
2012–2018 analysis, owing to their unavailability.

The CRU Time Series 4.03 precipitation data set, which provides monthly 
data with a spatial resolution of 0.5° × 0.5° over global land (1901–2018), 
was based on near-surface measurements and was cross-validated at the 
station level. These homogeneous records provide reliable temporal trends of 

the CRU data sets (Harris et al., 2020; Hopping et al., 2018; Sun et al., 2018); additionally, they have been widely 
used for analyzing climate variability and assessment of Earth system models. In this study, the CRU precipita-
tion data set was used to analyze the temporal scale effects among the seven data sets. The GPCC full data prod-
uct (V2018), with a resolution of 0.5° and period of 1901–2016, was developed from more than 70,000 stations 
worldwide. It has excellent performance for the verification of climate models, analysis of historic precipitation 
worldwide, and research on global and regional water cycles (Rudolf et al., 2005). The NOAA PREC/L data set is 
mainly collected from the Global Historical Climatology Network version 2 (GHCN2) and the Climate Anomaly 
Monitoring System (Chen et al., 2002), including more than 17,000 stations since 1948. The UD precipitation 
product V4.01 is mainly acquired from GHCN2 and more widely from the archive of Legates and Willmott 
(Willmott & Matsuura, 1995). The data set covers a period of 1900–2014 and is limited to land, which comple-
ments the International Comprehensive Ocean-Atmosphere data set. The PGF version 3 combines observations 
and reanalysis data to generate global and long-term (1948–2016) precipitation data (Sheffield et al., 2006). The 
CMAP monthly data set is generated based on multiple types of satellite estimates and gauge data, spanning the 
period since 1979 (Xie et al., 2007). The GPCP product provides reliable global precipitation by integrating vari-
ous global satellite data sets. Specifically, data were collected from rain gauge stations, satellites, and sounding 
observations and span 1979 to the present. A careful combination of satellite-based rainfall estimates provides the 
necessary spatial structural details for landscape analysis (Adler et al., 2003).

2.2.  SPI

Many indices have been developed for monitoring surface drought variability at different spatial scales, includ-
ing the Palmer drought severity index (PDSI) (Dai, 2011a), the self-calibrated PDSI (scPDSI) (van der Schrier 
et al., 2013), and the standardized precipitation evapotranspiration index (SPEI) (Vicente-Serrano et al., 2010). 
However, these indicators are mainly based on the water balance equation, which needs to incorporate the surface 
evaporation demand. The calculation of evaporation demand usually relies on the Penman–Monteith formula 
(Dai & Zhao, 2017; Milly & Dunne, 2016). P–M-based potential evaporation not only considers the influence 
of wind, humidity, solar, and radiation variables, but also the observation data of these variables, which are not 
easy to obtain at a global scale and show evident temporal and spatial heterogeneity. Considering the spatial 
uncertainty of the spatial index itself, which struggles to account for variations in wind speed, radiation, and 
humidity (Dai & Zhao, 2017; Milly & Dunne, 2016; Yang et al., 2018), we elected to use SPI, which is based 
only on the precipitation probabilistic approach to conduct a spatial structured analysis of dry and wet patterns 
(McKee et al., 1993). Nevertheless, we also found a similar trend using the published scPDSI data set (Figure S1 
in Supporting Information S1).

SPI is the degree of the standardized deviation of the empirical precipitation probability distribution function 
(Hayes et al., 1999). It allows the evaluation of the impact of precipitation anomalies of a single model in different 
geographical locations and makes spatial comparisons on multiple timescales. SPI can be calculated on different 

Category SPI value Name

W4 ≥2.00 Extremely wet

W3 1.50–1.99 Severely wet

W2 1.00–1.49 Moderately wet

W1 0.50–0.99 Mild wet

NN −0.49–0.49 Near normal

D1 −0.99–(−0.50) Mild dry

D2 −1.49–(–1.00) Moderately dry

D3 −1.99–(−1.50) Severely dry

D4 ≤−2.00 Extremely dry

Table 2 
Classifications of the Standard Precipitation Index (SPI; Hänsel 
et al., 2016)
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timescales to explain spatial dry and wet changes on monthly to multi-year scales. In this study, we divided the 
annual average SPI maps into nine categories (Table 2) to define spatially heterogeneous levels and to quantify 
spatial structured changes. Additionally, we used the 3, 6, 12, 24, and 48-month SPI to evaluate the short-term and 
long-term temporal effects. A timescale of 12 months is recommended to conduct landscape aggregation analysis 
of the global dry/wet pattern between 1949 and 2018 (Haile et al., 2020). Truncating the annual SPI variability 
into dry/wet classes still compromised the structural integrity of continuously varying attributes. To some extent, 
this led to spatial information loss and increased uncertainty.

2.3.  Landscape Structure Metrics

Under the patch-mosaic paradigm, different closed dry/wet patches are the most common composition of land-
scape patterns (McGarigal & Cushman, 2005). Specifically, dry/wet patches refer to geographic areas with rela-
tively stable moisture conditions, while global dry/wet landscape is denoted as a collection of discrete dry/wet 
patches with different thresholds of SPI. Thus, the degree of spatial aggregation was determined by the spatial 
distribution of these dry/wet patches. This study mainly used an aggregation index (AI) to measure spatial aggre-
gation changes. Additionally, the total area (TA) and number of patches (NP) corresponding to different dry/wet 
classes or landscapes were used to interpret the mechanisms of spatial structural changes.

The AI is calculated based on an adjacency matrix that shows the frequency of different pairs of patch types appearing 
side-by-side in the maps. If gi,j represents the total edges of type i adjacent to type j, for type i of area Ai, the AI meas-
ures gi,j, and the total edges are shared by type i itself. Shared edges were counted using a single counting method, 
where each pixel edge was counted only once. Given a type i of area Ai, the maximum aggregation level is reached 
when the patch type is a single patch that has the largest gi,j. If n is the side of the largest integer, a square smaller 
than Ai, and m = Ai − n 2, the largest number of shared edges for type i, max_gi,j, will take one of the following forms:

max_𝑔𝑔𝑖𝑖𝑖𝑖𝑖 = 2𝑛𝑛(𝑛𝑛 − 1), when 𝑚𝑚 = 0, or� (1)

max_𝑔𝑔𝑖𝑖𝑖𝑖𝑖 = 2𝑛𝑛(𝑛𝑛 − 1) + 2𝑚𝑚 − 1, when 𝑚𝑚 𝑚 𝑚𝑚𝑚 or� (2)

max_𝑔𝑔𝑖𝑖𝑖𝑖𝑖 = 2𝑛𝑛(𝑛𝑛 − 1) + 2m − 2, when 𝑚𝑚 ≥ 𝑛𝑛𝑛� (3)

The maximum level of the AI for type i is calculated as max_gi,j /Ai, and the AI for type i is derived as follows:

AI𝑖𝑖 = 𝑔𝑔𝑖𝑖𝑖𝑖𝑖∕max_𝑔𝑔𝑖𝑖𝑖𝑖𝑖� (4)

Therefore, AIi ranges from 0 to 1. When AIi = 1, the patch type is aggregated to the maximum (gi,j = max_gi,j; 
Figure 1a) and AIi is 0 when gi,j reaches the minimum (gi,j = 0; Figure 1d). For the overall spatial range, AIL can 
be calculated by coupling AIi weighted by Pi as follows:

AI𝐿𝐿 =

𝑛𝑛
∑

𝑖𝑖=1

AI𝑖𝑖 × 𝑝𝑝𝑖𝑖� (5)

where n is the total number of climatic types and Pi is the percentage of Ai.

Figure 1.  Set of binary landscape maps represented by 7 × 7 grids. Each grid contains 40 white cells and 9 black cells. The spatial distribution of the black cells 
starts from a dispersed square patch (Figure 1a). The black cells are gradually aggregated (Figures 1b–1d). In this landscape, the largest patch square is 7 × 7 grids; 
thus, m = 11, n = 7, and that the max_gi,j = 104. Following Equation 4, the AIs of Figures 1a–1d are 0, 0.333, 0.917, and 1.0, respectively. From the above landscape 
patterns, AI is sensitive to total area and the number of patches.
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2.4.  Statistical Analysis

Owing to the large spatial heterogeneity and uncertainty of precipitation data sets, the Z-score transforma-
tion method was adopted to standardize the variables derived from multiple precipitation data sets (Cheadle 
et al., 2003). Z-scores are calculated by subtracting the overall average from the raw data and dividing the result 
by their standard deviation. Through this method, the structural changes in the landscape derived from differ-
ent data sets can be effectively evaluated. Furthermore, we applied the non-parametric Mann–Kendall (M–K) 
statistical test to assess the statistical significance of the temporal trends (Kendall, 1975; Mann, 1945). The M–K 
significance test is less affected by missing values and uneven distribution than other tests (Yue et al., 2002). 
Additionally, Pearson's correlation coefficient (r) was used to examine the statistical relationships between the 
different variables.

3.  Results
3.1.  Area-Based Changes in the Global Dry/Wet Patterns

Figure 2a shows the spatial dry/wet trends of SPI from 1948 to 2018, excluding GPCP and CMAP for short 
periods. Specifically, substantial spatial differences were observed between the drying and wetting distributions, 
particularly in areas with upward trends in mid–high latitude regions (30°–75°), such as Europe, North Asia, 
South America, and West Australia. Conversely, downward trends occurred in Africa, northern parts of South 
America, and East Asia. Over time, the global average SPI increased, particularly since the 1980s. A downward 
trend around 2006 was most probably caused by an increasing number of El Niño/Southern Oscillations (ENSOs) 
from the 1980s to 2006 (Figure 2b), which are considered to be the main sources of changes in global precipita-
tion records (Ault, 2020; Huang et al., 2019; Yeh et al., 2018). The ratios of wet (SPI > 0.5) and dry (SPI < −0.5) 
areas rapidly increased global humidity since the 1980s compared to the 1950–1980s (Figure 2c). Overall, from 
the 1980s to 2006, global wetting trends were common in mid–high latitudes, while Africa, East Asia, and the 
Amazon exhibited prominent drying trends.

Figure 2.  (a) Standard precipitation index (SPI) trends, (b) time series, and (c) ratios of wet (SPI >0.5) and dry (SPI < −0.5) 
areas from 1948 to 2018 based on the seven data sets. Blue lines represent the average of the data sets; the gray area denotes 
±1 standard deviation (s.d.). Abbreviations: CRU TS 4.03, Climatic Research Unit Time-series version 4.03; GPCC V2018, 
Global Precipitation Climatology Center full data product; PREC/L, National Oceanic & Atmospheric Administration 
(NOAA) Precipitation Reconstruction over Land; UD V4.01, University of Delaware version 4.01; PGF V3, Princeton Global 
Forcings version 3; CMAP, Climate Prediction Center Merged Analysis of Precipitation; GPCP V2.3, Global Precipitation 
Climatology Center version 2.3.
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3.2.  Aggregation Changes at the Landscape Level

Figures 3a and 3b show that global AI (all classes considered together) increased rapidly from the 1980s, before 
exhibiting a downward trend around 2006 (Z-score). NP and AI changes showed opposite trends. In the context of 
a constant global area, changes in spatial aggregation are likely to be determined by changes in the number of wet 
and dry patches. From the 1980s until 2006, the reduction of dry patches and the combination of wet patches most 
probably increased spatial aggregation. We considered the minimum global AI in 1978 and maximum global AI 
in 2001 as examples to illustrate the spatial aggregation changes (Figure 3c). Although spatial heterogeneity in 
different data sets was large, we found a clear spatial aggregation process, in which the AI increased while NP 
decreased in different data sets. Generally, between 1978 and 2001, the number of dry patches in Africa and 
South America decreased significantly, which likely enhanced the global spatial aggregation degree.

Figure 4 shows the changes in AI in dry patterns (all dry classes considered together) and wet patterns (all wet 
classes considered together) from 1949 to 2018 (Z-score). Generally, the increases in AI between dry and wet 
patterns were consistent in all the analyzed data sets and their trends were inverted around 2006. However, the 
increasing rates of AI in wet patterns were almost 10 times higher than those of AI in dry patterns. Furthermore, 
the dry and wet patterns showed evident differences. In the dry patterns, changes in AI (Figure 4a) were consist-
ent with TA (Figure 4b) and NP (Figure 4c) changes, suggesting that a simultaneous decrease in dry area and 
the number of patches relatively increased AI. In contrast, in the wet patterns, changes in AI (Figure 4d) were 
consistent with TA changes (Figure 4e), but contrary to NP changes (Figure 4f), suggesting that the increase in AI 
was caused by the decrease in the number of wet patches due to the expansion of the wet area. Overall, although 
there are different mechanisms responsible for AI changes, the spatial aggregation variations in the wet and dry 
patterns increased from the 1980s until 2006, and subsequently, weakened.

Figure 3.  Temporal changes of (a) the standardized aggregation index (AI) and the (b) number of patches (NP) in global 
dry/wet landscape patterns (all classes considered together). Dashed color lines represent different data sets; blue solid lines 
represent the arithmetic mean of different data sets; the gray area denotes ±1 standard deviation (s.d.). (c) Maps of dry/wet 
classes in 1978 and 2001 based on the Climatic Research Unit (CRU), Global Precipitation Climatology Center (GPCC), 
Princeton Global Forcings (PGF), and University of Delaware (UD) data sets. All closed areas are designed as dry/wet 
patches with different standard precipitation index (SPI) levels.
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3.3.  Aggregation Changes at Class Level

As summarized in Table 3, temporal trends in TA were not in equilibrium with those in AI, based on different dry/
wet classes. Specifically, the TA of dry classes decreased clearly, while that of wet classes weakly increased. The 
trends of mild dry (D1) and moderately dry (D3) were −0.042%/y and −0.025%/y (p < 0.01, M–K), respectively. 
In contrast, the changes in AI in wet classes increased. In particular, the AI changes of the wet classes (W1–W3) 
were statistically significant, with the respective rates being 0.018%/y, 0.027%/y, and 0.028%/y (p < 0.01, M–K). 
Figure 5 shows a generally significant correlation between the TA and AI at the class level. With an increase 
in dry/wet levels, the correlations increased. In the D1 and W1 classes, the r between the TA and AI was weak. 
Usually, when drought/floods occur mildly, the affected drought area was usually large, and the distribution was 
discrete. Conversely, in the D4 and W4 classes, r was >0.7 in the GPCC and UD data sets. When severe droughts 
and floods occurred, the spatial extent was relatively small and aggregated.

3.4.  Aggregation Changes at Zonal Scale

Figure 6 shows the temporal changes of AI, TA, and NP in the zones of 30°S–30°N and 30°–90°N (Z-score). In 
general, changes in AI in both zones showed an increasing trend since the 1980s, followed by a downward trend 
around 2006. However, different response mechanisms may exist in the affected area in different dry/wet patterns 

Figure 4.  Temporal changes in the (a and d) standardized aggregation index (AI), (b and e) total area (TA), and (c and f) number of patches (NP) between dry patterns 
and wet patterns from 1949 to 2018 (dry and wet classes considered respectively). Color dashed lines represent different data sets; the blue solid lines represent the 
arithmetic mean of different data sets; the gray area denotes ±1 standard deviation (s.d.). Symbols “D” and “W” represent dry and wet patterns, respectively.

Class W4 W3 W2 W1 NN D1 D2 D3 D4

AI 0.004 0.018** 0.027** 0.028** 0.031** 0.012* 0.003 −0.001 0.007

TA −0.001 0.002 0.007 0.004 0.058** −0.042** −0.025** −0.007 0.001

Note. **and * represents 0.05 and 0.01 significance of the Mann–Kendall (M–K) statistical test.

Table 3 
Linear Trends of Total Area (TA) and Aggregation Index (AI) at the Class Level
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and zones. Between 30° and 30°N, changes in AI in dry and wet patterns were consistent with the changes in 
TA  and NP. This was likely attributable to El Niño, which frequently decreases precipitation over many low-lat-
itude land areas (Ault, 2020; J. Zhang et al., 2021; W. Zhang et al., 2019). This caused a shift toward a relative 
aggregation phenomenon due to the disappearance of dry and wet patches. In contrast, between 30° and 90°N, 
changes in AI in dry patterns were different from those in low-latitude regions. The decreasing area reduced the 
number of patches, which increased the spatial aggregation. In their wet patterns, changes in AI were consistent 
with those in TA, but opposite to NP (Figures 6d, 6h and 6l). The increase in the degree of spatial aggregation 
could be attributed to the expansion and combination in wet areas, which decreased the number of patches. 
Particularly since the 1980s, precipitation on land has been controlled by ENSO with more La Niña phases 
and more large-scale rain events in high-latitude zones (Domeisen et al., 2019; Grothe et al., 2020; Trenberth 
et al., 2014). However, around 2006, the changes in the AI of the different zones could be attributed to the decline 
of La Niña events on land.

3.5.  Temporal Changes in Aggregation

Different timescales reflect the impact of spatial aggregation of water resource availability. Figure 7a shows the 
time-series of global AI over 3 to 48-month timescales. For the 3-month time-scale, AI increased from 93.5% to 
94%. For the 48-month timescale, AI increased from 83.5% to 83.8%. In general, longer the timescale, lower is 
the degree of aggregation. Furthermore, Figure 7b indicates an apparent difference in the linear trends for the 3 to 
48-month timescales. Specifically, over periods of less than 12 months, spatial aggregation increased rapidly, and 
then stabilized. Figure 7c further illustrates the global drought patterns on 3 to 48-month timescales in 2004. In 
general, the spatial aggregation decreased from 94.81% to 85.72%, and the spatial distribution of dry/wet patches 
tended to be stable for timescales of more than 12 months. Generally, longer the timescales, more stable is the 
spatial aggregation status. This further suggested that longer the duration of aggregation, greater is the severity 
of extreme events.

Figure 5.  Correlation r between total area (TA) and aggregation index (AI) between 1949 and 2018, at class level. 
Abbreviations: CRU TS 4.03, Climatic Research Unit Time-series version 4.03; GPCC V2018, Global Precipitation 
Climatology Center full data product; PREC/L, National Oceanic & Atmospheric Administration (NOAA) Precipitation 
Reconstruction over Land; UD V4.01, University of Delaware version 4.01; PGF V3, Princeton Global Forcings version 3; 
CMAP, Climate Prediction Center Merged Analysis of Precipitation; GPCP V2.3, Global Precipitation Climatology Center 
version 2.3.
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4.  Conclusions
Owing to the patch characteristic of dry/wet patterns, a simplified patch-mosaic framework was designed to 
characterize spatial structural characteristics based on multiple precipitation data sets. In the context of climate 
change, our results showed an obvious global wetting trend since the 1980s. We identified an evident global 
aggregation increase at the different landscape levels, including all classes (wet and dry) considered together 
from the 1980s to 2006. However, the mechanisms between the dry and wet patterns were not consistent. In the 
dry patterns, the reduction of area and number of patches increased the spatial aggregation, whereas in the wet 
patterns, the expansion of the area reduced the number of patches and increased the spatial aggregation. There-
after, at the class level, the correlations between spatial aggregation and total area increased with an increase in 
dry/wet levels. Additionally, at the zonal scale, the changes in spatial aggregation also showed different processes 
in low- and high-latitude zones.

The occurrence of ENSO events is likely to cause changes in the spatial structure of global dry/wet patterns 
(Figure S2 in Supporting Information  S1), which are closely related to the formation of global hydrological 
regimes. Numerous moisture budgeting experiments have revealed the key dynamics of these teleconnections. 
For example, the equator-ward propagation of winter storms during El Niño years can alter the moisture transport 
through deep convection. This could cause widespread droughts in the Pacific Northwest, leading not only to an 
increase in the total area of drought patterns, but also potentially an increase in the spatial aggregation degree. 
In future global warming scenarios, there is high confidence that the extreme events associated with ENSO will 
increase, and the compound effects of climate change and spatial aggregation on dry/wet events may be further 
enhanced. Additionally, the results of landscape analysis are highly sensitive to the selected spatial resolution, 
as statistical relationships may change with spatial resolution. Specifically, using coarse resolution data would 
weaken the spatial heterogeneity; conversely, finely resolved data would detect more small-scale features, making 
the climatic features disordered, requiring further extensive research.

Figure 6.  Temporal changes in the (a–c) standardized aggregation index (AI), (e–h) total area (TA), and (i–l) number of patches (NP) in dry and wet patterns in the 
zones between 30°S–30°N and 30°–90°N (dry and wet classes considered respectively). Dashed color lines represent different data sets; blue solid lines represent the 
arithmetic mean of different data sets and the gray area denotes ±1 standard deviation (s.d.). Symbols “D” and “W” represent dry and wet patterns, respectively.
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Data Availability Statement
The data used in this study were published open access and are available on NOAA Physical Laboratory Sciences 
via https://psl.noaa.gov/data/gridded/tables/precipitation.html. In this study, our data is freely available at the 
Mendeley via DOI https://doi.org/10.17632/f2wrkdbp5x.1.

Figure 7.  (a) Temporal changes and (b) linear trends in the aggregation index on 3, 6, 12, 24, 36, and 48-month timescales between 1949 and 2018 based on Climatic 
Research Unit (CRU) data sets. (c) Maps of the standard precipitation index (SPI) over 3, 6, 12, 24, 36 and 48-month timescales in 2004 based on the CRU data sets.

https://psl.noaa.gov/data/gridded/tables/precipitation.html
https://doi.org/10.17632/f2wrkdbp5x.1


Earth’s Future

GUAN ET AL.

10.1029/2022EF002720

11 of 12

References
Adler, R. F., Huffman, G. J., Chang, A., Ferraro, R., Xie, P.  P., Janowiak, J., et  al. (2003). The version-2 global precipitation clima-

tology project (GPCP) monthly precipitation analysis (1979–present). Journal of Hydrometeorology, 4(6), 1147–1167. https://doi.
org/10.1175/1525-7541(2003)004<1147:TVGPCP>2.0.CO;2

Anderegg, W. R. L., Trugman, A. T., Bowling, D. R., Salvucci, G., & Tuttle, S. E. (2019). Plant functional traits and climate influence 
drought intensification and land–atmosphere feedbacks. Proceedings of the National Academy of Sciences, 116(28), 14071–14076. 
https://doi.org/10.1073/pnas.1904747116

Andreadis, K. M., Clark, E. A., Wood, A. W., Hamlet, A. F., & Lettenmaier, D. P. (2005). Twentieth-century drought in the conterminous United 
States. Journal of Hydrometeorology, 6(6), 985–1001. https://doi.org/10.1175/JHM450.1

Ault, T. R. (2020). On the essentials of drought in a changing climate. Science, 368(6489), 256–260. https://doi.org/10.1126/SCIENCE.ABC4034
Blanchet, J., & Mélèse, V. (2020). A Bayesian framework for the multiscale assessment of storm severity and related uncertainties. Journal of 

Hydrometeorology, 21(1), 109–122. https://doi.org/10.1175/JHM-D-18-0254.1
Cheadle, C., Vawter, M. P., Freed, W. J., & Becker, K. G. (2003). Analysis of microarray data using Z score transformation. Journal of Molecular 

Diagnostics, 5(2), 73–81. https://doi.org/10.1016/S1525-1578(10)60455-2
Chen, M., Xie, P., Janowiak, J. E., & Arkin, P. A. (2002). Global land precipitation: A 50-yr monthly analysis based on gauge observations. 

Journal of Hydrometeorology, 3(3), 249–266. https://doi.org/10.1175/1525-7541(2002)003
Chiang, F., Mazdiyasni, O., & AghaKouchak, A. (2021). Evidence of anthropogenic impacts on global drought frequency, duration, and intensity. 

Nature Communications, 12(1), 1–10. https://doi.org/10.1038/s41467-021-22314-w
Dai, A. (2011a). Characteristics and trends in various forms of the Palmer Drought Severity Index during 1900–2008. Journal of Geophysical 

Research, 116(12), D12115. https://doi.org/10.1029/2010JD015541
Dai, A. (2011b). Drought under global warming: A review. Wiley Interdisciplinary Reviews: Climate Change, 2(1), 45–65. https://doi.org/10.1002/

wcc.81
Dai, A., & Zhao, T. (2017). Uncertainties in historical changes and future projections of drought. Part I: Estimates of historical drought changes. 

Climatic Change, 144(3), 519–533. https://doi.org/10.1007/s10584-016-1705-2
Domeisen, D. I. V., Garfinkel, C. I., & Butler, A. H. (2019). The teleconnection of El Niño Southern Oscillation to the stratosphere. Reviews of 

Geophysics, 57(1), 5–47. https://doi.org/10.1029/2018RG000596
Grothe, P. R., Cobb, K. M., Liguori, G., Di Lorenzo, E., Capotondi, A., Lu, Y., et al. (2020). Enhanced El Niño–Southern oscillation variability 

in recent decades. Geophysical Research Letters, 47(7), 1–8. https://doi.org/10.1029/2019GL083906
Haile, G. G., Tang, Q., Hosseini-Moghari, S. M., Liu, X., Gebremicael, T. G., Leng, G., et al. (2020). Projected impacts of climate change on 

drought patterns over East Africa. Earth's Future, 8(7), 1–23. https://doi.org/10.1029/2020EF001502
Hänsel, S., Schucknecht, A., & Matschullat, J. (2016). The Modified Rainfall Anomaly Index (mRAI)—Is this an alternative to the Standardised 

Precipitation Index (SPI) in evaluating future extreme precipitation characteristics? Theoretical and Applied Climatology, 123(3–4), 827–844. 
https://doi.org/10.1007/s00704-015-1389-y

Harris, I., Jones, P. D., Osborn, T. J., & Lister, D. H. (2014). Updated high-resolution grids of monthly climatic observations—The CRU TS3.10 
Dataset. International Journal of Climatology, 34(3), 623–642. https://doi.org/10.1002/joc.3711

Harris, I., Osborn, T. J., Jones, P., & Lister, D. (2020). Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset. 
Scientific Data, 7(1), 1–18. https://doi.org/10.1038/s41597-020-0453-3

Hayes, M. J., Svoboda, M. D., Wilhite, D. A., & Vanyarkho, O. V. (1999). Monitoring the 1996 drought using the standardized precipitation index. 
Bulletin of the American Meteorological Society, 80(3), 429–438. https://doi.org/10.1175/1520-0477(1999)080

Hopping, K. A., Yeh, E. T., Gaerrang, & Harris, R. B. (2018). Linking people, pixels, and pastures: A multi-method, interdisciplinary investi-
gation of how rangeland management affects vegetation on the Tibetan Plateau. Applied Geography, 94, 147–162. https://doi.org/10.1016/j.
apgeog.2018.03.013

Huang, S., Wang, L., Wang, H., Huang, Q., Leng, G., Fang, W., & Zhang, Y. (2019). Spatio-temporal characteristics of drought structure across 
China using an integrated drought index. Agricultural Water Management, 218, 182–192. https://doi.org/10.1016/j.agwat.2019.03.053

Kendall, M. G. (1975). Rank correlation methods. Griffin.
Maeda, E. E., Kim, H., Aragão, L. E. O. C., Famiglietti, J. S., & Oki, T. (2015). Disruption of hydroecological equilibrium in southwest Amazon 

mediated by drought. Geophysical Research Letters, 42(18), 7546–7553. https://doi.org/10.1002/2015GL065252
Mann, H. B. (1945). Nonparametric tests against trend. Econometrica: Journal of the Econometric Society, 13(3), 245–259. https://doi.

org/10.2307/1907187
McGarigal, K., & Cushman, S. A. (2005). The gradient concept of landscape structure. Issues and Perspectives in Landscape Ecology, 112–119. 

https://doi.org/10.1017/CBO9780511614415.013
McKee, T. B., Doesken, N. J., & Kleist, J. (1993). The relation of drought frequency and duration to time scales. In Proceedings of the 8th Confer-

ence on Applied Climatology (pp. 179–184). American Meteorological Society.
Milly, P. C. D., & Dunne, K. A. (2016). Potential evapotranspiration and continental drying. Nature Climate Change, 6(10), 946–949. https://doi.

org/10.1038/nclimate3046
Nagarajan, R. (2009). Drought indices. In Drought assessment (pp. 160–204). John Wiley & Sons, Inc. https://doi.org/10.1007/978-90-481-2500-5_5
Rudolf, B., Beck, C., Grieser, J., & Schneider, U. (2005). Global precipitation analysis products of the GPCC (pp. 1–8). Internet Publication. 

Retrieved from ftp://ftp-anon.dwd.de/pub/data/gpcc/PDF/GPCC_intro_products_2008.pdf
Satish Kumar, K., AnandRaj, P., Sreelatha, K., & Sridhar, V. (2021). Regional analysis of drought severity-duration-frequency and severity-ar-

ea-frequency curves in the Godavari River Basin, India. International Journal of Climatology, 41(12), 5481–5501. https://doi.org/10.1002/
joc.7137

Scanlon, B. R., Zhang, Z., Save, H., Sun, A. Y., Schmied, H. M., Van Beek, L. P. H., et al. (2018). Global models underestimate large decadal 
declining and rising water storage trends relative to GRACE satellite data. Proceedings of the National Academy of Sciences of the United 
States of America, 115(6), E1080–E1089. https://doi.org/10.1073/pnas.1704665115

Sheffield, J., Andreadis, K. M., Wood, E. F., & Lettenmaier, D. P. (2009). Global and continental drought in the second half of the twentieth 
century: Severity-area-duration analysis and temporal variability of large-scale events. Journal of Climate, 22(8), 1962–1981. https://doi.
org/10.1175/2008JCLI2722.1

Sheffield, J., Goteti, G., & Wood, E. F. (2006). Development of a 50-year high-resolution global dataset of meteorological forcings for land 
surface modeling. Journal of Climate, 19(13), 3088–3111. https://doi.org/10.1175/JCLI3790.1

Sheffield, J., Wood, E. F., & Roderick, M. L. (2012). Little change in global drought over the past 60 years. Nature, 491(7424), 435–438. https://
doi.org/10.1038/nature11575

Acknowledgments
This study has been supported by the 
National Natural Science Foundation 
of China (grant no. 41625001), the 
Strategic Priority Research Program 
of the Chinese Academy of Sciences 
(grant no. XDA20060402), the High-
level Special Funding of the Southern 
University of Science and Technology 
(Grant no. G02296302, G02296402), 
the Pengcheng Scholar Program of 
Shenzhen, the National High-level 
Talents Special Support Plan (“Ten 
Thousand Talents Plan”), and the Leading 
Innovative Talent Program for young and 
middle-aged scholars by the Ministry 
of Science and Technology. E.E. Maeda 
was funded by the Academy of Finland 
(Grant no. 318252, 319905 and 345472). 
We are particularly grateful to the two 
anonymous reviewers and Dr. Olga 
Hannonen for their useful comments on 
the manuscript.

https://doi.org/10.1175/1525-7541(2003)004%3C1147:TVGPCP%3E2.0.CO;2
https://doi.org/10.1175/1525-7541(2003)004%3C1147:TVGPCP%3E2.0.CO;2
https://doi.org/10.1073/pnas.1904747116
https://doi.org/10.1175/JHM450.1
https://doi.org/10.1126/SCIENCE.ABC4034
https://doi.org/10.1175/JHM-D-18-0254.1
https://doi.org/10.1016/S1525-1578(10)60455-2
https://doi.org/10.1175/1525-7541(2002)003
https://doi.org/10.1038/s41467-021-22314-w
https://doi.org/10.1029/2010JD015541
https://doi.org/10.1002/wcc.81
https://doi.org/10.1002/wcc.81
https://doi.org/10.1007/s10584-016-1705-2
https://doi.org/10.1029/2018RG000596
https://doi.org/10.1029/2019GL083906
https://doi.org/10.1029/2020EF001502
https://doi.org/10.1007/s00704-015-1389-y
https://doi.org/10.1002/joc.3711
https://doi.org/10.1038/s41597-020-0453-3
https://doi.org/10.1175/1520-0477(1999)080
https://doi.org/10.1016/j.apgeog.2018.03.013
https://doi.org/10.1016/j.apgeog.2018.03.013
https://doi.org/10.1016/j.agwat.2019.03.053
https://doi.org/10.1002/2015GL065252
https://doi.org/10.2307/1907187
https://doi.org/10.2307/1907187
https://doi.org/10.1017/CBO9780511614415.013
https://doi.org/10.1038/nclimate3046
https://doi.org/10.1038/nclimate3046
https://doi.org/10.1007/978-90-481-2500-5_5
ftp://ftp-anon.dwd.de/pub/data/gpcc/PDF/GPCC_intro_products_2008.pdf
https://doi.org/10.1002/joc.7137
https://doi.org/10.1002/joc.7137
https://doi.org/10.1073/pnas.1704665115
https://doi.org/10.1175/2008JCLI2722.1
https://doi.org/10.1175/2008JCLI2722.1
https://doi.org/10.1175/JCLI3790.1
https://doi.org/10.1038/nature11575
https://doi.org/10.1038/nature11575


Earth’s Future

GUAN ET AL.

10.1029/2022EF002720

12 of 12

Spinoni, J., Vogt, J. V., Naumann, G., Barbosa, P., & Dosio, A. (2018). Will drought events become more frequent and severe in Europe? Inter-
national Journal of Climatology, 38(4), 1718–1736. https://doi.org/10.1002/joc.5291

Sun, Q., Miao, C., Duan, Q., Ashouri, H., Sorooshian, S., & Hsu, K. L. (2018). A review of global precipitation data sets: Data sources, estima-
tion, and intercomparisons. Reviews of Geophysics, 56(1), 79–107. https://doi.org/10.1002/2017RG000574

Trenberth, K. E. (2011). Changes in precipitation with climate change. Climate Research, 47(1–2), 123–138. https://doi.org/10.3354/cr00953
Trenberth, K. E., Dai, A., Van Der Schrier, G., Jones, P. D., Barichivich, J., Briffa, K. R., & Sheffield, J. (2014). Global warming and changes in 

drought. Nature Climate Change, 4(1), 17–22. https://doi.org/10.1038/nclimate2067
van der Schrier, G., Barichivich, J., Briffa, K. R., & Jones, P. D. (2013). A scPDSI-based global data set of dry and wet spells for 1901–2009. 

Journal of Geophysical Research: Atmospheres, 118(10), 4025–4048. https://doi.org/10.1002/jgrd.50355
Vicente-Serrano, S. M., Beguería, S., & López-Moreno, J. I. (2010). A multiscalar drought index sensitive to global warming: The standardized 

precipitation evapotranspiration index. Journal of Climate, 23(7), 1696–1718. https://doi.org/10.1175/2009JCLI2909.1
Wang, Z., Guan, K., Sheffield1, J., & Wood, E. F. (2016). Depiction of drought over sub-Saharan Africa using reanalyses precipitation data sets. 

Journal of Geophysical Research: Atmospheres, 121(18), 555–574. https://doi.org/10.1002/2016JD024858
Willmott, C. J., & Matsuura, K. (1995). Smart interpolation of annually averaged air temperature in the United States. Journal of Applied Mete-

orology and Climatology, 34(12), 2577–2586. https://doi.org/10.1175/1520-0450(1995)
Xie, P., Yatagai, A., Chen, M., Hayasaka, T., Fukushima, Y., Liu, C., & Yang, S. (2007). A gauge-based analysis of daily precipitation over East 

Asia. Journal of Hydrometeorology, 8(3), 607–626. https://doi.org/10.1175/JHM583.1
Xu, L., Chen, N., & Zhang, X. (2019). Global drought trends under 1.5 and 2°C warming. International Journal of Climatology, 39(4), 2375–

2385. https://doi.org/10.1002/joc.5958
Yang, Y., Roderick, M. L., Zhang, S., McVicar, T. R., & Donohue, R. J. (2018). Hydrologic implications of vegetation response to elevated CO2 

in climate projections. Nature Climate Change, 9(1), 44–48. https://doi.org/10.1038/s41558-018-0361-0
Yeh, S. W., Cai, W., Min, S. K., McPhaden, M. J., Dommenget, D., Dewitte, B., et al. (2018). ENSO atmospheric teleconnections and their 

response to greenhouse gas forcing. Reviews of Geophysics, 56(1), 185–206. https://doi.org/10.1002/2017RG000568
Yuan, X., Wang, L., Wu, P., Ji, P., Sheffield, J., & Zhang, M. (2019). Anthropogenic shift towards higher risk of flash drought over China. Nature 

Communications, 10(1), 1–8. https://doi.org/10.1038/s41467-019-12692-7
Yue, S., Pilon, P., Phinney, B., & Cavadias, G. (2002). The influence of autocorrelation on the ability to detect trend in hydrological series. Hydro-

logical Processes, 16(9), 1807–1829. https://doi.org/10.1002/hyp.1095
Zhang, J., Zheng, H., Xu, M., Yin, Q., Zhao, S., Tian, W., & Yang, Z. (2021). Impacts of stratospheric polar vortex changes on wintertime precip-

itation over the northern hemisphere. Climate Dynamics, 1–17. https://doi.org/10.1007/s00382-021-06088-x
Zhang, W., Li, S., Jin, F. F., Xie, R., Liu, C., Stuecker, M. F., & Xue, A. (2019). ENSO regime changes responsible for decadal phase relationship 

variations between ENSO sea surface temperature and warm water volume. Geophysical Research Letters, 46(13), 7546–7553. https://doi.
org/10.1029/2019GL082943

https://doi.org/10.1002/joc.5291
https://doi.org/10.1002/2017RG000574
https://doi.org/10.3354/cr00953
https://doi.org/10.1038/nclimate2067
https://doi.org/10.1002/jgrd.50355
https://doi.org/10.1175/2009JCLI2909.1
https://doi.org/10.1002/2016JD024858
https://doi.org/10.1175/1520-0450(1995)
https://doi.org/10.1175/JHM583.1
https://doi.org/10.1002/joc.5958
https://doi.org/10.1038/s41558-018-0361-0
https://doi.org/10.1002/2017RG000568
https://doi.org/10.1038/s41467-019-12692-7
https://doi.org/10.1002/hyp.1095
https://doi.org/10.1007/s00382-021-06088-x
https://doi.org/10.1029/2019GL082943
https://doi.org/10.1029/2019GL082943

