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Abstract
In this article, we argue for the benefits of combining large-scale analyses of visual

materials currently pursued within digital humanities with insights from multi-

modality research, which is an emerging discipline that studies how human com-

munication relies on appropriate combinations of expressive resources. We show

that concepts developed within the field of multimodality research provide appro-

priate metadata schemes for various modes of expression in large corpora and

datasets. We illustrate the proposed approach using a common mode of expression,

diagrams, and analyse two recent multimodal diagram corpora using statistical and

computational methods. Our results suggest that multimodally-motivated meta-

data schemes can provide a robust foundation for computational analyses of large

corpora and datasets. Even if a corpus or dataset is not designed to support full-

blown analyses of multimodal communication, our results imply that multimo-

dality theory can still be used to impose tighter analytical control over a variety of

visual materials.
.................................................................................................................................................................................

1 Introduction

Whether taking place via an external medium or in

face-to-face interaction, communication is naturally

multimodal: that is, making and exchanging meanings

involve combining multiple modes of expression in a

coordinated, goal-oriented manner. There is currently

growing interest in multimodal communication

across various fields of research, including the digital

humanities. It is then natural to consider more closely

whether contemporary theories of multimodality can

support the kinds of large-scale analyses commonly

pursued in digital humanities and if so, to what extent.

Although the field of multimodality is increasingly

oriented towards empirical analysis, compiling multi-

modal corpora to support such analyses is still highly

labour-intensive. More extensive use of computation-

al techniques is thus a clear priority.

In this article, we consider the potential benefits of

combining contemporary accounts of multimodality,

computational methods, and research orientations

from digital humanities with respect to one extremely

common mode of expression, namely diagrams.

Diagrams are found everywhere, and their structure
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varies depending on the context in which they occur

(Purchase, 2014). Understanding how diagrams are

structured is a prerequisite for their large-scale ana-

lysis in any field. We approach the study of diagrams

by drawing on two recent corpora developed for dif-

ferent purposes. While the first corpus was developed

to support research on artificial intelligence for tasks

such as automatic diagram understanding (Kembhavi

et al., 2016), the second corpus builds multiple layers

of annotation on top of the first corpus to create a

resource for studying how diagrams communicate

multimodally (Hiippala et al., 2020). Against this

backdrop, we ask: how can modern multimodality

theory inform the design and analysis of multimodal

datasets and corpora? To answer this question, we

critically evaluate the two datasets from the perspec-

tive of multimodality theory and the digital human-

ities notion of ‘distant viewing’ (Arnold and Tilton,

2019), and support our argument using quantitative

and computational methods.

2 Multimodality Research and the
Digital Humanities

Multimodality research is an emerging discipline that

examines how communication builds on appropriate

combinations of ‘modes’ of expression, such as nat-

ural language, illustrations, drawings, photography,

gestures, layout, and many more (Wildfeuer et al.,

2020). Although now widely acknowledged as an in-

herent feature of human communication, multimo-

dality is not always understood in the same way across

the diverse fields of study where the concept has been

employed. These fields include, among others, text

linguistics, spoken language and gesture research, con-

versation analysis (Mondada, 2019), human–com-

puter interaction (Oviatt and Cohen, 2015), and,

last but not least, digital humanities (Svensson,

2010). To consolidate these perspectives, Bateman

et al. (2017) propose a general framework for multi-

modality that extends beyond previous approaches by

offering a common set of concepts and an explicit

methodology for supporting empirical research re-

gardless of the ‘modes’ and materialities involved.

Modern multimodality theory has developed a bat-

tery of interrelated theoretical constructs to support

descriptive and empirical analyses of complex com-

municative situations and artefacts (Stöckl, 2020).

Several core concepts, including in particular semiotic

mode (Bateman, 2011; Kress, 2014), medium

(Bateman et al., 2017), and genre (Bateman, 2008;

Hiippala, 2014), theorize in detail how individual

forms of expression are structured and what enables

them to effectively combine and co-operate with each

other across a wide range of communicative contexts

and situations. Despite this comprehensive theoretical

apparatus, which is now mature enough to be brought

into productive discussion with established fields of

study such as media archaeology (Thomas, 2020b),

literacy (Jewitt, 2008), ethnography (Kress, 2011),

and others, the lack of large annotated corpora stands

in the way of refining multimodality theory through

empirical research (Thomas, 2020a).

Within linguistics, the provision of ever larger col-

lections of authentic language use has established cor-

pus linguistics as a major pillar of research. The

corresponding treatment of multimodal data, and

particularly static multimodal data, still lags very

much behind, constituting a major bottleneck in eval-

uating and refining the theoretical constructs pro-

posed. Whereas it is common for a range of

automatic processing techniques to be applied to lin-

guistic corpora, the possibilities for multimodal data

remain limited. As a consequence, multimodal anno-

tation frameworks are slow to develop and apply, and

require expert annotators. Most current multimodal

corpora consequently remain small and thus resemble

curated collections rather than true corpora in the

linguistic sense of the term. Although this problem

applies in principle both to face-to-face interaction

(Huang, 2021) and multimodal documents (Waller,

2017), substantial progress is now being made for

some forms of audiovisual multimodal data (e.g.

Steen et al., 2018). The situation for multimodal docu-

ments is very different and it is this area that we focus

on here.

Parallel to developments in multimodality re-

search, within the field of digital humanities, there is

a growing interest in the large-scale analysis of ‘visual’

communication as well (see e.g. Heftberger, 2018;

Lang and Ommer, 2018; Arnold and Tilton, 2019;

Burghardt et al., 2020; Münster and Terras, 2020;

Smits and Ros, 2020; Wevers and Smits, 2020).

Arnold and Tilton (2019) propose a framework for
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distant viewing, arguing that such approaches are

needed to counterbalance the strong textual orienta-

tion in digital humanities, which excludes a wealth of

non-linguistic phenomena that are traditionally of

interest to the humanities. Drawing on foundational

work in semiotics in the tradition of Saussure and

Barthes, Arnold and Tilton (2019, p. i4) observe that:

in order to view images computationally, a rep-

resentation of elements contained within the

visual material—a code system in semiotics

or, similarly, a metadata schema in informat-

ics—must be constructed.

Put differently, Arnold and Tilton (2019) emphasize

the need to impose analytical control over visual ma-

terial, just as ‘the explicit code system of written lan-

guage’ allows imposing structure on textual corpora

by establishing units of analysis (e.g. tokens or parts of

speech) and their interrelations (e.g. syntax) (Arnold

and Tilton, 2019, p. i5). However, just which analyt-

ical units should be defined for modes of communi-

cation other than language and at what level of

granularity remain open and hotly contested

questions.

Providing such capabilities building on more trad-

itional semiotic notions of ‘code’ is, however, unlikely

to succeed for visual materials. As argued more exten-

sively in Bateman (2017, p. 21–22), any model that

treats communication in terms of an exchange of

meanings in a process of encoding/decoding accord-

ing to some fixed, static code can readily be shown to

be inadequate. Early debates on this ‘fixed code fallacy’

focused mainly on language and excluded other

modes of communication (Cobley, 2013, p. 232),

which may explain why early research on multimo-

dality already turned towards developing the concept

of ‘semiotic mode’ as an alternative.

Semiotic modes, of which language is taken as just

one alongside many others, are assumed to emerge

and be shaped through social interaction within a

community of users (Kress and van Leeuwen, 1996,

2001). However, as Bateman (2017, p. 22) points out,

early definitions of mode were not robust enough to

support empirical research, leading common concep-

tions of mode and code to gradually became indistin-

guishable as semiotics itself advanced beyond the

encoding/decoding model of communication (cf.

Cobley, 2013, p. 231).

Bateman (2011) addresses previous shortcomings

with the definition of semiotic mode by proposing a

formal account consisting of three semiotic strata,

visualised in Fig. 1a. Each stratum is a prerequisite

for a fully developed semiotic mode. Starting from

the bottom of the inner circle, all semiotic modes

must work with respect to some materiality that can

be manipulated intentionally for communicative pur-

poses. Such traces of manipulation must reflect formal

distinctions that are pertinent for expressive resources

available within the semiotic mode, as exemplified by

differences in form between written language and line

drawings, which allow us to distinguish between these

expressive resources. The expressive resources are

assumed to be subject to a paradigmatic organization

that allows making selections among them and com-

bining them into larger syntagmatic organizations.

Third, the expressive resources and their combina-

tions are mobilized in the service of communication

by a corresponding discourse semantics, which sup-

ports the contextual interpretation of selections

made within expressive resources, and whose oper-

ation we illustrate in a moment. This general model

places no restrictions on the kinds of materiality that

may be employed; for current purposes, however, we

focus on static materialities with a 2D spatial extent,

such as a sheet of paper or a static display presented on

a screen.

Figure 1b exemplifies the application of this general

model to what may be tentatively called the ‘diagram-

matic mode’—a semiotic mode underlying all kinds

of diagrammatic representations (Hiippala and

Bateman, 2020). Beginning from the bottom, dia-

grams always require a materiality with a 2D spatial

extent. Consequently, the diagrammatic mode can

theoretically draw on all expressive resources that

can operate with a 2D spatial materiality, although

which expressive resources are actually mobilized

and the choices made within them are largely moti-

vated by genre. The concept of genre is understood as

conventionalized ways of achieving particular com-

municative goals (Kostelnick and Hassett, 2003;

Lemke, 2005; Hiippala, 2014). In other words, the

communicative goals set for a diagram shape its struc-

ture, as these conventionalized structures help invoke

previous encounters with similar diagrams.

One intrinsic property of the model in Fig. 1a that

multiple expressive resources such as written

Semiotically-grounded distant viewing of diagrams
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language, illustrations, and photographs may natural-

ly co-occur with each other in diagrams, thus avoiding

committing to arbitrary divisions between ‘verbal’ and

‘visual’ or ‘text’ and ‘image’ (Bateman, 2014). This

perspective is obviously carried over to mass media,

which regularly deploy multiple semiotic modes

(Bateman et al., 2017, p. 124). Finally, discourse

semantics guides the interpretation of expressive

resources and their combinations in context. For dia-

grams, resolving the resulting discourse relations relies

on formal cues such as spatial placement of elements

or connections realized using lines and arrows in com-

bination with world knowledge (Watanabe and

Nagao, 1998; Alikhani and Stone, 2018).

This brief description illustrates the extent to which

modern multimodality theory can explicate how

semiotic modes operate quite generally. Describing

the characteristics of each stratum of a given semiotic

mode—that is, material substrate, expressive resour-

ces, and discourse semantics—is then an issue

demanding empirical research. Conversely, this also

shows just how much complexity is missed when

operating with pretheoretical distinctions such as

‘text’ and ‘image’. Although computational analyses

of page-based media are already advancing beyond

such dichotomies, as Wevers and Smits (2020) have

shown by training convolutional neural networks to

distinguish between instances of illustrations, photo-

graphs, and other semiotic modes in historical news-

papers, we argue that advancing this effort within

digital humanities will benefit still further from the

input of multimodality theory.

As a form of ‘applied semiotics’ that seeks a close

relationship between theory and data (Bateman and

Hiippala, 2021), multimodality theory is well-

positioned to provide a foundation for characterizing

the diverse range of communicative artefacts and sit-

uations studied within digital humanities (Bateman,

2017; Hiippala, 2021). Theories of multimodality have

already been used to guide the application of compu-

tational methods to both filmic (Bateman et al., 2016)

and page-based media (O’Halloran et al., 2018), but

much remains to be done in terms of applying com-

putational methods in a way that respects the com-

plexity of multimodal communication. While we are

not suggesting that all studies that use computational

methods should perform full-blown multimodal anal-

yses for each semiotic mode encountered, we do

(a) (b)

Fig. 1 The concept of a semiotic mode and its application to diagrams. (a) A theoretical model of a semiotic mode. (b) A

characterization of the diagrammatic mode.
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encourage the broader application of multimodality

theory to determine the analytical granularity appro-

priate for answering specific research questions. This

allows targets of descriptions and their respective

granularities to be derived systematically on the basis

of developing bodies of theory. There are then both

theoretical and practical reasons for adopting this ap-

proach when collecting multimodal data at scale.

As noted by Arnold and Tilton (2019, p. i4) above,

it is important when constructing larger collections or

corpora for computational analyses that appropriate

metadata schemes are defined for organizing that

data. In computer science, the definition of ‘modality’

(the term preferred over ‘mode’) is strongly aligned

with the senses: our ability to see, hear, touch, and

use natural language. Distinctions between sensory

modalities are then built into the different research

fields of computer vision, audio signal processing,

and natural language processing, and these are then

the sources for corresponding metadata schemes.

The resulting fields are as a consequence often con-

fined to their own ‘problem spaces’, even though these

are increasingly converging on multimodality in tasks

such as machine translation (Sulubacak et al., 2020).

Nevertheless, applying definitions based on sensory

modalities continues. In contrast, within humanities-

oriented multimodality theory, restricting approaches

to sensory channels is now receiving considerable cri-

tique because defining modalities ahead of analysis

solely on the basis of perceptual properties makes iden-

tification of the actual semiotic contributions being

made to meaning construction more difficult. As

argued extensively in Bateman et al. (2017), semiotic

contributions regularly extend across sensory channels

and their demarcations need to be teased out empir-

ically: one cannot assume their individual character-

istics in advance (Bateman, 2011, p. 17–18). It is crucial

to open up a two-way communication channel be-

tween the semiotic distinctions being made and their

supporting material distinctions, rather than assuming

that sensory perception alone will result in appropriate

segmentations.

These challenges and limitations are made fully

evident by our characterization of the diagrammatic

mode in Fig. 1b. First, diagrams are clearly not aligned

with a single traditional modality as they cross-cut

both ‘vision’ and ‘language’. Second, what makes dia-

grams different from other combinations of a similar

nature, such as photographs with embedded or over-

laid text, is left an open question. Although assump-

tions of similarity concerning expressive resources

within a single sensory modality are common in com-

puter vision research, where objects of analysis are

often reduced to mere carriers of content, this is in-

sufficient. Haehn et al. (2019, p. 649), for example,

report that models trained on photographs do not

generalize well to diagrammatic representations with-

out further training even though they are both clearly

‘visual’. They consider this finding surprising given

prior comparisons between artificial neural networks

and the human visual cortex, which assume that visual

perception suffices for reasoning about both photo-

graphs and diagrams.

From the perspective of multimodality theory,

however, the differences between photographs and

diagrams are rather evident: diagrams differ radically

in terms of their expressive resources and discourse

semantics. Diagrams are compositional, that is, they

can be broken down into component parts, which

may be realized using multiple expressive resources

and combined into discourse structures that work to-

wards a shared communicative goal. This allows dia-

grams to represent abstract concepts and phenomena

that are not limited to specific slices of time and space,

and so stand in strong contrast to photographs (cf. e.g.

Alikhani and Stone, 2018; Greenberg, 2018). This

demonstrates how it is always essential to consider

material distinctions in terms of the particular semi-

otic modes they operate with respect to. It is precisely

these semiotic modes that deliver appropriate meta-

data schemes for characterizing corresponding objects

of analysis.

3 Insights from Multimodal
Diagram Corpora

Having introduced the concept of a semiotic mode

and how appropriate metadata schemes may be

derived for individual semiotic modes through empir-

ical research, we turn now to examine two recent dia-

gram corpora from this perspective. These corpora

originate in two different fields of research, namely

artificial intelligence (Kembhavi et al., 2016) and mul-

timodality research (Hiippala et al., 2020), but contain

Semiotically-grounded distant viewing of diagrams
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similar diagrams, as the second corpus is a subset of

the first. The two corpora differ in terms of the meta-

data schemes used to describe the diagrams and their

structure, which reflect the disciplinary interests of

their respective fields. In the following sections, we

unpack these metadata schemes in detail to show

that their underlying assumptions significantly affect

their ability to capture the multimodal structure of

diagrams.

3.1 AI2D—a dataset for computational
processing of diagrams
The first dataset is the Allen Institute for Artificial

Intelligence Diagrams dataset (AI2D), which was

developed to support research on visual question

answering, automatic diagram understanding, and

other computational tasks involving diagrams in the

field of artificial intelligence (Kembhavi et al., 2016).

The AI2D dataset contains 4,903 diagrams that repre-

sent seventeen topics in elementary school natural

sciences, ranging from life and carbon cycles to human

physiology and food webs. The dataset models four

types of diagram elements: text, arrows, arrowheads,

and blobs. Whereas the first three categories are rather

self-explanatory, ‘blobs’ is a technical term that refers

to all visual expressive resources deployed in AI2D

diagrams, such as line drawings, illustrations, and

photographs (Tversky et al., 2000). To summarize,

AI2D relies on predefined categories for diagram ele-

ments, which are assumed to be known in advance.

Placing objects into predefined categories is a com-

mon strategy when crowdsourcing annotations for

computer vision research (Kovashka et al., 2016),

but faces problems similar to those encountered

when defining analytical categories ahead of actual

analysis (Bateman, 2011, p. 18). To reiterate, if the

expressive resources of a semiotic mode are assumed

to be known in advance, then it becomes difficult to

explicate just what a given semiotic mode does with its

material substrate—that is, what kinds of ‘regularities

of form’ or expressive resources are made available by

the semiotic mode and what can be done with them in

terms of communication. As we will see below, prob-

lems related to modelling expressive resources are

then also propagated to the stratum of discourse

semantics, complicating its description as well (cf.

Fig. 1).

Each diagram in the AI2D dataset is provided with

several types of description. All instances of text,

arrows, arrowheads, and blobs were first segmented

from the original diagram layout by crowdsourced

workers on Amazon Mechanical Turk.1 Diagram ele-

ments identified during layout segmentation provide a

foundation for a Diagram Parse Graph (DPG), which

represents the diagram elements as nodes, whereas

edges define the semantic relations holding between

elements. These semantic relations are described using

ten relation definitions drawn from the framework

proposed for diagrammatic representations by

Engelhardt (2002). The following examples illustrate

the application of the AI2D annotation schema using

a single diagram from the dataset. The original dia-

gram in Fig. 2 represents a rock cycle, that is, transi-

tions between different types of rock, using a

combination of an illustration (a cross-section) whose

parts are described using written language. These parts

set up the stages of the rock cycle, which are then

related to one another using arrows and written

language.

The crowdsourced workers were first requested to

identify instances of diagram elements during layout

segmentation. Figure 3 shows that text blocks and

arrowheads were segmented using rectangular bound-

ing boxes, whereas more complex shapes for arrows

and various types of graphics were segmented using

polygons. This layout segmentation illustrates well

how crowdsourced annotators tend to segment dia-

grams to quite uneven degrees of detail. The entire

cross-section of a volcano in Fig. 3 is assigned to a

single blob (B0), although arguably a more accurate

description would be to segment separate parts of the

Fig. 2 Diagram #4210 in the AI2D dataset.
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cross-section, such as magma and various layers of

rock. Demarcating such meaningful regions on ma-

terial substrates with a 2D spatial extent is a hallmark

feature of illustrations and other expressive resources

that allow visual depiction, which diagrams regularly

deploy for communicative purposes in combination

with written text (Richards, 2017). As we will show

below, ignoring this feature places severe limitations

on the description of discourse semantics possible for

diagrams.

The DPG in Fig. 4 shows how elements may be

connected via labelled edges to capture a variety of

relations. Since for current purposes we will focus

more on the presence or absence of connections, we

omit the labels in the graph here. Examples of specific

relations are the arrowHeadTail between arrow A2

and arrowhead H2 visible in the upper part of

Fig. 3, and the interObjectLinkage relation corre-

sponding to arrow A2, which acts in turn as a con-

nector between text blocks T1 (‘Magma flows to

surface . . .’) and T2 (‘Weathering and erosion’). As

these relations exemplify, the relations drawn from

Engelhardt (2002) cover local relations that hold be-

tween diagram elements positioned close to each other

or connected using arrows or lines (Kembhavi et al.,

2016, p. 239), but they neglect the relations needed to

describe the global organization of the diagram—that

is, relations between units that are made up of mul-

tiple elements (Hiippala et al., 2020, p. 5–6). This is

not a shortcoming of Engelhardt’s (2002) framework,

but rather of its limited application in the AI2D

dataset.

Crowdsourcing graph-based descriptions of dia-

grams without a descriptive schema that covers both

local and global discourse structures undoubtedly

constitutes a challenging task, which may explain

why isolated nodes and multiple connected compo-

nents are commonly found in AI2D DPGs (see, e.g.

the isolate T6 and five connected components in

Fig. 4). Although the original diagram shows a rock

cycle, the cyclic nature of this phenomenon is not

reflected by the structure of the DPG visible in Fig. 4

at all, even though the AI2D annotation schema

does in principle provide the relation definitions

necessary for describing such cycles, including

interObjectLinkage and intraObjectRegionLabel

(Kembhavi et al., 2016, p. 239).

This shortcoming is caused by insufficient detail in

the layout segmentation. The crowdsourced annota-

tors were not instructed to decompose instances of

expressive resources capable of visual depiction into

meaningful regions, although such resources are

Fig. 3 Layout segmentation. The diagram image has been

converted into greyscale to highlight the diagram elements

and their outlines. Each element segmented from the

diagram by the crowdsourced workers is coloured

according to diagram element type (blue: text; red: blob;

arrow: green; arrowhead: orange) and assigned a unique

identifier, laid out on top of the bounding boxes and

polygons.

Fig. 4 DPG. Node identifiers are carried over from the

layout segmentation and refer to individual diagram

elements. The element I0 stands for the entire diagram,

which can be used as the ‘target’ node for generic elements,

as exemplified by text element T0. The DPG has been

visualized using the tool developed by Hiippala et al. (2020).

Node positions are not meaningful, but determined by an

algorithm in the NetworkX library (Hagberg et al., 2008).

Semiotically-grounded distant viewing of diagrams
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commonly deployed in diagrams precisely due to their

capability to demarcate regions ‘in the world’ or

described phenomena. The blob B0, which covers

the entire cross-section, is not then segmented into

its component parts. These parts are indicated by

labels such as ‘Magma’ (T5) and ‘Metamorphic rock

forms from heat and pressure’ (T8), picking out par-

ticular regions of the cross-section by visual contain-

ment (Engelhardt, 2002, p. 47) to set up the stages of

the rock cycle. Figure 4 shows that only the label T5

(‘Magma’) is connected to blob B0 (via a relation of

intraObjectRegionLabel). Because the cross-section

(B0) constitutes a single unit, other potentially neces-

sary relations are not then available for mapping the

visually contained labels (e.g. T4, T6, T7, and T8) to

the corresponding regions of the cross-section.

Consequently, precisely those regions that would be

needed to represent the cyclic structure are absent

from the inventory of annotated diagram elements.

These challenges in decomposing diagrammatic

representations relate to the well-known problem of

identifying analytical ‘units’ in any visually invested

medium. Bateman and Wildfeuer (2014) consider

this issue for comics and argue for a discourse-based

approach to identifying analytical units, whereby the

discourse organization of some larger unit (e.g. a

panel in a comic or an entire diagram) help determine

which elements are to be picked up for interpretation

in a given context. In other words, the stratum of

discourse semantics simultaneously supports decom-

posing larger units into their component parts and

resolving their potential interrelations.

In contrast to often criticized attempts to impose

fixed units or parts on visual materials, segmentation

in the discourse-based account is always pursued with

the goal of maximizing discourse coherence via abduc-

tive reasoning (Bateman and Wildfeuer, 2014, p. 377),

that is, updating discourse interpretations as addition-

al evidence becomes available, while striving to form

the most plausible explanation for a particular con-

stellation of expressive resources. For this reason, it

will often be more effective not to operate with a pre-

defined inventory of elements (i.e. defining units

bottom-up), but instead to allow the inventory of

elements derived during analysis to change dynamic-

ally as interpretations are made and updated (top-

down). Such mechanisms are intrinsic to the stratum

of discourse semantics (Bateman, 2020).

3.2 AI2D-RST—adding discourse
semantics to AI2D diagrams
The second corpus of diagrams, AI2D-RST, features

multiple layers of expert annotations built on top of

the crowd-sourced layout segmentations from the

AI2D dataset (Hiippala et al., 2020). The AI2D-RST

corpus covers 1,000 diagrams from AI2D and

attempts to provide a more comprehensive descrip-

tion of discourse structure in diagrams, deriving a

further metadata scheme directly from the assumed

discourse semantics of the diagrammatic mode. This

offers a substantial bridge between the visual organ-

ization of diagrams and more conceptual–functional

descriptions, and so addresses many of the issues re-

cently raised by DeRose (2020) concerning the lack of

organizational structure in more surface-oriented dia-

gram markup.

AI2D-RST consequently employs a formalism fre-

quently used to describe the operation of discourse

semantics, that of Rhetorical Structure Theory

(RST), originally developed as a theory of text organ-

ization and coherence in the 1980s (Mann and

Thompson, 1988). RST attempts to describe why

well-formed texts appear coherent, or why individual

parts of a text appear to contribute towards a common

communicative goal. The RST framework was

extended for the description of multimodal docu-

ments in the early 1990s (André and Rist, 1995) and

has been used as a model of discourse semantics for

various modes and media, ranging from bird field

guides and tourist brochures to scientific publications

and product packaging (Bateman, 2008; Taboada and

Habel, 2013; Thomas, 2014; Hiippala, 2015).

In order to pull apart how different expressive

resources are combined into discourse structures in

diagrams, AI2D-RST represents each diagram using

three distinct graphs that correspond to three distinct

but complementary layers of annotation: grouping,

connectivity, and discourse structure. Whereas the

grouping and connectivity layers attempt to capture

aspects of the expressive resources, the discourse

structure layer seeks to describe what kinds of inter-

pretations diagram elements and their combinations

receive in particular contexts (see Fig. 1b). Figure 5

exemplifies the graphs for all three annotation layers

for the diagram introduced in Fig. 2.
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To begin, Fig. 5a shows the AI2D layout segmen-

tation which provides the inventory of diagram ele-

ments for AI2D-RST. Figure 5b then shows the

grouping graph that collects diagram elements that

are likely to be perceived as belonging together into

visual perceptual groups loosely based on Gestalt prin-

ciples of visual perception (Ware, 2012). This results

in a hierarchical tree graph where grouping nodes,

identified by the prefix ‘G’, are added to the graph

as parents for nodes that are grouped together during

annotation. These grouping nodes can then be picked

up in subsequent annotation layers to refer to a group

of diagram elements. In this way, the grouping layer

provides a foundation for describing both connectiv-

ity and discourse structure layers (Hiippala et al.,

2020, p. 7–8).

Figure 5c shows the connectivity layer, represented

using a cyclic graph whose edges represent visually ex-

plicit connections that are signalled using arrows and

lines and which hold between diagram elements and

their groups as defined in the AI2D-RST grouping layer

(Hiippala et al., 2020, p. 9). Because the original rock

cycle diagram features several arrows without explicit

sources and targets (see e.g. arrows A0, A1, and A5 in

Fig. 5 Graph-based representations of diagram structure in AI2D-RST. Note that AI2D-RST does not model arrowheads as

diagram elements, as this information can be retrieved from the original AI2D annotation as required. The graphs have

been created using the visualization tools developed by Hiippala et al. (2020). Node positions in each graph are not

meaningful, but calculated by an algorithm in the NetworkX library (Hagberg et al., 2008). (a) Layout segmentation. AI2D-

RST uses the layout segmentation in AI2D to populate its inventory of analytical units. (b) Grouping graph. Grouping

nodes with prefix G join nodes that are likely to be perceived as belonging together. I0 is used as the root node. (c)

Connectivity graph. The edges of the graph indicate which nodes are explicitly connected to others using arrows or lines.

(d) Discourse structure graph. Discourse relations are represented by nodes prefixed with R. Edges encode relative statuses

of the participating nodes (n: nucleus; s: satellite).
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Fig. 3), the connectivity graph in fact fails to reflect the

cyclic nature of the phenomenon represented in the

diagram. This goes back to the insufficient segmenta-

tion of the cross-section blob B0, which was already

identified as problematic when applying the original

schema proposed in AI2D to the same diagram: the

arrows connect sub-regions of the cross-section (see

e.g. A0 and A1), but these sub-regions are not available

in the inventory of diagram elements used to populate

the connectivity graph. In the case of both AI2D and

AI2D-RST, the problem originates in the stratum of

expressive resources and their segmentation into ana-

lytical units. Some visual expressive resources may re-

quire more fine-grained decomposition than others,

but this information becomes available only when these

resources are considered as a part of the discourse

structure they participate in.

This brings us to the final layer for discourse struc-

ture shown in Fig. 5d, which uses RST to describe

semantic relations between diagram elements as sug-

gested above. The discourse relations defined in RST

are intended to capture the communicative intentions

of the designer, as judged by an analyst, and are added

to the discourse structure graph as nodes prefixed with

the letter ‘R’; the edges of the graph describe which

role an element takes in the discourse relation, namely

nucleus (‘n’) or satellite (‘s’). The notion of nuclearity

is a key criterion in definitions of semantic relations in

RST and distinguishes between units of a ‘text’ that are

considered central to the argument unfolding and

units that play only a supporting role. Following the

original RST definitions, AI2D-RST represents the

discourse structure layer using a tree graph

(Hiippala et al., 2020, p. 10–13).

The specific rhetorical relations shown in the dis-

course graph of Fig. 5d include identification (R1–

R6), cyclic sequence (R7), and background (R8).

Since AI2D-RST relies on the inventory of diagram

elements provided by the original layout segmentation

in AI2D—a decision motivated by the need to avoid

annotating everything from scratch and to maintain

compatibility with AI2D—the description of dis-

course semantics in AI2D-RST requires several com-

promises that will become evident below. Here, the

annotator had concluded that most text instances

serve to identify what the arrows stand for, namely

stages of the rock cycle. The image showing the

cross-section (B0), in turn, is placed in a background

relation to the cyclic sequence relation. The definition

of a background relation (Mann and Thompson,

1988) states that the satellite (B0) increases the ability

to understand the nucleus (R7), which is the top-level

relation assigned to the diagram’s representation of

the entire cycle.

The analysis in Fig. 5d remains, however, a rather

crude description of the discourse structure of the dia-

gram of Fig. 3, because the cross-section actually pro-

vides for more information than is captured by the

AI2D layout segmentation, which assigns the entire

cross-section to the blob B0. As the preceding discus-

sion of the connectivity layer argued, insufficient ana-

lytical granularity results in an incomplete inventory of

diagram elements. The information contained in these

sub-regions is crucial for understanding what the dia-

gram is attempting to communicate but we cannot

know that such a decomposition into sub-regions is ne-

cessary without considering the discourse organization of

the entire diagram first. This demonstrates why the de-

composition of diagrams should be pursued in a top-

down direction and be guided by the discourse struc-

ture (Carberry et al., 2003; Bateman and Wildfeuer,

2014). This means that, even when supported by an

annotation framework with sufficient local and global

reach in terms of discourse structure, resulting descrip-

tions are unlikely to be adequate unless the inventory

of analytical units has been appropriately populated.

3.3 Layout across diagram categories
With two sizeable corpora with rich annotations at

hand, we now turn to examine how decisions related

to the metadata scheme in the AI2D dataset are propa-

gated to the AI2D-RST corpus. As pointed out above,

the two corpora differ in terms of the metadata

schemes used to describe the diagrams, and this dif-

ference may be traced back to the research interests of

artificial intelligence and multimodality research, and

the assumptions these fields make about the sensory

and semiotic nature of multimodality as a phenom-

enon (see Section 2).2

We begin by focusing on layout, a key expressive

resource in the diagrammatic mode, whose import-

ance has been underlined in both artificial intelligence

and multimodality research. Research on graphic and

information design has long acknowledged that docu-

ment layout supports access to discourse structure,

which raises the question whether layout plays a
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similar role in diagrams, and if so, to what extent

(Waller, 2012). André and Rist (1995, p. 149) observe

that ‘layout has to be considered as an important car-

rier of meaning’ in diagrams, because it generates

hypotheses about their discourse structure (see also

Watanabe and Nagao, 1998). For the same reason,

layout should be considered a prime target for distant

viewing, as the information on expressive resources

and their placement in the layout is readily available

in the AI2D layout segmentation. In short, layout in-

formation may provide valuable clues about the com-

municative goals of the diagrams.

Although both corpora share the same layout seg-

mentation, AI2D and AI2D-RST differ in terms of

how they categorize the diagrams. AI2D assigns dia-

grams into seventeen semantic categories that mainly

correspond to the subject matter of the diagram, as

exemplified by volcano and rock strata, whereas AI2D-

RST defines eleven structural categories that represent

abstract diagram types, such as network, cycle, and

cross-section. These structural categories attempt to

capture patterned ways of combining expressive

resources made available by the diagrammatic mode

that apply independently of particular subject matters.

In multimodality research, such patterns are often

attributed to genre, a higher-level phenomenon that

generates expectations towards the content and struc-

ture of multimodal discourse by providing structural

cues that evoke previous encounters with similar com-

municative situations and artefacts (Lemke, 2005;

Bateman, 2008; Hiippala, 2014). Figure 6 shows how

the 1,000 diagrams in AI2D-RST are mapped to struc-

tural categories in AI2D-RST (left) and semantic cat-

egories in AI2D (right).

For the purposes of distant viewing, the semantic

and structural categories in AI2D and AI2D-RST can

be treated as different metadata schemes that can im-

pose structure on the observations made for expres-

sive resources and their placement in the layout space.

To explore differences between these schemas, we re-

trieve the diagrams from each semantic and structural

category and calculate the spatio-visual centroid of

each blob, line, and text element. Because the dia-

grams are of different size and orientation, we nor-

malize the horizontal and vertical coordinates for each

centroid by dividing the coordinates by the width and

height of the original diagram image. We then use

multivariate kernel density estimation (KDE) to

estimate probabilities for the position of diagram

element centroids along the horizontal and vertical

axes that demarcate the layout space.

Figure 7 shows KDE for four semantic categories in

the AI2D dataset: parts of, life cycles, rock strata, and

volcano. The KDE plot for the category parts of in

Fig. 7a reveals that the centroids of blob elements

occur with high probability in the middle of the dia-

gram, whereas the centroids of line and text elements

are distributed evenly on the sides. In this pattern, the

different elements occupy distinct areas of the layout,

which suggests that the objects under description are

positioned in the middle and their parts are picked out

using lines and written labels positioned along the

outer edges. Interestingly, parts of is one of the few

categories in AI2D that is not strongly aligned with a

specific subject matter, but represents a generic cat-

egory that includes diagrams concerned with various

topics.

In the category of life cycles, shown in Fig. 7b, the

centroids for blobs occur with higher probability in

areas positioned on top, bottom, left, and right of the

diagram. These areas are likely to stand for particular

stages of the life cycle. In contrast to the category parts

of in Fig. 7a, blobs, lines, and text do not occupy dis-

tinct areas in the layout of life cycles. Conversely, the

patterns for rock strata and volcano in Fig. 7c and d,

respectively, bear some similarities to the pattern for

parts of, but seem more variable in their positioning of

diagram elements, as reflected by the spatial pattern

and lower values for the probability density estimates.

Figure 8 shows patterns for four of the structural

categories defined in AI2D-RST. The pattern for cycle

(Fig. 8a) suggests that structural categories in AI2D-

RST can bring out regularities in how diagrams use

the layout space regardless of their subject matter. As

the alluvial plot in Fig. 6 showed, the diagrams in the

AI2D-RST category cycle are mapped to AI2D catego-

ries life cycles, moon phases, rock cycle, and water cycle.

What is particularly striking about the layout pattern

for cycle is that four major positions may be identified

for blobs—namely top, bottom, left, and right—

whereas minor positions are visible between them.

Because the category cycle in AI2D-RST includes dia-

grams that use layout or arrows and lines to set up

cyclic connections between entities (Alikhani and

Stone, 2018), the fixedness of spatial positions for

blobs is particularly interesting. In other words,

Semiotically-grounded distant viewing of diagrams
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populating these spatial positions with blobs may

evoke an association with cycles, thus operating as a

genre cue that encourages the viewer to consider

whether such a discourse semantic interpretation

holds.

The remaining examples in Fig. 8 show layout pat-

terns for three further structural categories in AI2D-

RST concerned with how diagrams represent their

depicted objects (Hiippala et al., 2020, p. 8–9).

These include illustration in Fig. 8b, which covers all

forms of depiction at various levels of visual detail

from monochrome to colour drawings. Illustration is

distinguished from cross-section in Fig. 8c and cut-out

in Fig. 8d based on whether the internal structure of

the depicted object is shown by cutting the object in

half (cross-section) or by removing a part of the object

to expose its structure (cut-out). As the layout patterns

show, illustrations are more flexible in their position-

ing of blobs than cross-sections and cut-outs, as illus-

trations occasionally depict multiple objects in a single

diagram, which causes the blob centroids to spread

out. The layout patterns for cross-sections and cut-

outs, in turn, cannot be distinguished from one an-

other based on layout information alone.

This exposes certain limitations of the metadata

scheme used to describe diagram elements in the
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Fig. 6 An alluvial plot mapping the structural categories in AI2D-RST to the semantic categories in AI2D. Y-axis shows the

number of diagrams in each category. Diagrams in AI2D-RST that combine multiple categories are labelled as ‘mixed’.

Created using ggalluvial 0.12.3 for R 4.0.2.
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AI2D dataset, which may be traced back to defining

the expressive resources ahead of actual analysis (see

Section 3.1). Because AI2D classifies all forms of de-

piction as ‘blobs’, we cannot determine whether cate-

gories in AI2D-RST such as illustrations, cycles, and

cut-outs prefer to draw on different expressive resour-

ces—for example coloured hand-drawn illustrations

or monochrome line drawings—for depicting objects

and their structure. Put differently, forms of depiction

must be described more accurately to identify which

expressive resources are being deployed and for which

communicative purposes in each diagram category.

Capturing these distinctions is crucial because the dia-

grammatic mode uses such expressive resources to

adjust diagrams’ levels of abstraction (Dimopoulos

et al., 2003). To exemplify, an animal may be repre-

sented by a round circle in a network diagram showing

its role in a food web, whereas an illustration is more

likely to use a lifelike drawing to portray the same

animal. Distinguishing between these representations

was not possible because in AI2D and AI2D-RST both

are classified as ‘blobs’. In the following section, we

explore the diversity of expressive resources constitut-

ing the category of ‘blobs’ using computer vision

methods.

3.4 Unpacking the expressive resources
in ‘blobs’
We now offer a more fine-grained description of the

expressive resources collectively labelled as ‘blobs’ in

the AI2D dataset. To explore which expressive resour-

ces are used for depiction in illustrations, cycles, and

cut-outs, we extract all diagram elements classified as

blobs from the AI2D dataset (N¼ 20,937) and apply

the method presented in Fig. 9 to characterize their

visual appearance in terms of brightness and texture.

(a) (b)

(c) (d)

Fig. 7 KDEs for the centroids of text (blue), arrow/line (green), and blob (red) elements for four semantic categories in the

AI2D dataset. The coloured bars to the right of the graphs map the colours to the values of probability density function for

each diagram element type. Created using matplotlib 3.3.0 (Hunter, 2007) and seaborn 0.10.1 for Python 3.8.5. (a) Parts of.

(b) Life cycles. (c) Rock strata. (d) Volcano.
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We first convert each blob to greyscale. Each pixel in a

greyscale image is represented by a value between 0 and

255, which encodes its brightness: 0 stands for black,

whereas 255 stands for white. We then describe the

brightness of the entire blob by calculating a greyscale

histogram with sixty-four bins, each of which covers a

range of values. To exemplify, the first bin (out of

sixty-four) covers values from 0 to 3. If the value of a

pixel falls within this range, the value for the first bin

increases by one. Distributing all the pixels across the

sixty-four bins provides a sixty-four-dimensional vec-

tor that describes the brightness of the blob.

We then extract uniform Local Binary Patterns

(LBPs; Ojala et al., 1996) to represent the texture of

each blob using the scikit-image library for Python

(van der Walt et al., 2014). Uniform LBP examines

the neighbourhood of each pixel within a prespecified

window and encodes information about that pixel

neighbourhood using binary values: if the value of a

neighbouring pixel is lower than the value of the cur-

rent pixel, the neighbour receives a value of 0.

Conversely, if the value is larger, the neighbouring

pixel receives a value of 1. Uniform LBP collects this

information into a vector of zeros and ones. This vec-

tor is then quantified by counting the number of tran-

sitions from 0 to 1 and 1 to 0. The number of

transitions is aggregated into a histogram to describe

the distribution of binary patterns in the image. We

use LBP to examine the twenty-four neighbouring

pixels positioned within a radius of three pixels

from the centre pixel; this provides a twenty-six-di-

mensional vector for each blob. Finally, we concaten-

ate the sixty-four-dimensional vector for brightness

and the twenty-six-dimensional vector for texture

into a ninety-dimensional feature vector. These fea-

tures were extracted for each blob in the AI2D dataset.

(a) (b)

(c) (d)

Fig. 8 KDEs for the centroids of text (blue), arrow/line (green), and blob (red) elements for four structural categories in the

AI2D-RST corpus. The coloured bars to the right of the graphs map the colours to the values of probability density function

for each diagram element type. Created using matplotlib 3.3.0 (Hunter, 2007) and seaborn 0.10.1 for Python 3.8.5. (a) Cycle.

(b) Illustration. (c) Cross-section. (d) Cut-out.
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We then project the ninety-dimensional feature

vectors into a two-dimensional space for visual ex-

ploration. To do this, we use the Uniform Manifold

Approximation and Projection (UMAP) algorithm to

learn a mapping between the ninety- and two-

dimensional feature spaces (McInnes et al., 2018).

UMAP is controlled by two parameters: nearest neigh-

bours and minimum distance. We set nearest neigh-

bours to 200, which seeks to emphasize global over

local structure when determining neighbours in the

high-dimensional space, and minimum distance to

0.99, to allow loose clustering of points in the low-

dimensional space preserving the broad topological

structure of the high-dimensional space. Figure 10

shows the resulting visualization, which plots the

two-dimensional UMAP features learned for each

blob against each other along the two dimensions.

Each blob is represented by its thumbnail image.

Figure 10 reveals that the category of ‘blobs’ covers

a wide range of expressive resources. One dimension

of variation may be identified along the horizontal

axis, which encodes colour information: coloured

drawings gradually turn into monochrome line draw-

ings when moving from left to right. Another dimen-

sion of variation exists along the vertical axis: blobs

with solid colours and texture are positioned along the

outer edges, while the level of visual detail increases

towards the middle. Although UMAP preserves

enough information about colour and texture to cap-

ture colour differentiation (the number of colours)

and modulation (the range of colour shades), Fig. 10

is not sufficient for distinguishing between modes of

depiction, for example whether the blob represents an

illustration, cross-section or cut-out and which ex-

pressive resource is mobilized for depiction.

To better understand how the expressive resources

in Fig. 10 are associated with particular types of de-

piction captured by the structural categories in AI2D-

RST (e.g. illustration, cross-section, and cut-out),

Fig. 11 shows three hex plots that show the specific

distributions of blob centroids along the horizontal

(colour) and vertical (visual detail) dimensions for

these three structural categories. In terms of colour,

Fig. 11a reveals that blobs in illustrations are distrib-

uted evenly along the horizontal dimension, but peak

in the region corresponding to monochrome line

drawings. For cross-sections shown in Fig. 11b, blobs

are more likely to occur in the region for drawings

with colour gradients along the horizontal axis, but

some can also be found in the region for black and

white line drawings. Blobs from cut-outs, in turn, are

very likely to be found in the region for coloured

drawings, as shown in Fig. 11c. In terms of visual de-

tail, blobs from all three categories peak around the

region for visual detail, but especially strongly for cut-

outs.

Cut-outs clearly prefer coloured drawings with the

rich visual detail needed to depict three-dimensional

objects and their structure. This suggests that Fig. 11

reflects functionally motivated choices related to ex-

pressive resources that enable visual depiction. In

other words, the way objects are being depicted influ-

ences the choice of expressive resources. Notably,

cross-sections draw on both coloured and

Fig. 9 Extracting features for brightness and texture from ‘blobs’ in the AI2D dataset.
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monochrome drawings, which are both suitable for

depicting the internal structure of objects from a

side view. Illustrations, in turn, are more flexible in

terms of the choice of expressive resources that they

may draw on for depiction. These results are generally

aligned with the findings of Dimopoulos et al. (2003,

Fig. 10 Mapping the ninety-dimensional feature space for grey histogram and LBPs to two dimensions for plotting using

the UMAP dimensionality reduction algorithm. Each blob is represented by its thumbnail. The three loupes demarcated in

red zoom into different regions of the plot. Created using the matplotlib 3.3.0 (Hunter, 2007) and seaborn 0.11.0 libraries for

Python 3.8.5.

(a) (b) (c)

Fig. 11 The distribution of blob centroids across three structural categories in AI2D-RST. The marginal plots show

histograms with 20 bins and a KDE for each UMAP dimension. Created using the matplotlib 3.3.0 (Hunter, 2007) and

seaborn 0.11.0 libraries for Python 3.8.5. (a) Illustration. (b) Cross-section. (c) Cut-out.
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p. 200), who manually annotated over 2,800 primary

school science diagrams for four features that affect

the degree of abstraction: (1) the presence of geomet-

rical shapes and symbols, (2) the variety of colours

used, (3) their range of shades, and (4) contextualiza-

tion, that is, whether the depiction uses an illustrated

or plain colour background. Given that our method

produces similar insights without using annotations

for these particular features suggests that the generic

metadata schema indeed captures key characteristics

of the diagrammatic mode in this domain, such as the

selection of expressive resources, which may then be

linked back to particular communicative needs.

4 Discussion

The results of the analysis of diagram layouts in

Section 3.3 emphasize the flexibility of the diagram-

matic mode: the same structural configuration can

be used to realize diagrams that deal with different

topics, as long as the phenomena represented share

certain common features (cf. Fig. 6). We character-

ized these structural configurations in terms of

genre, which refers to high-level patterns of expres-

sive resources (cf. Bateman, 2008). Our results show

that these genre-based structural categories appear

to correspond to high-level layout patterns, as

shown in Fig. 8. However, Hiippala et al. (2020,

p. 21–22) observe that genre patterns are fluid and

a single diagram may incorporate high-level pat-

terns associated with multiple genres. Therefore,

the layout patterns in Fig. 8 should not be seen as

representing fixed templates for diagram design, but

reflect instead conventional ways of organizing ex-

pressive resources in the 2D layout space which are

motivated by communicative functions. The degree

to which these patterns are conventionalized varies

from one genre to another.

In terms of the expressive resources analysed in

Section 3.4, our analysis has revealed just how much

of the variation is hidden when an under-

differentiating label such as ‘blob’, ‘image’, or ‘visual’

is used. The results also underline the difference be-

tween photographic images and other means of visual

depiction, which have radically different capabilities

for representation. Diagrams regularly draw on ex-

pressive resources capable of visual depiction that

allow their representational ‘accuracy’ to be adjusted

to match their communicative needs (cf. Dimopoulos

et al., 2003; Greenberg, 2018). Moreover, in terms of

methodology, it is worth noting that extracting fea-

tures from blobs using a convolutional neural network

pretrained on photographs did not produce meaning-

ful UMAP clusters. Wevers and Smits (2020, p. 200)

report on similar experiences when applying pre-

trained neural networks to historical newspapers,

where multiple semiotic modes capable of visual de-

piction are used alongside photographs. This suggests

that many computer vision techniques that work well

on photographs may not be directly transferrable to

other forms of depiction.

Generally, our results underline the importance of

paying attention to modelling particular expressive

resources when building corpora for specific semiotic

modes. Without describing the expressive resources at

a sufficient degree of accuracy and granularity, the

analysis will not be able to capture what the semiotic

mode does with its material substrate, nor to provide

an inventory of discourse units needed to represent its

discourse semantics appropriately. Just which expres-

sive resources are made available by a semiotic mode

must be answered through empirical research. As

Thomas (2014) notes, interpretation—in this case,

concerning how to best describe the expressive resour-

ces within a semiotic mode—should be motivated by

observations made in the data and delayed until un-

avoidable. The method proposed in Section 3.4 can be

used to support the process of interpretation by pro-

viding a bird’s-eye view to expressive resources in a

corpus.

These results demonstrate that the concept of a

semiotic mode can be applied productively to creating

corpora and training data for digital humanities and

artificial intelligence research because it adds specific-

ally significant structures over the measured data.

There is also much potential in using the stratum of

discourse semantics as the basis for defining crowd-

sourcing tasks alongside common strategies adopted in

computer vision research (cf. Kovashka et al., 2016).

Rather than requesting the workers to identify and

place elements into predefined categories, the crowd-

sourcing tasks could be used to tease out discourse

interpretations related to the data and convert them

into descriptions of discourse structures. To exemplify,

if a diagram features an element that consists of written
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text, it would be natural to ask whether the text refers

to a particular entity in the diagram. This would allow

aspects of the inherently dynamic nature of discourse

interpretations to be injected into the annotation tasks.

Finally, we argue that our analysis shows that pre-

theoretical distinctions between ‘text’ and ‘image’

rarely hold in multimodal communication, and they

are seriously under-differentiating for the digital

humanities or any other field concerned with multi-

modality (Bateman, 2014; Bateman et al., 2017).

While we fully agree with Arnold and Tilton (2019)

on the need to develop methods that enable the large-

scale analysis of various media, we have demonstrated

here that this effort must be supported by a solid the-

oretical foundation that reveals rather than hides the

complexity of multimodal communication (Bateman,

2017; Hiippala, 2021). This foundation is needed for

tackling issues that are traditionally of concern to the

humanities, such as trajectories of change over time,

whose computational analysis is still largely limited to

linguistic material.

5 Conclusion

In this article, we argued that contemporary theories of

multimodality can inform computational approaches

to studying multimodal communication in the field of

digital humanities and beyond. By analysing two

multimodal corpora consisting of primary school sci-

ence diagrams, we showed how multimodality theory

can reveal descriptive shortcomings that lead to

analytical blind spots, which become increasingly pro-

nounced when using computational methods as advo-

cated by distant viewing (Arnold and Tilton, 2019).

However, Arnold and Tilton (2019, p. i13) acknow-

ledge that the framework of distant viewing cannot

specify what kinds of metadata schemes are needed

to describe the data in a way that support the optimal

use of computational methods, but argue that devel-

oping such metadata schemes should constitute a

major area of research in digital humanities.

We propose that any effort to define metadata

schemes for visual and multimodal materials can be

informed by multimodality theory, which allows for a

semiotically appropriate treatment of diverse media

and the semiotic modes they deploy. This calls for

increased attention to the communicative goals set

for the artefact or situation under analysis, as these

determine the extent to which individual semiotic

modes must be decomposed into analytical units to

achieve a sufficiently coherent description of multi-

modal discourse. Producing such descriptions for a

wide range of historical and contemporary media

will require a large-scale effort, but at the same time,

grounding the analysis in semiotics offers a far stron-

ger basis for addressing research questions that are

traditionally of concern to humanities, while continu-

ing to leverage the power of computational methods

for finding patterns in large volumes of data.

Notes
1. https://www.mturk.com.

2. The code used for analysis is available at https://doi.

org/10.5281/zenodo.4761066.
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