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EFFICIENT UNCERTAINTY QUANTIFICATION AND

VARIANCE-BASED SENSITIVITY ANALYSIS IN EPIDEMIC

MODELLING USING POLYNOMIAL CHAOS

Bjørn C.S. Jensen1,* , Allan P. Engsig-Karup2

and Kim Knudsen2

Abstract. The use of epidemic modelling in connection with spread of diseases plays an important role
in understanding dynamics and providing forecasts for informed analysis and decision-making. In this
regard, it is crucial to quantify the effects of uncertainty in the modelling and in model-based predictions
to trustfully communicate results and limitations. We propose to do efficient uncertainty quantification
in compartmental epidemic models using the generalized Polynomial Chaos (gPC) framework. This
framework uses a suitable polynomial basis that can be tailored to the underlying distribution for the
parameter uncertainty to do forward propagation through efficient sampling via a mathematical model
to quantify the effect on the output. By evaluating the model in a small number of selected points,
gPC provides illuminating statistics and sensitivity analysis at a low computational cost. Through
two particular case studies based on Danish data for the spread of Covid-19, we demonstrate the
applicability of the technique. The test cases consider epidemic peak time estimation and the dynamics
between superspreading and partial lockdown measures. The computational results show the efficiency
and feasibility of the uncertainty quantification techniques based on gPC, and highlight the relevance
of computational uncertainty quantification in epidemic modelling.
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1. Introduction

In this manuscript we demonstrate the application of techniques from uncertainty quantification (UQ) to
epidemic modelling to provide insight and identify the parameters that have the strongest influence on the
results of the predictive modelling. Such knowledge is crucial for mitigation strategies, restriction policies, etc.
targeting controlling or reducing the impact of the spread of diseases for securing public health. This will in
part also improve the ability to deal with uncertainty in predictive modelling.

Uncertainty quantification as an independent field grew out of problems in various other fields such as
probability theory, dynamical systems and numerical simulations. Sampling based techniques, such as Markov
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Figure 1. The workflow used for handling uncertainty quantification through forward
propagation.

Chain Monte Carlo (MCMC) methods and bootstrapping [7, 9], are commonly used in epidemic modelling as
seen in the studies [13, 19, 21], and by the expert group1 providing the Covid-19 related modelling for the
Danish government. We propose an alternative approach in the generalized Polynomial Chaos [3, 10, 23, 24] as
an efficient general non-iterative framework to do UQ analysis using forward modelling where the uncertainties
are parameterized. The outcome are estimates of the expected value and variance of possible solutions under
the uncertainty.

Mathematical models are widely applied for modelling the spread of infectious diseases [12], and model
predictions are used to inform political decisions for societal counter measures. Models of various complexity,
flexibility, restrictions and assumptions exist; see [5] and [2] for a deeper introductions to different kinds of
models. If appropriately combined with data the models provide insight into the behaviour of a disease. It may
yield estimates for its duration, the peak infection and other various aspects.

In this paper we use extended versions of the SIR model; a compartmental epidemic model named after
the division of a population into three compartments: (S)usceptible individuals, (I)nfection individuals, and
(R)ecovered individuals; see e.g. [5]. A SIR model is simple in nature and generally assumes a homogeneously
mixed population across compartments. The model is yet flexible and it easily allows for extensions e.g. by
separation into age groups or local, geographic regions. One should note that SIR models exhibit exponential
growth in the modelling of infected people during the early stage of an epidemic, and hence they are sensitive
to model parameters and best suited for short term predictions.

Model parameters are often estimated from various kinds of real-world data, and for that reason they are
intrinsically affected by uncertainty. Mathematically, the uncertainty is parameterized by a probability distri-
bution, and with this distribution in place, the parameter uncertainty can be propagated to the model output
providing a distribution of possible outputs in place of a single prediction. Computational UQ computes var-
ious statistics from the output distribution, e.g. mean, variance, confidence intervals, etc. See Figure 1 for a
conceptual illustration of UQ.

It can be quite challenging to explore the potentially complicated output distribution. Sampling methods such
as Markov Chain Monte Carlo (MCMC) are flexible and commonly employed tools for the purpose. However,
MCMC methods often require substantial sampling due to slow convergence. When the model evaluation is
expensive, MCMC may not be feasible [15].

Generalized Polynomial Chaos (gPC) poses an efficient alternative non-sampling based method, which can
provide very good estimates using significantly fewer model evaluations provided the dimension of the parameter
space is sufficiently low. The drawback is that gPC suffers from the curse of dimensionality, i.e. when the
parameter count (i.e. the dimension) grows, the computational requirements may grow much more. The method
utilizes orthogonal polynomials and Gaussian quadrature to optimize the number of model evaluations necessary
to compute statistics by means of an orthonormal expansion. gPC has also been used on Spanish Covid-19 data
in [18].

When various statistics of the output distribution are in place it is important what input parameters gave
most influence to the output uncertainty. In other words, are some parameters significantly more contributing
to the uncertainty in the model output? Variance-based sensitivity analysis gives the answer in terms of the
so-called Sobol indices [1, 20]. Sobol indices have for example been applied in analysis of the Bristish CovidSim
model in [6].

1https://covid19.ssi.dk/analyser-og-prognoser/modelberegninger (accessed April 9th, 2021; in Danish).

https://covid19.ssi.dk/analyser-og-prognoser/modelberegninger
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The main novelty of our work is in Section 4, where we demonstrate the utility of gPC analysis and Sobol
indices in epidemic models and apply them to Danish data from the early phases of Coronavirus SARS-CoV-2
(Covid-19). The versatility of the tools is illustrated in two different cases based on SIR models. Case 1 concerns
the estimation of the timing and size of the peak of an epidemic. Case 2 provides a way for UQ modelling of
superspreaders in a compartmental model inspired by [19].

This manuscript is structured as follows: Sections 2 and 3 provides the theoretical background. In Section 2, we
give an introduction to gPC and illustrate how various basic statistics are directly computable from the expansion
coefficients. Sobol indices are introduced in Section 3. We provide a short derivation of their formulation, and
we relate Sobol indices to Polynomial Chaos by providing formula for their computation in terms of the gPC
expansion coefficients.

The computations included in this manuscript were done in Matlab and the framework is available as a
small toolbox on the DTU GitLab server2. The methods used for computing the various quadratures have been
ported to Matlab from NumPy[17].

2. Polynomial Chaos expansion

We will consider a model described by the input-output map f : Ω ⊆ X → Y, where X = Rn is the parameter
space and Ω is a subset and Y = Rm is the output space. The aim is to quantify the effects uncertainty in input
X ∈ X to that of the output of a model f(X) = Y ∈ Y.

Polynomial Chaos decomposes f ∈ L2(Ω,Y,dµ) in a basis of orthonormal polynomials {φα} of increasing
order given by the multi-index α = (α1, . . . , αn) ∈ Nn. We will use the notational convention that α = 0 when
αi = 0 for all 1 ≤ i ≤ n. Note that φ0(x) = 1; the zeroth order polynomial is always constant. The decomposition
is standard

f(X) =
∑
0≤α

〈f, φα〉µφα(X), where 〈f, φα〉µ =

∫
Ω

f(x)φα(x) dµ(x). (2.1)

Here 〈f, φα〉µ are the coefficients of f computed via the L2(Ω,dµ) inner product. In practice the series is
truncated and f(X) is approximated by a finite sum. When f is smooth the decay of coefficients is exponential[4]
and hence the error introduced by the approximation is small.

For a number of common probability measures dµ the orthonormal polynomials are well-known and easy to
generate. They also yield Gaussian quadratures with respect to these probability measures, which makes the
computation of the involved integrals fast [4].

Consider as an example the standard normal distribution N (0, 12), which up to a scaling constant has
probability measure exp(−x2/2). The (probabilists) Hermite polynomials form an orthogonal sequence with
respect to this measure. The corresponding Gaussian-Hermite quadrature is formed by picking a degree nquad

as ∫
R
f(x)e−

x2

2 dx ≈
nquad∑
i=1

wif(ξi)

with ξi denoting the roots of the Hermite polynomial of the corresponding degree and weights wi; this quadrature
is exact whenever f is a polynomial with deg(f) ≤ 2nquad − 1.

2.1. Statistical properties

While stochastic phenomena come with expressive distributions, they are often well characterized by basic
statistical properties like the mean, variance and covariance. Given a model f with parameters characterized
by the random variable X, the resulting output Y = f(X) is a new random variable. In this section we will

2https://gitlab.gbar.dtu.dk/bcsj/covid-19-ctrl-public-code.

https://gitlab.gbar.dtu.dk/bcsj/covid-19-ctrl-public-code
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discuss how basic statistical properties of Y become directly computable from the coefficients in our polynomial
expansion for f .

Assume that dµ is a probability measure on the parameter set Ω, and that {φα} is an orthonormal basis as
above. Consider the random variable Y = f(X), where X ∼ dµ, i.e. it follows the distribution defined by dµ.
Let us denote by cα = 〈f, φα〉µ, then it is easy to see that we immediately obtain the mean value in terms of
the first coefficient

E[Y ] =

∫
Ω

f(x) dµ(x) =

∫
Ω

f(x)φ0(x) dµ(x) = c0. (2.2)

In a similarly way the variance may be derived as

V[Y ] =
∑
0≤α

c2αV [φα(X)] =
∑
0<α

c2α, (2.3)

using E[φα] = δα and E[φαφβ ] = δα−β by orthonormality.
Consider now the random variables Y1 = f1(X) and Y2 = f2(X) with coefficients {c1,α} and {c2,α}, then a

computation analogous to that for the variance yields the covariance as

Cov(Y1, Y2) = E[Y1Y2]− E[Y1]E[Y2] =

∞∑
0<α

c1,αc2,α. (2.4)

In higher generality, if Y is a random vector with Yi = fi(X), 1 ≤ i ≤ k and we have coefficients ci,α = 〈fi, φα〉µ.
Forming the infinite matrix

Q =


c1,α(1) c1,α(2) · · · c1,α(j) · · ·
c2,α(1) c2,α(2) · · · c2,α(j) · · ·

...
...

...
ck,α(1) ck,α(2) · · · ck,α(j) · · ·

 ∈ Rk×N,

where α(·) : N→ Nn is some traversal of the multi-index space with α(0) = (0, 0, . . . , 0), the covariance matrix
C = Cov(Y,Y) is of the form C = QQT ∈ Rk×k.

3. Variance-based sensitivity analysis

The uncertainty of the output Y = f(X) is quantified in terms of its statistical properties like mean and
variance, but it is natural to trace the uncertainty in Y back to the individual parameters inX. The quantification
of individual input parameters’ influence on the output variance is called variance-based sensitivity analysis. If
such information is available, we would know the relative importance of the uncertainty in a single parameter
on the overall output variance, and this knowledge would indicate in which parameters of X, if possible, we
should aim at reducing the uncertainty.

The Sobol indices form a quantification of the variance contribution on the output Y from each individual
parameter and each combination of the parameters X. Like the global statistical properties, the Sobol indices
are computable from the polynomial expansion coefficients for f . We give a brief example here, then present
the formulation of the Sobol indices, and follow up with the derivation in terms of the coefficients.

Consider the map f : Ω ⊂ X → Y, X = Rn, Y = R (note that the following derivation extends naturally
to Y = Rn). Let dµ =

∏n
i=1 dµi be a probability measure on Ω ⊆ X and X = (X1, . . . , Xn), Xi ∼ dµi. Our

example is a simple case: Let X1 ∼ N (0, a2) and X2 ∼ N (0, b2) be normally distributed. Say Y = X1 +X2, then
the Sobol indices would be S1, S2 and S12 corresponding to each non-empty combination of X1 and X2. Their
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values would be S1 = a2

a2+b2 , S2 = b2

a2+b2 and S12 = 0. In other words, say a > b, then it is better to decrease
the uncertainty in X1 rather than X2. In contrast, if Y = X1X2 then the Sobol indices are S1 = S2 = 0 and
S12 = 1 so decreasing the uncertainty in either parameter is equally beneficial.

3.1. Sobol indices

To compute the Sobol indices we rely on a decomposition into marginalizations of f . We give a derivation of
the Sobol indices based on the exposition in [20] to illustrate their computation.

Let U = {1, . . . , n}.

f(X) =
∑
u⊆U

fu(Xu), (3.1)

where we use the notation Xu = (Xi)i∈u and f∅(X∅) := f0 = E[f(X)]. The remaining functions fu, u 6= ∅, are
then recursively defined by

fu(Xu) = EU\u[f(X)]−
∑
u′(u

fu′(Xu′), (3.2)

where EU\u[f(X)] is the marginalization over the parameters Xi for i ∈ U\u,

EU\u[f(X)] :=

∫
Rk

f(X)
∏
i∈U\u

dµi(Xi), k = |U\u|. (3.3)

Here dµ = 0 outside the domain of f , i.e. outside Ω.
Note that the sum is telescopic, each component corresponding to a set u subtracting subset components

again. Hence we may compute each fu(Xu), u ⊆ U starting from the smallest subsets progressing hierarchically
upward.

We consider now the variance of f(X) and apply the expansion (3.1) to obtain

V[f(X)] =
∑

u⊆U,u 6=∅

V[fu(Xu)]. (3.4)

By dividing by the left hand side in (3.4) we get

1 =
∑

u⊆U,u 6=∅

V[fu(Xu)]

V[f(X)]
=

∑
u⊆U,u 6=∅

Su, (3.5)

which divides the variance into partitional contributions by parameter combinations. The partitions Su :=
V[fu(Xu)]/V[f(X)], u ⊆ U = {1, . . . , n} are the Sobol indices.

3.2. Relation to polynomial chaos

The Sobol indices are efficiently computable from the gPC coefficients. The marginalizations of the
distribution arise as restrictions to certain subsets of the coefficients.

Let cα be the gPC coefficients of f . To compute the Sobol indices we wish to compute the terms V[fu(Xu)].
Taking the variance on both sides in (3.2) we get

V[fu(Xu)] = V
[
EU\u[f(X)]

]
−
∑
u′(u

V[fu′(Xu′)].
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Clearly, if we compute bottom up hierarchically using the partial ordering u ≤ v if u ⊆ v, we simply need to
compute the marginalizations V[EU\u[f(X)]] and then subtract formerly computed values.

Due to the maginalizations of f we will need to consider the marginal structure of our basis functions {φα}
too. For a multi-index α ∈ Nn we shall use the notation

φα(x) = ψ1,α1
(x1) · · ·ψn,αn

(xn),

where {ψi,j}j is the orthonormal polynomial basis for parameter Xi. With this we may derive

EU\u[f(X)] =

∫
Rk

f(X)
∏
i∈U\u

dµi(Xi)

=

∫
Rk

∑
0≤α

cαφα(X)
∏
i∈U\u

dµi(Xi)

=
∑
0≤α

cα

(∏
i∈u

ψi,αi
(Xi)

) ∏
i∈U\u

∫
R
ψi,αi

(Xi) dµi(Xi)


=
∑
0≤α

cα

(∏
i∈u

ψi,αi
(Xi)

) ∏
i∈U\u

E[ψi,αi
(Xi)]



(note that this product of mean values is 0 unless αi = 0 for all i ∈ U\u; we write simply αU\u = 0)

=
∑

0≤α,αU\u=0

cα
∏
i∈u

ψi,αi
(Xi)

(as ψi,0(x) = 1 this product extends to all of α again now that αU\u = 0 is fixed)

=
∑

0≤α,αU\u=0

c2αφα(X).

Taking the variance of the above and using the fact that V[φα(X)] = 1 for α 6= 0 and zero otherwise we get

V
[
EU\u[f(X)]

]
=

∑
0≤α,αU\u=0

c2αV[φα(X)] =
∑

0<α,αU\u=0

c2α (3.6)
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Visually, if we consider just two parameters, we see in the coefficient grid below how the different coefficients
distribute themselves among the

�
�c20,0 c20,1 c20,2 c20,3 · · ·

∑
� = V[f2(x2)]

c21,0 c21,1 c21,2 c21,3 · · ·

c22,0 c22,1 c22,2 c22,3 · · ·

c23,0 c23,1 c23,2 c23,3 · · ·
...

...
...

...
. . .∑

� = V[f1(x1)]
∑

� = V[f12(x12)]

Here “
∑

�” is simply intended as a placeholder symbol for the sum of each of the elements in the sectioned off
region of the grid. Note that c0,0 is crossed out, as it is the mean, which does not contribute to the variance.

4. Uncertainty quantification in modelling spread of diseases
using Polynomimal Chaos

In this section we present two cases to demonstrate the flexibility of the above techniques by applying them
to compartmental models. The first case considers a SEIR model and compute distributions for the size and
timing of the peak of the modelled epidemic.

For the second case a more extensive compartmental model is considered. Inspired by the agent based
modelling of superspreaders discussed in [19] we construct a multi-compartment model and formulate a modelling
approach for superspreaders leading to comparable results despite the differences in modelling assumptions. With
this model we perform a UQ analysis on the coefficients modelling the government imposed restrictions.

In both cases the population size N is taken as 5.8× 106 matching the size of the Danish population.

4.1. Case 1: Epidemic peak

For this simple case we consider a SEIR model, i.e. a model with the compartments (S)usceptible, (E)xposed,
(I)infectious and (R)ecovered/removed. The model is visualized in the diagram in Figure 2.

As an ODE system the model is of the form

∂S

∂t
= −β I(t)S(t)

N
, (4.1a)

∂E

∂t
= β

I(t)S(t)

N
− σE(t), (4.1b)

∂I

∂t
= σE(t)− γI(t), (4.1c)

∂R

∂t
= γI(t), (4.1d)

where β, σ and γ are transition coefficients and N the total size of the population. σ is the rate at which people
progress from being exposed (incubating) to becoming infectious, and γ is the rate at which one recovers (or
dies) from the disease. Their reciprocals are the average time an individual spends in the exposed and infectious
compartments respectively. β denotes the average rate of infection happening in the population. This quantity is
depending on infectiousness of the virus and the social patterns of the population; e.g. higher hygiene standard
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Figure 2. Illustration of compartments and transmission rates for a SEIR model.

Figure 3. Comparison of the model evaluation points for the epidemic peak model. There are
27 points in (A) and 1000 points in (B). The color and size of a point is scaled relative to the
weight wi the point is given by the quadrature rule; a minimum size was fixed for visibility.

in the population would lead to a lower β. Note that as a consequence of the model, S + E + I + R = N and
hence constant at all times.

In an epidemic the number of infected individuals will rise rapidly as each infected individual will infect
several others. However, as the population becomes saturated with infected and recovered individuals (henceforth
assumed immune to reinfection) the chance for a meeting between an infected and a susceptible will decrease.
This effect is often referred to as herd immunity ; see [8] for further reading on the concept. Hence, the epidemic
is expected to peak at some time tpeak where the number of infectious individuals are at its highest.

We consider in this example each parameter β, σ and γ uncertain. The uncertainties are given as uncertainty
in the reproduction number R0 = β

γ , in the duration in the exposed compartment τinc = σ−1 and the duration in

the infectious compartment τinf = γ−1. As these are positive quantities we assume each log-normally distributed.
We thus consider the map

F : (R0, τinc, τinf) 7→ (tpeak, Ipeak), (4.2)

where Ipeak := I(tpeak). As the log-normal distribution is simply a transformation of the normal distribution, it
is a simple task to transform the quadrature nodes accordingly.

We can thus apply the theory from the previous sections to propagate the uncertainty in the arguments of
F to the output using only few evaluations. As the output quantities are known to be positive as well, we shall
assume log-normal distributions for these as well and fit them by computed means and variances.
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Figure 4. Comparison of the distributions for the epidemic peak model output under an
assumption that they are lognormal distributed. For the 27 model evaluations in (A) and for
the 1000 model evaluations in (B).

Figure 5. Comparison of the Sobol indices for the epidemic peak model. R0 is clearly the most
influential parameter. For the 27 model evaluations in (A) and for the 1000 model evaluations
in (B).

The result of the case can be seen in Figures 3, 4 and 5 where we have used the following hyper-parameters;
chosen based on early reported numbers for Covid-19 [11, 14, 22] with some level of contact restriction assumed.
However, we stress that for the purpose of demonstrating the technique the specific values are of less importance.
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mean variance
R0 ∼ LogNormal 1.4 0.0252

τinc ∼ LogNormal 4.2 0.252

τinf ∼ LogNormal 3.3 0.252

We compute the mean and standard deviation for the model with a 3rd order of quadrature, 27 model evaluation,
and a 10th order, 1000 model evaluations. For comparison we run an MCMC method, a Metropolis-Hastings
sampler, for 10,000 iterations to explore the joint distribution. With an acceptance rate of about 26.6% this
lead to approximately 2660 model evaluations. We run the MCMC method 8 times to give an idea about the
variation in the results it produces. The results are show in the table below where the X ± Y indicates the
value’s average X and standard deviation Y across the 8 MCMC runs.

tpeak Ipeak

method #evaluations mean std mean (×103) std (×103)
gPC 27 284.78 19.89 115.63 12.56
gPC 103 284.84 19.90 115.64 12.56

MCMC (8×) ∼2660 285.01± 1.37 20.28± 0.82 115.73± 0.67 12.64± 0.27

The results are further explored in Figures 3–6. In the (A) and (B) subfigures of Figures 3–5 we show the
3rd order quadrature and 10th order quadrature results respectively. In Figure 6 we show the explored samples
in image space by one of the MCMC runs and the corresponding marginalized distributions. We also show how
the mean and standard deviations stabilize across the 10,000 iterations for all the 8 runs.

Figure 3 illustrates all samples in the image space. Their colors and sizes have been scaled by their corre-
sponding quadrature weights wi, thought a minimum size was fixed for visibility. Figure 4 shows the lognormal
distribution for the peak time and the magnitude of the peak in infectious individuals. In Figure 5 the corre-
sponding Sobol indices are illustrated for the selected values the variance of R0 is the primary concern if we
wanted to narrow down the peak time further.

We observe how the 27 model evaluations provides similar information as to the 1000 model evaluations,
showing that this problem is handled well already at this low number of evaluations. Furthermore, we observe
how we need many more iterations from the MCMC method to reach similar levels of precision.

4.2. Case 2: Superspreaders

Superspreaders are infected individuals who during an epidemic are responsible for the infection of a signif-
icantly larger amount of individuals than the observed average. Historical observations of diseases have shown
that incidents with superspreaders play an important role to the development of epidemics [16].

Various aspects play into causing an individual to become a superspreader, which may both be physiological
and sociodynamic in nature. An individual exhaling an increased amount of pathogens relative to the norm could
lead to a significantly larger number of infections during regular social interactions compared to a “normal”
infectious individual. But it could also simply be the participation in a large scale social event for instance a
party, concert or a festival, where the physical distancing may be very low and number of contacts proportionally
higher, which results in mass infection.

Inspired by [19] we attempt in this case to replicate some of their results in a computationally fast way using
a compartmental model. We employ the structure from their agent based model to construct the compartmental
model depicted in the diagram in Figure 7. In the diagram we have the following compartments: First, as in the
former model susceptible and exposed. Then there are asymptomatic infectious I1 and symptomatic infectious
I2. We note that this is a legacy structure from [19], where it is used mostly for book keeping. Neither there nor
here is behavior assumed to differ between the compartments. We have a (W)ait compartment, which signifies
a short time, where the individual is either so sick that they have isolated themselves as to not infect anyone
before admission to the hospital, or they are in non-infecting recovery. There is a branch with (H)ospitalized
and (C)ritical care before all ending in the recovered/removed compartment.

The parameters choices are taken as in [19], but we restate them for completeness in Table 1. For z1 and
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Figure 6. The density (A) and the marginalized densities (B) explored by one run of 10,000
samples of the MCMC method. In (C) we show the cumulative mean and standard deviation
for tpeak, meaning the mean and standard deviation of all the samples up to the particular
iteration.

Figure 7. Illustration of the expanded compartmental model taking into account superspread-
ers; based on [19].
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Table 1. Superspreader model parameters [19]. Units are in [days].

σ−1 γ−1
1 γ−1

2 γ−1
3 α−1 ζ−1

1.2 1.2 3 2 5 12

Table 2. Population distribution and hospitalization probability data [19]. Legend: D: Distri-
bution of the population; H: Probability of hospitalization; C: Probability of moving to critical
care.

0-9 10-19 20-29 30-39 40-49 50-59 60-69 70-79 80+
D ({di}) [%] 10.9 11.9 13.3 11.7 13.6 13.6 11.7 8.9 4.4∗

H ({hi}) [%] 0.001∗∗ 0.013 0.37 1.1 1.4 2.7 3.9 5.5 5.5
C ({κi}) [%] 5 5 5 5 6.3 12.2 27.4 43.2 70.9

∗) 0.1% was added here since the numbers from the source table didn’t actually add to 100%.
∗∗) This number was 0 in the table, it is known that some kids end up hospitalized, so we changed it to a small but
strictly positive value.

z2 we compute them from the hospitalization rates listed in the Supplementary material Table 1 in [19] which
comes from Norwegian data. We present the data in Table 2 where di, hi and κi are the data rows. From these
quantities z1 and z2 are computed as

z1 =

9∑
i=1

dihi, and z2 =

9∑
i=1

dihi
z1

κi.

The expression for the last parameter β(t) is given in (4.6) and (4.5). The modelling approach is covered in
Section 4.2.1.

4.2.1. Modelling varying infectivity

We model superspreaders by assuming a distribution of infectivity amongst individuals in the population.
Consider the normalized population [0, 1] and assign to each a ∈ [0, 1] an infectivity β(a). That is, if U is
some ordered set of possible infectivities and ψ is a probability measure on U with cumulative probability
function Ψ, then β(·) = (1−Ψ)−1(·). We assume that the population is ordered by decreasing infectivity; i.e.
a < a′ implies that β(a) ≥ β(a′). Assuming a well-mixed distribution such that infection is equally likely to hit
any individual a ∈ [0, 1] we may readily calculate the contribution to infection caused by the fraction p most
infectious individuals, Cp.

In a SIR model the number of people getting infected at a time t is commonly, as seen in (4.1a), of the form

β
I(t)S(t)

N
,

where I(t) is the number of infected individuals, S(t) the number of susceptible individuals, and N is the

population size. Here β is the average infectivity; β =
∫ 1

0
β(a) da.

The p most infectious individuals would then be contributing the fraction

Cp = β
−1
∫ p

0

β(a) da. (4.3)
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This quantity informs the choice of probability measure ψ if one works under the scheme that superspreaders
form some fraction p of the population and is responsible for infecting the fraction Cp of the population. Fixing
these two quantities limits the admissible measures ψ.

This way of modelling a variation in infectivity also admits fairly easy extensions to control scenarios where
some rules may change behavioral dynamics over time. We may for instance consider a time-dependent infectivity

βrestricted(t) =

∫ 1

0

φ(β(a), a, t) da,

where φ(b, a, t) is some restriction function describing a change in the behavior over time. In practice, however,
φ(b, a, t) ≡ φ(b, t) will typically be independent of a as we cannot feasibly identify an individual as more infectious
than another until after the fact. And so we have to make rules that are uniform for everyone. A simple example
could be a strict limitation in how many individuals anyone meet, which could be crudely modelled as

φ(b, a, t) = min(b, c(t)), (4.4)

where c : R+ → R+ is some time-dependent upper bound.
Of course, if φ(b, a, t) ≡ φ(a, t) is independent of b, we may impose any kind of other ordering on the

population, e.g. by age, and apply hard restrictions based on that one. But then we lose all information from
the infectivity β, which might be undesirable.

We take for our model β(a) as a simple piecewise constant function

β(a) =

{
sA if a < p,

s if a >= p,
a ∈ [0, 1]. (4.5)

Here p is the assumed concentration of superspreaders; e.g. if we assume 10% are superspreaders p = 0.1. sA
is the infection rate for superspreaders and s the infection rate for the remaining population. It is an easy
calculation that Cp from (4.3) is independent of s, so choosing an assumed pair (p, Cp) determines A and
choosing s then determines the mean rate β.

We shall model a social restriction as a hard cap on the amount of individuals any single person gets to
interact with. We model this with a restriction function as in (4.4); i.e.

β(t) =

∫ 1

0

min(β(a), c(t)) da. (4.6)

with c being a piecewise constant function which changes values at approximately 1) the time of the Danish
lockdown, 2) the timing of the Danish reopening’s phase 1 (about a month later), 3) the timing of the Danish
reopening’s phase 2 (another about 40 days later).

4.2.2. Fitting the model using real-world data

From an assumption about the prevalence of superspreaders we first fit β’s scaling parameter s and an initial
condition I0 for the epidemic from hospital admission by day3 (only for the pre-lockdown part of the data
set) and an assumption of an unmitigated growth rate at about 23% per day [19]. For the initial condition
we fit a number I0 and we assume that S(0) = N − I0, E(0) = I0

2 , I1(0) = I0
3 and I2(0) = I0

6 . The remaining

3Danish data available from SSI (www.ssi.dk), the Danish Ministry of Health. The data was public and accessed on June 14th,
2020; it does not remain available anymore. The used data file is available as a CSV-file with the codes in the GitLab repository.

www.ssi.dk
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compartments start at 0. The problem is formulated as

arg min
s,I0

w0

2
|G(s, I0)− 0.23|2 + α

w1

2
‖Ht<t1(s, I0)−Hssi,t<t1‖2, (4.7)

where the weights w−1
0 = 0.232

[
individuals2

day2

]
and w−1

1 = ‖Hssi‖2
[
individuals2

]
balance the widely different

scales of the two terms, and Hssi is the data set of newly admitted hospitalized by day. G computes the average
initial daily growth rate and H computes the newly admitted hospitalizations from the model. By the subscript
t < t1 we mean only the part of the data corresponding to this constraint; t1 = 16 before which H is independent
of our restriction function. We chose α = 0.01.

Using the now determined quantities (s, I0) we fit the three restriction levels in c(t) from the whole data set
of hospital admission by day. Fixing (t1, t2, t3) = (16, 46, 86) we have

c(t) =


1 if t ≤ t1,
c1 if t1 < t ≤ t2,
c2 if t2 < t ≤ t3,
c3 if t3 < t.

(4.8)

Then the parameter fitting problem becomes

arg min
c1,c2,c3

1

2
‖H(c1, c2, c3)−Hssi‖2 − w2(min(0, c2 − c1) + min(0, c3 − c2)), (4.9)

where w2 is some arbitrary large number so the last term forms a soft constraint enforcing c1 < c2 < c3.
Assuming (p, Cp) =

(
1
10 ,

4
5

)
, i.e. that only 10% contribute 80% of all infections, the above fitting schemes

resulted in

s = 0.602

[
1

day

]
, I0 = 473.572 [individuals] , and (c1, c2, c3) = (0.130, 0.187, 0.188).

The fractional number of people is due to the continuous nature of the model. These results depended slightly
on the choice of initial condition but the differences were on the order of 10−3. The simulation, when done using
these data, may be viewed in Figure 8.

We note that the difference between restriction levels c2 and c3 is almost insignificant. There are likely various
reasons for this. In the agent based model of [19] a social structure is incorporated, which allow them to close
particular sectors of society. In comparison our compartmental model has no such structure and thus cannot
model that a only particular part of society is closed. A possible explanation might be that the phase 2 reopening
didn’t really affect the overall amount of contacts for people. This could also be due to a lack of data as small
variations in c3 did not change the value of the optimization functional significantly.

4.2.3. Adding uncertainty

Assuming a level of uncertainty in the fitted restriction levels we may compute confidence intervals for the
model. In Figure 9 we assume normally distributed priors for the restriction levels with means ci, i = 1, 2, 3,
and relatively scaled standard deviations of 0.1ci, i = 1, 2, 3. Assuming the posteriors may be approximated
reasonably by a truncated normal distributions, 95% confidence intervals are visualized. We see that with
uncertainty of this level on the parameters the development is expected to keep declining.

The evolution of the Sobol indices over time is drawn up in Figure 10 illustrating the variance contributions
from the parameters, which show as expected how c1 is the most important initially but is gradually taken over
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Figure 8. Superspreader case simulation using fitted data. The time-evolution of different
compartments have been visualized grouped by their relative y-scale to make sure patterns
are discernible. The y-scale counts individuals. The red dashed curve in both lower charts (E)
visualizes the openness level of the society. The yellow dots in (D) is charted data on newly
hospital admissions by day from the Danish authorities and the purple dashed line is the model
fit.

by c2 and then c3 in the later stages. Notably c1 remains fairly important even during the time span where c2
controls the level of interaction, and likewise c2 into the time span where c3 is active.

5. Conclusion

In this paper, we have summarized modern methods for efficient computational uncertainty quantification
with the key elements of generalized Polynomial Chaos and the related Polynomial Chaos Expansions. Moreover,
we have introduced the related variance-based sensitivity analysis in terms of Sobol indices with applications
to the modelling spread of diseases. The techniques have been applied to epidemic models of SIR type based
on official Danish Covid-19 data. Our results have demonstrated that the chosen tools are well suited in this
setting and reproduce conclusions similar to those of the more computationally expensive model used e.g. in
[19].

Taking uncertainty into account in predictions from epidemic models is an important means to access possible
scenarios and influence of uncertainty on the predictions. Doing this in a transparent and efficient way should be
a priority. We recommend that future studies using similar models consider the use of the presented techniques
as a tool for quantifying the uncertainty and sensitivity in their computations.
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Figure 9. Shows a superspreader case simulation using fitted data taking into account uncer-
tainty. Hospitalized (H), critical care (C) and newly hospitalized are shown with confidence
intervals. The yellow dots are newly hospital admissions by day from the Danish authorities.

Figure 10. Shows the Sobol indices as an evolution over time in the superspreader case sim-
ulation using fitted data with added uncertainty. At each time the color distribution above
determine the part of the variance contributed by each parameter; the corresponding parame-
ters are listed in the legend-box. The cicj parts are the joint variance contributions of ci and
cj , as is visible the joint parts are mostly unrelated here.
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