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ABSTRACT 

A major proportion of the costs of pork production is related to feed; thus, improving 

feed efficiency is one of the most important breeding goals in pig breeding programs. 

Feed efficiency measurements are based on the performance of pigs in a controlled 

test station environment with an automatic feeding system. During the test period, a 

large amount of feeding-related information, including time entering the feeder, time 

leaving the feeder and amount of feed consumed, are gathered. These data can be used 

to form different feeding behaviour traits (FBT) such as daily feed intake (DFI) or 

feed intake per visit (FPV). During the test period, pigs are group housed. Therefore, 

social behaviour between pen mates may affect feeding behaviour, production traits 

(PT) and welfare of other pen mates. Furthermore, unusual or radical changes in pigs’ 

behaviour can be a sign of diseases or discomfort and can be used for the detection of 

diseases for timely intervention. 

The thesis has three objectives. The first objective was to estimate the heritability 

of FBT and their correlation with PT in the Finnish Yorkshire pig population (I). The 

second objective was to estimate genetic parameters of feeding behaviour and PT in 

Finnish pig breeds using a model with a social genetic effect (SGE; study II). The third 

objective was to develop machine learning methods for detection of pigs that may need 

medical treatment or extra management based on changes in their feeding behaviour 

patterns (III).  

The data consisted of purebred Finnish Yorkshire and Finnish Landrace pigs and 

their F1-crosses. Pigs were raised in a controlled test station environment located in 

Längelmäki, Finland (Figen Oy). Pigs arrived at the test station at an average age of 

89 ± 10 days (mean ± standard deviation) and an average weight of 34.7 ± 6.4 kg. The 

slaughter age was 186 ± 10 days, and the slaughter weight was 121.2 ± 12.9 kg. The 

feeding, production and sickness data were collected from 10,275 pigs that had entered 

the test station between 2011 and 2016 (October). From obtained feeding observation, 

daily values were calculated as the number of visits per day (NVD), time spent in 

feeding per day (TPD), DFI, time spent feeding per visit (TPV), FPV and feed intake 

rate (FR). The final records of FBT were calculated as averages of the daily records 

separately for the five testing time periods: 0 to 20 days (period 1), 21 to 40 days 
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(period 2), 41 to 60 days (period 3), 61 to 80 days (period 4) and 81 to 93 days (period 

5). The PT were average daily gain (ADG), feed conversion rate (FCR) and backfat 

thickness (BF) as well as residual feed intake (RFI), which was calculated as the 

difference between the observed and predicted DFIs. For the last objective, daily 

observations of the health status of pigs (794,509 daily observations) were used. The 

data included 13,018 observations of symptoms (cough, limp, loss of appetite, skin 

damage, bitten tail). Pigs with symptoms were classified as “sick” while the pigs with 

no symptoms were classified as “healthy”. 

For the first objective (I), a univariate animal model was applied for the estimation 

of heritability of FBT and PT and a bi-variate model for the estimation of genetic 

correlations between the traits. For the second objective, single-trait social genetic 

models were applied with two different group size parametrisations: a fixed group size 

with a random sampling of eight pigs for each pen and a variable group size model 

where the number of pen mates varied. The restricted maximum likelihood (REML) 

method and the DMU software were used for the variance component estimations (I 

and II). For the last objective, the machine learning algorithm (Xgboost) was designed 

with different window lengths (one-day, three-day and seven-day window lengths) 

using features calculated from the feeding data to predict the individual health status 

(sick or healthy).  

Heritability estimates for FBT and PT were moderate (around 0.3). Only the DFI 

had strong genetic correlations with PT (e.g., over 0.8 with RFI). Interestingly, the FR 

and FPV were associated with BF in early testing time (I). The SGE was significant 

for FBT and the FCR but not for the ADG and BF (II). For those traits, the total 

heritable variation was considerably higher than the pure classical heritability. The 

fixed and variable group size models produced very similar estimates (II). Using the 

Xgboost machine learning method, the best performance for predicting pigs’ daily 

health status was obtained with a seven-day window length (80% area under the 

Receiver Operator Characteristics (ROC) curve) [AUC], 7% F1-score, 67% 

sensitivity and 73% specificity). However, the precision was very low (0.04), possibly 

due to an imbalanced dataset (III).   
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In conclusion, results indicate that the FBT are moderately inherited but their 

correlation with PT are weak; thus, FBT are not important in breeding programs. The 

social genetic component was important in FBT but also in the FCR; thus, applying 

SGEs in breeding value estimation would increase the accuracy of selection for the 

FCR. Predictions based on changes in feeding behaviour can help in the detection of 

sick pigs, leading to better pig welfare and increased sustainability of pork production. 
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1 INTRODUCTION 

In a test station, pigs are routinely evaluated for growth, feed conversion rate (FCR) 

and carcass traits. In addition, detailed feeding records are available for these pigs and 

can be used for feeding behaviour studies. Feeding behaviour traits (FBT) do not have 

direct economic value. However, if the FBT are correlated with production traits (PT), 

then FBT can be used as auxiliary traits for PT. For example, FBT may provide early 

information about PT that are difficult to measure or can be measured only late in life 

(Schulze et al., 2003). Therefore, in study I, in addition to heritability estimates for 

FBT, correlations between FBT and average daily gain (ADG), FCR, backfat thickness 

(BF) and residual feed intake (RFI) were estimated.      

Pigs are housed in groups in commercial farms and in test stations. When the 

animals are group housed, their performance depends on direct genetic effects 

(DGEs), environmental effects and their social interaction with pen mates (Griffing, 

1967; Muir, 2003). Therefore, the social behaviour between pen mates may have 

positive or negative effects on the feeding behaviour, production and wellbeing of the 

pigs sharing the same pen (Wolf et al., 1998). Some social behaviours such as 

competition and aggression generally have negative effects on pen mates (Ellen et al., 

2014), while cooperation and mothering ability have generally positive effects on pen 

mates (Canario et al., 2017). These social behaviour patterns are partly inherited. This 

part is called the social genetic effect (SGE; Nielsen et al., 2018). Therefore, if the 

animals’ performance also depends on social interactions between groupmates, the 

SGE should be considered in both breeding value estimation and selection to achieve 

better genetic response than with programs that are based purely on additive genetic 

effects of the breeding candidates (Bijma et al., 2007b). Therefore, in study II, the 

effect of pen mates on FBT and PT was explored. 

In recent years, there has been increased concern about pig welfare under farming 

systems with the scientific concurrence that animals’ welfare should be improved 

(Mellor, 2016). Animals express their internal condition through their behaviours 

(feeding/drinking behaviour, social behaviour, etc.), and unexpected changes in pigs’ 

behaviour may indicate possible health problems (Matthews et al., 2017). Changing 

patterns in feeding behaviour can be used for the early detection of possible health and 



 

12 

welfare problems in pigs. Therefore, in study III, a prediction method was developed 

to detect possible health problems based on changes in FBT. 

1.1 Feeding behaviour traits 

FBT are based on feeding data collected from automatic feeding systems with 

identification of animals, time entering and leaving the feeder and amount of feed 

consumed during the visit. Feeding behaviour can be described as the number of visits 

per day (NVD), time spent in feeding per day (TPD), daily feed intake (DFI), time 

spent in feeding per visit (TPV), feed intake per visit (FPV) and feed intake rate (FR; 

von Felde et al., 1996; Hall et al., 1999). There are also some other FBT that can be 

measured that are not used in this study, such as time intervals between meals (Remus 

et al., 2020). FBT can be used to estimate the genetic and phenotypic relationship 

between the FBT and other traits (Do et al., 2013), estimate the effects of social 

interaction (Bijma 2007a, b; Bergsma et al., 2008) and predict sickness (Matthews et 

al., 2017; Gertz et al., 2020). In general, genetic variance exists in FBT, and 

heritabilities of FBT vary from moderate to high estimates of heritability (de Haer and 

de Vries, 1993; Do et al., 2013; von Felde et al., 1996; Labroue et al., 1997; Schulze 

et al., 2003; Table 1). For example, de Haer and de Vries (1993) reported low to 

moderate heritabilities for the NVD, TPD, DFI, TPV, FPV and FR of 0.38, 0.24, 0.16, 

0.27, 0.35 and 0.28, respectively, in group-housed pigs. On the other hand, von Felde 

et al. (1996) reported moderate to high heritability estimates for the NVD, TPD, DFI, 

TPV, FPV and FR of 0.43, 0.43, 0.22, 0.42, 0.51 and 0.44, respectively, in group-

housed Landrace and Large White boars. Moreover, there is a genetic correlation 

between FBT and PT (von Felde et al., 1996; Labroue et al., 1997; Hall et al., 1999; 

Schulze et al., 2003; McSweeny et al., 2003; Young et al., 2012). For example, von 

Felde et al. (1996) reported both low and high estimations of genetic correlation 

between the DFI and the FCR, RFI, ADG and BF (0.68, 0.45, 0.13 and 0.97, 

respectively). Labroue et al. (1997) also reported high genetic correlations between the 

DFI and ADG in the Large White (0.87) and French Landrace (0.81).  

Apart from the genetic factors, FBT is also affected by environmental factors, and 

housing should provide the most optimum conditions possible to ensure good 

performance as well as good welfare of pigs. For example, Gonyou et al. (1998) 
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reported a reduction in the DFI from 2.49 to 2.21 kg when the group size increased 

from 3 to 15 pigs. However, Nielson et al. (1995) and Wolter et al. (2001) reported 

that FBT were not affected by group size. In addition, heat stress influences the DFI 

and weight gain of growing pigs (McGlone et al., 1985; Feddes et al., 1989; McGlone 

et al., 1994; Hyun et al., 1998). Feddes et al. (1989) reported that if the temperature 

varied from 26 to 40°C, the greatest feed intake was observed either during early 

morning or late evening compared to pigs growing in an environment with a constant 

temperature (33°C). 

1.2 Importance of feeding behaviour traits in pig breeding programs 

Efficient pig production relies on large and viable litters and pigs’ ability to efficiently 

produce high-quality meat (Knap et al., 2001). Since most of the costs of pork 

production are related to feed, feed efficiency (FE) is a significant interest in pig 

breeding programs, and traits like the FCR and RFI are commonly included in breeding 

programmes. FBT are not usually of direct interest in breeding programmes, but if a 

positive genetic correlation exists between FBT and PT, using FBT in selection 

programmes may increase the accuracy of the selection of PT depending on the 

correlation between FBT and PT (Do et al., 2013). Previous studies have shown the 

phenotypic and genetic correlation between feeding behaviour and PT (Labroue et al., 

1997; Schulze et al., 2003; Rauw et al., 2006; Do et al., 2013); for example, animals 

that eat more per visit tend to grow faster (Labroue et al., 1997). In addition, in Dekkers 

et al.’s (2014) study, pigs with reduced RFI ate less feed, spent less time at the feeder, 

made fewer daily visits to the feeder, and ate at a faster rate than the control group 

pigs. Thus, FBT could be utilised at least as an auxiliary trait in genetic evaluation of 

pigs for PT. 

1.3 Social interaction models 

Social interaction has an impact on group-housed animals sharing the same pen. In 

classical quantitative genetics, observed trait values (P) can be expressed as the sum 

of a heritable component (A, breeding value) and a non-heritable or environmental 

component (E) where P = A + E (Falconer and Mackay, 1996; Lynch and Walsh, 

1998). When the trait is affected by interactions with the group or pen mates, then the 

classical model needs to be expanded with social effects of pen mates (Dickerson, 
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1947; Wilham, 1963; Griffing, 1967; Cheverud, 1984; Wolf et al., 1998). In a social 

genetic model, an animal’s phenotype depends on the genotype of the animal itself 

(referred to as DGE), the genotypes of the other animals in the same pen (referred to 

as either the social or indirect genetic effects, SGEs) and the corresponding non-

heritable direct and social effects (Griffing, 1967; Moore et al., 2007; Bijma et al., 

2007a,b). The total breeding value (TBV) of an animal is the sum of its direct breeding 

value (DBV) and its own social breeding value (SBV) towards its group mates. DBV 

is a part of the DGE that is transmitted to progeny. Similarly, SBV is a part of an 

animal’s SGE that is transmitted to progeny. Because TBV is the part of an animal’s 

genotype that can be utilised in selection programmes to improve the direct 

performance of the progeny and improve the social effects of the progeny towards pen 

mates, it is preferred over the traditional DBV. Therefore, the proportion of variance 

of TBV over the total phenotypic variance is more important than the classical 

heritability in traits that are affected by SGEs.   

To illustrate P, DBV and TBV, an example of three pigs is used below: 

P1 = DGE1 + NH_DE1 + SGE2 + NH_SE2 + SGE3 + NH_SE3 

P2 = DGE2 + NH_DE2 + SGE1 + NH_SE1 + SGE3 + NH_SE3 

P3 = DGE3 + NH_DE3 + SGE1 + NH_SE1 + SGE2 + NH_SE2 

TBV1 = DBV1 + SBV1 

TBV2 = DBV2 + SBV2 

TBV3 = DBV3 + SBV3 

where Non-heritable direct effects (NH_DE) and Non-heritable social effects 

(NH_SE) relate to non-heritable direct and social effects, respectively.  

The variance of TBV depends on the (co)variance components of DBV and SBV but 

also on group size (Bijma et al., 2007a, b). The number of pen mates may vary for 

several reasons (e.g., removal due to sickness), causing variation in group size. 

Varying group size complicates the estimation of variance components using existing 

variance component estimation programs. When group sizes vary in the population, 
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simply fitting a fixed effect for group size may not be enough because variance 

components may also vary between group sizes. For instance, when the group size is 

large, social interaction between pigs may be less intense, which means that variance 

of SGEs decreases with group size. Several approaches have been proposed as a 

solution for coping with variable group sizes (e.g., Arango et al., 2005; Hadfield and 

Wilson, 2007; Bijma et al., 2007a; Nielsen et al., 2018a). One approach to account for 

the variable group size in a statistical model is to use a so-called dilution factor (d) 

where the effect of the SGE of the pen mates in large groups on an individual’s 

phenotype is relatively smaller than the effect in small groups (Bijma, 2010; Hadfield 

and Wilson, 2007). In addition, the group size and the relatedness of the animals within 

a group affect the accuracy of SGE variance estimates. The accuracy can be improved 

with large groups with highly related pen mates (Chu et al., 2021). Finally, the social 

interaction may depend on environmental conditions such as a restricted feeding 

system that creates a competition between the pen mates if the total amount of feed 

within a pen is fixed. Competition due to restricted feeding may cause negative 

correlations between direct and social effects as shown by Bergsma et al. (2008) for 

ADG.  

1.4 Disease detection by machine learning methods 

Early disease control is important in increasing welfare and treatment success among 

pigs. Animals express their internal situation through behaviour; thus, observing 

changes in behaviour (e.g., feeding) could pinpoint animals that are potentially sick. 

These changes can be observed either by examining the animals or using statistical 

modelling based on the data received from the automated sensors and feeding systems. 

These behavioural changes can be correlated to any sickness (e.g., limp, loss of 

appetite, bitten tail). For example, Wallenbeck and Keeling (2013) identified a low 

frequency of feeding at a group level up to nine weeks prior to the first injury. 

Additionally, Munsterhjelm et al. (2015) observed the reduction of feed intake 20 days 

prior to the tail being bitten. In practise, animals are not examined in detail for possible 

sickness on a daily basis. Instead, farm workers eyeball the animals during their routine 

management work. This permits detection of the most obvious and severe health 

issues, at which point it may be too late for effective and treatable intervention. 

Furthermore, microphones have been used to monitor the sounds of coughing of pigs 
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to build an intelligent alarm system to detect the disease in its early stage (Guarino et 

al., 2008), 3D-cameras to predict tail biting outbreaks by identifying lowered tail 

postures (D’Eath et al., 2018), and deviations in typical feeding patterns to monitor 

overall welfare of pigs  (e.g., Brown-Brandl et al., 2013; Munsterhjelm et al., 2015; 

Bus et al., 2021).   

Machine learning (ML) is a type of artificial intelligence, and ML algorithms such 

as extreme gradient boosting, random forests and support vector machines are used to 

predict different outcomes from the sample data (or “training data”). The algorithms 

have been applied in a wide variety of fields. Recently, ML has become a popular and 

powerful method that helps to detect behavioural changes related to health problems 

(Liaskos et al., 2018). Although the ML algorithms are quite a powerful method for 

classification as well as clustering, the quality of the data has a crucial impact on the 

performance of the algorithm; thus, before applying the ML algorithm to data, the data 

should be filtered to avoid unwanted outcomes and increase the robustness of the 

performance (Alsaaod et al., 2012). 
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2 OBJECTIVES 

This thesis had separate but linked goals, namely to increase knowledge of the genetics 

of feeding behaviour, estimate the genetic part of social interaction between the pen 

mates and find possible patterns in feeding behaviour that are correlated with animal 

health. Therefore, the main objective was divided into three specific goals as outlined 

below (with the study number provided in parentheses): 

1) To estimate the heritability of FBT and their correlation with PT in Finnish 

Yorkshire pigs (I) 

2) To estimate the SGEs on feeding behaviour and PT in pigs (II) 

3) To detect disease in pigs based on FBT using ML (III) 

The proposed project was based on the hypothesis that pigs display genetic 

differences in FE and FBT that can be used in the selection of pigs with improved FE 

and health. The second hypothesis is that revealing the genetic basis of social 

interaction between pigs allows the selection of pigs that have a positive effect on pen 

mates’ health, welfare and productivity. The third hypothesis is that changes in 

behaviour patterns can be used to detect pigs that may need medical treatment or extra 

management to avoid possible diseases such as diarrhoea or lameness. 
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3 MATERIALS AND METHODS 

3.1 MATERIALS 

For all objectives, the pigs were either purebred Finnish Yorkshire (I–III), Finnish 

Landrace (II, III) or F1-crosses between the two breeds raised in a controlled test 

station environment located in Längelmäki, Finland (Figen Oy). Pigs were related to 

each other through common ancestors. The production, feeding and sickness data were 

collected from 10,275 pigs that entered the test station between 2011 and 2016 

(October). The pigs arrived at the test station at an average age of 89 ± 10 days (mean 

± standard deviation) and an average weight of 34.7 ± 6.4 kg in total testing time (on 

average, 95 ± 3 days). Moreover, the slaughter age was 186 ± 10 days while the 

slaughter weight was 121.2 ± 12.9 kg.  

In study I, only Yorkshire pigs (3,235 pigs) were used for estimation of the genetic 

parameters of FBT and their correlation with PT. In study II, both feeding behaviour 

and production data from all animals were used in the data. However, the groups which 

had less than 8 and more than 12 pigs were removed. The final data in study II included 

3,075 Finnish Yorkshire, 3,351 Finnish Landrace and 968 F1-crosses. In study III, 

feeding behaviour and sickness data from both breeds and F1-crosses were used. The 

data included 10,261 animals with 794,509 daily feeding behaviour and sickness 

observations.  

No animal experiment was needed in this project; thus, no ethical approval was 

required. The study followed the University of Helsinki’s ethical research guidelines, 

good scientific practice and applicable laws and regulations. 

3.1.1 Figen test station (Längelmäki, Finland) 

The data was received from the pig test station located in Längelmäki in central 

Finland. The tested breeds are Finnish Landrace and Finnish Yorkshire, which belong 

to the breeding program run by Figen. The station conducts individual tests on 

approximately 2,500 purebred boars each year. Boar candidates come from the nucleus 

farms at 30 kg of weight for the 14-week test period. During the test period, feeding 

information, weight, BF and conformation are recorded. After slaughtering, carcass 
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and meat quality information are also collected. The piggery has automated ventilation 

based on the age of the pigs and the outdoor temperature. Artificial light is on from 7 

am to 3 pm, and the dimension of the pen is 16.8 m2 with one third of concrete slats. 

In this study, the data included the feeding and production records of pigs from the 

central test station from 2011 to 2016. 

Pigs arrive at the test station on Tuesday or Wednesday, and the test starts on 

Saturday. The grouping of pigs into different pens is done according to the arrival 

weight (same size) and sex (only boars or a combination of gilts and castrates) of the 

pigs. Feeding is recorded automatically using the Schauer Spotmix with Schauer MLP 

electronic feeders and MLP manager data management software (Schauer Agrotronic 

GmbH). Feeding type (dry feeding) is ad libitum consisting of two commercial 

feedstuffs. Water was available ad libitum. The proportion of the two feedstuffs is 

based on the growth rate curve of an average pig from the previous test periods.  

3.1.2 Feeding behaviour data 

The raw feeding behaviour data consisted of 28,964,641 individual feeding visits 

observations with ear tag transponder-id, date, time entering the feeder, time leaving 

the feeder and FPV. The feed intake was measured as a weight of the feed before and 

after the pig has been in feeder. From the raw records, time spent per visit and feeding 

rate per visit (g/min) were calculated. Some visits may have been missed due to ear 

tag issues (e.g., incorrect records, ear tags falling out) or sickness, and some individual 

records could be erroneous due to malfunction of the feeder or extraordinary feeding 

behaviour of some pigs on some days. Therefore, prior to statistical analyses, the 

thresholds presented in Casey et al. (2005) were applied to remove potentially 

erroneous data. The proportion of the outliers was less than 1%, and the remaining 

data included 28,826,029 daily values. From the daily values, the NVD (counts), TPD 

(min), DFI (g), TPV (min), FPV (g) and FR (g/min) were calculated over periods 1 to 

5 (0–20, 21–40, 41–60, 61–80 and 81–93 days in the test). The descriptive statistics of 

FBT (I, II) are shown in Figure 1. 
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Figure 1. Box plots of feeding behaviour traits in pigs over the five periods. 

3.1.3 Production data 

The PT analysed in studies I and II were the ADG, FCR and BF. The ADG was 

calculated as the total growth during the test period (finishing body weight – initial 

body weight) divided by the number of test days. The FCR was defined as the feed 

consumption during the test period measured in feed units (1 feed unit is 9.3 MJ net 

energy) divided by the total growth during the test period. The BF was an average of 

two Hennessy Grading Systems (type GP4, Auckland, New Zealand) measurements: 

one at 8 cm off the midline of the carcass behind the last rib and one at 6 cm off the 

midline between the third and fourth ribs. In addition, the RFI was calculated using the 

difference between the observed and predicted DFI based on the initial body weight, 

ADG, BF, sex and year-season effect (I). The descriptive statistics of PT except RFI 

are shown in Figure 2 (I and II). 
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Figure 2. Box plots of the production traits in pigs over the entire test period. 

3.1.4 Sickness data 

The sickness data (III) were recorded daily by the test station staff members (Figen 

Oy) during the routine check (twice a day)  and included the ID of the pig, the 

symptom(s) and the date. Out of 794,509 daily health observations, 13,018 were 

related to recorded symptoms, which were classified as cough (988), limp (6,603), loss 

of appetite (1,015), skin damage (1,471) and bitten tail (2,941). Pigs with symptoms 

were classified as “sick”, and pigs that had no recorded symptoms were classified as 

“healthy” (781,491 observations). The prevalence of the sicknesses were 0.008, 0.001, 

0.004, 0,001 and 0.002 for limp, cough, bitten tail, loss of appetite and skin damage, 

respectively. The total prevalence of sick pigs was 0.016. Antibiotics and other drugs 

were given only for the sick animals based on veterinary prescriptions. 

3.1.5 Pedigree data 

In study I, the pedigree data consisted of 5,396 Yorkshire pigs with observations and 

their ancestors down to four generations. In studies II and III, the pedigree data 

included 11,301 animals and their ancestors down to four generations as well. The 

average number of offspring with observations per sire was 16 in study I and 16.6 in 

studies II and III. The average additive genetic relationship between the pigs within a 
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group was 0.08 (II). The pedigree data was checked and pruned using the Relax2 

program (Strandén, 2014). 

3.2 METHODS 

3.2.1 Estimation of heritability and total heritable variation 

The univariate mixed linear model (I) included sex and herd*year*season (hys) as 

fixed effects (except for RFI, which was corrected for these effects beforehand) and 

animal, litter and batch*pen (bp) as random effects for all FBT and PT. The heritability 

estimates (I) were calculated using the following formula:  

1) ℎଶ = ఙమೌఙమೌାఙ್೛మ ାఙ೗మାఙ೐మ  
where ߪ௔ଶ is the variance of the animal, ߪ௕௣ଶ  is the variance of batch*pen (bp), ߪ௟ଶ is 

the variance of litter and ߪ௘ଶ is the residual variance of the trait.  

For the social interaction study (II), single-trait SGE models were applied. Two SGE 

models were tested: a fixed group size (n) model with eight randomly selected pigs 

from each pen and a variable group size model (group size varied from 8 to 12, and 

the average group size was 9.8 ± 1.19). The linear mixed model included sex, breed 

and herd*year*season as fixed effects and group (batch*pen), litter, the genetic effects 

of the animal itself (DGEs) and those of its pen mates (SGEs) as random effects. The 

total heritable variation and classical heritability and the corresponding variance 

components were calculated using the following formulas: 

The variance of the TBV (σ்஻௏ଶ ; Bijma et al., 2007a, b): 

2) σ்஻௏ଶ = σ஺஽ଶ + 2(݊ − 1)σ஺ವೄ + (݊ − 1)ଶ σ஺ௌଶ   

where σ஺஽ଶ  is the variance of DGEs, σ஺ௌଶ  is the variance of SGEs and σ஺ವೄ  is the 

covariance between DGEs and SGEs.  

The total phenotypic variance (σ௉ଶ): 

3) σ௉ଶ = σ஺஽ଶ + σ௚ଶ + σ௟ଶ + σ௘ଶ + (݊ − 1)σ஺ௌଶ + (݊ − 2σ஺ವೄ]ݎ(1 + (݊ − 2)σ஺ௌଶ ] 
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where σ௚ଶ is the variance of group effect, σ௟ଶ is the variance of litter effect and σ௘ଶ is 

the residual variance. The average number of pigs in each group is n, and the average 

relatedness within groups is r (r = 0.08).  

The total heritable variation (ܶଶ):  

4) ܶଶ = ఙ೅ಳೇమఙುమ  

The classical heritability (ℎଶ): 

5) ℎଶ = ఙಲವమఙುమ  

3.2.2 Genetic correlation  

A bivariate model was used to estimate the genetic correlations between feeding 

behaviour and PT (I). For the bivariate model, the (co)variance matrix of the normally 

distributed additive genetic effects was A⊗G, where A is the numerator relationship 

matrix, G is the genetic (co)variance matrices of the traits and ⊗ denotes the 

Kronecker product. The (co)variance matrix of the normally distributed litter, 

batch*pen and residual effects were I⊗B, I⊗C and I⊗R, respectively, where I is an 

identity matrix and B, C and R are the (co)variance matrices for litter, batch*pen and 

residual effects, respectively.  

The variance and covariance components were estimated with REML method 

(Patterson and Thompson, 1971) using the DMU software (Madsen and Jensen, 2013). 

3.2.3 Xgboost algorithm 

Xgboost is a gradient boosted tree that attempts to predict a target variable by 

combining an ensemble of estimates from a set of simpler and weaker models which 

works powerfully in ML competitions by virtue of its robust handling of different data 

types as well as hyperparameters that can be tuned accordingly. Xgboost can be used 

in both regression and classification problems. Xgboost requires some implementation 

such as tuning hyper-parameters, which are optimisation parameters that tune the 

performance of ML algorithms (Bergstra and Bengio, 2012), and feature selection as 
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predictors for the models to achieve robust and better performance. In this study, the 

hyper-parameters were selected as the number of boosting iterations (nrounds), 

maximum depth of a tree (max-depth) and eta that controls the learning rate. Xgboost 

combines weak base classifiers into a strong classifier. At each iteration of the training 

process, the residual of a base classifier is used in the next classifier to optimise the 

objective function. The objective of the classification model was binary 

(binary:logistic) and the model was fitted by minimizing the binary classification error 

rate. In addition, we used an additional parameter (scale_pos_weight) in the models to 

control the balance of classes weights due to the imbalanced data set. The parameter 

was calculated as the proportion of the number of sick observations to number of 

healthy observations. Therefore, in this study, the Xgboost algorithm was applied 

using the R package Xgboost (Chen et al., 2018) in R 3.6.1 software (R Core Team, 

2019).  

3.2.4 Features and window length selection for Xgboost 

The features used in Xgboost (III) included the original daily observations (NVD, TPD 

and DFI), daily rank of TPD within the group of pigs (DRTPD), daily rank of DFI 

within the group of pigs (DRDFI) and residuals of TPD (ResTPD) and DFI (ResDFI). 

The daily ranks relate the rank of the animal’s observation (NVD, TPD, or DFI) among 

the observations of the other pigs in the same pen, while the residuals of TPD and DFI 

were calculated by fitting a polynomial (quadratic) regression model to the whole 

dataset (III): 

 ,௜ = μ௜ + ܾ଴ + ܾଵ* ܽ݃݁௜ + ܾଶ* ܽ݃݁௜ଶ + ݁௜ݕ (6
where ݕ௜ is either the TPD or DFI of a pig i, ܾ଴ is overall mean, ܽ݃݁௜is the age of 

the pig i related to observation ݕ௜, ܾଵ and ܾଶ are the linear and quadratic regression 

coefficients and ݁௜ is the residual used in ML.  

In addition, parameters form two normal distributions (one representing possible 

normal visits and the other representing possible visits without eating) were fitted to 

daily visit interval data using a maximum likelihood method and considered as features 

including p the proportion of intervals belonging to the first distribution, σଵ and σଶ the 

standard deviations and μଵ and μଶ the means of the distributions (e.g., Tolkamp et al., 
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1998). Logarithm to base e of the time between the feedings was used instead of the 

raw intervals.  

Features used in ML were either from one, three or seven days:  

a) one-day window length: The only features of the day of the health status 

classification were used in prediction. 

b) three-day window length: The final features were the mean of the 

features of the day of the health status and the previous two days.  

c) seven-day window length: The final features were the mean of the 

features of the day of the health status and the previous six days.  

Based on the three- and seven-day window features, new features “delta” and “SD” 

were calculated for the seven-day window, with delta as a difference between the 

means of the features of the seven-day window and the three-day window and SD as 

a standard deviation of the features of the seven-day window. Windows were 

overlapping. 

An alternative labelling of sick animals was tested with the seven-day window 

model. In the Alt-1 model, only the symptoms “limp” and “loss of appetite” were 

labelled as “sick”, and in the Alt-2 model, only the symptoms “bitten tail” and “skin 

damage” were labelled as “sick”.  

3.2.5 Cross validation, performance metrics and feature importance 

Prior to the performance measurement of the Xgboost algorithm, the data including 

sickness and feature information were split into the training (70%) and testing (30%) 

datasets (III). The observations were stratified by the symptoms and pig ID; thus, the 

proportion of sick and healthy observations was the same in both data sets.  

As the first step in predictions, we applied 10-fold cross-validation (CV) to optimise 

the features and hyperparameters (the number of boosting iterations [nrounds], 

maximum depth of a tree [max-depth] and eta that controls the learning rate as well as 

gamma, lambda, subsample). CV was also applied to avoid under/overfitting of the 

models. For the 10-fold CV, the training data set were divided into 10 sets of equal 

size. In each validation step, nine of the sub-sets were used to train the model, and one 
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sub-set was used to validate the model. The set of hyperparameters that gave the best 

performance metric (based on AUC) from the model was selected for the final 

performance testing.  

The performance of the models was assessed based on sensitivity (TP / [TP + FN]), 

specificity (TN / [TN + FP]), precision (TP / [TP + FP]), F1-score ([2 x Precision x 

Sensitivity] / [Precision + Sensitivity]) and the AUC. The model was evaluated as non-

informative with an AUC ≤ 0.50, weak with an AUC of 0.50 to 0.70, accurate with an 

AUC of 0.70 to 0.90 and highly accurate with an AUC ≥ 0.90 (Swets, 1988; Greiner 

et al., 2000).  

In study III, we also obtained the feature importance using the ability of Xgboost to 

remove the non-informative or redundant predictors from the model (Chen et al., 

2018). The importance matrix was produced from each model while fitting the 

Xgboost models. In this matrix, the “gain” metric indicates the relative contribution of 

the corresponding feature to the model calculated by taking each feature’s contribution 

for each tree in the model. The “cover” metric indicates the relative number of 

observations related to this feature and the frequency, which is the percentage of the 

relative number of times a particular feature occurs in the trees of the model. An 

obtained score of each feature is based on how much more information about the class 

is gained when using that feature. We quantified the importance of features by “feature 

gain”. R software (R Core Team, 2019) with the R packages xgboost and caret (Kuhn 

et al., 2018) were used in study III. 

 

 

 

 

 



 

27 

4 RESULTS AND DISCUSSION 

This thesis consists of three studies that focus on the effects of FBT and PT in Finnish 

pig breeds as well as their welfare using feeding behaviour and health information. 

The studies include an estimation of genetic parameters using the classical animal 

model (I) and the social genetic model (II). Finally, since timely disease detection is 

important for animal welfare, the prediction models using the Xgboost-method were 

built based on feeding behaviour and health information data (III). 

4.1 Estimated heritabilities of feeding behaviour and production traits 

The heritabilities of FBT were estimated for five periods; however, only the smallest 

and largest estimates are presented in Table 1. Standard error (SE) of the estimates 

were between 0.05 and 0.07 for all traits. In general, the estimated heritabilities of FBT 

in average were moderate (0.30; Table 1). The highest heritability estimate was 

obtained for TPV (0.47) and the lowest for DFI (0.17). The range in estimates over the 

periods was largest for DFI and lowest for TPD. Even though slightly different 

estimates were obtained over the periods, the correlation between the estimates of the 

same trait over the periods was high (see study I and Section 4.2.); thus, the genetic 

basis of the trait is the same over periods. The lowest heritability estimates were 

observed during the first period of testing time where the young pigs may have been 

more vulnerable to environmental factors than older pigs. On the other hand, the 

statistical model with sex, herd*year*season, litter and batch*pen effects may not have 

been sensitive enough to explain all the environmental factors influencing the feeding 

behaviour of young pigs. Furthermore, some social factors such as adaptation to new 

pen mates and feeding systems may have influenced the estimates. The heritability 

estimates for the ADG, FCR and RFI were moderate, while for BF, the estimate was 

high (0.57). 
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Table 1. Estimated heritabilities (h2) of feeding behaviour and production traits based 

on study I (first column) and the literature (second column).  

Trait h2 h2 

FBT   

NVD 0.31-0.41a 0.311, 0.342,7, 0.386, 0.433,5, 0.474, 0.498 

TPD 0.28-0.37a 0.082, 0.178 , 0.246, 0.365, 0.371, 0.433, 0.454, 0.467 

DFI 0.17-0.32a 0.166, 0.204, 0.212,9, 0.223,8, 0.2510, 0.397, 0.425 

TPV 0.34-0.47a 0.112, 0.276, 0.394, 0.423, 0.447, 0.455, 0.601 

FPV 0.32-0.44a 0.272, 0.288, 0.356, 0.447, 0.504, 0.513, 0.535 

FR 0.19-0.29a 0.042, 0.278, 0.296, 0.417, 0.443, 0.464, 0.495 

PT   

ADG 

BF 

FCR 

RFI 

0.25a 

0.57a 

0.28a 

0.32a 

0.059, 0.367, 0.3710, 0.433 

0.4110, 0.507, 0.539, 0.543, 0.561 

0.193,5, 0.218, 0.287, 0.309, 0.4510 

0.1912, 0.218, 0.269, 0.2410, 0.3511 
aKavlak and Uimari (2019), the smallest and the largest values. 
1Rohrer et al. (2013) – Landrace, Duroc and Yorkshire; 2Hall et al. (1999) – Large 

White; 3Von Felde et al. (1996) – Landrace and Large White; 4Kalm et al. (1996) – 

Landrace and Large White; 5Labroue et al. (1997) – Large White; 6de Haer and de 

Vries (1993) – Landrace and Yorkshire; 7Schulze et al. (2003) – Landrace and Large 

White; 8Sermyagin et al. (2020) – Duroc; 9Saintilan et al. (2013) – Large White; 
10Gilbert et al. (2007) – Large White; Foster et al. (1983) – Landrace11 and Large 

White.12 

The estimated heritabilities of FBT (I) are in line with estimates presented in the 

literature (Table 1). The highest heritability estimate for FBT presented in the literature 

is 0.6 for TPV (Rohrer et al., 2013), and the lowest estimate is 0.04 for the FR (Hall et 

al., 1999). In the present study, the heritability estimates for the NVD ranged from 

0.31 to 0.41 within five test periods. These estimates are similar to estimates by Rohrer 

et al. (2013), Schulze et al. (2003) and de Haer and de Vries (1993; 0.31, 0.34 and 

0.38, respectively). The heritability estimates for the TPD (0.28–0.37) and FPV (0.32–

0.44) were also in line with other studies: the lowest estimates were reported by Hall 

et al. (1999; 0.34, 0.08, 0.21, 0.11,0.27 and 0.04 for the NVD, TPD, DFI, TPV, FPV 
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and FR, respectively), and the highest were reported by Labroue et al. (1997; 0.43, 

0.36, 0.42, 0.45, 0.53 and 0.49 for the NVD, TPD, DFI, TPV, FPV and FR, 

respectively). The heritability estimates for DFI (range 0.17–0.32) were similar to 

those reported by others (Table 1) except that Labroue et al. (1997) and Schulze et al. 

(2003) reported higher heritabilities (0.42 and 0.36, respectively). In addition, Von 

Felde et al. (1996) also estimated the heritability of DFI for different periods of the test 

(period 1: 0.16, period 2: 0.24, period 3: 0.30, period 4: 0.27, period 5: 0.26). They 

also obtained some variation in the estimated heritabilities over testing time, and the 

maximum value (h2 = 0.30) was obtained for the middle of the test period (period 3). 

Finally, heritability estimates for the FR (0.19–0.29) were close to those of de Haer 

and de Vries (1993; 0.29).  

The estimates obtained for PT (I) are in line with estimates presented in the 

literature (Table 1). In this study (I), the heritability estimate for the ADG (0.25) is a 

bit lower than reported in other studies, and heritability estimates for BF and RFI are 

generally higher than those reported in other studies (Table 1). However, the estimates 

obtained from other Large White and Yorkshire populations (Schulze et al., 2003; 

Saintilan et al., 2013) are quite similar to our estimates. Schulze et al. (2003) reported 

the heritabilities of ADG, BF and FCR at 0.36, 0.50 and 0.28 while Saintilan et al. 

(2013) obtained the heritability of BF, FCR and RFI at 0.53, 0.30 and 0.26, 

respectively. In contrast, our heritability estimate for RFI (0.32) is far greater than the 

estimate obtained for the Northern Irish Large White population (0.19; Foster et al., 

1983) but similar to the estimate obtained for the Northern Irish Landrace (0.35) 

population (Foster et al., 1983). It has also been found that the heritability of RFI is 

lower for boars (0.14) compared to females and castrated males (0.24; Gilbert et al., 

1997). In study I, sex was considered as a systematic fixed effect, and sex-specific 

heritabilities were not estimated. In general, PT that contained feed intake as a 

component (e.g., the FCR and RFI) showed similar estimates of heritability to the DFI 

over the periods.  

Variance components related to FBT were estimated from the mean values of each 

of the five test periods (approximately 20 days long; studies I and II). An alternative 

way to analyse the data would have been to use daily records and a random regression 

model (Schaeffer, 2004). For the PT, the number of weight measurements was small 
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(less than six during the test period, personal communication with Timo Serenius 

01.09.2021); thus, the benefit of using all available weight measurements instead of a 

single ADG value is small (Mrode and Kennedy, 1993). For the FBT, daily values 

were available, but instead of estimating daily heritabilities, periodical ones (five 

periods) were used. The gain in the accuracy of heritability estimates from daily 

records or usability of the estimates compared to periodical values is expected to be 

small (Wetten et al., 2012). 

4.2 Genetic correlations between feeding behaviour and production traits 

FBT has no direct economic value; however, if FBT are correlated with PT, then FBT 

can be used as auxiliary traits in pig breeding. Genetic correlations were estimated 

both between FBT and between FBT and PT (I). In addition, the genetic correlations 

of the same trait between different test periods were estimated (I).  

Genetic correlations between the same FBT over the testing periods were generally 

high (Table 2 and study I). The strongest genetic correlations were obtained between 

contiguous periods varying from 0.96 ± 0.01 to 0.99 ± 0.01 for all FBT and the weakest 

between periods 1 and 5 varying from 0.68 ± 0.09 (TPD1 vs. TPD5) to 0.83 ± 0.06 

(NVD1 vs. NVD5). Based on the results, the genetic basis of the trait over time is the 

same (between adjacent periods) or similar (between the first and last periods). 

Strong genetic correlations between all FBT were obtained (Table 2). For example, 

genetic correlations between the NVD and TPV ranged from −0.79 ± 0.05 to −0.88 ± 

0.03, and between the NVD and FPV, genetic correlations were over −0.90 ± 0.02 in 

all testing periods. In addition, a strong positive correlation between FPV and TPV 

(0.83 ± 0.04 to 0.90 ± 0.02) was discovered. These strong correlations indicate that the 

NVD, FPV and TPV are similar traits; pigs that have genetic background tend to visit 

the feeder (NVD) less often than other pigs tend to eat more during the visit (TPV) and 

spend more time feeding per visit (TPV). This is natural feeding behaviour; pigs either 

consume feed often but in small portions or rarely in large portions (Rauw et al., 2006). 

In addition, the FR had a moderate genetic correlation with the DFI (0.22 ± 0.14 to 

0.40 ± 0.12) over the periods, which indicates that faster consumers (g/min) aimed to 
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have higher genetic potential for DFI. The SE of the estimates varied from 0.01 to 0.17 

(I). 

In previous studies (Table 3), Do et al. (2013) also reported highly negative genetic 

correlations between the NVD and FPV (−0.95 ± 0.02) as well as between the NVD 

and TPV (−0.91 ± 0.02) in Danish Yorkshire populations while the DFI and FR had a 

significant positive correlation (0.36 ± 0.06). Schulze et al. (2003) also reported highly 

negative genetic correlations between the NVD and FPV (−0.92 ± 0.01) and between 

the NVD and TPV (−0.81 ± 0.02), a highly positive correlation between the FPV and 

TPV (0.86 ± 0.01) and a moderately positive correlation between the DFI and FR (0.20 

± 0.05) in the population of Yorkshire and Landrace pigs based on dam lines. 
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Given the generally high SE (from 0.04 to 0.16), genetic correlations between FBT 

and PT traits did not differ from 0. Only DFI had strong positive genetic correlations 

with all PT (Table 2). In addition, the FPV had a moderately positive (unfavourable) 

correlation with BF, which shows that Finnish Yorkshire pigs that consume large 

quantities of feed per visit tend to gain more BF. The genetic correlation between FPV 

and BF increased from periods 1 to 5 from 0.14 ± 0.13 to 0.31 ± 0.12 (I). BF was also 

correlated with the FR; thus, animals with a high FR tend to gain more BF. 

Furthermore, the range of the genetic correlation between the TPD and RFI varied 

from 0.34 ± 0.13 to 0.45 ± 0.13 over the testing time; thus, animals with more TPD 

also show an increase in RFI.  

Strong correlations between different FBT have also been reported in the literature 

(Table 3). The highest genetic correlations were reported by Do et al. (2013) and Ding 

et al. (2018) between DFI and RFI in the Duroc population at 0.95 ± 0.13 and 0.98 ± 

0.13, respectively. Generally, the lowest genetic correlations were reported between 

the FR and PT (Do et al., 2013; Schulze et al., 2003; Young et al., 2012). The genetic 

correlations between the NVD and FCR and RFI estimated by Do et al. (2013; 0.50 ± 

0.09 and 0.40 ± 0.07) were higher than our estimates, while Do et al. (2013) obtained 

similar estimates for the genetic correlations between the NVD and ADG (-0.26 ± 

0.09) and BF (-0.05 ± 0.08). We obtained a lower genetic correlation between the TPD 

and PT compared to other studies (Table 3). Unlike our estimate (ranging from 0.73 ± 

0.18 to 0.88 ± 0.08), McSweeny et al. (2003) reported a weak genetic correlation 

between the DFI and FCR (0.01 ± 0.18) while Do et al. (2013) and Ding et al. (2018) 

reported estimates similar to ours (0.67 ± 0.05 and 0.75 ± 0.06, respectively). For the 

genetic correlation between the FCR and FPV, similar estimates to ours were reported 

by Schulze et al. (2003; 0.05 ± 0.08) and McSweeny et al. (2003; 0.04 ± 0.16). Finally, 

most literature estimates of genetic correlation between the TPV and PT were similar 

to our estimates with the exception of those by Do et al. (2013). 
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All genetic correlations between the PT were statistically significant (Table 4). The 

FCR had a high genetic correlation with BF (0.79 ± 0.07) but a moderate one with the 

ADG (0.37 ± 0.16). Unlike the FCR, the genetic correlation between RFI and BF was 

moderate (0.38 ± 0.12) while RFI had considerable genetic correlation with the ADG 

(0.63 ± 0.13) and with the FCR (0.79 ± 0.06). Additionally, Do et al. (2013) reported 

a high genetic correlation between the ADG and BF in the Duroc (0.75 ± 0.05) 

population but quite a low one between the ADG and RFI (0.16 ± 0.09). Furthermore, 

similar to our estimate, Do et al. (2013) reported a high genetic correlation between 

RFI and the FCR (0.63 ± 0.13). Therefore, selection for RFI has a stronger effect on 

ADG than on BF, but on the other hand, selection for FCR has a stronger effect on BF 

than on the ADG. Many other studies have reported significant genetic correlations 

between PT including a very high correlation between RFI and the FCR (0.97 ± 0.01; 

Ding et al., 2018), a moderate correlation between RFI and the ADG (0.41 ± 0.10; Von 

Felde et al., 1996), a moderate correlation between the ADG and BF (0.55 ± -0.24; 

McPhee et al., 1979) and a relatively low correlation between the ADG and BF (0.23 

± 0.04; Labroue et al., 1997).  

Table 4. Genetic correlation within the production traits. Standard errors are given in 

parentheses. 

PT ADG BF FCR RFI 

ADG 1 0.37 (0.12) 0.37 (0.16) 0.63 (0.13) 

BF  1 0.79 (0.07) 0.38 (0.12) 

FCR   1 0.79 (0.06) 

RFI    1 

PT: production traits, ADG: average daily gain, BF: backfat thickness, FCR: feed 

conversion rate, RFI: residual feed intake. 

Based on the results (I), FBT are moderately inherited, but since only DFI had a 

high genetic correlation with PT in Finnish Yorkshire pigs, there may be no reason to 

include FBT in the breeding programme. However, as Herrera-Cáceres et al. (2019) 

present in their study, when the social interaction is included, the genetic correlation 
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between FBT and PT becomes stronger. Therefore, FBT could still be considered in 

breeding programmes. 

4.3 Estimated social genetic parameters of feeding behaviour and production 

traits 

In study II, we expanded the animal model (I) by including the SGEs. Since the 

heritability estimates for FBT and PT were similar in study I based on Finnish 

Yorkshire and in a master’s thesis by Riikimaki (2019) based on Finnish Landrace, we 

combined the data in study II to include both Finnish Yorkshire and Finnish Landrace 

animals and their F1-crosses. However, Bijma (2010) and Ødegård and Olesen (2011) 

reported that the estimated variance of SGEs would be more accurate if the data 

consisted only of one population and the groups were formed to include only a few 

families per pen. However, analysing breeds separately would not have been possible 

in our data because pigs with different breed origins shared the same pen. 

The SGE effect was estimated using either a fixed (n = 8) or variable group size (n 

= 9.8) model (II). The group sizes can vary due to different reasons in testing. In our 

dataset, the animals were mostly removed from the test due to health issues (e.g., limp, 

loss of appetite, bitten tail, etc.). Unlike Ask et al. (2020), we did not implement a fine-

tuned approach in our analysis. Instead, we first applied a simple model to randomly 

sample an equal number of pigs (n = 8) from each pen for a fixed group size model 

and compared these results to those from a variable group size model (n = 9.8). 

Because the models produced similar classical heritability and total heritability 

variation estimates, only those related to variable group size are presented here.  

Based on the results (II), estimations of SGEs for FBT and PT were not statistically 

significant except for the TPV, FPV and FCR. In contrast with our findings, based on 

the data of 1,144 Duroc pigs, Herrera-Cáceres et al. (2019) reported a considerable 

SGE in the NVD and FR during the fattening period. Within socially affected PT, 

Bouwman et al. (2010) did not find a significant SGE in the ADG, and neither did we, 

but Chen et al. (2008) and Nielsen et al. (2018) found a significant SGE for the ADG. 

Herrera-Cáceres et al. (2019) reported a significant SGE in the FCR as we did, while 

Bergsma et al. (2008) reported a significant SGE in BF and DFI. In conclusion, based 
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on study II and the literature, the SGE is either significant or insignificant for both 

FBT and PT, and even if the SGE is statistically significant, the SGE is usually small 

compared to the DGE. 

Estimates of classical heritability varied from 0.14 (DFI1) to 0.39 (TPD2 and 

TPD3) for FBT and from 0.29 (ADG and FCR) to 0.38 (BF) for PT (Table 5). The 

estimates are similar to those presented in study I. The SE of the estimates were around 

0.04 for all traits. The estimates of the total heritable variation were generally higher 

than the estimates of the classical heritability for FBT, where the estimations of DFI 

range from 0.17 ± 0.10 (FR3) to 0.85 ± 0.16 (TPV3; Table 5). However, the estimates 

of total heritable variation were similar to the estimates of classical heritability for PT 

except for BF (T2 = 0.48 ± 0.12 vs. h2 = 0.38 ± 0.07) and the FCR (T2 = 0.37 ± 0.12 vs. 

h2 = 0.29 ± 0.04). In contrast with our findings, Herrera-Cáceres et al. (2019) reported 

high total heritabilities (compared to classical heritabilities) for the NVD (T2 = 0.93 ± 

0.49 vs. h2 = 0.46 ± 0.09), DFI (T2 = 0.29 ± 0.29 vs. h2 = 0.25 ± 0.08), TPV (T2 = 0.67 

± 0. 30 vs. h2 = 0.47 ± 0.09) and FR (T2 = 0.39 ± 0.29 vs. h2 = 0.32 ± 0.08). However, 

for many of these estimates, SEs were high. Herrera-Cáceres et al. (2019) reported that 

the SGE was not important for the ADG (T2 = 0.22 ± 0.18 vs. h2 = 0.22 ± 0.09) and BF 

(T2 = 0.51 ± 0.28 vs. h2 = 0.35 ± 0.11) while they found a larger effect of the SGE for 

the FCR (T2 = 0.55 ± 0.43 vs. h2 = 0.24 ± 0.09) as we did (Table 5). Again, the SE 

were high for all estimates. Some other studies also investigated the impact of the SGE 

but mostly on the ADG and other PT. Bergsma et al. (2008) found a significant 

contribution of the SGE for the ADG (T2 = 0.71 ± 0.08 vs. h2 = 0.21 ± 0.02), DFI (T2 

= 0.70 ± 0.17 vs. h2 = 0.17 ± 0.03) and BF (T2 = 0.41 ± 0.04 vs. h2 = 0.35 ± 0.02) from 

the data of 14,032 crossbred pigs while Nielsen et al. (2018) estimated the SGE for the 

ADG using separated bivariate models for Danish Landrace gilts and boars and found 

that the T2 was higher for the boars (0.32 ± 0.02) than for the gilts (0.27 ± 0.01). We 

also tested the effect of dilution in the SGE model with two dilution parameters d = 

0.5 and d = 1, but the effect of including the dilution parameter in the SGE model on 

estimated variance components was small. To conclude, our findings are similar to 

other published results indicating that the SGE has a considerable impact on FBT (at 

least in the TPV and FPV) and in the FCR, but it is less important in the BF and ADG. 
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Table 5. The range of classical heritability (h2) and total heritable variation (T2) of 

feeding behaviour traits and production traits (II) from periods 1 to 5 using the variable 

group size model. Standard errors are given in parentheses. 

Trait h2 T2 

FBT    

NVD 0.26 (0.04) – 0.33 (0.04) 0.30 (0.11) – 0.50 (0.14) 

TPD 0.28 (0.04) – 0.39 (0.04 ) 0.27 (0.10) – 0.49 (0.12) 

DFI 0.14 (0.03) – 0.30 (0.04) 0.33 (0.09) – 0.73 (0.15) 

TPV 0.28 (0.04) – 0.34 (0.04) 0.53 (0.15) – 0.85 (0.16) 

FPV 0.28 (0.04) – 0.33 (0.04) 0.54 (0.13) – 0.77 (0.16) 

FR 0.22(0.03) – 0.28 (0.04) 0.17 (0.10) – 0.44 (0.15) 

PT    

ADG 0.29 (0.04)  0.29 (0.11)  

BF 0.38 (0.07)  0.48 (0.12)  

FCR 0.29 (0.04)  0.37 (0.12)  

FBT: feeding behaviour traits, PT: production traits, NVD: number of visits per day, 

TPD: time spent in feeding per day, DFI: daily feed intake, TPV: time spent feeding 

per visit, FPV: feed intake per visit, FR: feed intake rate, ADG: average daily gain, 

BF: backfat thickness, FCR: feed conversion rate. 

4.4 Predicting pigs’ health status using the feeding behaviour data 

Xgboost is as an ML method used for the designed models that combines weak base 

classifiers into a strong classifier. At each iteration of the training process, the residual 

of a base classifier is used in the next classifier to optimise the objective function. 

Therefore, we chose the Xgboost algorithm for our model predictions. The designed 

models were evaluated based on classification performance metrics including 

sensitivity, specificity, precision, F1-score and AUC. In general, the accuracy of the 

prediction based on the AUC ranged from 0.70 to 0.90; the best accuracy was achieved 

with the seven-day window model (Table 6). The accuracies with both the training and 

testing dataset were similar, which indicates that the over/underfitting was avoided by 

optimising the hyper-parameters in the models.  
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Table 6. Results from the models based on testing data and training (average from 10-

fold CV given in the parentheses)  

           Window length (days)  

Metrics 1 3 7 Alt-1 Alt-2 

AUC 0.70 (0.71) 0.73 (0.75) 0.80 (0.81) 0.83 (0.85) 0.77 (0.80) 

Precision 0.03 (0.03) 0.03 (0.03) 0.04 (0.04) 0.03 (0.03) 0.01 (0.01) 

Sensitivity 0.60 (0.61) 0.63 (0.65) 0.67 (0.72) 0.67 (0.71) 0.67 (0.74) 

Specificity 0.67 (0.67) 0.69 (0.69) 0.73 (0.73) 0.78 (0.81) 0.70 (0.70) 

F1-score 0.06 (0.06) 0.06 (0.06) 0.07 (0.08) 0.05 (0.06) 0.02 (0.02) 

The sensitivity and specificity of the models were reasonable in all window lengths; 

however, the models had a very low precision (the models predicted more sick animals 

than reported in the data) as well as low F1 scores. The seven-day window had the best 

performance with 67% sensitivity, 73% specificity, 4% precision and a 7% F1 score. 

In addition to our findings from basic models, other designed alternative models with 

the seven-day window model gave either better (Alt-1 model) or similar (Alt-2 model) 

performances based on the AUC than the performance of the actual seven-day window 

model (Table 6). Similar to our study, Thomas et al. (2021) analysed individual water 

and feed intake related to the weight of 102 weaned piglets as well as their link to 

diarrhoea using an ML approach with seven different methods; however, the methods 

that they used in their study failed to detect individually diarrheic pigs using water and 

feed intake related to weight due to substantial individual instability except for the 

Gaussian naïve Bayes classification, which performed the best with 73.7% sensitivity 

even though the authors were considered unacceptable since more than 25% of the sick 

piglets were not detected by the model. As an alternative approach, Maselyne et al. 

(2018) also investigated if unusual behavioural changes in the feeding pattern of 152 

pigs can be detected automatically and utilised as an indicator for health, welfare as 

well as productivity problems. Therefore, they developed warning systems using 

variables of the feeding system based on historical data and then validated and 

compared these systems online by comparing the alerts with comprehensive 

observations. Although they had considerably high specificity (98.7%) and accuracy 

(96.7%), they had the performance of the warning system as promising, but still 
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requires improvements for the sensitivity (58.0%) and the precision (71.1%) since 

false alerts could compose lack of confidence on farmers for the system. In contrast 

with our findings, Gertz et al. (2020) achieved better classification performance than 

our models using the Xgboost algorithm where locomotor-related diseases were 

predicted using locomotion data collected from leg and neck sensors in a commercial 

farm of 397 dairy cows with 86% AUC, 81% F-score and precision as well as 78% 

specificity and 81% sensitivity. Furthermore, Alsaaod et al. (2012) predicted lameness 

in dairy cows using features created from the pedometric activity and behaviour data 

on lying down where they had a high precision indicated by achieving an average of 

80% with models with different window segments. Using a similar window length 

approach as in our study, Piette et al. (2020) developed systems using different sensor 

technologies to detect the lameness in 2,000 Holstein Friesian cows from Swedish 

dairy farms, and they achieved very good classification performance with a high AUC 

performance (approximately 85%). Their finding was also slightly better in a longer 

window segment, which indicates that predicting the models with longer window 

segments may be time consuming but may produce better model performance. In 

conclusion, based on study III and the literature, the Xgboost algorithm is relatively 

efficient according to the performance metrics for predicting diseases.     

Setting features for predictions is crucial for improving the performance of the 

classification as well as its robustness. In this study, the features were calculated from 

the feeding behaviour data within either short or long window segmentations. After 

predicting the models , ResTPD and ResDFI in the one-day and three-day window 

models as well as SD_ResTPD in the seven-day window model were determined the 

most informative features (III). Overall, the importance of the features ranged from 20 

to 35% by the models within these features. Besides these most important features, 

other calculated features were included in the models as predictors, and the importance 

of other features was approximately 10%. However, this does not mean that these other 

features are not important as predictors. In general, the residuals of FBT were more 

beneficial in predicting pig sickness than absolute values were. These derived new 

features from DFI and the TPD can be a better indication of a possible health problem 

than absolute values are. Therefore, we recommend using features that indicate a 

deviation in an animal’s feeding behaviour from that its pen mates (rank) or from that 
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of pigs of the same age (residual) rather than raw observations (NVD, TPD, DFI). 

Additionally, Alsaaod et al. (2012) found it very effective to derive new features (by 

bout analyses) using absolute traits where the new features were more informative than 

absolute values in the classification of sickness problems in dairy cows. 

4.5 Implications and future research 

The main objective of this thesis was to estimate the heritability of FBT and their 

correlation with PT in Finnish Yorkshire pigs, to estimate the SGEs on feeding 

behaviour and PT in pigs and to detect disease in pigs based on FBT using ML.  

Based on the results, we did not find additional benefit from including feeding 

behaviour-related traits in the breeding programmes. However, when the genetic 

model was expanded to account for the SGE, we found that the total heritable variation 

(T2) was notably higher than the classical heritability (h2). Thus, an important 

application would be to implement SGEs in the estimation of breeding values of the 

FCR to simultaneously selecting for animals that have a high direct genetic merit for 

the FCR and also a positive effect on the FCR of the other pigs sharing the same pen.  

Sustainable pig production with high animal welfare, low labour input and low 

medical usage has become very important. Sustainable production also allows high 

economic output. Breeding organisations such as Norsvin have indicated that animal 

welfare has become an increasing concern for breeders and customers (Norsvin, 2018). 

Additionally, Danbred aims to improve animal welfare by improving sow longevity 

and controlling inbreeding as well as attending to the conditions where pigs are moved 

from one place to another to avoid unnecessary agitation. Evaluation of animal welfare 

involves a complete evaluation process of the animal’s physiological, behavioural, 

physical and emotional condition (Brito et al., 2020). This complete assessment needs 

to be made based on a combination of multiple traits including feeding behaviour and 

on some key factors such as feeding, housing and health conditions. Management and 

care of animals with improved welfare are safer and easier and require less time and 

medication than that of animals that suffer from poor welfare (Sinclair et al., 2019).  

Regarding future research, applying feeding data to improve the welfare of pigs 

through selection for resilient pigs would be an interesting expansion of the research 
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presented in this thesis. Resilience is the animals’ ability to recover from the effects of 

physical and environmental stressors and disease challenges (Albers et al., 1987). It is 

expected that developing resilience enhances production efficiency sustainably, where 

the animals with a high resilience can maintain their performance under infection and 

any other stressors (Albers et al., 1987). Specifically, disease resilience aids in 

improving the pig industry with healthier and more profitable pigs for producers.  

Feed intake and feeding behaviour are sensitive to diseases such as lameness and 

diarrhoea. Recently, Putz et al. (2019) used routinely collected feed intake data to 

quantify the resilience of growing pigs under a multifactorial natural disease challenge 

that was created to copy a commercial environment with high disease pressure to 

maximise the expression of resilience. In this study, radical reductions and day-to-day 

variation in feed intake among pigs were used to quantify resilience. However, these 

reductions and variations in feed intake cannot quantify resilience specifically since it 

was not possible to confirm that all changes in feed intake can relate to infectious 

diseases. Knap (2009) suggests that day-to-day variation in feed intake for each animal 

could be used to quantify environmental sensitivity such as resilience to heat stress. 

Since improvement in resilience has a direct effect on the sustainability of pork 

production and animal welfare and maintains the public acceptance of pork production, 

it also has a positive effect on economics by reducing the days of impaired growth and 

health due to sudden environmental changes such as changes in feedstuff or 

management or due to possible disease outbreaks. Therefore, selection of pigs that 

have high resilience will improve the wellbeing of pigs in commercial farms as well 

as their performance under any conditions.  

The data used is this thesis can be extended with more recent data and extract new 

phenotypes related to resilience based on fluctuations in DFI and TPD to estimate the 

heritability of these resilience-related traits and to estimate their genetic correlations 

with PT. If these resiliency traits are heritable and do not have strong negative genetic 

correlations with PT, they can be used in selection  to improve animal resiliency and 

welfare, leading to better pig welfare and increased sustainability of Finnish pork 

production. 
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5 CONCLUSION 

This study investigated the genetic parameters of FBT and PT with and without SGEs 

and disease detection based on FBT in Finnish pig breeds. Heritabilities of FBT were 

moderate (around 0.3) and had no strong correlation with PT with the exception of DFI 

having strong genetic correlations with RFI (over 0.8; study I). The SGE was 

significant for the FBT and FCR but not for the ADG and BF (II). For those traits, the 

total heritable variation was considerably higher than the pure classical heritability. 

The fixed and variable group size models produced very similar estimates (II). Using 

the Xgboost ML method, we obtained the best performance for predicting pigs’ daily 

health status with a seven-day window length (80% AUC, 7% F1-score, 67% 

sensitivity and 73% specificity). However, the precision was very low (0.04), possibly 

due to an imbalanced dataset (III). 

Based on the results, 1) since FBT have no direct economic value and are not 

strongly collated with PT, FBT do not provide additional value for the current breeding 

programmes of the Finnish pig breeds; 2) it would be beneficial to include SGEs in the 

routine breeding value estimation of the FCR and use a TBV instead of a DBV as a 

selection criterion; 3) and the application of an ML approach to detect sick pigs based 

on FBT was promising. 

For the future line of research, variation in daily activities (day-to-day variation, 

off-feed visits) in feeding behaviour could be used to detect resilient animals, those 

that show small variation in daily activities even under disease break-out or under sub-

optimal conditions and stress factors that are common in pig production. Therefore, 

we assume that phenotypes derived from the FBT can be used as indicator traits to 

select for better resilience. This approach may enhance the welfare of pigs on 

commercial farms under different environmental conditions. 
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1 | INTRODUCTION

The profitability of pork production is dependent mainly on 

the production of lean meat by the efficient use of feed for 

growth. Thus, the most important production traits consid-

ered in pig breeding programmes are growth (average daily 

gain, ADG), feed conversion rate (FCR), and residual feed 

intake (RFI), the difference obtained between feed intake 

and predicted feed intake based on growth and maintenance 

(Kennedy, Werf, & Meuwissen, 1993). The genetic improve-

ment of production traits in pigs is commonly based on the 

performance of group‐housed pigs in a controlled test sta-

tion environment. During the test period, feed intake can be 

measured automatically. Feeding behaviour can be measured 

early in life, and if it is correlated with production traits, it 

can be used as an early selection criterion, while pigs with 

unfavourable feeding behaviour can be removed from the test 

and replaced by other test pigs.

Estimates of the heritabilities of feeding behaviour traits 

range from low to high (e.g., Do, Strathe, Jensen, Mark, & 

Kadarmideen, 2013; Gilbert et al., 2007; Lu et al., 2017; 

Von Felde, Roehe, Looft, & Kalm, 1996). A positive genetic 
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Abstract
A major proportion of the costs of pork production is related to feed. The feed con-

version rate (FCR) or residual feed intake (RFI) is thus commonly included in breed-

ing programmes. Feeding behaviour traits do not directly have economic value but, 

if correlated with production traits, can be used as auxiliary traits. The aim of this 

study was to estimate the heritability of feeding behaviour traits and their genetic 

correlations with production traits in the Finnish Yorkshire pig population. The data 

were available from 3,235 pigs. Feeding behaviour was measured as the number of 

visits per day (NVD), time spent in feeding per day (TPD), daily feed intake (DFI), 

time spent feeding per visit (TPV), feed intake per visit (FPV) and feed intake rate 

(FR). The test station phase was divided into five periods. Estimates of heritabilities 

of feeding behaviour traits varied from 0.17 to 0.47. Strong genetic correlations were 

obtained between behaviour traits in all periods. However, only DFI was strongly 

correlated with the production traits. Interestingly, a moderate positive genetic cor-

relation was obtained between FR and backfat thickness (0.1–0.5) and between FR 

and average daily gain (0.3–0.4), depending on the period. Based on the results, 

there is no additional benefit from including feeding‐related traits other than those 

commonly used (FCR and RFI) in the breeding programme. However, if correlated 

with animal welfare, the feeding behaviour traits could be valuable in the breeding 

programme.
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correlation was found between feeding behaviour and feed effi-

ciency traits, in which animals that consume more feed per visit 

tend to grow faster (Labroue, Gueblez, & Sellier, 1997). Thus, 

genetic improvement in feed efficiency may also be dependent 

on the genetics of feeding behaviour traits, and therefore, in-

cluding these traits in breeding programmes has been suggested 

(Hall, Hill, Bampton, & Webb, 1999; Labroue et al., 1997).

The objective of this study was to estimate the heritability 

of feeding behaviour traits and their genetic correlations with 

production traits in the Finnish Yorkshire pig population. In 

this study, we show that feeding behaviour traits are moder-

ately heritable and highly correlated. We also show that feed-

ing behaviour traits, except daily feed intake, do not have a 

strong genetic correlation with production traits.

2 |  MATERIALS AND METHODS

2.1 | Data
The data were recorded at the central test station of Figen Oy 

(Pietarsaari, Finland) and were available from the beginning 

of 2011 until 2016 (October). The pigs arrived at the test sta-

tion at an average age of 89 ± 10 days (mean ± standard devi-

ation) and an average weight of 32.7 ± 5.4 kg. During the test 

period (on average 95 ± 3 days), pigs were fed ad libitum, 

and the feedings were recorded automatically. The feeding 

system was Schauer Spotmix with Schauer MLP electronic 

feeders and MLP‐manager data management software 

(Schauer Agrotronic GmbH). The pigs were slaughtered (ex-

cept those boars that we selected for artificial insemination) 

at an average age of 186 ± 10 days and an average weight 

of 117.7 ± 12.1 kg. The pigs were either purebred Finnish 

Landraces or Yorkshires or their F1‐crosses. In this study, 

only purebred Yorkshire animals were used.

The raw data (28,964,641 observations) included transpon-

der id, date, time of entering the feeder, time leaving the feeder 

and feed intake per visit. From the raw records, time spent per 

visit and feeding rate per visit (g/min) were calculated. All 

observations that did not fulfil the following thresholds were 

removed from the data (see Casey, Stern, & Dekkers, 2005): 

the feed intake per visit should be over −20 g and below 2 kg 

or below 20 g if the time spent per visit was 0; the time spent 

per visit should be more than 0 s and less than 1 hr if the feed 

intake per visit was <50 g; the feeding rate per visit should be 

<500 g/min if the feed intake per visit was more than 50 g; the 

feeding rate per visit should be <170 g/min if the feed intake 

was 0 g; the time spent per visit should be <500 s; the feeding 

rate per visit should be more than 2 g/min; and the time of en-

tering and the time of the leaving the same feeder should not be 

overlapping. With these criteria, 0.5% of the raw observations 

were discarded, mainly because the feeding rate per visit was 

more than 170 g/min (given that the feed intake was over 50 g) 

or because the feeding rate per visit was <2 g/min.

From the remaining 28,826,029 observations, daily val-

ues were calculated as the number of visits per day (NVD, 

counts), time spent in feeding per day (TPD, min), daily feed 

intake (DFI, g), time spent feeding per visit (TPV, min), feed 

intake per visit (FPV, g) and feed intake rate (FR, g/min). The 

TPV, FPV and FR were average values of the daily records. 

The final records were calculated as averages of the daily re-

cords separately for the five test periods: 0–20  days in the 

test, 21–40, 41–60, 61–80 and 81–93 days.

The production traits analysed were ADG, FCR, RFI and 

backfat thickness (BF). FCR was defined as the feed con-

sumption during the test period measured in feed units (one 

feed unit is 9.3 MJ net energy) divided by the total growth 

during the test period (finishing body weight − initial body 

weight). The BF was an average of two Hennessy Grading 

Systems (type GP4) measurements, one at 8 cm off the mid-

line of the carcass behind the last rib and one at 6 cm off the 

midline between the third and fourth ribs. The RFI was com-

puted as the difference between the observed and predicted 

DFIs; that is, the RFI was a residual term from the linear 

model:

where ADFIijk is the average daily feed intake over five pe-

riods, sexi is the sex effect (boar, gilt, castrate), hysj is the 

herd*year*season interaction (four seasons were defined 

as follows: January–March, April–June, July–September, 

October–December), b1, b2 and b3 are partial regression coef-

ficients of the initial weight at the beginning of the test period 

(IBW), ADG and BF, respectively.

The final data included records of 3,235 Yorkshire pigs 

(2,335 boars, 484 gilts and 416 castrates). All animals had 

observations for all the studied traits.

2.2 | Statistical analysis
The traits were analysed, using the following animal model:

where y is a vector of observation (feeding behaviour traits, 

ADG, BF, FCR and RFI), b a vector of fixed effects (sexi and 

hysj), X a incidence matrix relating records to fixed effects, a 

a vector of random additive genetic effects, l a vector of ran-

dom litter effects, bp a vector of random batch*pen effects and 

e a vector of random residuals; the corresponding incidence 

matrices are Za, Zl and Zbp, respectively. Pigs were from 684 

different batch*pen and 174 herd*year*season combinations. 

The number of observations in these batch*pens varied from 

1 to 12, and from 5 to 62 in herd*year*seasons. Since RFI 

was already corrected for sexi and hysj effects, these were not 

included in the linear model of RFI.

ADFIijk = sexi+hysj+b1 (IBW)ijk +b2 (ADG)ijk +b3 (BF)ijk +eijk

y=Xb+Zaa+Zll+Zbpbp+e,
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A univariate model was used for the estimation of heri-

tability and a bi‐variate model for genetic correlations. For 

the bi‐variate model, the (co)variance matrix of the normally 

distributed additive genetic effects was A⊗G, where A is the 

numerator relationship matrix, G is the genetic (co)variance 

matrices of the traits, and ⊗ denotes the Kronecker product. 

The (co)variance matrix of the normally distributed litter, 

batch*pen and residual effects was I⊗B, I⊗C and I⊗R, re-

spectively, where I is an identity matrix and B, C and R are 

the (co)variance matrices for litter, batch*pen and residual 

effects, respectively. The variance and covariance compo-

nents were estimated by the restricted maximum‐likelihood 

(REML) method (Patterson & Thompson, 1971) using the 

DMU software (Madsen & Jensen, 2013). The pedigree data 

(5,396 animals) included all animals with observations and 

their ancestors down to four generations. The average number 

of offspring with observations per each sire was 16.

3 |  RESULTS

3.1 | Phenotypic description of the traits
The distributions of most of the traits were right‐skewed 

(Figure 1). Prior to statistical analysis, extreme outliers (4 

SD of the mean) were removed from the data. However, 

the data also included short visits at the feeder; thus, the 

minimum TPV was only 32 s and the minimum FPV 13 g. 

Generally, older pigs visited more often at the feed sta-

tion than younger animals. In contrast, the TPV decreased 

radically from 2.5  min (TPV1) to 1.6  min (TPV5). The 

total TPD increased up to 66 min/day (TPD2) and then de-

creased to 53  min/day (TPD5). The FPV increased from 

57  g per visit (FPV1) to 89  g per visit (FPV5) and DFI 

from 1,443 g (DFI1) to 2,990 g (DFI5) from period 1 to 

period 5 (Figure 1). The ADG varied in this data from 588 

to 1,268 g/day, with mean ADG of 925 ± 108 g/day. The 

average BF was 9.9 ± 2.1 mm, average FCR 2.5 ± 0.2 and 

RFI 0 ± 135 g.

3.2 | Estimated heritabilities
The heritability and corresponding variance components for 

feeding behaviour traits are given in Table 1. The highest 

heritability estimate was obtained for TPV2 (0.47 ± 0.07) 

and the lowest for DFI1 (0.17  ±  0.05). In general, there 

was more variation in heritability between traits in period 

1 than in later periods. In period 5, all the estimates were 

near 0.3; thus, the heritability of the feeding behaviour 

F I G U R E  1  Box‐plots of the feeding behaviour traits over the five periods
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traits was moderate. Overall, the lowest heritabilities were 

obtained for FR (from 0.19 to 0.29) than for other feed-

ing behaviour traits. The heritability estimates of ADG, 

FCR and RFI were moderate (0.25 ± 0.06, 0.28 ± 0.06 and 

0.32 ± 0.06, respectively) and high for BF (0.57 ± 0.07; 

Table 1).

Trait h2 SE (h2) 𝝈
2
a

𝝈
2

1
𝝈

2

bp
𝝈

2
e

Period 1

NVD1 0.36 0.06 44.4 12.3 20.0 41.8

TPD1 0.37 0.06 51.1 17.1 2.9 62.7

DFI1 0.17 0.05 9,572 9,814 10,691 22,881

TPV1 0.38 0.07 0.28 0.07 0.11 0.26

FPV1 0.44 0.07 198.3 44.7 56.6 142.7

FR1 0.19 0.06 5.6 2.8 9.9 11.0

Period 2

NVD2 0.41 0.06 72.1 14.9 23.4 62.0

TPD2 0.36 0.06 58.3 17.1 9.6 76.4

DFI2 0.26 0.06 22,405 11,264 14,411 36,879

TPV2 0.47 0.07 0.41 0.04 0.12 0.28

FPV2 0.43 0.07 324.3 56.9 114.7 244.0

FR2 0.21 0.06 9.4 3.0 9.5 21.6

Period 3

NVD3 0.37 0.06 95.6 17.6 41.7 99.6

TPD3 0.34 0.06 51.5 13.9 10.3 74.4

DFI3 0.30 0.06 36,238 10,854 17,839 53,845

TPV3 0.36 0.06 0.28 0.04 0.13 0.32

FPV3 0.34 0.06 368.3 95.3 186.0 423.1

FR3 0.26 0.06 22.9 5.4 12.6 39.9

Period 4

NVD4 0.37 0.06 105.0 13.1 44.6 116.7

TPD4 0.36 0.06 47.9 8.4 7.7 64.9

DFI4 0.32 0.06 54,448 14,064 22,324 74,246

TPV4 0.37 0.06 0.23 0.03 0.09 0.26

FPV4 0.36 0.06 482.9 97.9 201.1 528.9

FR4 0.28 0.06 39.3 8.5 20.8 68.9

Period 5

NVD5 0.31 0.06 99.4 17.7 47.9 147.0

TPD5 0.28 0.06 36.8 7.9 11.3 68.9

DFI5 0.29 0.06 71,959 16,457 25,757 125,164

TPV5 0.34 0.06 0.19 0.03 0.08 0.24

FPV5 0.32 0.06 493.7 116.8 218.6 694.9

FR5 0.29 0.06 61.1 11.1 27.5 110.6

Production traits

ADG 0.25 0.06 2,661 1,576 697 5,439

BF 0.57 0.07 1.93 0.22 0.12 1.06

FCR 0.28 0.06 0.010 0.002 0.007 0.017

RFI 0.32 0.06 6,749 1,359 3,320 9,104

Abbreviations: ADG, average daily gain; BF, backfat thickness; DFI, daily feed intake; FCR, feed conver-

sion rate; FPV, feed intake per visit; FR, feed intake rate; NVD, number of visits per day; RFI, residual feed 

intake;TPD, time spent in feeding per day; TPV, time spent feeding per visit.

T A B L E  1  Heritability (h2) and 

variances of additive genetic (𝜎2
a
), litter (𝜎2

1
),  

batch*pen (𝜎2
bp

) and residual (𝜎2
e
) effects of 

feeding behaviour and production traits
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3.3 | Correlations between the traits
As expected, the genetic correlations between the same be-

haviour trait over the various periods (1–5) were generally 

high (Figure 2). The strongest genetic correlations were ob-

tained between adjacent periods varying from 0.96 ± 0.01 to 

0.99 ± 0.01 for all behaviour traits and the weakest between 

periods 1 and 5, varying from 0.71 ± 0.09 (FR1 vs. FR5) to 

0.83 ± 0.06 (NVD1 vs. NVD5). The phenotypic correlations 

within the traits were also very high throughout the periods. 

The strongest phenotypic correlation was obtained for FR 

(0.88) between periods 4 and 5, while the weakest (0.25) was 

obtained for DFI between periods 1 and 5.

The phenotypic and genetic correlations between the 

feeding behaviour traits within the same period are given 

in Table 2. The genetic correlations between NVD and both 

TPV and FPV were very high, varying from −0.79 ± 0.05 

to −0.97  ±  0.01. The phenotypic correlations between 

these traits were also strong, varying from −0.76 to −0.83. 

In contrast, NVD did not correlate with the other traits. 

Thus, the frequency of feeding did not affect the DFI or FR. 

FR and TPD had a strong negative correlation; animals that 

show high FR have shorter TPD than animals with slow 

FR. The FR also had a moderately positive genetic correla-

tion between the DFI varying from 0.22 ± 0.14 (period 4) 

to 0.4 ± 0.12 (period 5). Thus, animals with genetic back-

ground of high FR also tend to have a genetic background 

of higher DFI.

Most of the correlations between feeding behaviour 

traits and production (ADG, BF, FCR and RFI) traits did 

not differ from zero (Table 3). Only DFI had strong positive 

genetic correlations with all the production traits (Table 

3 and Figure 3), a favourable correlation with ADG, but 

unfavourable correlations with BF, FCR and RFI. In ad-

dition, the FPV had a moderately positive (unfavourable) 

correlation with BF; animals that consume large quantities 

of feed per visit tend to gain more BF. The genetic correla-

tion between FPV and BF increased from periods 1 to 5. 

BF was also correlated with FR; animals with high FR tend 

to gain more BF as well. This correlation became smaller 

from periods 1 to 5. In addition, the genetic correlation be-

tween TPD and RFI varied from 0.34 ± 0.13 (period 2) to 

0.45 ± 0.13 (period 5); thus, animals with more TPD also 

show increased RFI.

All correlations between the production traits were sig-

nificant. The genetic correlation between FCR and BF was 

0.79 ± 0.07, but only 0.37 ± 0.16 between FCR and ADG 

(Table 3). In contrast, the genetic correlations between RFI 

and BF were only 0.38 ± 0.12 while between RFI and ADG 

0.63  ±  0.13. Thus, selection for RFI more strongly affects 

ADG than BF, while selection for FCR more strongly affects 

BF than ADG.

4 |  DISCUSSION

4.1 | Feeding behaviour and production 
traits
In this study, the performance of pigs at the test station was 

divided into five 20‐day periods, starting 3 days after ar-

rival at the test station. In the previous study of Von Felde 

et al. (1996), the feed intake was measured during five 

F I G U R E  2  Phenotypic (below diagonal) and genetic correlations (above diagonal) between the same behaviour traits over the five periods
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periods (every second week) over 10 weeks. Rauw, Soler, 

Tibau, Reixach, and Gomez Raya (2006) and Schulze, 

Roehe, Bermejo, Looft, and Kalm (2003) also used five 

periods, while Young, Cai, Nettleton, and Dekkers (2009) 

measured feeding behaviour traits over three periods: the 

entire test (from approximately 3–8  months of age), the 

first half of the test and the second half of the test. Chen, 

Misztal, Tsuruta, Zumbach, et al. (2010) also used three 

periods (85–106, 107–128 and 129–150 days of age). The 

data can also be analysed, using a random regression model 

as applied to body weight and feed intake by Wetten, 

Ødegård, Vangen, and Meuwissen (2012) and Coyne et al. 

(2017). However, based on our results and those of other 

authors, division of the test period into five parts enabled 

T A B L E  2  Phenotypic (below diagonal) and genetic correlation (above diagonal) between feeding behaviour traits within the same period

Trait NVD1 TPD1 DFI1 TPV1 FPV1 FR1

Period 1

NVD1   0.50 (0.11) 0.18 (0.17) −0.79 (0.05) −0.91 (0.03) −0.06 (0.15)

TPD1 0.20   0.17 (0.17) 0.09 (0.13) −0.36 (0.12) −0.74 (0.08)

DFI1 0.10 0.22   0.04 (0.17) 0.25 (0.16) 0.40 (0.16)

TPV1 −0.76 0.28 0.03   0.83 (0.04) −0.31 (0.14)

FPV1 −0.77 −0.11 0.35 0.80   0.24 (0.14)

FR1 0.10 −0.52 0.51 −0.31 0.17  

Period 2 NVD2 TPD2 DFI2 TPV2 FPV2 FR2

NVD2   0.10 (0.13) 0.01 (0.14) −0.83 (0.04) −0.93 (0.02) 0.17 (0.14)

TPD2 0.05   0.27 (0.14) 0.45 (0.10) 0.08 (0.13) −0.75 (0.07)

DFI2 0.05 0.26   0.17 (0.13) 0.36 (0.12) 0.29 (0.15)

TPV2 −0.77 0.39 0.07   0.89 (0.02) −0.56 (0.10)

FPV2 −0.80 0.01 0.33 0.84   −0.09 (0.15)

FR2 0.20 −0.59 0.42 −0.42 0.01  

Period 3 NVD3 TPD3 DFI3 TPV3 FPV3 FR3

NVD3   −0.01 (0.13) 0.03 (0.14) −0.86 (0.03) −0.97 (0.01) 0.28 (0.13)

TPD3 0.01   0.21 (0.14) 0.50 (0.10) 0.11 (0.14) −0.77 (0.06)

DFI3 0.05 0.24   0.11 (0.14) 0.32 (0.13) 0.29 (0.14)

TPV3 −0.78 0.40 0.05   0.87 (0.03) −0.60 (0.10)

FPV3 −0.82 0.04 0.27 0.86   −0.16 (0.15)

FR3 0.27 −0.64 0.37 −0.49 −0.11  

Period 4 NVD4 TPD4 DFI4 TPV4 FPV4 FR4

NVD4   −0.07 (0.13) 0.01 (0.13) −0.88 (0.03) −0.94 (0.02) 0.32 (0.12)

TPD4 −0.01   0.28 (0.13) 0.51 (0.10) 0.17 (0.13) −0.80 (0.06)

DFI4 0.11 0.29   0.15 (0.13) 0.34 (0.12) 0.22 (0.14)

TPV4 −0.80 0.40 0.03   0.89 (0.02) −0.60 (0.09)

FPV4 −0.83 0.08 0.22 0.88   −0.20 (0.14)

FR4 0.34 −0.63 0.37 −0.53 −0.18  

Period 5 NVD5 TPD5 DFI5 TPV5 FPV5 FR5

NVD5   −0.03 (0.14) 0.06 (0.14) −0.83 (0.04) −0.90 (0.03) 0.35 (0.12)

TPD5 0.00   0.31 (0.13) 0.57 (0.10) 0.26 (0.13) −0.66 (0.08)

DFI5 0.18 0.41   0.17 (0.14) 0.34 (0.13) 0.40 (0.12)

TPV5 −0.78 0.39 0.02   0.90 (0.02) −0.63 (0.09)

FPV5 −0.81 0.12 0.18 0.90   −0.24 (0.14)

FR5 0.36 −0.57 0.35 −0.52 −0.21  

Note: Standard errors are given in brackets.

Abbreviations: DFI, daily feed intake; FPV, feed intake per visit; FR, feed intake rate; NVD, number of visits per day; TPD, time spent in feeding per day; TPV, time 

spent feeding per visit.
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us to demonstrate possible differences in heritabilities and 

genetic covariances between various growth phases of fat-

tening pigs.

The mean TPD (61  min), DFI (2.2  kg) and FR (40  g/

min) over five periods were similar to those reported by Do 

et al. (2013) (62  min, 2.1  kg, and 37  g/min) in Yorkshire 

T A B L E  3  Phenotypic (rp) and genetic correlation (rg) between production and feeding behaviour traits

Traits

ADG BF FCR RFI

rp rg (SE) rp rg (SE) rp rg (SE) rp rg (SE)

Period 1

NVD1 −0.02 −0.01 (0.15) −0.08 −0.05 (0.13) −0.02 0.18 (0.14) 0.13 0.13 (0.15)

TPD1 0.09 −0.04 (0.15) 0.01 −0.05 (0.13) 0.03 0.34 (0.13) 0.15 0.42 (0.13)

DFI1 0.45 0.67 (0.12) 0.33 0.65 (0.11) 0.34 0.88 (0.08) 0.30 0.89 (0.10)

TPV1 0.07 0.00 (0.15) 0.11 0.14 (0.13) −0.02 0.10 (0.14) −0.04 0.15 (0.14)

FPV1 0.21 0.17 (0.15) 0.23 0.32 (0.11) 0.11 0.21 (0.13) 0.01 0.18 (0.14)

FR1 0.18 0.38 (0.15) 0.15 0.51 (0.12) 0.25 0.31 (0.16) 0.14 0.12 (0.16)

Period 2

NVD2 −0.02 −0.03 (0.14) −0.08 −0.07 (0.12) 0.08 0.19 (0.13) 0.14 0.17 (0.13)

TPD2 0.12 0.23 (0.15) 0.10 0.17 (0.12) 0.04 0.18 (0.14) 0.14 0.34 (0.13)

DFI2 0.60 0.88 (0.05) 0.46 0.72 (0.07) 0.35 0.76 (0.09) 0.36 0.85 (0.08)

TPV2 0.08 0.10 (0.14) 0.13 0.22 (0.12) −0.03 −0.01 (0.14) −0.04 −0.00 (0.14)

FPV2 0.25 0.29 (0.13) 0.27 0.43 (0.10) 0.07 0.08 (0.14) 0.01 0.04 (0.14)

FR2 0.24 0.30 (0.16) 0.15 0.25 (0.14) 0.20 0.29 (0.16) 0.16 0.19 (0.16)

Period 3

NVD3 −0.05 −0.04 (0.15) −0.11 −0.18 (0.12) 0.09 0.07 (0.14) 0.17 0.11 (0.14)

TPD3 0.14 0.19 (0.15) 0.12 0.09 (0.13) 0.02 0.22 (0.14) 0.13 0.40 (0.13)

DFI3 0.68 0.91 (0.04) 0.51 0.64 (0.08) 0.34 0.74 (0.09) 0.44 0.88 (0.07)

TPV3 0.10 0.12 (0.15) 0.15 0.25 (0.12) −0.05 0.03 (0.14) −0.07 0.04 (0.14)

FPV3 0.27 0.32 (0.14) 0.28 0.47 (0.11) 0.03 0.17 (0.14) −0.01 0.10 (0.14)

FR3 0.24 0.29 (0.15) 0.13 0.24 (0.13) 0.19 0.12 (0.16) 0.19 0.05 (0.16)

Period 4

NVD4 −0.04 −0.10 (0.15) −0.10 −0.22 (0.12) 0.09 0.03 (0.14) 0.17 0.09 (0.14)

TPD4 0.14 0.23 (0.15) 0.15 0.17 (0.12) 0.01 0.30 (0.13) 0.10 0.36 (0.13)

DFI4 0.71 0.88 (0.04) 0.52 0.60 (0.08) 0.30 0.75 (0.09) 0.46 0.85 (0.07)

TPV4 0.11 0.26 (0.14) 0.14 0.29 (0.12) −0.06 0.07 (0.14) −0.08 0.04 (0.14)

FPV4 0.28 0.22 (0.15) 0.27 0.44 (0.11) 0.02 0.17 (0.14) −0.01 0.11 (0.14)

FR4 0.25 0.31 (0.15) 0.12 0.11 (0.13) 0.19 0.04 (0.15) 0.24 0.05 (0.15)

Period 5

NVD5 −0.04 −0.08 (0.15) −0.07 −0.20 (0.13) 0.08 0.06 (0.15) 0.17 0.08 (0.14)

TPD5 0.14 0.31 (0.15) 0.16 0.22 (0.13) 0.03 0.36 (0.14) 0.17 0.45 (0.13)

DFI5 0.61 0.86 (0.05) 0.50 0.60 (0.08) 0.26 0.73 (0.10) 0.49 0.83 (0.07)

TPV5 0.11 0.33 (0.14) 0.15 0.31 (0.12) −0.03 0.10 (0.14) −0.05 0.11 (0.14)

FPV5 0.27 0.46 (0.13) 0.27 0.46 (0.11) 0.02 0.20 (0.14) 0.02 0.11 (0.15)

FR5 0.25 0.30 (0.14) 0.13 0.15 (0.13) 0.17 0.05 (0.15) 0.24 0.11 (0.15)

ADG     0.49 0.37 (0.12) −0.21 0.37 (0.16) 0.02 0.63 (0.13)

BF         0.24 0.79 (0.07) 0.02 0.38 (0.12)

FCR             0.79 0.79 (0.06)

Note: Standard errors (SE) are given in brackets.

Abbreviations: ADG, average daily gain; BF, backfat thickness; DFI, daily feed intake; FCR, feed conversion rate; FPV, feed intake per visit; FR, feed intake rate; 

NVD, number of visits per day; RFI, residual feed intake; TPD, time spent in feeding per day; TPV, time spent feeding per visit.
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and slightly larger than those reported by Labroue, Gueblez, 

Meunier‐Salaun, and Sellier (1999) also in Yorkshire (50 min, 

1.7 kg and 35 g/min). In addition, the tendency for feeding 

behaviour traits to vary over time in our study was similar to 

that reported by other authors. Reyer et al. (2017) reported 

that Maxgro line (Hermitage Genetics, Ireland) pigs tended 

to visit the feeder more often, but spent less time there as they 

aged, while older pigs showed higher FRs than younger pigs.

The average production performances (ADG, BF and 

FCR) of the test pigs in this study from 2011 to 2016 were 

925 g, 9.9 mm and 2.5, respectively. Similar test station per-

formances have also been reported in other recent studies 

in different breeds, for example, Jiao, Maltecca, Gray, and 

Cassady (2014), Do et al. (2013), Bahelka, Tomka, Bucko, 

and Hanusova (2015) and Godinho et al. (2018). Thus, Finnish 

Yorkshires have similar growth performance than other re-

cently studied pig breeds. The RFI was calculated as the dif-

ference between the observed and predicted DFI based on 

IBW, ADG and BF (also corrected for sex and herd*year*sea-

son effects). The RFI varied from −505 to 878 g, with SD of 

135 g. Similar RFI SDs were also obtained by Cai, Casey, and 

Dekkers (2008) and Dekkers and Gilbert (2010) in Yorkshire.

4.2 | Estimates of heritability
The heritability of the feeding behaviour traits varied over 

time (from period 1 to 5), but the genetic correlations be-

tween the same trait over time were high for all traits (Figure 

2). Thus, the genetic basis for feeding behaviour at the be-

ginning of the test was similar to that at the end. The esti-

mated heritabilities were slightly lower in the first period 

than in later periods, especially for DFI. The young pigs at 

the beginning of the test may have been more vulnerable to 

environmental factors than older pigs. Our statistical model 

with sex, herd*year*season, litter and batch*pen effects may 

not have been sensitive enough to record all the environmen-

tal factors influencing the feeding behaviour of young pigs. 

Factors such as adaptation to new pen mates and feeding sys-

tems may have influenced the estimates.

In addition, the estimated heritabilities between traits var-

ied more at the beginning of the test (period 1) than at the end 

(period 5). The heritabilities of all the feeding behaviour traits 

in period 5 converged to an approximate value of 0.3. Similar 

heritabilities have been obtained in other studies. For exam-

ple, Hall et al. (1999) obtained heritabilities varying from 0.27 

(FPV) to 0.34 (NVD) in Yorkshire, Schulze et al. (2003) from 

0.34 (NVD) to 0.46 (TPD) in a combined data of Yorkshire‐ 

and Landrace‐based dam lines, and Chen, Misztal, Tsuruta, 

Herring, et al. (2010) from 0.18 (TPD) to 0.42 (FR) in Duroc. 

Our estimates for DFI were higher than those obtained by 

Coyne et al. (2017) (0.07 to 0.25), in which a random regres-

sion model and combined Finnish Landrace and Yorkshire data 

were used. This could have been due to the difference in sta-

tistical approaches (logistic regression vs. periodic approach) 

and data (all breed data vs. single breed data). However, our 

estimates for DFI were similar to those presented by Hall et 

al. (1999), in which the heritabilities ranged from 0.18 to 0.26 

over the four test periods. The estimates of the heritability of 

production traits (ADG, BF and FCR) were moderate and sim-

ilar to those obtained in other studies (see Clutter, 2011).

4.3 | Genetic correlations
Strong negative genetic correlations were obtained between 

NVD and FPV (over −0.9 in all periods) and between NVD 

and TPV (−0.79 to −0.88). Also, a strong positive correlation 

F I G U R E  3  Genetic correlations 

between the feeding behaviour traits and 

the production traits. Only statistically 

significant (p‐value <0.05) correlations are 

shown
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was obtained between FPV and TPV (0.83–0.90). As  dis-

cussed above, these strong correlations were reasonable. To 

obtain sufficient energy and nutrients for maintenance and 

growth, the pigs either consume feed often but in small por-

tions or more seldom and in large portions. In addition, FR 

had a moderately genetic correlation between DFI (0.22 to 

0.40) in all periods; thus, faster eaters (g/min) tended to have 

higher genetic potential for DFI. A strong genetic correla-

tion was also obtained with FR and TPD especially early in 

the test period. Do et al. (2013) also reported highly nega-

tive genetic correlations between NVD and FPV (−0.95) and 

between NVD and TPV (−0.91) in Danish Yorkshire popu-

lations, as well as a significant positive correlation between 

DFI and FR (0.36). Schulze et al. (2003) also reported highly 

negative genetic correlations between NVD and FPV (−0.92) 

and between NVD and TPV (−0.81), a highly positive cor-

relation between FPV and TPV (0.86) and a moderately posi-

tive correlation between DFI and FR (0.20) in a combined 

data of Yorkshire‐ and Landrace‐based dam lines.

Among the feeding traits examined, the DFI showed the 

highest genetic correlation between all production traits. 

These correlations were exceptionally high in the first period 

(0.65–0.89) and slightly lower in the last period (0.60–0.86). 

The genetic correlation between DFI and ADG increased from 

period 1 (0.67) to period 5 (0.86), while the remaining ge-

netic correlations (between DFI and BF, FCR and RFI) de-

creased over time. A positive genetic correlation between DFI 

and ADG was also reported by Jiao et al. (2014) (0.32), Chen, 

Misztal, Tsuruta, Herring, et al. (2010) (0.46), Do et al. (2013) 

(0.84), Cai et al. (2008) (0.88) and between DFI and BF by 

Jiao et al. (2014) (0.36), Do et al. (2013) (0.68) and Cai et 

al. (2008) (0.57). Given that a high genetic correlation was 

obtained only between DFI and production traits, there is no 

reason to include feeding behaviour traits in the breeding pro-

gramme. However, if there exist correlation between feeding 

behaviour traits and animal welfare‐related traits such as tail 

biting, as indicated by Wallenbeck and Keeling (2013), then 

using feeding behaviour traits as auxiliary traits to improve 

animal welfare should be considered in breeding programmes.

One of the most interesting genetic correlations was that 

between FR1 and BF (0.51). Thus, animals with the genetic 

potential for fast FR early in the test (period 1) also gain more 

fat. Later in the test, the genetic correlation between FR and 

BF decreased to 0.15 (period 5). In contrast to FR, the genetic 

correlation between FPV and BF strengthened from periods 1 

(0.32) to 5 (0.46). A positive genetic correlation between FR 

and BF was found by Schulze et al. (2003) (0.16) and Do et 

al. (2013) (0.26), but none between FPV and BF (Schulze et 

al., 2003) (0.09), while a weaker correlation (0.25) was found 

by Do et al. (2013).

Interestingly in humans, a positive association was ob-

tained between eating speed and overweight (Lee et al., 

2016; Tanihara et al., 2011) and eating speed and metabolic 

syndrome among other health problems (Nohara et al., 2015; 

Tajima et al., 2014; Tao et al., 2018; Zhu, Haruyama, Muto, 

& Yamazaki, 2015). Fast eaters tend to be more obese, have 

higher blood pressure and be more susceptible to metabolic 

diseases than slow eaters. The estimated odds ratio between 

normal and fast‐eating individuals for overweight in the 

Japanese adult population was 1.9 (Lee et al., 2016) and 

between slow and fast‐eating individuals for metabolic syn-

drome in the Chinese adult population 2.3 (Tao et al., 2018). 

Given the similar metabolic system in pigs and humans, pigs 

can be used as an animal model for further investigation of 

the mechanism behind the unfavourable association between 

eating (or feeding) speed and accumulation of body fat.

5 |  CONCLUSIONS

In this study, the heritability of feeding behaviour traits and 

their correlation with production traits were investigated in 

the Finnish Yorkshire pig population. The results indicated 

moderate heritability for all studied feeding behaviour traits. 

High genetic correlations were obtained only between DFI 

and production traits. The most interesting correlation was 

obtained between FR (and FPV) and BF. High breeding val-

ues for FR (g/min) early in the test or large portion sizes late 

in the test indicate a genetic potential to gain BF. However, 

the potential utilization of this correlation is limited in pig 

breeding programmes even though selection against FR does 

not seem to affect other production traits. BF is highly herit-

able; thus, direct selection of BF based on information from 

relatives or ultrasound measurement of the animal itself is 

more effective than indirect selection based on early FR. In 

the selection of sow replacement at the farm level, favouring 

piglets that consume feed rapidly may in turn favour sows 

that have greater fat reservoirs for farrowing and feeding 

the litter. Finally, since a positive correlation between eat-

ing speed and overweight has been demonstrated in human 

populations, studies in pigs may aid in revealing the genetic 

basis of this unfavourable association.
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Pigs are housed in groups during the test period. Social effects between pen mates may affect average daily gain
(ADG), backfat thickness (BF), feed conversion rate (FCR), and the feeding behaviour traits of pigs sharing the
same pen. The aim of our study was to estimate the genetic parameters of feeding behaviour and production
traitswith statisticalmodels that include social genetic effects (SGEs). The data contained3075 FinnishYorkshire,
3351 Finnish Landrace, and 968 F1-crossbred pigs. Feeding behaviour traits were measured as the number of
visits per day (NVD), time spent in feeding per day (TPD), daily feed intake (DFI), time spent in feeding per
visit (TPV), feed intake per visit (FPV), and feed intake rate (FR). The test period was divided into five periods
of 20 days. The number of pigs per pen varied from 8 to 12. Two model approaches were tested, i.e. a fixed
group size model and a variable group size model. For the fixed group size model, eight random pigs per pen
were included in the analysis, while all pigs in a pen were included for the variable group size model. The linear
mixed-effects model included sex, breed, and herd*year*season as fixed effects and group (batch*pen), litter, the
animal itself (direct genetic effect (DGE)), and penmates (SGEs) as random effects. For feeding behaviour traits,
estimates of the total heritable variation (T2 ± SE) and classical heritability (h2 ± SE, values given in brackets)
from the variable group size model (e.g. period 1) were 0.34 ± 0.13 (0.30 ± 0.04) for NVD, 0.41 ± 0.10 (0.37
± 0.04) for TPD, 0.40 ± 0.15 (0.14 ± 0.03) for DFI, 0.53 ± 0.15 (0.28 ± 0.04) for TPV, 0.66 ± 0.17 (0.28 ±
0.04) for FPV, and 0.29 ± 0.13 (0.22 ± 0.03) for FR. The effect of social interaction was minimal for ADG (T2 =
0.29 ± 0.11 and h2 = 0.29 ± 0.04), BF (T2 = 0.48 ± 0.12 and h2 = 0.38 ± 0.07), and FCR (T2 = 0.37 ± 0.12
and h2=0.29± 0.04) using the variable group sizemodel. In conclusion, the results indicate that social interac-
tions have a considerable indirect genetic effect on the feeding behaviour and FCR of pigs but not on ADG and BF.
© 2020 The Authors. Published by Elsevier Inc. on behalf of The Animal Consortium. This is an open access article

under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Implications

Social interaction between group-housed pigs is a very important
component for traits related to feeding behaviour, productivity, and
well-being. Genetic variation in traits incorporating social interactions
can be estimated using models that include both direct genetic and so-
cial genetic effects between penmates. According to our results, the so-
cial genetic effect was important for certain feeding behaviour traits. In
particular, the social genetic effect was significant for the feed conver-
sion trait. Thus, accounting for social genetic effect in selection is bene-
ficial for improving the feed conversion rate.

Introduction

Social interactions between animals may affect the health and pro-
ductivity of livestock housed in groups. For example, cooperation has

positive effects on the well-being and productivity of group members,
while competition and aggression have adverse effects (Ellen et al.,
2014). Aggressive behaviour is usually caused by either ranking dis-
putes in group hierarchy or by competition for limited resources (e.g.
feeding). Even though skin injuries and stress are themost notable out-
comes of aggression in group-housed pigs, aggressive behaviour also
decreases production (Marchant-Forde and Marchant-Forde, 2005;
Rydhmer et al., 2013; Camerlink, 2014).

The effects of social interactionsmay be partly genetic andmodelled
by a social genetic effect (SGE) (also referred to as indirect genetic ef-
fects) (Moore et al., 1997) or associate effect (Griffing, 1967). Pigs are
a typical example of livestock housed in groups both in commercial set-
tings and at test stations. Several studies have shown that SGE is impor-
tant in pigs. For example, according to Canario et al. (2010), SGE
contributes 44% of the heritable variation in average daily gain (ADG)
also Nielsen et al. (2018a) found a significant SGE for ADG. In contrast,
Bouwman et al. (2010) did not find a find a significant SGE in ADG.
Herrera-Cáceres et al. (2019) reported a significant SGE in feed conver-
sion rate (FCR), and Bergsma et al. (2008) reported a significant SGE in
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backfat thickness (BF) and daily feed intake (DFI). However, little is
known of the importance of SGE on feeding behaviour traits. Feeding
behaviour traits, such as the number of visits to a feeder per day and
feeding speed, are expected to depend on the social behaviour of pen
mates. In a recent study, Herrera-Cáceres et al. (2019) found a consider-
able SGE in the number of visits per day (NVD) and feed intake rate (FR)
but not in the time spent in feeding per day (TPD).

Modelling SGE in the context of quantitative genetics has been pre-
sented by Griffing (1967), Muir and Schinkel (2002), and Bijma et al.
(2007a). In an SGE model, the phenotypic value of an animal depends
on its direct breeding value and the sum of the social breeding values
of its group mates plus the corresponding non-heritable direct and so-
cial effects. Total breeding value of an animal is the sum of its direct
breeding value and its own social breeding values towards group
mates. The variance of total breeding value depends on the (co)variance
components of direct breeding value and social breeding values but also
on group size (Bijma et al., 2007a, 2007b). In socially affected traits, the
proportion of total breeding value variance over the total phenotypic
variance is themeasure for inheritable variation preferred over the clas-
sical heritability.

Statistical modelling and estimation of variance components in an
SGEmodel are relatively easywith existing variance/covariance estima-
tion programmeswhen all groups have the samenumber of animals, i.e.
the group size is constant. In practice, group size often varies in com-
mercial settings within and between farms but also at test stations.
Even when the aim is to include groups of equal size during the test pe-
riod, group (batch*pen) size may vary due to several reasons. Variable
group sizes pose challenges in estimating variance components for the
direct and SGEs using existing variance component estimation
programmes. Several solutions have been proposed for copingwith var-
iable group sizes (e.g. Arango et al., 2005; Hadfield and Wilson, 2007;
Bijma et al., 2007a; Nielsen et al., 2018a).

Given the limited number of publications related to the importance
of SGE in feeding behavioural traits in general and in Finnish commer-
cial pig breeds, the objective of our study was to estimate genetic pa-
rameters of feeding behaviour and production traits in Finnish pig
breeds using a model with an SGE. Estimation and comparison of the
magnitude of T2 and h2 were our main interests. We also compared
the fixed group size SGE model to the more complicated variable
group size SGE model.

Material and methods

Data

The data were provided by Figen Oy (Pietarsaari, Finland) and in-
cluded the feeding and production records of pigs from the central
test station from 2011 to 2016. Table 1 shows the ages and weights of
the animals during their test periods with the slaughter records.

Pigs arrived at the test station on Tuesday or onWednesday, and the
test started on Saturday. The grouping of pigs to different penswas done
according to the arrival weight (same size) and sex (only boars or com-
bination of gilts and castrates) of the pigs. Feeding was ad libitum
consisting of two commercial feedstuffs. Theproportion of the two feed-
stuffs was based on the growth rate curve of an average pig from the

previous test periods. The piggery has automated air conditioning and
ventilation based on the age of the pigs and outdoor temperature. Arti-
ficial light is on from 7 am to 3 pm. The dimension of the pen is 16.8 m2

with one-third of concrete slats. The feedings were recorded automati-
cally using the Schauer Spotmix with Schauer MLP electronic feeders
and MLP manager data management software (Schauer Agrotronic
GmbH).

The raw data consisted of 28 964 641 observations made from Finn-
ish Yorkshire, Finnish Landrace, and F1-crossbred pigs and included
transponder id, date, time of entering the feeder, time leaving the
feeder, and feed intake per visit (FPV). Some visits may be missed
due to ear tag-related problems, either the feeding system was not
able to record the tag properly or some ear tags might have fallen
out from pigs. However, these problems are rare (personal commu-
nication with the personnel of the test station). In addition, some
pigs were removed from the tests due to sickness (e.g. lameness,
loss of appetite, etc.). Otherwise, the thresholds presented in Casey
et al. (2005) were applied to remove possible erroneous data. The
proportion of outliers was less than 1%. The remaining data
contained 28 826 029 observations.

These separate visit observations were used to calculate daily values
for the NVD (counts), TPD (min), DFI (g), time spent in feeding per visit
(TPV, min), FPV (g), and FR (FR=FPV/TPV, g/min). The final records
used in variance component estimation were calculated as averages of
the daily records for five test periods of 20 days each: 0–20, 21–40,
41–60, 61–80, and 81–93 days (for more information, see Kavlak and
Uimari, 2019). In the following, we use abbreviation where the number
indicates the corresponding test period, e.g. NVD1 is NVD from the test
period 1, and NVD2 is NVD from the test period 2, etc.

Production traits were ADG (g), FCR (g/g), and BF (mm). For an indi-
vidual pig, ADGwas calculated as the ratio of the difference between last
dayweight and first dayweightwithin a test period over the duration of
the test period in days. Feed conversion rate wasmeasured as feed con-
sumption during the test period measured in feed units divided by the
total growth during the test period. Lastly, BF was calculated using the
average measurement result of a Hennessy grading probe (type GP4,
Auckland, NewZealand),where one samplewas taken 8 cmoff themid-
line of the carcass behind the last rib and another 6 cm off the midline
between the third and fourth ribs.

Before the statistical analyses, outliers (4 standard deviations of the
mean) were removed from the data. The final data included records
from 7394 pigs. The number of animals in pens varied from 8 to 12. Av-
erage group size was 9.8. The average additive genetic relationship (r)
between the pigs within a group was 0.08, which was estimated using
the pedigree data of 11 301 animals with ancestors down to four gener-
ations. The average number of offspring with observations per each sire
was 16.6.

Statistical analyses

Variance component estimation used a single trait SGEs model. For
each trait, two data sets with different requirements from the statistical
model were analysed. In the first data, the number of penmates was re-
stricted to the same fixed number of observations by randomly sam-
pling 8 pen mates with records from each pen. We call this the fixed
group size model. In the second data, the number of pen mates was
allowed to vary according to the size of the original pen. Only pens
where all pen mates had records were included in the analysis. Conse-
quently, numbers of accepted records and pens varied by trait. We call
this the variable group size model. Restricted maximum likelihood
(REML) estimates of variance components were calculated using aver-
age information algorithm or AI-REML as implemented in DMU soft-
ware (Madsen and Jensen, 2013). Standard errors to the estimates
were taken from the DMU output except for estimates to h2 and T2

where Taylor series expansion were used (Dieters et al., 1995).

Table 1
Descriptive statistics of the pigs.

Mean ± SD

Arrival age at test station 89 ± 10 days
Weight at arrival age 34.4 ± 6.4 kg
Total test time 95 ± 3 days
Slaughter age 186 ± 10 days
Slaughter weight 121.2 ± 12.9 kg
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The socialmodel included sex (5035 boars, 1296 gilts, and 1063 cas-
trates), breed (3075 Yorkshire, 3351 Landrace, and 968 F1 crosses of the
two breeds), and herd*year*season (348 classes) as fixed effects, and
batch*pen (766 groups), litter (2862 groups), animal (direct genetic
effect (DGE) and SGE), and residual as random effects.

y ¼ Xbþ ZDaD þ ZSaS þ Zllþ Zggþ e

wherey is a vector of observations (feedingbehaviour orproduction),
b is a vector of fixed effects, X is an incidence matrix relating records to
fixed effects, aD is a vector of random DGE, aS is a vector of random SGE,
l is a vector of random litter effects, g is a vector of random group
(batch*pen) effects, and e is a vector of random residuals; the corre-
sponding incidence matrices are ZD, ZS, Zl, and, Zg, respectively. The ran-
domeffectswere considered independent except betweenDGE and SGE:

aD
aS

� �
¼ G⊗A, where G ¼ σ2

AD

σADS

σADS

σ2:
AS

" #

A is the relationshipmatrix,σAD
2 is the variance of DGE,σAS

2 is the var-
iance of SGE, σADS

is the covariance between DGE and SGE, and ⊗ is the
Kronecker product. Litter, batch*pen (group), and residual effects were
independently and normally distributed with expected values of 0 and
variances of σl

2, σg
2, and σe

2 for litter, group, and residual effects,
respectively.

The variance of total breeding value (σTBV
2 ) (Bijma et al., 2007a,

2007b) is

σ2
TBV ¼ σ2

AD þ 2 n−1ð ÞσADS
þ n−1ð Þ2 σ2

AS

and the total phenotypic variance (σP
2) is

σ2
P ¼ σ2

AD þ σ2
g þ σ2

l þ σ2
e þ n−1ð Þσ2

AS þ n−1ð Þr 2σADS
þ n−2ð Þσ2

AS

� �

where n is the average number of pigs in each group and r is the
average relatedness within groups (r = 0.08). Total heritable
variation (T2) is the ratio T2=σTBV

2 /σP
2) and classical heritability (h2) is

the ratio h2=σAD
2 /σP

2.

Results

Phenotypic description

Descriptive statistics of feeding behaviour and production traits are
shown in Figs. 1 and 2. In general, the older pigs became, the more fre-
quently they visited the feed station (from NVD1 to NVD5). In contrast,
time spent in feeding decreased slightly from 2.9min (TPV1) to 2.2 min
(TPV5). Thus, TPD increased up to 65.2 min/day (TPD2) and then de-
creased to 54.1 min/day (TPD5). In contrast to NVD and TPD, the rest
of the feeding behaviour traits (TPV, DFI, FPV, and FR) increased con-
stantly from period 1 to period 5 (Fig. 1). Mean ADG for the pigs was
946 ± 113 g/d (mean and SD). Corresponding mean values for BF and
FCR were 10.7 ± 2.3 mm and 2.5 ± 0.2 g/g, respectively.

Classical heritability

Both estimation models gave the same range of estimates of clas-
sical heritability for the feeding behaviour traits: 0.14–0.39 (Tables 2
and 3). For the production traits estimates of classical heritability
varied from 0.25 to 0.41 when a fixed group size model was applied
and from 0.29 to 0.38 when a variable group size model was applied
(Tables 2 and 3). Standard errors of the estimates varied from 0.03 to
0.05. The highest estimates for feeding behaviour traits were
obtained for periods 2 and 3.

Fig. 1. Box plots of feeding behaviour traits over the five periods in pigs.
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Variance of social genetic effect and correlation between direct genetic
effect and social genetic effect

Variance of SGE (σAS
2 ) was generally smaller than the variance of

DGE (σAD
2 , Tables 2 and 3). Also, the SEs of the σAS

2 estimates were
large. Thus, most of the σAS

2 estimates did not differ from 0 except
for TPV and FPV for some traits during certain periods (the signifi-
cant estimates are bolded in Tables 2 and 3). Most of the significant
σAS
2 estimates were obtained in test period 2 (days 21–40 of test).

In addition, the SGE variance was small but significant for FCR but
not for ADG or BF.

Estimated correlation between DGE and SGE was mostly posi-
tive in feeding behaviour traits but not statistically significant
(Tables 2 and 3). When a fixed group size model was applied,
only TPV1, TPV2, TPV3, TPV4, FPV3, and FPV4 indicated a statisti-
cally significant and positive correlation between DGE and SGE.
When a variable group size model was applied, the correlation be-
tween DGE and SGE was significant only for TPV2 and TPV3. Based
on our results, pigs that visit feeders for longer time periods (a ge-
netic potential) also have a positive SGE on the TPV of the pen
mates. This relationship was also true for FPV. No statistically sig-
nificant correlation between DGE and SGE was obtained for the
production traits.

Total heritable variation

For feeding behaviour traits, the estimates of T2 were generally
higher than estimates of h2, ranging from 0.28 ± 0.08 (h2 = 0.28 ±
0.04) for DFI4 to 0.77 ± 0.13 (h2 = 0.36 ± 0.04) for TPV3 when a
fixed group size model was applied and from 0.17 ± 0.10 (h2 = 0.27
± 0.04) for FR3 to 0.85± 0.16 (h2=0.34± 0.03) for TPV3 when a var-
iable group size model was applied (Tables 2 and 3). For production
traits, the estimates of T2 were similar to the estimates of classical heri-
tability, except for FCR in both the fixed (T2 =0.75± 0.17 vs. h2 =0.25
± 0.04) and variable (T2=0.37± 0.12 vs. h2=0.29± 0.04) group size
models.

Differences between the models

Estimates and SEs of h2were almost identical by the fixed group size
and variable group size models (Tables 2 & 3). In addition, estimates of
T2 were similar between the models (the differences between the esti-
mates were within SEs). In production traits, some differences were ob-
served in T2 between themodels, e.g. for FCR the T2 estimatewas 0.75±
0.17 using thefixed group sizemodel and 0.37±0.12 using the variable
group sizemodel. The difference in estimates of T2 for FCR is most prob-
ably due to different data size; for the variable group size model only
pens where all animals had records were included in the analysis (in
the fixed group size model all pens with at least eight animals having
a record were included in the analysis). In general, a slightly higher cor-
relation between DGE and SGE was obtained from the fixed group size
model than from the variable group size model.

Discussion

In this study, we investigated the importance of SGE on feeding
behaviour and production traits in Finnish pig breeds. The data
were obtained from the test station where animals of two Finnish
pig breeds (Finnish Landrace, Finnish Yorkshire) and their F1-
crosses were distributed randomly into each pen. Thus, the data
did not allow separate analysis of the breeds. This may affect our re-
sults if the two breeds differ from each other drastically in terms of
the studied traits. However, both are white breeds with similar
breeding goals and programmes. Also, based on a previous study of
Finnish Yorkshire by Kavlak and Uimari (2019) and Finnish Land-
races by Riikimaki (2019), feeding behaviour and estimated herita-
bilities of feeding behaviour traits were similar between these two
breeds. In addition, prior to the SGE model analysis, the same
model used in Kavlak and Uimari (2019) was applied for the com-
bined data. The estimated heritabilities were close to those pre-
sented in Kavlak and Uimari (2019). Thus, despite the data having
two unrelated populations analysed together, we trust that the
data provide reasonable and reliable estimates of SGE for feeding

Fig. 2. Box plots of the production traits over the entire test period in pigs.
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behaviour and production traits in these two Finnish pig breeds.
However, more precise estimates of SGE variance could have been
obtained if the data consisted only one population and the groups
were formed with few families per group (Bijma, 2010a; Ødegård
and Olesen, 2011).

According to our results, SGE was not statistically significant for
most of the feeding behaviour and production traits, except for TPV,
FPV, and FCR. The estimates of the total heritable variation for TPV and
FPV were generally over 0.5 (±0.17) (depending on the period and
method) and 0.4–0.7 (±0.17) for FCR. Using data from a Duroc pig pop-
ulation,Herrera-Cáceres et al. (2019) obtained a significant contribution
of SGE for NVD (T2 =0.93± 0.49 vs. h2 = 0.46± 0.09), DFI (T2 =0.29
± 0.29 vs. h2 = 0.25 ± 0.08), TPV (T2 = 0.67 ± 0. 30 vs. h2 = 0.47 ±
0.09), and FR (T2=0.39± 0.29 vs. h2=0.32± 0.08), while a high neg-
ative correlation between DGE and SGE was obtained for TPD (−0.78 ±
0.09), leading to a smaller estimate of T2 than h2 (T2 = 0.20 ± 0.19 vs.
h2 = 0.27 ± 0.10). For the production traits, SGE was less important
(for ADG T2 = 0.22 ± 0.18 vs. h2 = 0.22 ± 0.09 and for BF T2 = 0.51 ±
0.28 vs. h2 = 0.35 ± 0.11) except for FCR (T2 = 0.55 ± 0.43 vs. h2 =
0.24 ± 0.09) (Herrera-Cáceres et al., 2019). Based on the data of 14 032
crossbred pigs, Bergsma et al. (2008) obtained a significant contribution
of SGE for ADG (T2 = 0.71 ± 0.08 vs. h2 = 0.21 ± 0.02), DFI (T2 = 0.70

± 0.17 vs. h2 = 0.17 ± 0.03), and BF (T2 = 0.41 ± 0.04 vs. h2 = 0.35 ±
0.02). Nielsen et al. (2018a) estimated SGE of ADG separately for Danish
Landrace gilts and boars using a bivariate model and found that the T2 is
stronger between boars (0.32 ± 0.02) than between gilts (0.27 ± 0.01).
Thus, our results are in line with other published results and confirm
the pattern that SGE is important in feeding behaviour traits (at least in
TPV and FPV) and in FCR but less important in BF and ADG.

Although the aim is to have an equal number of pigs in all pens dur-
ing the test period, the group sizes vary, in our case, mainly because of
animals being removed from the test due to health issues (various dis-
eases and leg problems). Also culling of animals from the groups and
changing the composition during the test periodmay cause the variabil-
ity in SGEs of the animals unless it is taken into account in themodel, e.g.
by a regression of mean proportion of time spent in a pen or relative
space allowance on the studied trait (Ask et al., 2020). However, the ef-
fect of including the regression or omitting it did not have a significant
effect on estimates of the variance components or h2 or T2 (Ask et al.,
2020). We did not apply this fine-tuned approach in our analysis. In-
stead, we first applied a simple model for randomly sampling an equal
number of pigs (n = 8) from each pen for a fixed group size model
and compared these results to those from a variable group size model
(n = 9.8). The fixed group size model is simpler than the variable

Table 2
Estimates of the genetic parameters from the fixed group size model for feeding behaviour and production traits in pigs.

N σ2
AD σ2

AS σADS
σ2
P rADS

σ 2
TBV h2 T2

FBT
Period 1

NVD1 7349 22.2 ± 3.1 0.18 ± 0.10 0.32 ± 0.45 74.6 0.16 ± 0.23 35.5 0.30 ± 0.04 0.48 ± 0.12
TPD1 7370 48.7 ± 6.4 0.23 ± 0.14 −0.29 ± 0.72 136.0 −0.08 ± 0.21 55.9 0.36 ± 0.04 0.41 ± 0.09
DFI1 7388 7523 ± 1745 84 ± 83 330 ± 267 53279 0.41 ± 0.35 16259 0.14 ± 0.03 0.31 ± 0.12
TPV1 7372 0.26 ± 0.03 0.002 ± 0.001* 0.01 ± 0.005 0.89 0.57 ± 0.24* 0.49 0.29 ± 0.04 0.55 ± 0.13
FPV1 7390 170.7 ± 25.7 2.2 ± 1.1 4.3 ± 4.0 627.9 0.22 ± 0.20 338.7 0.27 ± 0.04 0.54 ± 0.14
FR1 7378 5.5 ± 0.9 0.08 ± 0.04 −0.12 ± 0.14 25.2 −0.18 ± 0.22 7.7 0.22 ± 0.03 0.31 ± 0.11

Period 2
NVD2 7352 29.6 ± 3.8 0.15 ± 0.09 0.89 ± 0.55 94.0 0.42 ± 0.25 49.4 0.31 ± 0.04 0.53 ± 0.11
TPD2 7380 65.1 ± 8.2 0.31 ± 0.20 0.73 ± 0.91 166.8 0.16 ± 0.20 90.5 0.39 ± 0.04 0.54 ± 0.11
DFI2 7389 20204 ± 3401 688 ± 208* 781 ± 544 84182 0.21 ± 0.14 64850 0.24 ± 0.04 0.77 ± 0.16
TPV2 7364 0.34 ± 0.04 0.003 ± 0.001* 0.02 ± 0.006* 1.06 0.60 ± 0.20* 0.76 0.32 ± 0.04 0.70 ± 0.13
FPV2 7376 320.1 ± 45.8 4.2 ± 1.9* 10.0 ± 7.0 1121.4 0.27 ± 0.19 665.9 0.29 ± 0.04 0.59 ± 0.13
FR2 7382 10.5 ± 1.6 0.16 ± 0.07* −0.01 ± 0.25 41.1 −0.01 ± 0.19 18.2 0.25 ± 0.04 0.43 ± 0.13

Period 3
NVD3 7351 40.4 ± 5.2 0.22 ± 0.13 1.12 ± 0.71 123.4 0.37 ± 0.24 66.9 0.33 ± 0.04 0.54 ± 0.11
TPD3 7380 58.9 ± 7.1 0.26 ± 0.17 0.78 ± 0.81 150.1 0.19 ± 0.20 82.5 0.39 ± 0.04 0.55 ± 0.11
DFI3 7390 34086 ± 5068 375 ± 212 775 ± 698 114742 0.21 ± 0.19 63311 0.30 ± 0.04 0.55 ± 0.14
TPV3 7383 0.37 ± 0.04 0.003 ± 0.001* 0.02 ± 0.006* 1.02 0.56 ± 0.17* 0.79 0.36 ± 0.04 0.77 ± 0.13
FPV3 7386 576.4 ± 76.2 5.7 ± 2.5* 24.0 ± 10.7* 1702.3 0.42 ± 0.19* 1191.7 0.34 ± 0.04 0.70 ± 0.13
FR3 7372 19.1 ± 2.9 0.28 ± 0.15 −0.15 ± 0.43 70.1 −0.06 ± 0.19 30.7 0.27 ± 0.04 0.44 ± 0.14

Period 4
NVD4 7354 39.3 ± 5.2 0.25 ± 0.16 0.36 ± 0.74 134.4 0.11 ± 0.23 56.6 0.29 ± 0.04 0.42 ± 0.10
TPD4 7377 46.1 ± 5.8 0.42 ± 0.21 0.23 ± 0.75 125.9 0.05 ± 0.17 69.9 0.37 ± 0.04 0.56 ± 0.12
DFI4 7392 42234 ± 6575 90 ± 146 −310 ± 769 152098 −0.16 ± 0.38 42304 0.28 ± 0.04 0.28 ± 0.08
TPV4 7380 0.28 ± 0.03 0.002 ± 0.001* 0.01 ± 0.005* 0.80 0.57 ± 0.18* 0.52 0.35 ± 0.04 0.65 ± 0.13
FPV4 7390 689.3 ± 91.0 6.2 ± 2.8* 27.0 ± 12.3* 2068.9 0.41 ± 0.19* 1371.1 0.33 ± 0.04 0.66 ± 0.12
FR4 7369 29.5 ± 4.4 0.40 ± 0.22 0.25 ± 0.66 106.0 0.07 ± 0.19 52.6 0.28 ± 0.04 0.50 ± 0.15

Period 5
NVD5 7366 41.2 ± 5.8 0.36 ± 0.21 0.84 ± 0.86 158.6 0.22 ± 0.22 70.6 0.26 ± 0.03 0.44 ± 0.11
TPD5 7376 37.1 ± 5.4 0.17 ± 0.16 0.57 ± 0.70 130.9 0.22 ± 0.26 53.4 0.28 ± 0.04 0.41 ± 0.11
DFI5 7387 55050 ± 8688 1157 ± 515* 1635 ± 1347 226984 0.20 ± 0.17 134633 0.24 ± 0.04 0.59 ± 0.15
TPV5 7382 0.26 ± 0.03 0.001 ± 0.001 0.006 ± 0.004 0.75 0.30 ± 0.22 0.39 0.34 ± 0.04 0.52 ± 0.12
FPV5 7390 802.8 ± 108.6 7.1 ± 3.4* 17.1 ± 14.7 2499.5 0.22 ± 0.19 1390.1 0.32 ± 0.04 0.56 ± 0.12
FR5 7371 39.8 ± 5.9 0.07 ± 0.33 1.1 ± 0.91 143.7 0.22 ± 0.16 58.6 0.28 ± 0.04 0.41 ± 0.16

PT
ADG 7394 3111.1 ± 492.2 13.5 ± 13.4 −53.0 ± 57.1 10841 −0.25 ± 0.29 3030.6 0.29 ± 0.04 0.28 ± 0.09
BF 6526 1.6 ± 0.22 0.005 ± 0.004 −0.02 ± 0.02 3.9 −0.28 ± 0.17 1.51 0.41 ± 0.05 0.38 ± 0.09
FCR 7340 0.01 ± 0.001 0.0002 ± 0.00009* 0.0004 ± 0.0002* 0.04 0.30 ± 0.17 0.03 0.25 ± 0.04 0.75 ± 0.17

FBT= feeding behaviour traits; PT= production traits; NVD= number of visits per day; TPD= time spent in feeding per day; DFI = daily feed intake; TPV= time spent in feeding per
visit; FPV = feed intake per visit; FR = feed intake rate; ADG = average daily gain; BF = backfat thickness; FCR = feed conversion rate; σAD

2 = variance of direct genetic effect; σAS
2 =

variance of social genetic effect; σADS
= covariance between direct genetic effect and social genetic effect; σP

2 = total phenotypic variance; σTBV
2 = variance of total breeding value; rADS

=genetic correlation between direct genetic effect and social genetic effect; h2=classical heritability; T2=total heritable variation.N=number of observations for each trait.± indicates
the SEs of the estimates. *Statistically significant estimates (P < 0.05) of σAS

2 , σADS
, and rADS

.
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group size model. In theory, random sampling of pen mates from the
complete data for the fixed group size model can be expected to de-
crease the amount of information for the data analysis. However, sim-
pler models tend to behave better numerically and allow the use of a
wider range of software. When the variable group size model was
used to analyse the full data, we observed that traits DFI5, TPD4, and
FCR showedno convergence usingAI-REML, nor using EM-REML, in suf-
ficient time after several restarts using either already reached or differ-
ent starting values. In these traits, the correlation between direct and
SGEswas estimated to be one or almost one. No such convergence prob-
lems were observed using the fixed group size model. Overall, both
models gave similar estimates and SEs of the variance components;
the small differences between estimates were within the SEs. As a ten-
dency, the fixed group size model gave higher estimates of the correla-
tion between DGE and SGE than the variable group size model. Again,
the differences in estimates between the two models were within the
SE. Based on our results, a simple fixed group sizemodel with a random
selection of penmates is useable for estimation of variance components
even when the actual group size varies.

Social genetic effects amonggroupmatesmay depend on group size:
social interaction between animal pairs areweaker in a large group than
in a small group (Arango et al., 2005). The dependency between group
sizes and variances has been discussed in Bijma (2010b), where he

also proposed a method to account for this dependence with a dilution
parameter (d) that is trait dependent andhas a value of 0 if SGE does not
depend on group size and a value of 1 if SGEs are inversely proportional
to group size, i.e. group member influences are diluted in large
groups. Because the minimum group size in our data was 8 and the
maximumwas 12, our model may benefit from a dilution parameter.
Therefore, we tested two dilution parameters: d= 0.5 and d= 1 (re-
sults not shown). In general, the estimated heritability stayed about
the same. However, small differences (within SEs) appeared in the
covariance between DGEs and SGEs leading to changes in T2. More-
over, correlations between the diluted and nondiluted heritability
and total heritable variation estimates were both over 90%. Certain
field data analyses with the dilution parameter have been published
(Canario et al., 2010; Nielsen et al., 2018b), but Duijvesteijn et al.
(2012) did not find a dependency between the magnitude of SGE
and the group size. Also, precision of the estimates of the dilution pa-
rameter may be low if the coefficient of variation in the group size is
low (Heidaritabar et al., 2019).

When SGE has a significant contribution to the total heritable vari-
ance (T2), it is important to consider social interactions between ani-
mals in a selection programme. Selection methods that ignore SGE
may lead to unexpected response to selection, especially if DGE and
SGE are negatively correlated (Bijma et al., 2007a). As an example of a

Table 3
Estimates of the genetic parameters from the variable group size model for feeding behaviour and production traits in pigs.

N σ2
AD σ2

AS σADS
σ2
P rADS

σ 2
TBV h2 T2

FBT
Period 1

NVD1 7091 20.7 ± 2.9 0.15 ± 0.08 −0.50 ± 0.40 69.0 −0.28 ± 0.22 23.7 0.30 ± 0.04 0.34 ± 0.13
TPD1 7208 49.8 ± 6.5 0.18 ± 0.10 −0.46 ± 0.68 134.8 −0.15 ± 0.22 55.8 0.37 ± 0.04 0.41 ± 0.10
DFI1 7335 7660.6 ± 1767.5 93.3 ± 68.2 360.2 ± 261.0 53049 0.43 ± 0.30 21224 0.14 ± 0.03 0.40 ± 0.15
TPV1 7204 0.24 ± 0.03 0.001 ± 0.008 0.007 ± 0.005 0.87 0.43 ± 0.29 0.46 0.28 ± 0.04 0.53 ± 0.15
FPV1 7269 170.4 ± 25.8 2.00 ± 0.88* 4.6 ± 3.8 617.2 0.25 ± 0.20 407.2 0.28 ± 0.04 0.66 ± 0.17
FR1 7350 5.5 ± 0.9 0.06 ± 0.03* −0.17 ± 0.13 25.0 −0.29 ± 0.24 7.4 0.22 ± 0.03 0.29 ± 0.13

Period 2
NVD2 7052 28.3 ± 3.8 0.10 ± 0.06 −0.58 ± 0.50 87.5 −0.34 ± 0.30 25.9 0.32 ± 0.04 0.30 ± 0.11
TPD2 7266 63.8 ± 8.2 0.19 ± 0.14 0.11 ± 0.84 164.8 0.03 ± 0.24 80.9 0.39 ± 0.04 0.49 ± 0.12
DFI2 7344 19231 ± 3329 432.3 ± 151.4 392.2 ± 497 83637 0.14 ± 0.17 59616 0.23 ± 0.04 0.71 ± 0.18
TPV2 7136 0.32 ± 0.04 0.002 ± 0.001* 0.02 ± 0.006* 1.05 0.58 ± 0.22* 0.77 0.31 ± 0.04 0.73 ± 0.16
FPV2 7240 315.5 ± 45.7 3.4 ± 1.5* 5.4 ± 6.7 1100.2 0.16 ± 0.20 676.9 0.29 ± 0.04 0.62 ± 0.16
FR2 7334 10.4 ± 1.6 0.13 ± 0.05* −0.12 ± 0.24 42.2 −0.10 ± 0.21 18.4 0.25 ± 0.04 0.44 ± 0.15

Period 3
NVD3 7046 39.1 ± 5.2 0.18 ± 0.10 0.17 ± 0.69 118.5 0.06 ± 0.26 55.9 0.33 ± 0.04 0.47 ± 0.13
TPD3 7276 57.6 ± 7.1 0.17 ± 0.12 −0.10 ± 0.73 147.0 −0.03 ± 0.23 68.9 0.39 ± 0.04 0.47 ± 0.11
DFI3 7354 34236 ± 5082 301 ± 167 824 ± 667 115020 0.26 ± 0.21 72060 0.30 ± 0.04 0.63 ± 0.16
TPV3 7292 0.35 ± 0.04 0.003 ± 0.001* 0.02 ± 0.006* 1.02 0.49 ± 0.18* 0.87 0.34 ± 0.04 0.85 ± 0.16
FPV3 7330 558.6 ± 75.2 5.2 ± 2.1* 18.6 ± 10.4 1685.8 0.35 ± 0.19 1292.2 0.33 ± 0.04 0.77 ± 0.16
FR3 7219 18.1 ± 2.8 0.02 ± 0.04 −0.45 ± 0.32 67.9 −0.75 ± 0.93 11.6 0.27 ± 0.04 0.17 ± 0.10

Period 4
NVD4 7039 34.9 ± 5.0 0.18 ± 0.12 −0.51 ± 0.68 127.9 −0.20± 0.27 40.1 0.27 ± 0.04 0.31 ± 0.11
TPD4 7252 45.1 ± 5.7 0.10 ± 0.09 −0.75 ± 0.59 121.7 −0.35 ± 0.29 39.6 0.37 ± 0.04 0.33 ± 0.10
DFI4 7373 40623 ± 6432 48 ± 104 342 ± 688 152074 0.24 ± 0.61 50399 0.27 ± 0.04 0.33 ± 0.09
TPV4 7275 0.26 ± 0.03 0.002 ± 0.001* 0.01 ± 0.005 0.81 0.51 ± 0.21* 0.59 0.32 ± 0.04 0.73 ± 0.15
FPV4 7353 674.1 ± 90.5 5.4 ± 2.3* 14.3 ± 11.9 2052.4 0.24 ± 0.20 1342.2 0.33 ± 0.04 0.65 ± 0.14
FR4 7204 28.7 ± 4.3 0.04 ± 0.06 −0.23 ± 0.52 102.7 −0.20 ± 0.46 28.2 0.28 ± 0.04 0.28 ± 0.11

Period 5
NVD5 7146 40.4 ± 5.8 0.29 ± 0.16 0.73 ± 0.82 153.7 0.21 ± 0.24 76.3 0.26 ± 0.04 0.50 ± 0.14
TPD5 7265 35.5 ± 5.2 0.07 ± 0.09 −0.42 ± 0.59 125.6 −0.27 ± 0.40 33.4 0.28 ± 0.04 0.27 ± 0.10
DFI5 7321 59630 ± 9162 24 ± 156 1212 ± 944 222910 1.00 ± 2.95 82895 0.27 ± 0.04 0.37 ± 0.11
TPV5 7296 0.24 ± 0.03 0.001 ± 0.0008 0.004 ± 0.004 0.76 0.22 ± 0.24 0.42 0.32 ± 0.04 0.55 ± 0.13
FPV5 7352 788.1 ± 108.1 6.0 ± 2.6* 4.5 ± 14.3 2471.0 0.07 ± 0.21 1329.1 0.32 ± 0.04 0.54 ± 0.13
FR5 7193 38.1 ± 5.8 0.17 ± 0.12 0.31 ± 0.73 144.7 0.12 ± 0.29 57.1 0.26 ± 0.04 0.39 ± 0.12

PT
ADG 7394 3118.2 ± 492.4 17.9 ± 11.1 −76.5 ± 57.3 10833.1 −0.32 ± 0.23 3162.1 0.29 ± 0.04 0.29 ± 0.11
BF 3542 1.6 ± 0.32 0.01 ± 0.008 −0.03 ± 0.04 4.2 −0.22 ± 0.26 2.03 0.38 ± 0.07 0.48 ± 0.12
FCR 6901 0.01 ± 0.001 0.20×10−5 ± 3.5×10−5* 0.0001 ± 0.0002 0.04 1.00 ± 8.95 0.01 0.29 ± 0.04 0.37 ± 0.12

FBT= feeding behaviour traits; PT= production traits; NVD= number of visits per day; TPD= time spent in feeding per day; DFI = daily feed intake; TPV= time spent in feeding per
visit; FPV = feed intake per visit; FR = feed intake rate; ADG = average daily gain; BF = backfat thickness; FCR = feed conversion rate; σAD

2 = variance of direct genetic effect; σAS
2 =

variance of social genetic effect; σADS
= covariance between direct genetic effect and social genetic effect; σP

2 = total phenotypic variance; σTBV
2 = variance of total breeding value; rADS

=genetic correlation between direct genetic effect and social genetic effect; h2=classical heritability; T2=total heritable variation.N=number of observations for each trait.± indicates
the SEs of the estimates. *Statistically significant estimates (P < 0.05) of σAS

2 , σADS
, and rADS

.
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benefit of including SGE in a breeding programme, Bijma et al. (2007b)
estimated that when properly accounting for social interactions, a
three-fold higher total heritable variation and potential response to se-
lection may be obtained in a layer chicken population in terms of mor-
tality caused by pecking behaviour than with a breeding programme
that ignores SGE. Also, Ellen et al. (2014) demonstrated that selection
for SGE is promising in many species, e.g. cattle, cod, deer, mice, mink,
and pigs. To optimize SGE estimation, the number of groups should be
reasonably large (Bijma, 2010a). Thus, SGE estimation is difficult in
breeding programmeswhere data are collected from farmswith a single
group such as cattle (Ellen et al., 2014). Based on our results, including
SGE in the estimation model for FCR, a higher response to selection
may be obtained compared to the currently applied selection based
purely on DGE.

Conclusion

In this study, we investigated the importance of accounting for
SGE using two statistical models (fixed or variable group size) for
feeding behaviour and production traits in Finnish pig breeds. The
two models gave similar estimates of the variance components.
Among the studied feeding behaviour traits, SGE was significant
only for TPV and FPV. For these traits, the difference between T2

(around 0.7) and h2 (around 0.3) was large. However, these traits
are generally not important in breeding programmes. The opposite
is true for FCR, which is very important in most pig breeding
programmes. Based on our and other published results, SGE should
be accounted for in breeding value estimation of FCR and exploited
in selection. Fortunately, there is no evidence of negative correlation
between DGE and SGE for FCR. Thus, ignoring SGE in breeding
programmes and selecting purely on DGE does not cause negative ef-
fects on social interactions that may affect FCR in the long run.
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Abstract 

Disease detection is crucial for timely intervention to increase treatment success and reduce 

negative impacts on pig welfare. The objective of this study was to monitor changes in feeding 

behaviour patterns to detect pigs that may need medical treatment or extra management. The 

data included 794,509 observation days related to the feeding behaviour and health information 

of 10,261 pigs. Feeding behaviour traits were calculated including the number of visits per day 

(NVD), time spent feeding per day (TPD), and daily feed intake (DFI). The health status (sick 

or healthy) of pigs were predicted based on the features including the original feeding 

behaviour traits and features derived from those using a machine-learning algorithm (Xgboost).  

The predictions were based either on the features from the same day (one-day window), from 

the same day and two previous days (three-day window), or from the same day and six previous 

days (seven-day window). The model based on the seven-day window gave the most robust 

results and achieved an 80% AUC, 7% F1-score, 67% sensitivity, 73% specificity, and 4% 

precision. The analyses indicated that the features related to the deviation of a pig’s observed 

TPD and DFI from the expected TPD and DFI were the most informative, as they gained the 

highest importance score. In conclusion, the feeding behaviour-based features gave good 

sensitivity and specificity in predicting sickness. However, the precision of the method was 

very low, possibly due to low prevalence of the monitored sickness symptoms, limiting the 

application of the approach in real life.  

Keywords: welfare, disease detection, pigs, machine learning, feeding behaviour  
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1. Introduction 

Pig welfare has gained more and more attention in recent years and should be improved, 

according to general consensus (Mellor, 2016). Animals express their wellbeing through 

feeding, drinking, social behaviour etc. Changes in behaviour can be used as early signs of 

discomfort and sickness (Matthews et al., 2017). In a commercial farm, only limited time is 

available to observe the individual behavioural changes in pigs, which only permits detecting 

considerable behavioural changes. This may lead to the too late treatment of the sick animal or 

intervention in conditions that create discomfort to animals.  

Although small changes in daily behaviour are not easy to quantify, data collected 

automatically from sensors and feeders may include valuable information concerning signs of 

welfare problems. As an example, increased restlessness among pigs can signal an outbreak of 

tail biting up to six days prior, which on a commercial scale would be impossible to detect 

during daily checks (Matthews et al., 2017). In addition, microphones have been used to 

monitor the sounds of coughing of pigs to build an intelligent alarm system to detect the disease 

in its early stage (Guarino et al., 2008), 3D-cameras to predict tail biting outbreaks by 

identifying lowered tail postures (D’Eath et al., 2018), and deviations in typical feeding 

patterns to monitor overall welfare of pigs  (e.g., Brown-Brandl et al., 2013; Munsterhjelm et 

al., 2015; Bus et al., 2021). 

The data collected from the sensors and feeders create challenges to finding the true signals 

of behavioural changes out of the noise. The complexity of big data with non-linear 

dependencies and unknown interactions across multiple variables challenges the assumptions 

of many standard statistical methods (Valletta et al., 2017). Machine learning (ML) methods 

are highly efficient at determining non-linear relationships between variables in the data 

(Hastie et al., 2009). As an example, Pandey et al. (2021) collected data on movements, vocal 
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sound, and temperature of pigs using ear sensors and applied ML models to predict the health 

and welfare status of pigs based on the collected data. Based on their results, the ML approach 

is a powerful tool for monitoring the health status of pigs leading to reduced medical treatments, 

cost savings and enhanced animal welfare. Thus, ML methods, such as eXtreme Gradient 

Boosting, Random Forest, and Support Vector Machine, provide a promising approach for 

detecting behavioural changes in farm animals that are associated with possible welfare 

problems (Liakos et al., 2018). Regardless of the method, data quality is important to avoid 

unwanted outcomes and to gain as robust results as possible. Setting criteria for outliers and 

applying data filtering prior to applying ML methods to data are therefore important (Alsaaod 

et al., 2012). 

The objective of our study was to develop ML methods based on feeding data to observe 

changes in feeding behaviour patterns that can be used to detect pigs that may need medical 

treatment or extra management. 

2. Material and Methods 

2.1. Feeding behaviour data and pig housing 

The feeding behaviour data were provided by Figen Oy (Pietarsaari, Finland) from their central 

test station, spanning from 2011 to 2016. Pigs arrived at the test station either on a Tuesday or 

a Wednesday, and the tests began on a Saturday. The pigs were grouped into different pens 

according to their arrival age (89 ± 10 days), weight (34.4 ± 6.4 kg), and sex (only boars or a 

combination of gilts and castrates). The average daily gain was 946 ± 113 g/day, and the 

average slaughter weight and age were 121.2 ± 12.9 kg and 186 ± 10 days, respectively. The 

average number of piglets in a pen was 9.8 (± 1.19). Water was available ad libitum. Also, 

feeding type (dry feeding) was ad libitum, consisting of two commercial feedstuffs, and the 

proportion of the two feedstuffs was based on the growth rate curve of an average pig from the 

previous test periods. Antibiotics and other drugs were given only for the sick animals based 
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on veterinary prescriptions. The facility had automated ventilation based on pig age and 

outdoor temperature, and artificial lighting was on from 7 a.m. to 3 p.m. The size of pen was 

16.8 m2 with a concrete floor (2/3 solid, 1/3 slatted). Feedings were recorded automatically 

using the Schauer Spotmix with Schauer Multilayer Perceptron (MLP) electronic feeders and 

MLP manager data management software (Schauer Agrotronic GmbH). For further 

information see Kavlak et al. (2021).  

The raw data consisted of 28,826,029 individual feeding visits from 10,261 pigs (Finnish 

Yorkshire, Finnish Landrace, and F1-crossbred), and included ear tag transponder id, date, time 

of entering the feeder, time leaving the feeder, and feed intake per visit. The feed intake was 

measured as a weight of the feed before and after the pig has been in feeder. The number of 

visits per day (NVD), time spent feeding per day (TPD), and daily feed intake (DFI) were 

calculated from the recorded observations. Observations from the first testing day were not 

included due to the DFI exhibiting some of the pigs as extreme outliers, may have been caused 

by the feeding recording system. Similar extreme DFIs were not observed on a large scale on 

any other testing days.  

2.2. Sickness data 

The sickness data were recorded daily by the test station staff members during routine checks 

(twice a day) and included the ID of the pig, the symptom(s), and the date. The symptoms were 

classified as a cough, a limp, loss of appetite, skin damage, and a bitten tail. Out of 794,509 

daily health observations, 13,018 were related to the recorded symptoms. Within any given day 

a pig could suffer from several symptoms. In the ML models, pigs with any of the recorded 

symptoms were classified as “sick” for that given day and pigs with no recorded symptoms 

were classified as “healthy”.  
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2.3. Feature processing 

The absolute values of TPD and DFI may not be optimal features for predicting the sickness 

status of an animal, as they are strongly related to the animal’s age. Therefore, we created new 

features, including daily ranks and residuals. Daily ranks relate the rank of an animal’s 

observation (DRTPD and DRDFI) compared to other pigs within a pen in a given day, and 

residuals (ResTPD and ResDFI) describe that animal’s difference from the expected value of 

TPD and DFI for a pig of same age. The residuals of TPD and DFI were calculated by fitting 

a polynomial (quadratic) regression model to the whole data set: 

 ௜ =  ܾ଴ +  ܾଵ* ܽ݃݁௜ + ܾଶ* ܽ݃݁௜ଶ + ݁௜                              (1)ݕ

where ݕ௜ is either the TPD or DFI of pig i, ܾ଴ is overall mean, ܽ݃݁௜is the age of pig i related to 

observation ݕ௜, ܾଵ and ܾଶ are linear and quadratic regression coefficients, and ݁௜ is the residual 

used in ML.  

Regarding animal welfare based on feeding behaviour, short-term visits have been 

considerably challenging to interpret in animal behaviour analyses when conventional methods 

are used (Young and Lawrence, 1994). The frequency of visits without eating and intervals 

between visits can be informative feeding patterns that can contribute to predict the health 

status of animals (Garrido-Izard et al., 2020). Tolkamp et al. (1998) proposed log-normal 

distribution to model within and between feeding events. In this study, the intervals between 

feeding visits were calculated as the difference between the time of entering the feeder and the 

time leaving the feeder during the previous feeding. The intervals were first log transformed 

and then a mixture of two normal distributions was fitted for the log-transformed intervals of 

each pig for each day. The first distribution relates to short visits during one meal and second 

representing intervals between meals. The daily features for each pig from this mixture 
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distributions were the proportion of intervals belonging to the first distribution (p), σଵ (s1) and 

σଶ (s2) the standard deviations, and μଵ and μଶ the means of the distributions. 

Finally, the features used in ML were NVD, TPD, DFI, DRTPD, DRDFI, ResTPD, ResDFI, μଵ, μଶ, σଵ, σଶ and p. The mean and the distribution of the features in the healthy and sick groups 

over time (Week) are presented in Fig. 1. Prior to creating the features and ML models, extreme 

values of the features (outside quantiles 0.5% and 99.5% corresponding to likely registration 

errors from the feeders) were removed from the data.  
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Fig. 1. Boxplots of the features for the testing period (in weeks) grouped by the disease status 

of the pigs (13,018 daily sick observations and 781,491 daily non-sick observations). The 

abbreviations of the features are explained in the text. 
The health status of a pig was predicted using three different window lengths for 

determining features: a one-day window, a three-day window, and a seven-day window 

(number of observations are given in Table 1). In the one-day window approach, the health 

status of a pig was predicted based on the features from the same day.  In the three-day window 

approach, the health status of a pig was predicted based on the mean of the features from the 

same day and the previous two days. Similarly, for the seven-day window approach, the health 

status of a pig was predicted based on the mean of the features from the same day and the 

previous six days. Based on the three- and seven-day window features, a new features “delta” 

and “SD” were calculated; delta as a difference between the means of the same feature from 

the seven- and three-day windows and SD as a standard deviation of the features within the 

seven-day window. Windows were overlapping. 

The number of daily sick and healthy observations are given in Table 1. The number of 

observations varies between the models because in three- and seven-day window models if any 

of the daily features within a tree or seven days, respectively, were missing for a given pig, the 

pig was not included into analysis. In addition, various combinations of symptoms were used; 
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in Alt-1 -model, “a limp” and “loss of appetite” were treated as “sick”, while the other 

symptoms (cough, bitten tail, skin damage) were omitted and in Alt-2 -model “bitten tail” and 

“skin damages” were treated as “sick” (Table 1). For any given pig, on average there were 7.1 

consecutive sick days (an average length of the sickness period). 

Table 1 Number of symptoms and “sick” and “healthy” observations (pigs x days) for each 

model.  

 

 

Limp Cough Bitten 

tail 

Loss of 

appetite 

Skin 

damage 

Sick 

observations 

Healthy 

observations  

Total 

Model         

1-day 6,603 988 2,941 1,015 1,471 13,018 781,491 794,509 

3-day 6,377 956 2,888 968 1,357 12,546 761,477 774,023 

7-day 5,747 846 2,787 824 1,060 11,264 722,070 733,334 

Alt-1a 5,747 ─ ─ 824 ─ 6,571 722,070 728,641 

Alt-2b ─ ─ 2,787 ─ 1,060 3,847 722,070 725,917 

Prevalence 0.008 0.001 0.004 0.001 0.002 0.016   

N = Number of observations; Prevalence = Proportion of total symptoms labelled as “sick” out 

of the total observations in the data based on the 1-day model; a In the Alt-1 model, only “a 

limp” and “loss of appetite” were labelled as “sick” with the seven-day window model and all 

other symptoms were omitted; b In the Alt-2 model, only “a bitten tail” and “skin damage” were 

labelled as “sick” with the seven-day window model, and all other symptoms were omitted.  

2.4. Xgboost algorithm 

eXtreme Gradient Boosting (Xgboost) is an ML method similar to Random Forest, decision 

tree, boosting, gradient boosting, etc. It is an ensemble classifier derived from the gradient 

boosting decision tree. Xgboost combines weak base classifiers into a strong classifier. At each 

iteration of the training process, the residual of a base classifier is used in the next classifier to 
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optimize the objective function. In this study, the Xgboost algorithm was applied using the R 

package Xgboost (Chen et al., 2018) in R 3.6.1 software (R Core Team, 2019).  

Hyperparameters are optimization parameters that tune the performance of ML algorithms 

(Bergstra & Bengio, 2012). In this study, the hyperparameters were chosen using a grid search 

of the number of boosting iterations (nrounds), maximum depth of a tree (max-depth), eta that 

controls the learning rate as well as gamma, lambda, subsample. The value grid used for the 

hyperparameters is given in Table 2 and the final (best) hyperparameters are given in Table 3 

based on training data. The objective of the classification model was binary (binary:logistic) 

and the model was fitted by minimizing the binary classification error rate.   

Table 2 Range of the values of the hyperparameters.  

Hyperparameter Description Range of values 

nrounds number of boosting iterations 10–20 

max_depth maximum depth of a tree 3–6 

eta controls the learning rate 0.05–0.5 

gamma controls the minimum reduction in the loss function 0–5 

lambda ridge regularization to prevent overfitting 1.0–2.0 

subsample subsample ratio of the training observations 0.5–1.0 

2.5. Performance testing and cross-validation  

For the performance of the Xgboost algorithm, the data were split into training and testing data 

sets. In this study, 70% of the observations were used in training the model and 30% in testing 

it (Fig. 2). A random sampling of observations was stratified according to the symptoms and 
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pig ID to ensure that the proportion of sick and healthy observations was the same in both data 

sets and that data from different pigs were used for training and testing the model.  

To optimize the hyperparameters and the features and to avoid overfitting the models, we 

applied 10-fold cross-validation (CV) during model training. The training data set was divided 

into 10 sets (folds) of equal size. In each validation step, nine of the sub-sets were used for 

training the model and one sub-set was used for testing the model (Fig. 2). In addition, we used 

an additional parameter (scale_pos_weight) in the models to control the balance of classes 

weights due to the imbalanced data set. The parameter was calculated as the proportion of the 

number of sick observations to number of healthy observations. From each validation step, the 

area under the ROC curve (AUC) was calculated from the holdout cross-fold (Validation-fold) 

(Hastie et al., 2009). The set of hyperparameters that gave the best performance metric (AUC) 

of the model were selected for the final performance testing (Testing data set in Fig. 2).   

 

Fig. 2. Overview of 10-fold cross-validation and model testing. 

Using the test data set, the models were evaluated based on precision (proportion of 

predicted true positives (an animal predicted as sick) out of all positive predictions; TP/(TP + 

FP)), sensitivity (proportion of positives (sick) that were identified correctly; TP/(TP + FN)), 

and specificity (proportion of negatives (healthy) that were identified correctly; TN/(TN + FP)). 

In addition, the harmonic means of the precision and sensitivity (F1-score = 2 x precision x 
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sensitivity/(precision + sensitivity)), and AUC (receiver operating characteristics) curve were 

calculated. The model was considered non-informative with an AUC ≤ 0.50, weak with an 

AUC of 0.50–0.70, accurate with an AUC of 0.70–0.90, and highly accurate with an AUC ≥ 

0.90 (Swets, 1988; Greiner et al., 2000). 

We also calculated feature importance using the ability of Xgboost to remove the non-

informative or redundant predictors from the model (Chen et al., 2018). While fitting the 

Xgboost models, an importance matrix was produced from each model. The “gain” metric 

indicates the relative contribution of the corresponding feature to the model calculated by 

taking each feature’s contribution for each tree in the model. The “cover” metric indicates the 

relative number of observations related to this feature and the frequency, which is the 

percentage of the relative number of times a particular feature occurs in the trees of the model. 

An obtained score of each feature is based on how much more information about the class is 

gained when using that feature. We quantified the importance of features by “feature gain” 

(Fig. 3). The steps given above were carried out with the R package caret (Kuhn et al., 2018) 

in R software (R Core Team, 2019). 
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Fig. 3. Importance of the Xgboost features for the different window length. The “Information 

Gain” implies the relative contribution of the corresponding feature to the model. The 

abbreviations of the features are explained in the text.    
3. Results 

3.1. Classification performance of the models 

The models were evaluated based on classification performance metrics, including AUC. The 

best performance according to AUC was obtained with the model applied in the seven-day 

window (Table 4). In addition, the accuracy differences with the training and testing data sets 
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were small, indicating that over- or under-parametrization of the models was avoided. The best 

hyperparameters were chosen based on data that provided during training and used in 

prediction of the models (Table 3).   

Table 3 The final values (best) of hyperparameters based on training data 

           Window length (day)      

Final 

Hyperparameters 

1 3 7 Alt-1a Alt-2b 

max_depth 4 4 4 3 4 

Eta 0.45 0.45 0.45 0.45 0.45 

Gamma 4 5 4 2 3 

Lambda 1 2 1.4 2 2 

Subsample 1 0.9 0.8 0.9 1 

The sensitivity and specificity of the models were acceptable with all window lengths. 

However, precision and F1-score were quite low. Again, the best performance (67% sensitivity 

and 73% specificity) was obtained with the model applied in the seven-day window. Unlike 

the seven-day window model, other models performed at slightly lower efficiency according 

to the performance metrics. Overall, the results show that by increasing the window length, the 

performance of the classification models increases.  

Alternative labelling of sick animals was tested with two alternative models. For the first 

alternative model (Alt-1 model), we only labelled “a limp” and “loss of appetite” as “sick” and 

omitted all other symptoms (cough, bitten tail and skin damage). This model gave 3–4% better 

performance based on AUC than the performance of the actual seven-day window model 

(Table 4). On the other hand, the second alternative model (Alt-2 model), where “a bitten tail” 

and “skin damage” were categorized as “sick” and omitted all other symptoms (cough, limp 

and loss of appetite), gave a similar performance as labelling all symptoms as “sick” (Table 4). 

A detailed distribution of assessments for Alt-1 is presented in Table 5, showing that the 
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proportion of animals predicted as being sick was approximately 22%, despite the prevalence 

based on observed data being around 1%, resulting in low precision. 

Table 4 Results from the models based on testing data and training (average from the 10-fold 

CV) (given in parentheses).  

                  Window length (day)      

Metrics 1 3 7 Alt-1a Alt-2b 

AUC 0.70 (0.71) 0.73 (0.75) 0.80 (0.81) 0.83 (0.85) 0.77 (0.80) 

Precision 0.03 (0.03) 0.03 (0.03) 0.04 (0.04) 0.03 (0.03) 0.01 (0.01) 

Sensitivity 0.60 (0.61) 0.63 (0.65) 0.67 (0.72) 0.67 (0.71) 0.67 (0.74) 

Specificity 0.67 (0.67) 0.69 (0.69) 0.73 (0.73) 0.78 (0.81) 0.70 (0.70) 

F1-score 0.06 (0.06) 0.06 (0.06) 0.07 (0.08) 0.05 (0.06) 0.02 (0.02) 

a In the Alt-1 model, only “a limp” and “loss of appetite” were labelled as “sick” with the seven-

day window model and all other symptoms were omitted. 

b In the Alt-2 model, only “a bitten tail” and “skin damage” were categorized as “sick” with the 

seven-day window model, and all other symptoms were omitted.  

Table 5 Tabular visualization of observed versus predicted values from the ALT-1 model based 

on testing data.  

 Observed values   

Sick Healthy Total 

 

Predicted Values 

Sick 
 

TP (1,321) 
 

FP (46,682) 
 

48,003 

Healthy 
 

FN (650) 
 

TN (169,939) 
 

 
170,589 
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 Total 
 

1,971 
 

216,621 
 

 
218,592 

 

*The observation number of the observed and predicted values are given in parentheses. TP = 

true positives, TN = true negatives, FP = false positives, FN = false negatives 

3.2. The most important features 

The most informative features were those related to daily feeding time and daily feed intake: 

ResTPD and ResDFI in the one-day and three-day window models and SD_ResTPD in the 

seven-day window model. They alone explained between 20% to 35% of the information gain 

(Fig. 3). The importance of the other features was less than 10% (Fig. 3). In general, the new 

features calculated from the NVD, TPD, and DFI were more important in predicting the health 

status than the absolute values of NVD, TPD, and DFI. As we expected, using the seven-day 

window model with only the best 10 important features instead of all 40 features increased 

model performance (based on AUC) slightly (by 1–2%) and reduced the model’s run time 

(results are not shown).  

4. Discussion 

In this study, the Xgboost algorithm, with features based on feeding station records, was 

applied to predict the possible sickness of pigs in a test station environment. The considered 

symptoms were limping, coughing, a bitten tail, loss of appetite, and skin damage, or any 

combination of these symptoms. In general, the models reached relatively high AUC (0.7 – 

0.83). However, model precision was very low (the models predict more sick animals than are 

reported in the data). Similar to our study, Thomas et al. (2021) predicted diarrhea based on 

weight dependent water and feed intake using a machine learning approach with seven different 

methods. Most of the tested methods failed to detect diarrheic pigs due to substantial individual 

instability on feeding or water related to weight. Even with the best model, 25% of the sick 

piglets were not detected. Similar to our study, Maselyne et al. (2018) investigated if unusual 
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behavioural changes in the feeding pattern in pigs can be utilised as an indicator of health, 

welfare, and productivity problems. Although they had considerably high specificity (98.7%) 

and accuracy (96.7%), sensitivity (58.0%) and precision (71.1%) were lower causing false 

alerts of health problems and lack of confidence of the farmers for the system. A higher 

precision (an average of 80%) has been achieved also in some other studies, e.g., in Alsaaod et 

al. (2012) and Gertz et al. (2020). Gertz et al. (2020) reported very good classification 

performance (86% AUC, 81% F1-score, 78% specificity, and 81% sensitivity) using the 

Xgboost algorithm, where locomotion-related diseases were predicted using locomotion data 

collected from leg and neck sensors in a commercial farm of 397 dairy cows. The health status 

of cows was monitored by on-farm staff and veterinarians during their daily routine. Based on 

their findings, using various models with different features and window segments increased 

model performance and sickness-related behaviours were accurately identified. Moreover, 

Alsaaod et al. (2012) reported better classification accuracy (76%) for predicting lameness in 

dairy cows using features created from the pedometric activity and behaviour data on lying 

down compared to classification accuracy (65%) achieved with the raw data by using the 

Support vector machine classification model. Thus, in line with our findings, creative new 

features calculated from the raw data are more informative than the actual sensor data in 

predicting the sickness of animals. 

In our study, pig health was monitored by station staff during the daily routine check. It is 

possible that only the most severe cases were detected by the staff and some milder ones were 

missed, and thus the true prevalence of symptoms may be higher than the observed 2% 

(depending on what symptoms were classified as “sick”) in the data (Table 1). Thus, some of 

the true negatives (indicated as healthy in the data) could have been sick instead. Higher actual 

prevalence is supported by Munsterhjelm et al. (2015), where 2,672 pigs in the same test station 

(Längelmäki, Finland) were monitored in detail for symptoms three to four times daily by farm 
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staff, who were supervised by a herd veterinarian, between November 2007 and December 

2008. During that period, the prevalence of tail biting was 13%, 11% for limping, 2% for skin 

damage, and 6.1% for other symptoms (including diarrhoea, weight loss, vomiting etc.). 

Another possible explanation for the low precision in our study could be that the classifier did 

not learn the optimal decision boundary with our highly imbalanced data set despite the 

weighing we used for the samples from the minority class. Any real dataset may have several 

imbalanced classes causing biased classification in machine learning. Various techniques have 

been developed to deal with this problem such as undersampling methods, oversampling 

methods, ensemble methods etc. that improve the performance of classifiers (Provost, 

2000; Japkowicz and Stephen, 2002; He and Garcia, 2009). Although we scaled the class 

weights according to the prevalence of observations in each class to solve the imbalanced 

classification problem, we should try out other suggested methods and find the best one in 

future for our dataset. However, the most effective technique still may vary depending on the 

dataset. 

Unusual behavioural changes in pigs may indicate sickness. These behavioural changes may 

be rapid and indicate sickness immediately after the behavioural changes have occurred or the 

changes may begin several days prior to sickness. Therefore, we applied models with different 

window lengths. We found a clear tendency that considering records from several previous 

days instead of a single day was beneficial (AUC increased from 0.70 to 80). Gertz et al. (2020) 

also reported that using various window lengths allows the classifier to select the amount of 

data leading to the best prediction performance. However, the Xgboost preferably selected 

shorter window lengths in their study compared to our study. Thus, it is always a good practise 

to test several window lengths because method performance depends on the features and nature 

of the data, and the long window may not always be optimal. Also, in other behavioural studies 
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(e.g., Smith et al., 2016; Piette et al., 2020; Riaboff et al., 2020), the sliding window length 

approach has had a positive impact on algorithm performances. 

Selecting the optimal hyperparameters is important for successful model performance, as 

the ML methods have a high risk of under/overfitting the training data. However, there is no 

optimal way to tune the hyperparameters. In our study, the hyperparameters were tuned using 

the grid search method (Bergstra & Bengio, 2012) with 10-fold CV, and the best 

hyperparameters were selected for further analyses. Thus, even though tuning the 

hyperparameters requires extra computing time, obtaining good prediction performance is 

recommended.  

Finally, the set of features available for prediction is crucial for improving the performance 

of the classification. In our study, the features were calculated from the feeding behaviour data 

with short and long window segmentations. The most important features were ResTPD and 

ResDFI along with SD_ResTPD in the seven-day window length model (Fig. 3), which indicate 

that using the residuals of feeding behaviour traits is more beneficial in predicting pig sickness 

than absolute values. Thus, a deviation from a typical daily feeding time or daily feed intake 

compared to the feeding time and daily feed intake of an average pig at the same age is a good 

indication of a possible health problem. Similarly, daily ranks of TPD and DFI were 

informative and are easier to calculate than the residuals of TPD and DFI. Hoy et al. (2012) 

also suggested that daily ranks based on feeding must be classified because many pigs have 

access to one feeding place in a pen. Therefore, we propose using features that indicate a 

deviation of an animal’s feeding behaviour from its pen mates (rank) or from pigs of the same 

age (residual) rather than raw observations (NVD, TPD, DFI). Furthermore, solely using the 

most important features in the model instead of all available features improved algorithm 

performance slightly (1–2%).  



21 
 

5. Conclusions 

Based on the performance metrics (AUC, sensitivity, and specificity), pig sickness is detectable 

by applying the Xgboost algorithm to the feeding behaviour data. However, very low precisions 

were obtained, possibly due to imbalanced data. Using the observations from several days 

(seven days) gave more accurate predictions than predictions based on a single day, even 

though the results did not differ considerably. When the prediction was based on one- or three-

day observations (one- and three-day windows), the most important features were ResTPD and 

ResDFI. We examined a vast, but limited set of features, and our results can be improved by 

calculating new features, considering interactions between features, using different window 

length(s), different methods etc. From a practical standpoint, high sensitivity is more important 

than high precision because the final assessment of an animal’s sickness would be based on a 

re-check by the management staff if the applied algorithm suggests that the animal may be sick. 

The cost of re-checking additional animals should be smaller than treating a sick animal that 

was not detected early enough. Despite this, the precision should be far higher than what was 

achieved here to gain trust in users of the algorithm on a routine basis. Features derived from 

other automatic data recording systems, such as locomotion sensors, could improve the 

predictive performance of the method. This would require more research.  
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