
https://helda.helsinki.fi

Ranking with submodular functions on a budget

Zhang, Guangyi

2022-05

Zhang , G , Tatti , N & Gionis , A 2022 , ' Ranking with submodular functions on a budget ' ,

Data Mining and Knowledge Discovery , vol. 36 , pp. 1197-1218 . https://doi.org/10.1007/s10618-022-00833-4

http://hdl.handle.net/10138/344132

https://doi.org/10.1007/s10618-022-00833-4

cc_by

publishedVersion

Downloaded from Helda, University of Helsinki institutional repository.

This is an electronic reprint of the original article.

This reprint may differ from the original in pagination and typographic detail.

Please cite the original version.

Data Mining and Knowledge Discovery (2022) 36:1197–1218
https://doi.org/10.1007/s10618-022-00833-4

Ranking with submodular functions on a budget

Guangyi Zhang1 · Nikolaj Tatti2 · Aristides Gionis1

Received: 8 October 2021 / Accepted: 31 March 2022 / Published online: 23 April 2022
© The Author(s) 2022

Abstract
Submodularmaximizationhas been thebackboneofmany importantmachine-learning
problems, and has applications to viral marketing, diversification, sensor placement,
and more. However, the study of maximizing submodular functions has mainly been
restricted in the context of selecting a set of items. On the other hand, many real-
world applications require a solution that is a ranking over a set of items. The problem
of ranking in the context of submodular function maximization has been considered
before, but to a much lesser extent than item-selection formulations. In this paper, we
explore a novel formulation for ranking items with submodular valuations and budget
constraints. We refer to this problem as max-submodular ranking (MSR). In more
detail, given a set of items and a set of non-decreasing submodular functions, where
each function is associatedwith a budget,we aim tofind a rankingof the set of items that
maximizes the sum of values achieved by all functions under the budget constraints.
For the MSR problem with cardinality- and knapsack-type budget constraints we
propose practical algorithms with approximation guarantees. In addition, we perform
an empirical evaluation, which demonstrates the superior performance of the proposed
algorithms against strong baselines.

Keywords Ranking · Submodular maximization · Dynamic programming ·
Approximation algorithms

Responsible editor: Albrecht Zimmermann and Peggy Cellier.

B Guangyi Zhang
guaz@kth.se

Nikolaj Tatti
nikolaj.tatti@helsinki.fi

Aristides Gionis
argioni@kth.se

1 KTH Royal Institute of Technology, Stockholm, Sweden

2 HIIT, University of Helsinki, Helsinki, Finland

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10618-022-00833-4&domain=pdf
http://orcid.org/0000-0002-1252-7489

1198 G. Zhang et al.

1 Introduction

Combinatorial optimization plays a central role in many machine-learning problems.
One prevalent approach to solve such problems is via submodular-optimization tech-
niques. The popularity of submodular-optimization methods results from the fact that
in many real-world settings the objective function exhibits the “diminishing returns”
property, as well as from the ever-growing rich toolkit that has been developed in the
past decades. One fundamental primitive in this toolkit is submodular maximization
(Krause and Golovin 2014), which has been the backbone of a number of important
problems, such as sensor placement (Krause et al. 2008), viral marketing in social net-
works (Kempe et al. 2015), document summarization (Lin andBilmes 2011), andmore.

Submodular optimization hasmainly been studied in the context of subset-selection
problems. However, in many real-world applications the goal is to find a ranking over
a set of items. Finding a ranking is a significantly more challenging task than subset
selection, as the search space is factorially larger. One successful attempt of applying
ideas from submodular optimization to ranking is the submodular-ranking problem
(SR) (Azar and Gamzu 2011). In this problem, given a set of items and a set of
submodular functions, the goal is to find a (partial) ranking of the items so as to
minimize the average “cover time” of all functions.

An exemplary application of SR is in themultiple intents re-ranking problem (Azar
et al. 2009), which has applications in web searching. In this problem setting, a user
query may correspond to multiple user intents. For example, a query of “java” may
mean a programming language, an island, or a type of coffee. Even for a seemingly
unambiguous query, such as “New York,” there exist many possible intents, for exam-
ple, attractions, cuisine, travel, cultural events, etc. In the absence of an explicit user
intent, we need to consider all possibilities. The SR formulation proposes to model
each intent as a submodular function, whose value improves when a non-redundant
web page of the right intent is encountered, and reaches a maximum when the user is
satisfied, i.e., having gathered sufficient information. The goal is to produce a ranking
of web pages that minimizes the expected number of pages a user has to browse before
they satisfy their information needs. The expectation here is over the distribution of
different user intents, which for this particular application can be assumed to be known.

While the SR formulation can be useful in some cases, it fails tomodel realistically a
number of other applications. Critically, it assumes that a demand can wait indefinitely
before it gets satisfied. In the previous example, for instance, it is assumed that users
will keep reading down a ranked list ofweb pages until they gather enough information.
In reality, a budget can be set for the amount of service that a user receives. The budget
can be the number of web pages to browse, or the time to spend on the web-search
task. A user stops receiving service once the budget is exceeded. Moreover, the budget
can vary across different demands. For example, a user intent can be classified into one
of three types, informational, navigational, and transactional (Jansen et al. 2008), and
each may come with a different budget, translating to the amount of “patience” that
a user exhibit to obtain results for each type. User intents and budgets can be readily
extracted from the past search logs.

To accommodate budgeted versions of the submodular ranking problem, we pro-
pose a new formulation, which we call max-submodular ranking (MSR). In the MSR

123

Ranking with submodular functions on a budget 1199

problem, we are given a set of non-decreasing submodular functions, each associated
with a budget. We aim to find a ranking that, instead of minimizing the total coverage
time of the functions, maximizes the sum of function values (coverage) under indi-
vidual budget constraints. In other words, every item in the ranking incurs a cost, and
each function is evaluated at the maximal prefix of the ranked sequence that does not
exceed its budget. A precise formulation of the MSR problem is provided in Sect. 3.

In this paper, we propose practical algorithms with approximation guarantees for
MSR, when the budget constraints are either cardinality or knapsack constraints. We
also note that the well-known constrained submodular maximization and minimum
submodular cover problems are special cases of MSR and SR, respectively, when
there is a single submodular function. In this sense, the MSR problem we define is a
dual problem of SR, in the same way that max k-cover is a dual problem of minimum
set cover.

MSR has great potential to be applied in other scenarios, such as in the case
where the submodular functions are 0–1 activation functions. We call this special case
max-activation ranking (MAR) problem. The idea is to activate as many demands as
possible with a common ranking of items, or services, under individual budget con-
straints. As an example, some subscription-based streaming media services, such as
Netflix, produce content in a data-driven fashion. One possibility is to arrange the plot
structure in a TV series such that the maximum number of audience will get inter-
ested before their individual cut-off points for a new show. The goal for the TV series
producer is to encourage the maximum-size audience to continue watching. A plot
structure can be characterized as a sequence of scenes, each described by a set of tags,
such as romantic, adventurous, funny, etc., which may interest particular audience.
Similar applications can also be found in ranking commercial ads, ranking customer
reviews, creating play lists for music streaming services, and more.

In concrete, our contributions in this paper are summarized as follows.

– We introduce the novel problem of max-submodular ranking (MSR), where the
goal is to find a ranking of a set of items so as to maximize the total value of a set
of submodular functions under budget constraints.

– We prove that a simple greedy algorithm achieves a factor-2 approximation for
the MSR problem under cardinality constraints, which is tight for this particular
greedy algorithm.

– We show that a weighted greedy algorithm that pays more attention to functions
with small budget achieves a factor-3 approximation for the MSR problem under
cardinality constraints. While its worst-case bound is worse, there are natural
problem instances for which the weighted greedy finds better solutions than its
unweighted counterpart.

– We devise a new algorithm that returns the best solution among the solutions found
by a cost-efficient greedy algorithm and a ranking of “large” items produced by
dynamic programming.Our algorithm achieves an approximation factor arbitrarily
close to 4 for the MSR problem under knapsack constraints.

– We empirically evaluate and compare different algorithms on real-life datasets, and
find that the proposed algorithms achieve superior performance when compared
with strong baselines.

123

1200 G. Zhang et al.

The rest of the paper is organized as follows.We start by discussing the relatedwork
in Sect. 2, and we formally introduce the MSR problem in Sect. 3. The unweighted
and weighted greedy algorithms for MSR under cardinality constraints are presented
and analyzed in Sects. 4.1 and 4.2, respectively. The novel algorithm for the MSR
problem under knapsack constraints is introduced and analyzed in Sect. 5. We present
our empirical evaluation in Sect. 6, and we offer our concluding remarks in Sect. 7.

2 Related work

2.1 Submodular maximization

Submodular maximization is a special case of our formulation when given only a sin-
gle function. Coupled with a non-decreasing property and with a cardinality constraint
it is well-known that a simple greedy algorithm achieves a e/(e − 1) approximation
(Nemhauser et al. 1978), which is also shown to be tight (Nemhauser and Wolsey
1978). For a more general budget constraint, a natural algorithm is to return the
best solution among the solutions found by a cost-efficient greedy method and by
selecting the best singleton item. Recently, the approximation factor of this “best-of-
two” algorithm was shown to be within [1/0.462, 1/0.427] (Feldman et al. 2020). A
better 2-approximation is achieved by another greedy variant that returns the best
solution among the solutions found by a cost-efficient greedy algorithmand all its inter-
mediate solutions, each augmented with the best single additional item (Yaroslavtsev
et al. 2020).

2.2 Submodularity for a sequence function

A sequential utility function is defined as f : S → R, where S is the set of all
possible sequences of subsets of a ground set of items V . Note that a set function can
be seen as a special sequence function, in which the diminishing-returns effect holds
for any subsequence relation. Streeter and Golovin (2008) and Zhang et al. (2012)
introduce a notion of string submodularity, which restricts the diminishing returns to
only the prefix subsequence relation. That is to say, a function f is string submodular
if appending an item to a sequence results in no larger marginal gain than appending
the item to a prefix of the sequence. The goal is to find a sequence of a given length
that maximizes the value of the function f . In our formulation, the sum of multiple
submodular functions remains submodular, and thus, string submodular. However,
the analysis in the prior work does not apply in our case as we assume that each
submodular function is associated with a different budget constraint.

2.3 Submodular ranking

Azar and Gamzu (2011) propose the submodular ranking (SR) problem, which aims
to find a permutation to minimize the average “cover time” of a set of submodular
functions, where we say that an input sequence “covers” a function if it evaluates to

123

Ranking with submodular functions on a budget 1201

the maximum value of the function, and the “cover time” of a sequence of items is
the shortest prefix of the sequence for which the function is covered. The problem we
study in this paper can be seen as a dual problem of the SR problem. The SR problem
originates from the classic min-sum set cover (MSSC) problem (Feige et al. 2004) and
its generalizations (Azar et al. 2009; Gamzu 2010).

2.4 Diversified web search

In web search, in the absence of the explicit user intent, it is desirable to provide a
sequence of high-quality and diverse documents that account for the interests of the
overall user population. Typically, the diversity is evaluated by the coverage at the
topical level of some existing taxonomy (Zhai et al. 2015). Carbonell and Goldstein
(1998) propose a greedy algorithmwith respect tomaximalmarginal relevance (MMR)
to reduce the redundancy among returned documents. Bansal et al. (2010) define
the problem of finding an ordering of search results that maximizes the discounted
cumulative gain (DCG), i.e., the sum of discounted gains of different user types, where
the discount factor increases if a user type is satisfied later on. They show that, in some
special cases, the DCG metric can be rewritten as a weighted sum of submodular
functions. Our framework contributes to this theme by, for example, casting each user
type or topic as a submodular function.

3 Problem definition

We are given a universe set V with |V | = n items, a set ofm non-decreasing submod-
ular functions F = { f1, . . . , fm}, and a cost function c : V → R+. Recall that a set
function f : 2V → R+ is non-decreasing if f (T) ≤ f (S) for every T ⊆ S ⊆ V , and
it is submodular if f (T ∪ {v}) − f (T) ≥ f (S ∪ {v}) − f (S) for every T ⊆ S ⊆ V
and v ∈ V \ S. Furthermore, each function fi is associated with a budget bi ∈ R+.
We will often write f (v | S) to mean f ({v} ∪ S) − f (S).

Let σ(V) denote the set of permutations of V , that is, σ(V) = {π : V → V |
π is a permutation}. Our goal is to find a permutation π ∈ σ(V) to maximize the sum
of function values fi (π�i), where the input set π�i is a prefix of the sought permutation
π with feasibility constraints. In particular, we consider that each function fi receives
as input the maximal prefix of π that fits within its corresponding budget bi . In other
words, the permutation π can be seen as a sequence of nested sets, one for each
function. Formally, themax-submodular ranking (MSR) problem that we study in this
paper is defined as follows.

Problem 1 (Max-submodular ranking (MSR)) Given a set of items V , a set of non-
decreasing and submodular functions F = { f1, . . . , fm}, a cost function c : V → R+,
and non-negative budgets bi for each function fi , the MSR problem aims to find a
permutation π ∈ σ(V) that maximizes the sum

∑

fi∈F
fi (π�i), such that �i = max{ j ∈ [n] : c(π j) ≤ bi }, (1)

123

1202 G. Zhang et al.

where π j is the prefix of the permutation π of length j and c(π j) = ∑
v∈π j

c(v).

We make a number of observations for Problem 1.
Without loss of generality,we can assume that fi (∅) = 0; otherwisewe can translate

the objective function by
∑

fi∈F fi (∅).
Also note that not all items in the permutation solution π will necessarily be used

as an input to some function fi ∈ F . Instead, only the items in π�i for the largest �i
will be used. For this reason, we can think that the output to the MSR problem is a
partial permutation; after all functions deplete their budget, the remaining items of
the permutation does not matter.

Finally, note that when the cost function c is uniform, i.e., c(·) = 1, we can consider
only integral budget bi and assume �i = bi .

With respect to the hardness of approximation of the MSR problem, we observe
that MSR is equivalent to the standard submodularity-maximization problem when
m = 1, that is, when there is only one function in F . A second reduction from the
standard submodularity-maximization problem can be obtained by letting bi = b, for
all i = 1, . . . ,m, i.e., when the same budget is used for all functions. The reason is
that in this case the sum of submodular functions remains submodular, and we ask
to maximize a submodular function under a cardinality constraint. We conclude the
following hardness result.

Remark 1 (Nemhauser and Wolsey 1978). For solving the max-submodular ranking
(MSR) problem, no algorithm requiring a polynomial number of function evaluations
can achieve a better approximation guarantee than e/(e − 1).

It is also well-known that maximum k-cover, a special case of submodular maxi-
mization, is a dual problem to the minimum set cover problem, where the constraint
in one problem is treated as the objective function in the other (Feige 1998). More
generally, theMSR problem can be considered as the dual problem to the submodular-
ranking problem (SR) (Azar andGamzu 2011), whose goal is to find a (partial) ranking
of the items so as to minimize the average “cover time” of all functions.

We conclude the section by introducing some additional notation that will be used
in our analysis. The optimal permutation is denoted by π∗. We use the operator ⊕ to
denote sequence concatenation and overload operator ⊆ for subsequence relation.

4 Cardinality constraints

We start our analysis of the MSR problem for the case of cardinality constraints, that
is, when the item costs are uniform (c(·) = 1). For this particular case we present two
algorithms, called Greedy-U and Greedy-W, both having provable guarantees. Both
algorithms generate a permutation by greedily selecting one item before the next.
Pseudocode for both algorithms is shown in a unified manner in Algorithm 1. The dif-
ference in the two algorithms lies in adopting different coefficients αi , associated with
the submodular functions fi , in their selection criteria. The first algorithm, Greedy-U,
is an unweighted greedy (αi = 1) with respect to the submodular functions fi . The
second algorithm, Greedy-W, is a weighted greedy (αi = 1/bi) that puts more weight
on functions with smaller budget.

123

Ranking with submodular functions on a budget 1203

Algorithm 1 Greedy (A generalized algorithm for both Greedy-U and Greedy-W)
Input: An instance of MSR and weights αi , i = 1, . . . ,m

1: π ← (), j ← 1
2: while j ≤ |V | do
3: R j ← { fi ∈ F : c(π) < bi } � set of unsaturated functions

4: v∗ ← arg max
v∈V \π

⎧
⎨

⎩
1

c(v)

∑

fi∈R j :c(π)+c(v)≤bi

αi fi (v | π)

⎫
⎬

⎭ � ties broken arbitrarily

5: π ← π ⊕ v∗ � append v∗ at the end of sequence π

6: j ← j + 1
7: Return π

The worst-case running time of both algorithms is O(n2m). In practice, they run
much faster and their actual running time grows almost linearly in n, thanks to applying
a standard lazy evaluation technique (Leskovec et al. 2007).More details on scalability
are discussed in Sect. 6.4.

4.1 Unweighted greedy

We show that the unweighted greedy algorithm (αi = 1) achieves a 2-approximation
guarantee for the MSR problem with uniform cost. In addition, we show that the
approximation ratio is tight for this particular algorithm.

Theorem 1 Greedy-U (Algorithm 1 with coefficients αi = 1) is a 2-approximation
algorithm for the MSR problem with uniform item costs (c(·) = 1).

Proof Write R j = { fi ∈ F : c(π j−1) < bi }. By the greedy selection criteria, we get
that for arbitrary item v ∈ V in the j-th iteration it holds that

∑

fi∈R j

(
fi (π j) − fi (π j−1)

) ≥
∑

fi∈R j

fi (v | π j−1). (2)

The main idea of the proof is to choose an appropriate item v for the above inequality
at each iteration of the greedy, and sum over all iterations. We denote the j-th item of
the optimal permutation π∗ by v∗

j . We write ALG to denote the value achieved by the
Greedy-U algorithm. Then

ALG =
∑

fi∈F
fi (πbi)

=
∑

fi∈F

bi∑

j=1

(
fi (π j) − fi (π j−1)

) � telescoping series

=
n∑

j=1

∑

fi∈R j

(
fi (π j) − fi (π j−1)

)

123

1204 G. Zhang et al.

≥
n∑

j=1

∑

fi∈R j

fi (v
∗
j | π j−1) � Equation (2)

=
∑

fi∈F

bi∑

j=1

fi (v
∗
j | π j−1)

≥
∑

fi∈F

bi∑

j=1

fi (v
∗
j | πbi) � submodularity

≥
∑

fi∈F

(
fi (π

∗
bi ∪ πbi) − fi (πbi)

) � submodularity

≥
∑

fi∈F

(
fi (π

∗
bi) − fi (πbi)

) � monotonicity

= OPT − ALG.

Consequently, 2ALG ≥ OPT, proving the claim. �
We complete the analysis of the Greedy-U algorithm for the MSR variant with

cardinality constraints, by showing that the approximation ratio 2 is tight.

Remark 2 Greedy-U (Algorithm 1 with coefficients αi = 1) cannot do better than
2-approximation for the MSR problem with uniform item costs (c(·) = 1).

Proof We construct an instance where the algorithm returns ALG = 1
2OPT. The main

idea is to force the algorithm to pick up items that are only beneficial to functions with
large budget and “starve” those with small budget in the early iterations. Consider
functions fi with budget bi = i , for all i ∈ [m]. Letm = n be even, that ism = n = 2k
for some k. Select ε > 0. For i ≤ k, we define fi (π) = min{1, I [vi ∈ π]+ε I [vi+k ∈
π]}, where I [·] is the indicator function. For i > k, we define fi (π) = I [vi ∈ π].

Clearly every fi is non-decreasing and submodular. One possible optimal per-
mutation is π∗ = (v1, . . . , vn), which leads to OPT = m. Algorithm 1 with
coefficient αi = 1 returns a permutation (out of many equivalent possible permu-
tations) π = (vn, . . . , v1) with ALG = (1 + ε)m/2. By letting ε be arbitrarily small,
we see that the bound in Theorem 1 is tight. �

4.2 Weighted greedy

Inspired by the instance that yields the tight bound in Remark 2, it is reasonable to
let the algorithm favor functions with small budget at the early iterations. Such a
strategy is desirable as it in some sense suggests fairness in resource allocation, i.e.,
more functions can afford at least one item from the returned ranking. It also turns
out to have better performance in experiments. We show that such a strategy is indeed
reliable by proving a constant-factor approximation guarantee.

Theorem 2 Greedy-W (Algorithm 1 with coefficients αi = 1/bi) is a 3-approximation
algorithm for the MSR problem with uniform item costs (c(·) = 1).

123

Ranking with submodular functions on a budget 1205

Proof Write R j = { fi ∈ F : c(π j−1) < bi }. By the greedy selection criteria, we
know that for an arbitrary item v ∈ V it holds that

∑

fi∈R j

αi (fi (π j) − fi (π j−1)) ≥
∑

fi∈R j

αi fi (v | π j−1). (3)

We denote by v∗
j the j-th item of the optimal permutation π∗. The idea is to replace

the arbitrary item v with v∗
k ∈ π∗ and compute a weighted sum. In order to define

the weights, given k < j , we write d jk = 1/2, and d j j = (j + 1)/2. Immediately,∑
k∈[j] d jk = (j − 1)/2 + (j + 1)/2 = j .
Now Equation (3) implies

∑

fi∈F

∑

j∈[bi]
jαi (fi (π j) − fi (π j−1)) =

∑

j∈[n]
j

∑

fi∈R j

αi (fi (π j) − fi (π j−1))

=
∑

j∈[n]

∑

k∈[j]
d jk

∑

fi∈R j

αi (fi (π j) − fi (π j−1))

≥
∑

j∈[n]

∑

k∈[j]
d jk

∑

fi∈R j

αi fi (v
∗
k | π j−1).

We will denote the left hand side of the above equation by LHS, and the right hand
side by RHS. We will first bound the RHS. In order to do so, we need an additional
bound on the weights d jk , namely, for any fixed k,

b∑

j=k

d jk

b
= k + 1

2b
+ b − k

2b
= b + 1

2b
>

1

2
. (4)

We can now bound the right hand side with

RHS =
∑

fi∈F

∑

j∈[bi]

∑

k∈[j]
d jkαi fi (v

∗
k | π j−1)

=
∑

fi∈F

∑

k∈[bi]

bi∑

j=k

d jkαi fi (v
∗
k | π j−1)

≥
∑

fi∈F

∑

k∈[bi]

bi∑

j=k

d jkαi fi (v
∗
k | πbi) � submodularity

≥
∑

fi∈F

∑

k∈[bi]
fi (v

∗
k | πbi)/2 � Equation (4)

≥
∑

fi∈F
(fi (π

∗
bi ∪ πbi) − fi (πbi))/2 � submodularity

≥
∑

fi∈F
(fi (π

∗
bi) − fi (πbi))/2 � monotonicity

= (OPT − ALG)/2.

123

1206 G. Zhang et al.

Now we consider the left hand side,

LHS =
∑

fi∈F

∑

j∈[bi]

j

bi
(fi (π j) − fi (π j−1))

=
∑

fi∈F

⎛

⎝bi
bi

fi (πbi) −
∑

j<bi

j + 1 − j

bi
fi (π j)

⎞

⎠

≤
∑

fi∈F
fi (πbi)

= ALG.

Putting everything together, ALG ≥ LHS ≥ RHS ≥ (OPT − ALG)/2, and we
obtain 3ALG ≥ OPT. �

5 Knapsack constraints

The traditional way of handling knapsack constraints is to adopt a cost-efficient variant
of the greedy algorithmwhere in each iteration we select the itemwith the largest ratio
between utility and cost. Furthermore, we compute a second solution by selecting the
maximum-utility singleton item that is feasible. The idea is to use the second solution
to rescue the situation in which the greedy algorithm starts with some cost-efficient
small items and then is “starved” (i.e., the remaining budget is not enough to admit
another valuable large item). This idea however falls short when it comes to the MSR
problem. The reason is that there are multiple knapsacks and each one of them may
be “starved” by different big items. A more sophisticated way is needed to compute
an alternative second solution.

We now discuss our proposed method in more detail. First, an item v ∈ V is called
large with respect to a function fi ∈ F if its cost is more than half of the budget bi ,
that is, 2c(v) > bi . It is obvious that a function fi can afford at most one large item.
The following variant of the MSR problem targets a similar objective to that of MSR,
but exclusive to only large items.

Problem 2 (Max-submodular ranking of large items (MSRL)) Given a set of items V ,
a set of non-decreasing and submodular functions F = { f1, . . . , fm}, a cost function
c : V → R+, and non-negative budgets bi for each function fi , the MSRL problem
aims to find a permutation π ∈ σ(V) that maximizes

z(π) =
∑

v j∈π

z(v j , c(π j−1)) =
∑

v j∈π

∑

fi∈F(v j ;π)

fi (v j), (5)

where F(v j ;π) is the set of functions that take the j-th item v j ∈ π as a large item,
i.e., F(v j ;π) = { fi ∈ F : 2c(v j) > bi , c(π j) ≤ bi }, and z(v j , c) is defined to be the
contribution of item v j by appending it to a prefix with cost c.

123

Ranking with submodular functions on a budget 1207

We start by proving that the cost-efficient greedy algorithm yields a 3-approxima-
tion when there is no large item in π∗. Next, we devise a dynamic programming (DP)
algorithm inAlgorithm 2 to approximately solveMSRL. Finally, we prove that the best
solution among the greedy solution and the DP solution can achieve an approximation
guarantee that is arbitrarily close to 4.

Step 1: bounding small items in π∗. We first discuss the case in the absence of large
items in π∗. Let us introduce some notation. We denote the j-th selected item by our
algorithm by u j . We denote the k-th item of the optimal permutation π∗ by v∗

k . We
denote the greedy solution of Algorithm 1 with coefficient αi = 1 by ALG1 and the
DP solution of Algorithm 2 by ALG2.

The next theorem shows that, if every function fi includes no such large item in
π∗, ALG1 ensures a constant-factor guarantee. Otherwise, we have an additional term
z(π∗), which we will bound later.

Theorem 3 The greedy algorithm yields 3ALG1 + z(π∗) ≥ OPT.

The proof relies on the next technical observation.

Observation 1 For any k, if item v∗
k ∈ π∗ is feasible and not large for function fi , i.e.,

c(π∗
k) ≤ bi and 2c(v∗

k) ≤ bi , then at the j-th greedy iteration such that c(π j−1) ≤
c(π∗

k)/2, we have c(π j−1) + c(v∗
k) ≤ bi .

Proof The proof is straightforward by combining c(π j−1) ≤ c(π∗
k)/2 ≤ bi/2 and

c(v∗
k) ≤ bi/2. �

Proof of of Theorem 3 Write R j = { fi ∈ F : c(π j−1) < bi }. By greedy, we know that
for arbitrary item v ∈ V in the j-th iteration it holds that

1

c(u j)

∑

fi∈R j :c(π j)≤bi

fi (u j | π j−1) ≥ 1

c(v)

∑

fi∈R j :c(π j−1)+c(v)≤bi

fi (v | π j−1). (6)

To simplify the notation used in the above inequality, let us define X j = {i ∈ [m] |
c(π j) ≤ bi } to be the valid function indices for π j , and similarly Y jk = {i ∈ [m] |
c(π j−1) + c(v∗

k) ≤ bi }.
For function fi , we define �∗

i = max{ j ∈ [n] : c(π∗
j) ≤ bi }.

Let us define a sequence of weights d j = len(A j), where the interval A j =
(c(π j−1), c(π j)] ∩ (0, c(π∗)/2].

We will start by lower bounding ALG1 with

ALG1 =
∑

fi∈F

∑

j∈[�i]
fi (u j | π j−1) =

∑

j∈[n]

∑

i∈X j

fi (u j | π j−1)

≥
∑

j∈[n]

d j

c(u j)

∑

i∈X j

fi (u j | π j−1). � since d j ≤ c(u j)

Let us denote the right hand side with C . We will prove the theorem by showing
that C ≥ (OPT − ALG1 − z(π∗))/2.

123

1208 G. Zhang et al.

We define d jk = len(A j ∩ Bk), where interval Bk = (c(π∗
k−1)/2, c(π

∗
k)/2]. We

see immediately that d j = len(A j) = ∑
k∈[n] d jk as Bk partition A j . Similarly,∑

j∈[n] d jk = len(Bk) = c(v∗
k)/2 as A j partition Bk .

We first claim that for any i ,

if j > �i and k ≤ �∗
i , then d jk = 0. (7)

To prove Equation (7) note that j − 1 ≥ �i implies that c(π j−1) ≥ bi while k ≤ �∗
i

implies that c(π∗
k) ≤ bi . Consequently, A j ∩ Bk = ∅ and d jk = 0.

Let us now define Si = {
k ∈ [�∗

i] : 2c(v∗
k) ≤ bi

}
to be the set of small items for

the i-th function. We claim that

if k ∈ Si and d jk > 0, then c(π j−1) + c(v∗
k) ≤ bi . (8)

To prove Equation (8) note that since k ≤ �∗
i , we have c(π

∗
k) ≤ bi . Moreover, since

k ∈ Si , we have 2c(v∗
k) ≤ bi . If c(π j−1) > c(π∗

k)/2, then A j ∩ Bk = ∅ and so
d jk = 0. Thus, c(π j−1) ≤ c(π∗

k)/2. Observation 1 now proves Equation (8).
We can now lower bound C with

C =
∑

j∈[n]

∑

k∈[n]

d jk

c(u j)

∑

i∈X j

fi (u j | π j−1) � since d j =
∑

k∈[n]
d jk

≥
∑

j∈[n]

∑

k∈[n]

d jk

c(v∗
k)

∑

i∈Y jk

fi (v
∗
k | π j−1) � Equation (6)

=
∑

i∈[m]

∑

k∈[n]

∑

j∈[�i]:i∈Y jk

d jk

c(v∗
k)

fi (v
∗
k | π j−1)

≥
∑

i∈[m]

∑

k∈Si

∑

j∈[�i]:i∈Y jk ,d jk>0

d jk

c(v∗
k)

fi (v
∗
k | π j−1)

=
∑

i∈[m]

∑

k∈Si

∑

j∈[�i]

d jk

c(v∗
k)

fi (v
∗
k | π j−1) � Equation (8)

≥
∑

i∈[m]

∑

k∈Si

∑

j∈[�i]

d jk

c(v∗
k)

fi (v
∗
k | π�i) � submodularity

=
∑

i∈[m]

∑

k∈Si

∑

j∈[n]

d jk

c(v∗
k)

fi (v
∗
k | π�i) � Equation (7)

=
∑

i∈[m]

∑

k∈Si
fi (v

∗
k | π�i)/2 � since

∑

j∈[n]
d jk = c(v∗

k)/2

≥ −z(π∗)/2 +
∑

i∈[m]

∑

k∈[�∗
i]

fi (v
∗
k | π�i)/2

≥ −z(π∗)/2 +
∑

i∈[m]
(fi (π

∗
�∗
i
∪ π�i) − fi (π�i))/2 � submodularity

123

Ranking with submodular functions on a budget 1209

≥ −z(π∗)/2 +
∑

i∈[m]
(fi (π

∗
�∗
i
) − fi (π�i))/2 � monotonicity

= (OPT − ALG1 − z(π∗))/2.

Putting everything together, we obtain ALG1 ≥ (OPT − ALG1 − z(π∗))/2, that
is, 3ALG1 + z(π∗) ≥ OPT. �
Step 2: bounding large items in π∗. When some functions do take large items in OPT,
the quantity z(π∗) is positive, and we need to bound it. We will do this by solving
approximately the MSRL problem.

Our first result allows to order items based on their cost when solving MSRL.

Theorem 4 Assume a permutation π with some item vi for which there is an index
j < i such that c(v j) ≥ c(vi). Define a sub-permutation π ′ by removing vi . Then
z(π ′) ≥ z(π).

The proof relies on the following technical observation.

Observation 2 Given an item v and two sequences π, π ′ with costs c(π) ≤ c(π ′), we
have F(v;π ′ ⊕ v) ⊆ F(v;π ⊕ v) and z(v; c(π)) ≥ z(v; c(π ′)).

Proof Note that

F(v;π ⊕ v) = { fi ∈ F : 2c(v) > bi , c(π) + c(v) ≤ bi }
⊇ { fi ∈ F : 2c(v) > bi , c(π

′) + c(v) ≤ bi } = F(v;π ′ ⊕ v).

Consequently, we have

z(v; c(π)) =
∑

fi∈F(v;π⊕v)

fi (v) ≥
∑

fi∈F(v;π ′⊕v)

fi (v) = z(v; c(π ′)),

proving the claim. �
Proof of Theorem 4 Let vi be an item that is in π but not in π ′. Assume that 2c(vi) > b
for arbitrary function budget b. Then c(πi−1) + c(vi) ≥ 2c(vi) > b, following the
assumptions of the theorem. Consequently, F(v;πi) = ∅ and z(vi , c(πi−1)) = 0. Let
u j be the j-th item in π ′. Observation 2 now implies that

z(π) =
∑

vi∈π

z(vi ; c(πi−1)) =
∑

vi∈π ′
z(vi ; c(πi−1)) ≤

∑

u j∈π ′
z(u j ; c(π ′

j−1)) = z(π ′),

proving the claim. �
The above theorem enables a way to limit ourselves to sequences of large items

with non-decreasing costs when solving MSRL.
Let us assume for simplicity that z(·) is an integer-value in [k]. We will discuss how

to relax this assumption shortly.

123

1210 G. Zhang et al.

We can solve MSRL by constructing a table T with entry T (a, j) for each value
a ∈ [k] and each item with index j ∈ [n]. We define the entry T (a, j) to be the lowest
possible cost of a permutation using only the first j items with at least value a,

T (a, j) = min{c(π) | z(π) ≥ a, π ⊆ (v1, . . . , v j)}.

Note that it is also possible to solve MSRL by defining a different dual DP, where
each entry T (b, j) contains the highest value realizable by a permutation using only
the first j items with at most cost b. However, this dual DP is not amenable to the
standard rounding trick we will introduce shortly.

Theorem 5 The table T satisfies the following relation:

T (a, j) = min

{
T (a, j − 1), min

a′|a′+z(v j ;T (a′, j−1))≥a
T (a′, j − 1) + c(v j)

}
, (9)

when j > 1. Moreover, T (0, 1) = 0, T (a, 1) = c(v1) if 0 < a ≤ z(v1), and ∞
otherwise.

Proof We will prove by induction. The result holds trivially for T (a, 1).
Next, we assume the theorem holds for all T (a′, j − 1). Now we examine T (a, j).

Let π be a sequence responsible for T (a, j). Let X be the value of the right hand side
of Equation 9. Clearly, we have X ≥ c(π), and we now prove the claim by showing
that X ≤ c(π).

If v j not in π , then X ≤ T (a, j − 1) ≤ c(π), and we are done. If v j is in π , then
let π ′ be the permutation without v j . Let a′ = z(π ′), and by the inductive hypothesis,
we know that T (a′, j − 1) ≤ c(π ′). Then

a ≤ z(π) = a′ + z(v j ; c(π ′)) ≤ a′ + z(v j ; T (a′, j − 1)),

where the last inequality is by Observation 2. Therefore, according to the DP updating
rule, we have

X ≤ T (a′, j − 1) + c(v j) ≤ c(π ′) + c(v j) = c(π),

completing the proof. �
We can use Theorem 5 to construct T using a dynamic program, which is described

in Algorithm 2. Next, we will show that the DP solves the MSRL problem.

Theorem 6 Assume that z(π) is an integer in [k] for every π . The permutation π

responsible for T (a∗, n), where a∗ = max{a | T (a, n) < ∞}, returned byAlgorithm2
has the largest z(·) value. Besides, Algorithm 2 runs inO(n(k +m) +m logm) time.

Proof The correctness of the algorithm follows directly from Theorem 5. There are
in total k × n table entries. Note that we can avoid directly invoking z(v j ; ·), which
alone needs timeO(m), by sorting fi by their budget bi and gradually including more
fi as c(T (a, j − 1)) and a decrease. This leads to an additional O(m) time per index
j . �

123

Ranking with submodular functions on a budget 1211

Algorithm 2 Dynamic program for solving MSRL
1: T (a, j) ← ∞ for all a and j
2: T (a, 1) ← c(v1) for all 0 < a ≤ z(v1; 0), and T (0, 1) ← 0
3: for j = 2, . . . , n do
4: for a in descending order do
5: a′ ← a + z(v j , T (a, j − 1))
6: T (a′, j) ← min(T (a′, j), T (a, j − 1) + c(v j))

7: x ← ∞
8: for a in descending order do
9: T (a, j) ← min(T (a, j − 1), T (a, j), x)
10: x ← T (a, j)

11: Return Permutation responsible for T (a∗, n), where a∗ = max{a | T (a, n) < ∞}

We provide a numerical example to illustrate the DP algorithm.

Example 1 Consider two modular functions f1, f2 with budget b1 = 3, b2 = 9,
and three items v1, v2, v3 with costs 2.5, 3, 6.5, respectively. We define f1(v1) = 1,
f1(v2) = 1.5, f2(v3) = 1, and 0 otherwise.
It is easy to see that both the cost-efficient greedy algorithm and the best singleton

will pick item v2, which leads to a sub-optimal ranking, while the DP algorithm can
help us find the optimal ranking.

The DP algorithm first initializes T (a, j) ← ∞ for all a and j . We then process
items v1, v2, v3 in non-decreasing order by their costs.

– Item v1: we set T (a, 1) = c(v1) for all 0 < a ≤ f1(v1) and T (0, 1) = 0.
– Item v2: we set T (a, 2) = T (a, 1) for all a ≤ f1(v1), and T (a, 2) = c(v2) for all

f1(v1) < a ≤ f1(v2).
– Item v3: we set T (a, 3) = T (a, 2) for all a ≤ f1(v2), and T (a, 3) = c(v1)+c(v3)
for all f1(v2) < a ≤ f1(v1) + f2(v3).

Finally, we return the permutation π = (v1, v3) responsible for T (a∗, 3), where
a∗ = f1(v1) + f2(v3).

So far we have assumed that z is an integer. Next, we show that with a standard
rounding technique, the DP method in Algorithm 2 gives an FPTAS for MSRL. The
idea is to apply the DP to a rounded instance, which is obtained by first scaling and
rounding down every function � fi/K � for certain K .

Theorem 7 Let P = maxi,v fi (v), where v is a large item for fi . Let K = Pε
m for

any constant ε > 0. Define f ′
i = � fi/K � and let z′(π) be the score of a permutation

using f ′
i instead of fi . Let π be the permutation with the largest z(π). Then K z′(π) ≥

(1 − ε)z(π).

Proof Due to scaling and rounding down we have fi (v) − K f ′
i (v) ≤ K . Since there

can be atmost one large item per function, and the score z contains atmostm functions,
thus, z(π) − Kz′(π) ≤ mK = Pε ≤ εz(π). �
Corollary 1 Algorithm 2 with rounding yields 1/(1 − ε) approximation guarantee in
O(nm2/ε) time.

123

1212 G. Zhang et al.

Proof Letπ be the permutationwith the largest z and letπ ′ be the permutationwith the
largest z′. Then z(π ′) ≥ Kz′(π ′) ≥ Kz′(π) ≥ (1−ε)z(π), proving the approximation
guarantee.

To prove the running time note that z(·) ≤ mP and z′(·) ≤ mP/K = m2/ε.
Theorem 6 proves the claim. �

We are finally ready to state our main result for MSR with non-uniform cost.

Theorem 8 The best among Algorithm 1 with coefficient αi = 1 and Algorithm 2 is
(3 + 1/(1 − ε))-approximation for the MSR problem with non-uniform cost.

Proof Theorem 3 and Corollary 1 imply that

(3 + (1 − ε)−1)ALG ≥ 3ALG1 + (1 − ε)−1ALG2 ≥ ALG1 + z(π∗) ≥ OPT,

where ALG = max{ALG1,ALG2}, proving the claim. �

6 Experimental evaluation

In this section, we evaluate the performance of the proposed algorithms on real-world
datasets. We first discuss our experimental evaluation for a playlist-making use-case.
We model this use-case using the max-activation ranking (MAR) problem, which
is a special case of the MSR problem when the submodular functions fi are 0–1
functions.We then conduct two experiments for theMSR problem: (i) multiple intents
re-ranking and (i i) sequential active learning. Finally, we evaluate the running time
of our methods. Statistics of the datasets used in the experiments are summarized
in Table 1. Our implementation and pre-processing scripts can be found in a Github
repository.1

6.1 Proposedmethods and baselines

Theproposed greedy algorithms are denoted byGreedy-U andGreedy-W; as discussed
in Sect. 4. The proposed dynamic program is denoted by DP. As baselines we use the
following algorithms.

– The greedy algorithm for the SR problem (Azar and Gamzu 2011), which favors
functions near completion. We refer to this baseline as AG.

– When only the minimum budget among all functions is considered, the objective
is a submodular function as a whole. We then consider the well-known “best-
of-two” algorithm that returns the best solution among the solutions found by a
cost-efficient greedy method and by selecting the best singleton item. We refer to
this baseline as Subm.

– A simple ranking method (Quality) that orders individual items in non-increasing
quality.

– A random ranking algorithm (Random).

1 https://github.com/Guangyi-Zhang/max-submodular-ranking

123

https://github.com/Guangyi-Zhang/max-submodular-ranking

Ranking with submodular functions on a budget 1213

Table 1 Datasets statistics Dataset n = |V | m = |F |
Songs 1872 100

Movies 3669 100

Books 3753 1000

20 Newsgroups 172 5

Handwritten Digits 1347 3

Note that in general, computing the optimal solution requires enumerating all
sequences of length equal to the maximum budget, which is computationally
intractable even for a modest scenario with universe set |V | = 100 and budget
b = 10.

6.2 Experiments with themax-activation ranking (MAR) problem

We evaluate our methods on three datasets, the Million Song dataset (Bertin-Mahieux
et al. 2011), the MovieLens dataset (Harper and Konstan 2015), and the Amazon
Review dataset on books category (Ni et al. 2019). The three datasets have simi-
lar format, where each record can be seen as a triple of user, item and rating. We
describe our experimental evaluation for the first dataset, and the other two datasets
are processed in the same way and give very similar results, as can be verified in
Fig. 1.

In the Million Song dataset, each record is a triple representing a user, song and
play count. We assume that a user likes a song if they play the song more than
once. We investigate an instance of the MAR problem for the application scenario
of creating a playlist. In particular, we want to find a ranking of songs that max-
imizes the number of users who like at least one song among songs they listen
to. In this case, each user is modeled as a 0–1 activation function. We generate a
random budget for each user, i.e., the maximum number of songs a user will lis-
ten to, from 1 to a given maximum budget. We also generate a random cost from
1 to 10 for each song in order to experiment with an additional non-uniform cost
scenario.

The results of our evaluation are shown in Fig. 1. The error bars are over ran-
dom user budgets and item costs. In the unit-cost scenario, the proposed Greedy-W
algorithm is the best performing, closely followed by the proposed Greedy-U algo-
rithm. The performance of the baselines is inferior, and one reason is that they fail
to take into account the user budget. In the non-uniform cost scenario, the proposed
Greedy-U algorithm obtains the best performance. Note that it is expected that DP
has poor performance, as it is meant to help in extreme cases. Also note that DP
does not scale for the book-list dataset—more details on scalability are discussed in
Sect. 6.4. Interestingly, Greedy-W performs worse than AG, which indicates that a
more sophisticated weighting scheme is needed to combine non-uniform budget and
cost.

123

1214 G. Zhang et al.

(a) (b) (c)

(d) (e) (f)

Fig. 1 Results of using theMARproblem formulation formaking a playlist of items. The goal is tomaximize
the number of activated users. The universe V includes songs, movies or books. A user (a 0–1 activation
function fi) is activated if they like at least one item among all items they consume within their budget.
Markers are jittered horizontally to avoid overlap

6.3 Experiments with themax-submodular ranking (MSR) problem

6.3.1 Multiple intents re-ranking

We simulate a web-page ranking application for documents in the 20 Newsgroups
dataset (Dua and Graff 2017). For each newsgroup, we treat its title as a query, and
collect documents that contains the query. We extract 5 topics from the collected
documents by means of LDA model (Blei et al. 2003). Subsequently, each topic (i.e.,
its top 20 keywords) is considered as a potential user intent, and the submodular
utility for a particular topic when given a set of documents is the coverage rate of its
top keywords. We aim to find a ranking of documents that maximize the total utility
of all user intents. As in the previous experiment, we generate a random budget for
each user intent, i.e., the maximum number of documents the potential user will read,
from 1 to a given maximum budget. For an additional non-uniform cost scenario, we
use the document length as the cost for reading a document, and accordingly multiply
the budget by the average document length.

The results of our experiment are shown in Fig. 2, where we report the average
performance across all newsgroups. In the unit-cost scenario, the top-contender algo-
rithms have close performance. This is due to the overwhelming advantage of lengthy
documents that contain more words and produce higher utility. In the more realistic

123

Ranking with submodular functions on a budget 1215

(a) (b)

Fig. 2 MSR for multiple intents re-ranking in web page ranking. The goal is to maximize the total utility
of all user intents within their individual reading budget. The universe V includes documents. The utility
of a user intent (a coverage function fi) is represented by the coverage rate of its top keywords. Markers
are jittered horizontally to avoid overlap

non-uniform cost scenario, our algorithms, Greedy-U and Greedy-W, achieve the best
performance. Quality algorithm behaves the worst as it fails to consider the cost of
items, and its first-rank lengthy document exceeds the user budget most of the time.

6.3.2 Sequential active learning

Active learning seeks to make label queries on only a small number of informative
data points in order to maximize model performance. In particular, for the k-nearest
neighbors (kNN) model, an intuitive measure for informativeness of a set of labeled
data points is the average distance from an unlabeled data point to its closest labeled
point, i.e., the facility-location function (Wei et al. 2015). We refer to this average
distance as the radius. Thus, the active-learning task can be naturally formulated
as labeling a small subset of data to maximize the radius reduction. Note that the
reduction of the radius by labeling a subset of data points is clearly non-decreasing
and submodular.

In our setting, we assume that we have access to multiple models that are trained
on the same labeled data, and we aim to label data sequentially to maximize the
total reduction in the radii among all models. This happens, for example, when each
model runs on a different subset of features. Interestingly, in this case each model can
be seen as a student with different learning capacity, and a teacher tries to optimize
the classroom teaching by feeding them labeled data (Zhu et al. 2017). We evaluate
the performance of active-learning kNNs (k = 1) with Euclidean distance in the
Handwritten Digits dataset (Dua and Graff 2017). Each kNNmodel adopts a different
strategy in unsupervised feature selection, such as variance thresholding, PCA, and
feature agglomeration. Again, we generate a random query budget for each model and
a random cost (from 1 to 10) for labeling each data point.

Aswe can see in Fig. 3, all greedy algorithms are very effective in reducing the radii.
The correlation between the radius reduction and model accuracy (over testing data) is
obvious. Note that the Random algorithm is a standard strong baseline in data subset
selection, which is outperformed by the greedy algorithms by a large margin. The

123

1216 G. Zhang et al.

(a) (b)

Fig. 3 MSR for sequential data subset selection for kNNmodels. The goal is to boost the average predictive
accuracy of kNN models. The universe V includes all data points. The sum of the surrogate objective
function fi (reduction of radii) for each model is optimized. Markers are jittered horizontally to avoid
overlap

comparison becomes more evident in the non-uniform cost scenario, as the Random
algorithm fails to take into account the item costs.

6.4 Running time

We examine the scalability of all methods by fixing either the number of users (i.e.,
functions) or the maximum budget (equal to the number of items), while varying the
other. In Fig. 4 we demonstrate the running time of all algorithms for the task of
making a synthetic playlist. In this case, we generate a dataset by assuming that each
user likes a small random subset of items. We generate a random budget for each user,
from 1 to the given maximum budget, and a random cost from 1 to 10 for each item.

When comparing the running time, the Quality algorithm is a meaningful baseline,
as it produces a ranking after a single evaluation on each item over all functions, i.e.,
O(max{n log(n),mn}). Its running time varies almost linearly as a function of the
budget, which is in contrast to the behavior of the naïve greedy algorithms. Thanks to
the lazy evaluation technique (Leskovec et al. 2007), the running time of all greedy
algorithms actually grows nearly linearly in the budget. The AG algorithm is slower as
it is subject to frequent function evaluations, because its greedy criterion depends on
the current function values. The running time of the DP algorithm grows quadratically
in the number of functions, which has difficulty in scaling to a very large number. On
the other hand, it scales well in the number of items, and particularly, when the budget
is big, it finishes quickly as there is no large item. The running time of all except for
the Random algorithm grows linearly in the number of functions, which is inevitable
if the utility of items is considered.

123

Ranking with submodular functions on a budget 1217

(a) (b)

Fig. 4 Running time of all methods for the task of making a synthetic playlist

7 Conclusions

In this paper, we introduce a novel problem in the active area of submodular optimiza-
tion. Our problem, max-submodular ranking (MSR), ask to find a ranking of items
such that the sum of multiple budgeted submodular utility is maximized. The MSR
problem has wide application in the ranking of web pages, ads, and other types of
items. We propose several practical algorithms with approximation guarantees for the
MSR problem, with either cardinality or knapsack budget constraints. We empirically
demonstrate the superior performance of the proposed algorithms on real-life datasets,
compared with a state-of-the-art baseline and other meaningful heuristics.

One direction for future work is to narrow the gap between the approximation
ratio and the lower bound. Another direction is to study the online version of the
MSR problem, to allow for the arrival of new submodular functions. Other potential
directions include imposing a more general constraint for each submodular function
and experimenting with new applications.

Acknowledgements This research is supported by the Academy of Finland projectsMALSOME (343045),
AIDA (317085) and MLDB (325117), the ERC Advanced Grant REBOUND (834862), the EC H2020
RIA project SoBigData++ (871042), and the Wallenberg AI, Autonomous Systems and Software Program
(WASP) funded by the Knut and Alice Wallenberg Foundation.

Funding Open access funding provided by Royal Institute of Technology.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Azar Y, Gamzu I (2011) Ranking with submodular valuations. In: Proceedings of the twenty-second annual
ACM-SIAM symposium on discrete algorithms. SIAM, pp 1070–1079

123

http://creativecommons.org/licenses/by/4.0/

1218 G. Zhang et al.

Azar Y, Gamzu I, Yin X (2009) Multiple intents re-ranking. In: Proceedings of the forty-first annual ACM
symposium on theory of computing, pp 669–678

Bansal N, Jain K, Kazeykina A, Naor JS (2010) Approximation algorithms for diversified search ranking.
In: International colloquium on automata, languages, and programming. Springer, pp 273–284

Bertin-Mahieux T, Ellis DP, Whitman B, Lamere P (2011) The million song dataset. In: Proceedings of the
12th international conference on music information retrieval (ISMIR 2011)

Blei DM, Ng AY, Jordan MI (2003) Latent dirichlet allocation. J Mach Learn Res 3:993–1022
Carbonell JG, Goldstein J (1998) The use of MMR, diversity-based reranking for reordering documents

and producing summaries. In: SIGIR
Dua D, Graff C (2017) UCI machine learning repository. http://archive.ics.uci.edu/ml
Feige U (1998) A threshold of ln n for approximating set cover. J ACM 45(4):634–652
Feige U, Lovász L, Tetali P (2004) Approximating min sum set cover. Algorithmica 40(4):219–234
Feldman M, Nutov Z, Shoham E (2020) Practical budgeted submodular maximization. arXiv preprint

arXiv:2007.04937
Gamzu I (2010) Web search ranking and allocation mechanisms. PhD thesis, Tel Aviv University
Harper FM, Konstan JA (2015) The movielens datasets: history and context. ACMTrans Interact Intell Syst

5(4):1–19
Jansen BJ, Booth DL, Spink A (2008) Determining the informational, navigational, and transactional intent

of web queries. Inf Process Manage 44(3):1251–1266
Kempe D, Kleinberg J, Tardos É (2015) Maximizing the spread of influence through a social network.

Theory Comput 11(4):105–147
Krause A, Golovin D (2014) Submodular function maximization. Tractability 3:71–104
Krause A, Singh A, Guestrin C (2008) Near-optimal sensor placements in gaussian processes: Theory,

efficient algorithms and empirical studies. J Mach Learn Res 9(2)
Leskovec J, Krause A, Guestrin C, Faloutsos C, VanBriesen J, Glance N (2007) Cost-effective outbreak

detection in networks. In: Proceedings of the 13th ACMSIGKDD international conference on Knowl-
edge discovery and data mining, pp 420–429

LinH, Bilmes J (2011) A class of submodular functions for document summarization. In: Proceedings of the
49th annual meeting of the association for computational linguistics: human language technologies,
pp 510–520

Nemhauser GL, Wolsey LA (1978) Best algorithms for approximating the maximum of a submodular set
function. Math Oper Res 3(3):177–188

Nemhauser GL, Wolsey LA, Fisher ML (1978) An analysis of approximations for maximizing submodular
set functions-I. Math Program 14(1):265–294

Ni J, Li J, McAuley J (2019) Justifying recommendations using distantly-labeled reviews and fine-grained
aspects. In: Proceedings of the 2019 conference on empirical methods in natural language processing
and the 9th international joint conference on natural language processing (EMNLP-IJCNLP), pp 188–
197

Streeter M, Golovin D (2008) An online algorithm for maximizing submodular functions. In: Proceedings
of the 21st international conference on neural information processing systems, pp 1577–1584

Wei K, Iyer R, Bilmes J (2015) Submodularity in data subset selection and active learning. In: International
conference on machine learning. PMLR, pp 1954–1963

Yaroslavtsev G, Zhou S, Avdiukhin D (2020) “bring your own greedy”+ max: Near-optimal 1/2-
approximations for submodular knapsack. In: International conference on artificial intelligence and
statistics. PMLR, pp 3263–3274

Zhai C, Cohen WW, Lafferty J (2015) Beyond independent relevance: methods and evaluation metrics for
subtopic retrieval. In: SIGIR

Zhang Z, Chong EK, Pezeshki A, Moran W, Howard SD (2012) Submodularity and optimality of fusion
rules in balanced binary relay trees. In: 2012 IEEE 51st IEEE conference on decision and control
(CDC). IEEE, pp 3802–3807

Zhu X, Liu J, Lopes M (2017) No learner left behind: on the complexity of teaching multiple learners
simultaneously. In: IJCAI, pp 3588–3594

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

http://archive.ics.uci.edu/ml
http://arxiv.org/abs/2007.04937

