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In little over a decade, cryptocurrencies have become a highly speculative asset class in global
financial markets, with Bitcoin leading the way. Throughout its relatively brief history, the price
of bitcoin has gone through multiple cycles of growth and decline. As a consequence, Bitcoin has
become a widely discussed – and polarizing – topic on Twitter.

This work studies whether the sentiment of popular Bitcoin-related tweets can be used to predict
the future price movements of bitcoin. In total, seven different algorithms are evaluated: Vector
Autoregression, Vector Autoregression Moving-Average, Random Forest, XGBoost, LightGBM, Long
Short-Term Memory, and Gated Recurrent Unit. By applying lexicon-based sentiment analysis,
and heuristic filtering of tweets, it was discovered that sentiment-based features of popular tweets
improve the prediction accuracy over baseline features (open–high–low–close data) in five of the seven
algorithms tested. The tree-based algorithms (Random Forest, XGBoost, LightGBM) generally had
the lowest prediction errors, while the neural network algorithms (Light Short-Term Memory and
Gated Recurrent Unit) had the poorest performance. The findings suggest that the sentiment of
popular Bitcoin-related tweets can be an important feature in predicting the future price movements
of bitcoin.
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1. Introduction

Investor sentiment in the stock market has been researched extensively. Over time,
various potential proxies for investor sentiment have been studied, such as investor
surveys, retail investor trades, mutual fund flows, and trading volume [1]. With the
rise of social media and mass communication, new potential proxies have emerged, as
public discussions on social media have been used to estimate investor sentiment [2, 3].
With the advances in sentiment analysis methods and computing power, large-scale
analysis can now be performed to extract insights about general sentiment.

Since the launch of Bitcoin in 2009, cryptocurrencies have steadily gained signifi-
cance in global financial markets. In November 2021, cryptocurrency market capitaliza-
tion reached a $2.9 trillion mark, of which Bitcoin accounted for ∼44% [4]. From the
beginning, Bitcoin has been discussed and speculated on the internet. Bitcointalk, an
internet forum created in 2009 by Satoshi Nakamoto, the pseudonymous inventor of
Bitcoin, has since amassed over 59 million forum posts [5]. On Twitter, Bitcoin discus-
sion has been steadily growing; on 21.5.2021, Bitcoin was mentioned in approximately
355,000 Tweets in the span of 24 hours [6, 7]. Prominent people, such as Goldman Sach’s
former CEO Lloyd Blankfein, and Twitter’s former CEO Jack Dorsey, among others,
have voiced their public opinions on Bitcoin on Twitter [6]. Many “cryptocurrency
influencers” also use the platform to promote existing and new cryptocurrencies [8]. As
a recent trend, paid celebrity endorsements of cryptocurrency-related platforms and
services have also appeared on Twitter as an attempt to attract new customers [9]. For
example, several professional athletes have endorsed cryptocurrency trading platforms
on Twitter [10].

The aim of this thesis is to investigate, whether the sentiment of popular Bitcoin-
related tweets on Twitter can be a useful feature in predicting future price movements of
bitcoin, and if so, which prediction methods yield the best results. By leveraging public
online discussions and speculation of Bitcoin on Twitter, a compound user sentiment
will be extracted, and various multivariate time series forecasting methods will be
evaluated in the task of predicting the future price of bitcoin.

As a primary dataset, a collection of 17.7 million English language tweets contain-
ing the keyword “bitcoin”, posted between August 2017 and January 2019, will be used
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2 Chapter 1. Introduction

as a source for the Twitter sentiment. A supplementary open–high–low–close (OHLC)
price dataset of bitcoin, describing the price movements of bitcoin from the same time
period will also be used. The OHLC price information has traditionally been used in
quantitative price analysis [11] and will serve as a baseline for the predictions. The
value of the extracted sentiment-based features will be investigated by comparing the
predictive performance between two feature sets: baseline (OHLC data), and augmented
(OHLC and sentiment data). Prediction lengths of 1, 3, 5, and 7 days will be evaluated.

Previous studies have shown that online sentiment can influence cryptocurrency
prices, both positively and negatively [12, 13]. The role of Twitter as a source of
investor sentiment has also been studied with encouraging results [14, 15]. And while
the efficacy of Twitter sentiment in predicting the future price of bitcoin has been
studied before [16, 17, 18, 19], there has yet to be a comparative study that evaluates the
predictive performance of different statistical and machine learning-based models over
the same tweet dataset and time period. Due to the differences in tweet datasets and
cryptocurrency market conditions over time, the results between different studies can
be hard to generalize. The contribution of this thesis is to provide a better evaluation
of different time series forecasting methods in predicting the future price of bitcoin
using sentiment extracted from popular tweets.

Throughout this thesis, Bitcoin (in uppercase), will refer to the protocol and the
concept of Bitcoin, whereas bitcoin (in lowercase) will strictly refer to the currency
(BTC).



2. Related work

This thesis builds on the existing body of research done in the areas of time series
forecasting, sentiment analysis, and social media bot detection.

2.1 Sentiment Analysis

In recent years, many papers have been published on using social media posts as a
proxy for cryptocurrency investor sentiment.

Hutto et al. [20] presented VADER, a rule-based sentiment analysis system geared
specifically towards social media messages. Since its release, VADER has been widely
used in social media sentiment analysis [21, 22, 16, 23, 19]. Oliveira et al. [24] created
a stock market lexicon geared toward financial sentiment analysis. The training corpus
was created from messages on StockTwits, a Twitter-like social media platform aimed
at investors.

Kraaijeveld et al, [21], used bivariate Granger-causality to investigate the pre-
dictive power of Twitter sentiment in predicting the price returns for the nine largest
cryptocurrencies. In order to extract sentiment from cryptocurrency-themed messages,
a custom cryptocurrency-specific lexicon was used in addition to the standard lexicon.
Kraajieveld et al. found that out of the nine cryptocurrencies, Twitter sentiment has
predictive power for the returns of Bitcoin, Bitcoin Cash, and Litecoin.

Guegan et al. [25] studied the relationship between investor sentiment and bitcoin
returns. Approximately one million messages on StockTwits were used for the analysis.
A statistically significant relationship between investor sentiment and bitcoin returns
for frequencies of up to 15 minutes was found. However, the overall impact of the effect
was described as insufficient to gain any noticeable advantage.

Lyócsa et al. [26] studied the effect of news headlines on the volatility of the price
of bitcoin. Various categories of news headlines were used, such as regulatory news,
and news about hacking of Bitcoin exchanges. They discovered that the volatility of
bitcoin is most strongly affected by news on Bitcoin regulation and hacking attacks on
cryptocurrency exchanges.

Pano et al. [22] analyzed the optimal text preprocessing pipeline for sentiment
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4 Chapter 2. Related work

analysis of Bitcoin tweets. Pearson autocorrelation scores were used in evaluating
different approaches. A short-term correlation between sentiment and the price of
Bitcoin was found. It was found that text preprocessing improves the correlation
slightly.

Other sentiment analysis techniques have also been used to determine investor
sentiment. Balfagih et al. [27] evaluated different sentiment classifiers, such as MLP,
WiSARD, and RATS. The analyzed sentiment was used to predict the future price of
bitcoin. It was found that manual Tweet labeling produced better results than machine
learning-based tools. Naeem et al. [18] examined the predictive ability of Twitter
Happiness Sentiment for six major cryptocurrencies using daily data between 7. August
2015 – 31. December 2019. A significant nonlinear relationship between sentiment and
cryptocurrency prices was found.

2.2 Social Media Bot Detection

The widespread presence of social media bots in cryptocurrency-related tweets has been
studied. Due to the variation between different datasets, varying estimates have been
given.

Varol et al. [28] investigated the prevalence of bots on Twitter, as well as ways to
detect them. They estimated that between 9% to 15% of active Twitter users might be
bots. Similarly, Kraaijeveld et al. [21] estimated that at least 1-14% of the Tweets in
their dataset were posted by bot accounts.

Mirtaheri et al. [29] identified and analyzed cryptocurrency manipulations, such
as pump-and-dump schemes, on social media platforms, namely Twitter and Telegram.
They estimate that the majority of the active users participating in pump-and-dump
schemes were bot accounts. Similarly, Nizzoli et al. [30] charted the landscape of online
cryptocurrency manipulation, attempting to detect various cryptocurrency-related Ponzi
and pump-and-dump schemes on Twitter, Telegram, and Discord. According to Nizzoli,
the proportion of bots that Varol et al. [28] estimated (9–15%) could be even higher in
the cryptocurrency sphere, as high as 50–90%, depending on the type of posts.

2.3 Cryptocurrency Price Prediction

Several methods of predicting the future price of cryptocurrencies have been investigated,
spanning a wide variety of assorted features and prediction models.

Chowdhury et al. [31] used price movement data (OHLC) to forecast the closing
price of the Cryptocurrency Index 30, and nine other cryptocurrencies. Gradient boosted
trees, k-Nearest Neighbor, and Long Short-Term Memory (LSTM) neural net models
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were used. Similarly, Patel et al. [32] studied using price movement data to predict the
price of Bitcoin, Litecoin, Ripple, Monero, Tether, and IOTA. The predictions were
done using LSTM and Gated Recurrent Unit (GRU) neural nets. A hybrid GRU +
LSTM model was also proposed. Azari et al. [33] studied an ARIMA-based univariate
approach to bitcoin price prediction. ARIMA was found to be efficient in short-period
forecasts, such as predicting the next day’s price.

Pant et al. [22] used recurrent neural networks to predict the price of bitcoin. The
features were derived from Twitter sentiment. The sentiment analysis was performed
using an NLP-based pipeline. Shen et al. [14] investigated a link between investor
attention (in the form of Tweet volume) and Bitcoin returns using a vector autoregressive
(VAR) model. Inamdar et al. [17] predicted cryptocurrency prices using sentiment
analysis. The data for sentiment analysis consisted of Twitter messages and various news
headlines. The predictive models were developed using the Random Forest algorithm.
Colianni et al. [34] experimented if Twitter messages relating to cryptocurrencies can
be utilized to develop advantageous cryptocurrency trading strategies using supervised
machine learning models. Abraham et al. [23] used tweet volumes and VADER-based
sentiment analysis to predict the prices of bitcoin and Ethereum, using multiple linear
regression. Hao et al. [19] used Twitter sentiment to predict bitcoin price movements.
Sentiment analysis was done with VADER, and the prediction model was using the
XGBoost algorithm. A novel “interactivity” feature was also proposed, based on tweet
statistics, such as the number of likes, retweets, and comments. Kim et al. [35]
attempted to predict the fluctuations in the prices of Bitcoin, Ethereum and Ripple,
by analyzing user comments on popular cryptocurrency forums. Sentiment analysis of
the comments was done using VADER. Li et al. [36] used sentiment-based gradient
boosted tree models to predict fluctuations in the price of ZClassic alt-coin. The Twitter
sentiment was found to have a strong link between the price movements in ZClassic.

Features drawn from the Bitcoin network itself have also been used to predict the
price of bitcoin. Dutta et al. [37] used variables drawn from bitcoin network-related
statistics, such as hash rate, transaction fees, and miner revenues, to predict the price
of bitcoin. GRU neural network models were used in the prediction task. Similarly, Ji
et al. [38] used LSTM, and GRU neural network models to predict the price of bitcoin,
deriving features from various blockchain statistics.





3. Background

3.1 Bitcoin

In the original Bitcoin whitepaper [39] released in 2008, Satoshi Nakamoto offered an
alternative to existing online payment solutions by proposing a trust-free electronic
cash system, backed by a cryptographically verifiable blockchain, which functions as an
immutable public ledger for all transactions.

Bitcoin works in a decentralized manner. There are no regulatory entities that
can control the supply of bitcoin, making artificial inflation or deflation of the currency
impractical. The supply of new bitcoins is predictable and consistent; a predetermined
amount of new bitcoins is created every 10 minutes when a new block is added to the
blockchain. Due to the limited supply, the price of bitcoin is largely determined by
its demand. This demand can often be influenced by public perceptions, opinions, or
news surrounding Bitcoin. In the past, cryptocurrency markets have reacted swiftly
to favorable and unfavorable news about Bitcoin. For example, previous attempts to
regulate Bitcoin in China [40, 41] resulted in heavy price shifts in the cryptocurrency
markets. For example, on 19.5.2021, after the Chinese government’s plans to regulate
cryptocurrencies were made public, the price of bitcoin fell in the span of 24 hours
almost 30% from $43,546.12 to $30,681.50. Just a month earlier, on 14.4.2021, the
price of bitcoin had peaked at its then all-time high of $63,109.69 [42]. Similarly,
several Bitcoin-related tweets made by Tesla and SpaceX CEO Elon Musk have caused
significant price swings in the price of bitcoin [43, 44].

Such events have demonstrated that the demand for bitcoin can be unpredictable.
However, over time, the growth of the price of bitcoin has been exponential [45]. Due to
the deflationary aspect of Bitcoin, its function as a payment system has since become
less appealing [46]. Instead, the focus has shifted more towards the lucrative potential
of bitcoin as an investment opportunity and a store of value, similar to gold and other
precious metals [47].
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8 Chapter 3. Background

3.2 Sentiment Analysis

Sentiment analysis is an area in natural language processing. Pozzi et al. [48] define
sentiment analysis as the task of creating automated tools that can extract subjective
characteristics, such as sentiment, opinions, and emotions, from written text [48]. In
the same work, they note that sentiment analysis consists of many subtasks, such
as polarity classification, opinion summarization, subjectivity classification, sarcasm
detection, and detection of misleading opinions, among others. Throughout this thesis,
the term “sentiment” will strictly refer to the polarity of the text, i.e., whether the text
appears positive, neutral, or negative [48].

3.2.1 VADER (Valence Aware Dictionary for sEntiment Rea-
soning)

VADER is a sentiment analysis model, originally introduced in a paper by Hutto et
al. [20]. In its documentation [49], the authors explain its scoring mechanism. For
some input of text, VADER will output its compound sentiment score, which is a sum
of all adjusted valence (intensity) scores of words in the lexicon [49]. The compound
score is a decimal value between [−1, 1] (−1 being the most negative, 1 being the most
positive). The compound score can also be interpreted as a categorical sentiment value,
if needed, by using the threshold values suggested by the authors [49]:

Sentiment(compound) =


positive, if compound > 0.05

neutral, if − 0.05 ≤ compound ≥ 0.05

negative, if compound < −0.05

(3.1)

In addition to the compound score, VADER also outputs the proportions of
positive, neutral, and negative words in the text [49].

Hutto et al. [20] describe VADER as a rule-based model, which features its own
gold-standard lexicon, in which each word includes a valence score, a decimal value
between [−4, 4], indicating the intensity of the word. When determining the compound
sentiment, VADER considers the valence of each word in the sentence [20]. For example,
words “okay” and “best” have intensity scores of 0.9, and 3.2, respectively, while words
“uncomfortable” and “horrific” have intensity scores of −1.6 and −3.4, respectively [49].
The gold-standard lexicon was created assessing random tweets on Twitter, making
VADER particularly effective in social media contexts [20]. As a result of this, the
lexicon also includes present-day Internet colloquialisms, such as initialisms (LOL,
WTF), emoticons ( :(, ;-) ), as well as emojis ( ) [20].
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In addition to using the gold-standard lexicon, VADER also utilizes five grammat-
ical and syntactical heuristics, which allow for a more detailed analysis of the sentiment
[20]. The five heuristics are:

1. Punctuation. Using punctuation, especially the exclamation point, can increase
the intensity of a sentence, i.e., “Buy Bitcoin!!!” is more intense than “Buy Bitcoin”
[20].

2. Capitalization. CAPITALIZED words can intensify a sentence, i.e., “BITCOIN
BANNED IN CHINA” is more intense than “Bitcoin banned in China” [20].

3. Degree modifiers. The use of various degree modifiers can increase or decrease
the intensity of a sentence, i.e. “This is extremely good for Bitcoin” is more
intense than “This is barely good for Bitcoin” [20].

4. Contrastive “but”. The sentence “I love to pay with Bitcoin, but sadly it hasn’t
gained a wider acceptance.” has a shift in sentiment after the word but [20].

5. Trigram analysis. According to the authors, analyzing words in groups of three
can detect almost 90% of long-range negations that flip the meaning of a sentence,
i.e., “The future of Bitcoin isn’t really clear” [20].

Compared with machine learning-based sentiment analysis approaches, VADER
does not require any training data, or training, since a lexicon is already included [20].
Also, being entirely rule-based, VADER can rapidly process enormous quantities of text.
When using VADER through Natural Language Toolkit (NLTK) library in Python, it
is possible to customize the lexicon by adding additional tokens and valence values [50].
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3.3 Time series forecasting

3.3.1 Time series data

Time series data is an ordered sequence of data over some period of time; each row
representing a discrete point in time. In the following table 3.1, five sample rows from
a bitcoin price time series dataset are shown. Each row in the dataset describes various
characteristics of bitcoin’s price against the USD at a specific point in time, indicated
in the “Timestamp” column as a UNIX timestamp.

Timestamp Open High Low Close Volume_(BTC) Volume_(Currency) Weighted_Price

1385317920 831.00 831.69 830.00 830.00 17.443817 14484.402712 830.345922
1385317980 830.02 831.68 830.00 831.68 0.472665 392.713864 830.850613
1385318040 831.69 838.98 831.68 831.68 8.058825 6746.357068 837.139066
1385318100 830.01 830.01 829.83 830.00 9.255889 7682.377290 829.998856
1385318160 831.68 831.68 827.99 827.99 16.212175 13455.615370 829.969789

Table 3.1: Five sample rows from the BTC–USD dataset.

Time series components

Time series data can be decomposed into three distinct components [51]:

• Trend component: The trend component T represents long-term upward and
downward tendencies in the data,

• Seasonal component: The seasonal component S represents any seasonal
variation in the data that repeats at a regular frequency (daily, weekly, monthly,
quarterly, yearly, etc.), e.g. the sale data of sunscreen has a seasonal component
in that more sunscreen is sold during summer than winter months,

• Residual component: The residual (also known as irregular) component R
represents the remaining irregular residuals that are left after removing trend and
seasonal components.

Together, these three components can be used to model time series data y at period
t. The decomposition can be additive, as defined in equation 3.2, or multiplicative,
defined in equation 3.3 [51].

yt = Tt + St +Rt (3.2)
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yt = Tt × St ×Rt (3.3)

A multiplicative model, as shown in equation 3.3, can be transformed into an
additive model using logarithmic transformation, as shown in equation 3.4 [51].

yt = Tt × St ×Rt is equivalent to log yt = log Tt + logSt + logRt. (3.4)

It depends on the variation in the data, whether to choose an additive or mul-
tiplicative decomposition [51]. In the case of the price of bitcoin, the daily variations
in price are not constant and can change in orders of magnitude, suggesting that a
multiplicative decomposition should be used. A multiplicative time series decomposition
of the closing price of bitcoin was done using the statsmodels package for Python and
is shown in figure 3.1, showing the trend, seasonal, and residual components of the data.
The time series decomposition was done using the classical method, in which the trend
component T is calculated using a moving average [51].
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Figure 3.1: Multiplicative time series decomposition of the bitcoin closing price data. The insignificant
variation in the Seasonal component indicates that there is no strong seasonal influence on the price of
bitcoin.
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Stationarity

One property of time series data is its stationarity. A stationary time series data
does not exhibit an observable trend or seasonality, and the variation of the data
remains constant [51]. Some forecasting models, such as Vector Autoregression (VAR),
and Vector Autoregression Moving-Average (VARMA), require that the input data is
stationary [52].

Stationarity cannot always be clearly determined by eye, which is why various
tests have been developed to help objectively ascertain whether the data is stationary
or not [51]. The Augmented Dickey-Fuller (ADF) test is one such test. It determines
whether the trend in a time series is stochastic or deterministic. The null hypothesis in
the ADF test assumes that the data is non-stationary. If the p-value of the ADF test is
less than 0.05, the null hypothesis is rejected, and the data is assumed stationary.

It is possible to transform non-stationary time series data into stationary data
by applying differencing to the data. The first-order difference of a time series yt is
defined in equation 3.5.

Dyt = yt − yt−1 (3.5)

Differencing reduces trend and seasonality of a time series data by stabilizing its
mean, as the difference is computed between consecutive timesteps [51]. With financial
time series, e.g. price of a stock, the differenced data will describe returns (gain or loss),
instead of the price.

A differenced time series can also be transformed back into the original, un-
differenced time series by creating a vector y′, where the differenced time series {Dy}
is prepended by the initial value y0 in the original time series (equation 3.6). Original,
un-differenced values can now be restored by taking the cumulative sum of each element,
as shown in equation 3.7.

y′ = {y0, Dy0, Dy1, . . . , Dyt−1} (3.6)

yt[k] =
k∑

i=1
y′[i] (3.7)

Logarithmic differencing can also be used, as shown in equations 3.8, 3.9, and
3.10. Logarithmic differencing works only if all data points in the time series data are
positive.

logDyt = log yt − log yt−1 (3.8)
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log y′ = {y0, logDy0, logDy1, . . . , logDyt−1} (3.9)

yt[k] = e
∑k

i=1 log y′[i] (3.10)

The bitcoin closing price data is non-stationary, as it shows visible up and
downtrends over time (see Trend subplot in figure 3.1). Bitcoin closing price data is
shown before and after differencing in figure 3.2, along with p-values from the Augmented
Dickey-Fuller test.
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Figure 3.2: Non-stationary bitcoin closing price data, and the same data, now stationary, after
applying first-order differencing. The top right corner p-values are from the Augmented Dickey-Fuller
test.

3.3.2 Statistical models

Vector Autoregression (VAR)

Vector Autoregression (VAR) is a statistical time series model, originally proposed by
Christopher A. Sims, in a 1980 paper Macroeconomics and Reality [53]. VAR merges
multiple variables into a single vector yt, where t is the number of variables. The
principal feature of VAR is the order of the model. The order p represents the lag
value, i.e., how many steps back the model can see when making a future prediction.
For example, a VAR(5) model uses five previous time steps to predict the next time
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step. VAR requires all included variables to be stationary [52]. VAR(p) for t samples
and a sample size T is defined in equation 3.11,

yt = ν + A1yt−1 + · · ·+ Apyt−p + εt, (3.11)

where yt = (yt, . . . , ykt)′ is a t× 1 matrix of variables, ν is a t× 1 matrix of constants
for each variable, p is the order of the model, i.e., the lag, Ai is a k × k matrix of
coefficients for each lag, and εt = (εt, . . . , εkt)′ is the statistical error [54, 55].

The coefficients are estimated using a method of multivariate least squares [54].
By writing the VAR model in a compact matrix form as

Y = BZ + U, (3.12)

where Y is the y value matrix [y, . . . , yT ], B is the coefficient matrix [v,A1, . . . , Ap],
Z is the matrix [Z0, . . . , ZT−1], where Zi is a matrix of the values of y with a lag i, and
U is the error matrix [ε0, . . . , εT ], the coefficients can be estimated using the matrix
calculation described in equation 3.13 [54].

B̂ = Y ZT
(
ZZT

)−1
(3.13)

Vector Autoregression Moving–Average (VARMA)

Vector Autoregression Moving–Average (VARMA) is an extended version of the vector
autoregression (VAR) model. In VARMA, a moving average MA(q) component is
added to the VAR model. The order q in MA(q) specifies how many previous steps are
included in the calculation of the moving average. VARMA is defined in equation 3.14.

yt = ν + A1yt−1 + · · ·+ Apyt−p + ut +M1ut−1 + · · ·+Mqut−q, (3.14)

where A0, . . . , Ap are k× k matrices of coefficients for each lag, ut is the statistical
error term, andM0, . . . ,Mq are k×k matrices of moving averages [54]. When estimating
the coefficients of a VARMA model, maximum likelihood estimation is used, making it
computationally more complex than a VAR model [54]. As a result, VARMA models
can be time-consuming to fit with a large number of variables.

3.3.3 Tree-based machine learning models

Time series as a supervised learning problem

Time series data can be transformed into data that is compatible with supervised
learning models. To predict the value after n timesteps, both the target and feature
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columns need to be duplicated and delayed by n+ 1, n+ 2, . . . , k + n steps, where k
is the size of the lookback window. After such transformation, a single row will now
include columns that include previous values, delayed by at least n + 1 days. The
method is illustrated in figure 3.3.

a(n + 1) b(n + 1) a(n + 2)
. . . . . . . . .

. . .

. . .
b(k + n)

. . .
a

. . .
t

. . .
. . . . . . . . . . . . . . .. . .. . .
. . . . . . . . . . . . . . .. . .. . .

a
. . .

t
. . .

. . .. . .

. . .. . .

b
. . .
. . .
. . .

Figure 3.3: Transforming time series data into data that is compatible with supervised learning
models. t is the time column, a is the target variable, b is a feature variable. y(n) indicates a delay of
n time steps applied to column y. k is the size of the lookback window.

Random Forest

The Random Forest algorithm is an ensemble learning method that was originally
proposed in a 2001 paper by Leo Breiman [56]. It is a flexible algorithm that is suitable
for both regression and classification tasks [57]. The Random Forest algorithm has
shown to be performant in a large variety of classification tasks [58].

The training process is based on the tree bagging method, in which multiple
smaller decision trees are trained on small, randomly sampled subsets of the data, and
their predictions are aggregated, either by using a majority vote among the decision
trees or a local average, depending on the classification task [57]. The features used in
each decision tree split are randomized, and their importances are computed throughout
the training process [56]. A schematic of the Random Forest algorithm is shown in
figure 3.4.
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Figure 3.4: A schematic view of the Random Forest algorithm. Training data T is divided into
smaller subsets, from which decision trees T1 . . . Tk are created. The results R1 . . . Rk get aggregated,
and the final model is created.

The Random Forest algorithm has adjustable hyperparameters, which can be
modified to refine the performance of the model. Many parameters in the learning
process can be adjusted for the type of data that is being used. The number of decision
trees, and their depth, can be adjusted, as well as the number of randomly selected
features in the decision tree splits.

XGBoost and LightGBM

XGBoost is another decision tree-based model, originally presented in a 2016 paper
by Chen et al. [59]. Compared to Random Forests, which used tree bagging during
the training process, XGBoost leverages an iterative method called tree boosting. In
tree boosting, the training process consists of creating a sequence of decision trees, in
which each new decision tree focuses on improving the residuals of the previous ones
[60]. Each new decision tree is created so that it maximizes the fit of the residuals, or
gradients, of the previous trees, hence, boosting the gradient. In contrast to Random
Forests, XGBoost ranks each split point using a histogram-based method, which ranks
and chooses the best split point for each variable [61]. A schematic of the tree boosting
method is shown in figure 3.5.

LightGBM is another gradient-boosting decision tree model, first published in a
2017 paper by Ke et al. [62]. LightGBM introduces an efficient tree-splitting method
called Gradient-Based One-Side Sampling, which improves on the histogram-based
method by automatically discarding trees with low residuals, and instead focusing on
trees with higher gradients [62]. LightGBM also utilizes Exclusive Feature Bundling,
which increases the speed of training by combining mutually correlated features together
[62].
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Figure 3.5: A schematic view of the iterative tree boosting method. Each new iteration targets the
residuals of the previous trees, attempting to lower the preceding error.

3.3.4 Recurrent Neural Networks (RNN)

Recurrent neural networks are a family of neural networks that have the capability to
learn sequences of ordered data, such as time series, and natural language. Conventional
neural networks process each input individually and do not maintain any record of past
inputs. Recurrent neural networks maintain an internal state of previously processed
inputs, which allows the extraction of long-range patterns from sequentially ordered
data [63].

In a recurrent neural network, the input at time step t consists of xt, and ht−1,
the output of the previous time step. Both inputs have associated weight matrices,
Wx and Wh, for inputs xt and ht−1, respectively. The output ht is calculated using the
following equation

ht = σ (Wxxt +Whht−1 + bt) , (3.15)

where σ is an activation function (sigmoid, or other), and b is a constant bias
vector [64]. A simplified, unrolled schematic of a sequence–to–sequence recurrent neural
network is shown in figure 3.6.

A simple implementation of a recurrent neural network is susceptible to the
vanishing gradient problem. As the input passes through an increasing number of layers,
the gradients begin to disintegrate, resulting in smaller and smaller changes applied to
the weight matrices [64]. This can make the model untrainable, as it will never converge
to a satisfactory solution. Due to this limitation, a simple recurrent neural network is
capable of remembering only a few preceding time steps, making it unable to detect
any long-term patterns [64]. Several improved models have been proposed to tackle the
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issue of vanishing gradients, such as Long Short-Term Memory (LSTM), and Gated
Recurrent Unit (GRU).

x

h

Hidden layers

x

h

Hidden layers

x

h

Hidden layers. . . . . .

t – 1 t t + 1

t – 1 t t + 1

ht – 1 ht ht + 1

Figure 3.6: A schematic of an unrolled, recurrent neural network.

Long Short-Term Memory (LSTM)

Long Short-Term Memory (LSTM) is a recurrent neural network architecture, originally
proposed by Hochreiter and Schmidhuber in 1997 [65]. According to the authors, LSTM
is capable of retaining information across thousands of time steps. A schematic of an
LSTM cell is shown in figure 3.7.
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Figure 3.7: A diagram of an LSTM cell. ⊗ is elementwise matrix product, and⊕ is direct matrix
addition. [66]

LSTM was designed to solve the issue of vanishing gradients by adding a parallel,
long-term memory state c to the model. The data in the long-term memory is controlled
by three gates: forget, input, and output. The forget gate uses a sigmoid layer to
determine what data should be discarded from the long-term state (ft). The input gate
uses a sigmoid (it) and a hyperbolic tangent (c̃t) layer to determine what new data will
be added to the long-term state. Lastly, the output gate uses a sigmoid layer (ot) to
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determine what part of the long-term state c should be added to the current output ht.
[64]

The internal state of each component in an LSTM cell is calculated using the
following equations [64]:

ft = σ (Wfh
[ht−1] ,Wfx [xt] , bf )

it = σ (Wih
[ht−1] ,Wix [xt] , bi)

c̃t = tanh (Wch
[ht−1] ,Wcx [xt] , bc)

ct = ft ⊗ ct−1 + it ⊗ ct

ot = σ (Woh
[ht−1] ,Wox [xt] , bo)

ht = ot ⊗ tanh (ct)

With the added long-term state c, LSTM is better suited to recalling previously
encountered data than a simple recurrent network. During training, LSTM can learn
which features of the data should be stored in the long-term memory state. Important
features can be stored temporarily and extracted when needed, making it possible to
capture long-range dependencies that were previously impossible with simple recurrent
networks.

Gated Recurrent Unit (GRU)

Gated Recurrent Unit (GRU) is a recurrent neural network model, originally proposed
by Cho et al. in 2014 [67]. GRU differs from the existing LSTM architecture by using
only one state vector ht. In addition, GRU has no output gate. A schematic of a GRU
cell is shown in figure 3.8.

There are two gates in a GRU cell that are used to control the long-term data of
the model: update, and reset. The update gate uses a sigmoid layer (zt) to determine
how much of the past data should be added to the state vector. Based on the output of
zt, data is either stored or erased from the state vector using gates similar to those in
LSTM. The reset gate uses a sigmoid layer (rt) to determine how much of the previous
state should be shown to the main layer (h̃t). [67]

The internal state of each component in a GRU cell is calculated using the following
equations [69]:
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Figure 3.8: A diagram of a GRU cell. ⊗ is elementwise matrix product,⊕ is direct matrix addition.
[68]

ht = (1− zt)⊗ ht−1 + zt ⊗ h̃t

zt = σ (Wzh
[ht−1] ,Wzx [xt] , bz)

h̃t = tanh
(
Whh̃

[rt ⊗ ht−1] ,Whx [xt] , bh

)
rk = σ (Wrh

[ht−1] ,Wrx [xt] , br)

In a paper by Chung et al. [70], it was shown that in modeling of polyphonic
music and speech, GRU performs similarly to LSTM. In some cases, GRU was found to
converge faster, with better final results, especially with smaller sample sizes, although
according to the authors this may heavily depend on the type of data and the modeling
task, as no conclusive results could be obtained.
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4.1 Data

4.1.1 Twitter data

The standard Twitter search API allows searching for tweets published within the last
seven days; retrieval of older tweets requires an enterprise API account [71]. Due to the
limited time scope of this thesis, it was not feasible to carry out continuous scraping
for a prolonged period of time in order to gather a sufficient quantity of tweets. Thus,
it was decided best to use an existing tweet dataset. One such was found on Kaggle,
an online community pertaining to data science and machine learning practitioners,
offering over 50,000 public datasets for analysis [72]. The tweet dataset [73] comprises
of 17.7 million English language tweets containing the keyword “bitcoin”. The tweets
were collected between 1. August 2017 and 22. January 2019.

Each tweet was supplied with additional metadata. The description of the dataset
is shown in table 4.1 below.

column description
username Author’s Twitter username
date Date of publication
retweets Amount of retweets (shares) the tweet has received
favorites Amount of favorites (likes) the tweet has received
text Tweet text
geo Geographical information
mentions Mentions of other Twitter users in the Tweet
hashtags Hashtags used in the tweet
id Twitter’s ID of the Tweet
permalink URL to the tweet on twitter.com

Table 4.1: Tweet dataset description.
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4.1.2 Historical bitcoin price data

The historical BTC–USD price dataset was downloaded from Kaggle [74]. The price
data was acquired from Bitstamp, a cryptocurrency exchange. The data was collected
between January 2012 and March 2021 and was recorded at one-minute intervals. The
daily closing price of bitcoin (against USD) is shown in figure 4.1. The dataset is
described in table 4.2 below.
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Figure 4.1: The daily closing price of bitcoin between 1. August 2017 – 22. January 2019.

column description
Timestamp Start time of time window (1 minute), in UNIX time
Open Open price at the start of a time window
High High price within a time window
Low Low price within a time window
Close Close price at end of a time window
Volume_(BTC) The volume of BTC transacted in this window
Volume_(Currency) The volume of USD transacted in this window
Weighted_Price VWAP (volume-weighted average price)

Table 4.2: Price dataset description.

4.2 Tweet preprocessing

4.2.1 Sentiment analysis

The sentiment analysis of the tweets was carried out using VADER, a rule-based
sentiment analysis tool. As well as relying on its own lexicon, VADER also uses
additional lexical and syntactical heuristics to provide more accurate sentiment analysis.
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As a result, it was decided to not preprocess the tweets before carrying out the sentiment
analysis.

Expanding the lexicon

The default gold-standard lexicon in VADER contains 7,520 frequently used words or
terms used in everyday online discussions [49]. However, due to the inherent financial
nature of cryptocurrencies, much of the online discussions surrounding cryptocurrencies
can contain less common finance-related terms, such as bear, bull, bubble, and crash,
which have different meanings in everyday language. Furthermore, various online
communities discussing cryptocurrencies have developed their own slang with expressions
such as hodl, to the moon, and buy the dip, which can appear obscure to the uninitiated
[75].

By design, if VADER encounters a word that is not in its lexicon, it considers the
word to be neutral [49]. This can be a problem, when analyzing domain-specific text,
as many terms which carry significant sentiment, such as cyberattack, or shorting, can
appear neutral to the sentiment analyzer. This can cause the compound sentiment to
appear more neutral than it really is.

The lexicon of VADER can be expanded with additional tokens and their valence
values. The following additional lexicons were considered.

1. Master Dictionary by Loughran and McDonald. The Master Dictionary
by Loughran and McDonald is a lexicon geared toward financial applications
[76]. It contains 86,531 words, which have been categorized into eight sentiment
categories: negative, positive, uncertainty, litigious, strong modal, weak modal,
constraining, and complexity. The dictionary does not provide intensity values
for the tokens, but rather the frequencies, at which they appeared in the training
corpora.

Words belonging to the negative, positive, and uncertainty sentiment classes
were added to the sentiment analyzer. The valence scores were set to +1 for
positive words, −3 for negative words, and −1 for uncertain words. Words in the
uncertainty class included tokens such as possibly, rumors, and unidentified. Such
words could elicit doubt and suspicion in investors, which is why their valence
scores were set to slightly negative (−1).

2. Stock Lexicon by Oliveira et al. The Stock Lexicon by Oliveira et al. is
another finance-related lexicon, created by analyzing stock market discussion on
StockTwits and Twitter [24]. The Stock Lexicon contains 20,551 finance-related
tokens. Each token includes a sentiment score for positive and negative contexts.
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The authors use the word “explosive” as an example; usually, the word carries a
negative connotation, but it can also be interpreted positively in financial contexts
(e.g. “explosive rise”) [24]. The authors calculated the sentiment scores for each
token by combining several frequency-based metrics of the word in the training
corpus [24]. As a result, the sentiment scores have arbitrary upper and lower
ranges.

These sentiment scores were used as valence scores in the expanded lexicon. For
each token, the valence score was calculated by taking the arithmetic mean of
its positive and negative sentiment scores, after which the sentiment scores were
scaled to a range of [−4, 4], the valence range used by VADER, using the scaling
function 4.1 shown below.

f(si) =


si

max(s) × 4 if si > 0,
si

min(s) ×−4 if si < 0.
(4.1)

If the same token appeared in both the Master Dictionary by Loughran and
MacDonald, and Stock Lexicon by Oliveira et al., the valence score from the Stock
Lexicon was preferred, as it featured calculated sentiment scores, while the Master
Dictionary did not.

3. Cryptocurrency slang lexicon. As stated by Kraaijeveld et al.[21], compiling
an additional slang lexicon will help the sentiment analyzer assign sentiment to
sentences involving slang terms, that would otherwise be classified as neutral.
While both the Master Dictionary by Loughran and MacDonald, and the Stock
Lexicon by Oliveira et al., feature finance-related terms, they do not contain some
of the more obscure terms which are used prolifically in online cryptocurrency
discussions, such as hodl (from “hold”, i.e., urging people to refrain from selling),
or copium (a word meaning to cope with a grim situation). Therefore, a custom
cryptocurrency slang lexicon was manually compiled, based on the author’s own
knowledge, containing 59 slang terms that are often used in online cryptocurrency
discussions. The words were classified as positive or negative. Fixed valence scores
of +3 and −3 were used for positive and negative words, respectively.

The Pearson correlation values were calculated for the price and sentiment data.
Different combinations of additional lexicons were experimented with. It was established
that the combination of all three additional lexicons resulted in the best correlation
scores between the price and sentiment data. Some example sentences before and after
applying lexicon updates are shown in table 4.3 below.
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example sentence
compound score

default expanded lexicon

All signs point to a bitcoin bull run next year. 0 0.1113
The price of bitcoin took a tumble today. 0 -0.2019

Bitcoin is mooning; keep HODLing! 0 0.2642

Table 4.3: Three example sentences, along with their compound sentiment scores before and after
expanding the lexicon of the sentiment analyzer. The default lexicon in VADER is not geared towards
finance-related applications; as a result, all three sentences were classified as neutral. After expanding
the lexicon, VADER classified all three sentences as having either a positive or negative sentiment.

After performing sentiment analysis on the tweets, the tweet dataset was aug-
mented with new sentiment-based features, shown in table 4.4.

feature description

compound Mean compound sentiment of the tweet

pos
The proportion of positive/neutral/negative words out of
all words in the tweetneu

neg

Table 4.4: Additional features that were obtained using sentiment analysis.

4.2.2 Tweet filtering

The tweets in the original dataset represent a raw sample of Bitcoin discussions on
Twitter at that time, as they have not been filtered or processed in any way. Such
volume of data can be noisy, which can in turn make capturing overall sentiment difficult.
To limit the amount of background noise in the data, it is necessary to attempt to filter
tweets that add little or no value to the overall sentiment.

Filtering bots and spam

In a paper by Varol et al. [28], it is estimated that 9–15% of all Twitter users could
be bots, i.e. automated programs that interact on Twitter without direct human
involvement. In the cryptocurrency sphere, Nizzioli et al. [30] estimated that 56% of
tweets sharing invite links to cryptocurrency-related Telegram or Discord channels were
tweeted by bots or accounts that have since been suspended. Many of these channels
were either promoting cryptocurrency-related Ponzi schemes, or “pump–and–dump”
schemes, in which cooperating participants attempt to raise the price of a cryptocurrency
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by buying it (“pump”), thus inflating its price, and attracting broader interest among
other investors, only to sell it to them for a profit, causing the price to collapse (“dump”)
[30]. To increase the visibility and reach of these invite links, the tweets can contain
popular cryptocurrency-related keywords, such as “bitcoin” or “ethereum”. In the
tweet dataset, 184,741 tweets (1.0%) contained the keyword “telegram”, or a Telegram
channel invite URL (t.me). Similarly, 10,498 tweets (0.06%) in the dataset contained
the keyword “discord”.

The dataset also contained a significant amount of low-quality “spam” tweets
that included several popular hashtags, including #bitcoin, to increase their visibility.
Considering human sentiment, these tweets served no purpose.

The following attempts were made to filter out bots and spam tweets.

• Filter users with a large number of tweets. The tweet dataset contained
tweets collected between 1. August 2017 and 22. January 2019, a period of 540
days. Any user with more than 540 tweets in the dataset, i.e. more than 1 tweet
per day on average, was filtered, as there was a high probability that it was a
bot account. The unfiltered tweet dataset contained 17,739,629 tweets made by
1,517,940 unique accounts. Of these, 3,506 (0.002%) accounts had made more
than 540 tweets each. In total, these 3,506 accounts had produced 9.1 million
(51.4%) of the total 17.7 million tweets. The account with the highest tweet count
in the dataset had posted 134,434 Bitcoin-related tweets in the span of 540 days.

• Filter users that had made near-identical tweets. The tweets were processed
using a processing pipeline as described in figure 4.2. If there were multiple tweets
belonging to the same account that produced identical processed outputs, they
were likely written using a template, indicating either a “spammy” tweet, or a
bot. Accounts that had such tweets were filtered from the dataset.

• Filter tweets that contain several hashtags, mentions, or URLs. A spam
tweet would often include multiple hashtags and mentions to increase its visibility
and reach. In order to filter such tweets from the dataset, the length of the
original tweet was compared to the length of the processed tweet (see figure 4.2).
A threshold of 30% was set as the lower limit. Any processed tweets that were
less than 30% of the length of the original tweet were removed from the dataset,
as they were likely to contain many hashtags, mentions, or long external URLs,
indicating a tweet unsuited for sentiment analysis.

• Filter tweets that contain suspicious words. Any users that had tweeted
links containing Telegram or Discord invites were filtered. In addition, a tri-, and
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quad-gram search was performed on the tweets. The results were then aggregated,
revealing the most common three- and four-word substrings found in the tweets.
The 100 most common tri-, and quadgrams were manually evaluated, filtering any
suspicious entries. For example, one of the most common trigrams was “$btc $eth
$xrp”, most likely originating from template-based “stock ticker” tweets. One of
the most common quadgrams was “join the gym rewards”, referring to promotion
tweets for a now-defunct crypto token [77].

Remove ellipses

Remove hashtags

Remove mentions

Remove extra whitespace

Remove special characters

Remove stopwords

Original Tweet

Cleaned Tweet

Remove URLs
Input tweet:

#Blockchain - A Cheat Sheet... …https://www-techrepublic-
com.cdn.ampproject.org/c/s/www.techrepublic.com/google-amp/
article/blockchain-cheat-sheet/ … #cryptocurrencies #bitcoin 
#ethereum #BTC #eth #litecoin #ltc #blockchaintechnology #ripple 
#xrp #FinTech #AI #VR #cybersecurity #Technology HT: 
@ChuckDBrooks CC: @SpirosMargaris @ipfconline1 @evankirstel 
@blckchaindailypic.twitter.com/0zyRvNSUDr

Output tweet:

A Cheat Sheet HT CC

Figure 4.2: Tweet processing pipeline. On the right, a spam tweet is shown before (396† characters)
and after processing (19 characters).
†Although Twitter has a 280-character limit for tweets, URLs always count as 23 characters, despite their actual
length.[78]

Filtering unimportant tweets

amount of likes 0 1 2 3 4 5 or more

percentage of tweets 73.3% 13.7% 4.4% 2.1% 1.2% 5.3%

Table 4.5: Distribution of likes in the tweet dataset.
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The majority (73.3%) of the tweets in the dataset have received no likes from other
users, as can be seen in table 4.5. Such tweets may appear insignificant on their own,
but overall, they can add valueless background noise to the data, which may reduce
the captured sentiment. It can be said that a tweet that has received 100 likes is more
popular than a tweet that has received no likes. Furthermore, it can be assumed that
the more popular a tweet is, the more likely it is to be retweeted, reach other people,
and align with the popular sentiment. Therefore, a choice was made to focus only on
such popular tweets.

After filtering out potential bot and spam tweets using methods outlined in the
previous section, the dataset was aggregated to the frequency of one day. The sentiment
data was aggregated by calculating the arithmetic mean of sentiment scores across
all tweets over each 24-hour time window. Next, columnwise Pearson correlations
were calculated for the price and sentiment data. After experimenting with different
thresholds, it was discovered that excluding tweets with less than 40 likes produced
the best correlation coefficient values between the compound sentiment and price data.
The difference between the correlation coefficients of the full tweet dataset and the
filtered dataset in regard to the closing price is shown in table 4.6. The full columnwise
Pearson correlation matrix of the filtered dataset is shown in figure 4.3.

op
en

cl
os

e

lo
w

hi
gh

vo
lu

m
e_

bt
c

vo
lu

m
e_

cu
rr

en
cy

w
ei

gh
te

d_
pr

ic
e

co
m

po
un

d

ne
g

ne
u

po
s

to
ta

l_
vo

lu
m

e
open

close

low

high

volume_btc

volume_currency

weighted_price

compound

neg

neu

pos

total_volume

1 0.99 0.99 1 0.2 0.69 1 0.26 -0.036 -0.15 0.27 0.63

0.99 1 0.99 1 0.18 0.68 1 0.27 -0.053 -0.14 0.28 0.63

0.99 0.99 1 0.99 0.13 0.63 1 0.29 -0.059 -0.13 0.26 0.59

1 1 0.99 1 0.22 0.71 1 0.25 -0.038 -0.16 0.28 0.65

0.2 0.18 0.13 0.22 1 0.79 0.18 -0.33 0.09 -0.12 0.094 0.53

0.69 0.68 0.63 0.71 0.79 1 0.68 -0.081 0.048 -0.19 0.26 0.79

1 1 1 1 0.18 0.68 1 0.27 -0.046 -0.14 0.28 0.62

0.26 0.27 0.29 0.25 -0.33 -0.081 0.27 1 -0.075 -0.27 0.51 0.12

-0.036 -0.053 -0.059 -0.038 0.09 0.048 -0.046 -0.075 1 -0.8 0.28 0.25

-0.15 -0.14 -0.13 -0.16 -0.12 -0.19 -0.14 -0.27 -0.8 1 -0.81 -0.45

0.27 0.28 0.26 0.28 0.094 0.26 0.28 0.51 0.28 -0.81 1 0.47

0.63 0.63 0.59 0.65 0.53 0.79 0.62 0.12 0.25 -0.45 0.47 1 0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Figure 4.3: Columnwise Pearson correlation coefficients of the price and sentiment data. A coefficient
of 1 indicates a perfect correlation, a coefficient of 0 indicates no correlation, and a coefficient of −1
indicates a perfect inverse correlation.
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From the correlation matrix, we can observe that there exists a weak correlation
between the closing price and the compounded (0.27) and positive sentiment (0.28).
There is a moderate correlation (0.63) between the price and the total volume of tweets,
indicating that as the price of bitcoin increases, so does the Bitcoin-related discussion
on Twitter. The same phenomenon has also been noted by Twitter [6].

variable
correlation coefficient
full filtered

open 0.99 0.99
low 0.99 0.99
high 1.00 1.00
volume_btc 0.18 0.18
volume_currency 0.68 0.68
weighted_price 1.00 1.00
compound -0.02 0.27
neg 0.06 -0.05
neu -0.12 -0.14
pos 0.10 0.28
total_volume 0.66 0.63

Table 4.6: Correlation coefficients of the variables in the full and filtered datasets, in regard to the
closing price of bitcoin. From the table can be seen that the correlation coefficients of the mean
compound sentiment (compound), and the mean proportion of positive words in the tweets (pos)
increased significantly (−0.02→ 0.27, and 0.10→ 0.28, respectively), after focusing only on popular
tweets.

The final, filtered tweet dataset contained 107,591 tweets, 0.6% of the original dataset.

4.3 Validation

To get a good sense of the forecasting capabilities of each model, several prediction
lengths were considered. All models were trained to predict the price of bitcoin for the
next 1, 3, 5, and 7 days.

4.3.1 Time series validation

To assess whether the models can predict the price in varying market conditions, all
models were evaluated using a validation method shown in figure 4.4. Ten random
dates between 5. September 2018 and 15. January 2019 were selected from a discrete
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uniform distribution, giving each split at least 400 historical data points for training.
Each randomly selected date functioned as a split between the training and testing data.
In each split, seven different time series forecasting models (VAR, VARMA, Random
Forest, XGBoost, LightGBM, LSTM, and GRU) were used to predict the closing price
of bitcoin for the next 1, 3, 5, and 7 days, based on previous historical data up to the
split point. The training data was used to train the model, and the testing data was
used to measure the accuracy of the predictions, reflecting a real-life situation where the
model must predict a future, unseen price. All models produced out-of-sample forecasts
of the future price, and the respective test errors of each model were averaged for each
split and prediction length, resulting in an average validation error for each prediction
length for all prediction methods.
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Figure 4.4: Time series validation with ten randomly selected splits.

4.3.2 Evaluation metrics

The models were evaluated using three evaluation metrics: Mean Squared Error (MSE),
Root Mean Squared Error (RMSE), and Mean Absolute Percentage Error (MAPE).
The error Ei is defined as the difference between the real value of the closing price yi

and the predicted value of the closing price xi, where i is the index of the prediction
among n samples.

Ei = yi − xi. (4.2)

Mean Squared Error measures the arithmetic average of the squares of the errors.
Due to the squaring, errors are penalized more heavily. The formula for MSE is shown
in equation 4.3.

MSE =
∑n

i=1 E
2
i

n
. (4.3)
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Root Mean Squared Error is the square root of MSE. RMSE is easier to interpret,
as the error is on the same scale as the predicted variable. The formula for RMSE is
shown in equation 4.4.

RMSE =
√
MSE =

√∑n
i=1 E

2
i

n
. (4.4)

Mean Absolute Percentage Error measures the average absolute percentage error
of the predictions. The formula for MAPE is shown in equation 4.5.

MAPE = 100
n

n∑
i=1

∣∣∣∣∣Ei

yi

∣∣∣∣∣ . (4.5)

To calculate accuracy, precision, and recall of the predictions, each predicted
timestep was also categorized as follows:

yi, xi =



True Positive (TP) if (yi > yi−1) & (xi > xi−1),

True Negative (TN) if (yi < yi−1) & (xi < xi−1),

False Positive (FP) if (yi < yi−1) & (xi > xi−1),

False Negative (FN) if (yi > yi−1) & (xi < xi−1).

The formulas for accuracy, precision, and recall are shown below.

Accuracy = TP + TN
TP + TN + FP + FN (4.6)

Precision = TP
TP + FP . (4.7)

Recall = TP
TP + FN . (4.8)

Lastly, a trend score was also calculated. If in the last predicted timestep both
the predicted price and actual price are higher than the last known value in the training
data, the model has successfully predicted an upward trend in price. Similarly, if both
prices are lower than the last known price, the model has predicted a downward trend
in price.

4.4 Forecasting

4.4.1 Feature Selection

After applying sentiment analysis to the tweets, the dataset is now completed. The full
dataset is described in table 4.7 below.
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feature description

open Opening price at the start of the day
close Closing price at the end of the day
low The lowest price during the day
high The highest price during the day
volume_btc Volume of BTC transacted during the day
volume_currency Volume of USD transacted during the day
weighted_price Volume-weighted average price
compound Mean compound sentiment of the day

pos
Mean proportion of positive/neutral/negative words in
all tweets categorized that dayneu

neg

total_volume Total number of tweets in the dataset for the day

Table 4.7: Features of the completed dataset.

As shown in figure 4.3, many features in the dataset have a near-perfect correlation
with each other. For example, the opening, high, low, closing, and weighted prices
correlate perfectly with each other (0.99–1.00). Having almost identical features in the
feature set adds unnecessary overhead and lengthens the training time [79]. Similarly,
including features with low correlation offers trivial benefit for the model. Therefore, a
feature selection was performed, favoring features with a higher correlation with the
target variable, that is, the closing price. Four features were selected, and they are
described in table 4.8.

set feature description

Baseline volume_currency Volume of USD transacted during the day

Sentiment compound Mean compound sentiment of the day
pos Mean proportion of positive words in the tweets that day
total_volume Total number of tweets in the dataset for the day

Table 4.8: Final features after feature selection.

To investigate, whether the Twitter sentiment can be a useful feature for predicting
future bitcoin prices, two sets of features were used for each training configuration. In
the baseline predictions, only the USD volume was used as an explanatory variable for
the closing price. In sentiment-based predictions, a larger feature set was used, which
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included the USD volume and three additional sentiment-based explanatory values:
compound sentiment, proportion of positive words in the tweets, and the total number
of tweets.

For each model, the future closing price of bitcoin was predicted on ten randomly
selected days. The random days were generated once and remained the same for all
models. For each selected day, the closing price of bitcoin was predicted for the next
1, 3, 5, and 7 days with all models. A sample 3-day prediction is shown in figure 4.5,
showing the predictions of all models.
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Figure 4.5: A sample prediction, showing all seven models predicting the price of bitcoin for the next
3 days. These predictions were done using the augmented feature set.

4.4.2 VAR

The VAR models were implemented using the statsmodels library for Python. As
VAR requires stationarity for all variables, the variables in the dataset were tested
for stationarity using the Augmented Dickey-Fuller test, results of which are shown in
table 4.9. Subsequently, all non-stationary variables were transformed into stationary
variables using logarithmic first-order differencing.
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feature p -value result

close 0.347 Non-stationary
volume_currency 0.536 Non-stationary
compound 0.064 Non-stationary
pos 0.084 Non-stationary
total_volume 0.110 Non-stationary

Table 4.9: The results of the Augmented Dickey-Fuller test applied to the variables.

With VAR, there is a tradeoff to be made between the number of variables, and
the maximum order of the model, as setting either value too high can make the model
too large to estimate, due to the excessive number of equations. The best results were
achieved by setting the maximum lag order p to 14. The optimal order for each model
was chosen during fitting, using the Akaike information criterion (AIC), which estimates
the optimal order of the model.

The mean prediction scores for VAR models are shown in table 4.10 below.

days method rmse mse mape accuracy recall precision trend

1
Baseline 112.48 18493.53 0.0237 0.3000 0.5000 0.4286 0.3
Sentiment 98.36 13199.57 0.0227 0.1000 0.0000 0.0000 0.1

3
Baseline 169.40 32281.60 0.0341 0.5001 0.6000 0.5556 0.1
Sentiment 144.21 23531.97 0.0303 0.3665 0.4500 0.4166 0.5

5
Baseline 172.07 33205.06 0.0339 0.5000 0.4333 0.5557 0.6
Sentiment 166.93 34213.29 0.0322 0.4000 0.4000 0.3958 0.5

7
Baseline 198.49 45953.52 0.0395 0.5285 0.4917 0.5018 0.4
Sentiment 186.05 46186.04 0.0362 0.4003 0.3916 0.3333 0.5

Table 4.10: Mean prediction scores for VAR.

On average, the sentiment-based VAR model performs better than the baseline
VAR in all prediction lengths. It can also be seen that the prediction error increases as
the prediction length grows, which is to be expected. As for predicting upward and
downward trends, VAR performed poorly, especially with 1-day predictions.

4.4.3 VARMA

The VARMA model was implemented using the statsmodels library for Python. As
VARMA is computationally very costly to fit on higher orders, p and q were set to 7 and
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3, respectively. As with VAR, VARMA also requires stationarity for all variables; all
non-stationary variables were made stationary using logarithmic first-order differencing.

The mean prediction scores for VARMA models are shown in table 4.11 below.

days method rmse mse mape accuracy recall precision trend

1
Baseline 103.33 15439.64 0.0241 0.3000 0.1667 0.3333 0.3
Sentiment 88.54 9819.59 0.0195 0.1000 0.1667 0.2000 0.1

3
Baseline 151.95 25989.17 0.0314 0.4998 0.5500 0.6041 0.5
Sentiment 139.27 23066.89 0.0279 0.4667 0.6500 0.5666 0.3

5
Baseline 173.18 36422.31 0.0337 0.4800 0.5001 0.4722 0.5
Sentiment 170.72 32640.43 0.0328 0.4200 0.5667 0.4250 0.3

7
Baseline 191.65 48115.13 0.0372 0.4716 0.4916 0.4316 0.6
Sentiment 195.66 45254.47 0.0374 0.4145 0.5500 0.4183 0.5

Table 4.11: Mean prediction scores for VARMA.

The sentiment-based VARMA model performs noticeably better than the baseline
model in 1-day and 3-day predictions. VARMA performs similarly to VAR, being
slightly better for 1-day and 3-day predictions, suggesting that adding a moving average
component to the model improves the forecasting results in short-term predictions. In
7-day predictions, the sentiment-based VARMA models performed slightly poorer on
average than the baseline models. The reason for this might be in the selected p and q
values, which were set to low values to keep the fitting time at a manageable duration.
Perhaps with 7-day predictions, higher p and q values could improve the error scores of
the sentiment-based models, as more historical sentiment data would be available to
the model. Unfortunately, this could not be investigated further at this time, as out of
all the models tested, VARMA models were already taking the longest time to fit.

Like VAR, VARMA also performed poorly for predicting downward and upward
trends on 1-day predictions.

4.4.4 Random Forest

The Random Forest model was implemented using the scikit-learn library for Python.
In contrast to VAR and VARMA, there are no strict requirements regarding the station-
arity of the input data that has been transformed using the method described in section
3.3.3. During testing of the models, however, it was established that using non-stationary
data during the training process resulted in consistently poorer prediction results when
compared to tests done with stationary data. Therefore, all non-stationary variables
were transformed into stationary variables using logarithmic first-order differencing.
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The size of the lookback window was set to 30 days. Higher lookback window values,
such as 60 or 90 days, did not result in better prediction results.

The number of estimators was set to 1000, and the maximum number of features
was set to

√
n, where n is the total number of features. The time series data was

transformed using the method described in section 3.3.3.
The mean prediction scores for Random Forest models are shown in table 4.12

below.

days method rmse mse mape accuracy recall precision trend

1
Baseline 74.47 8286.71 0.0176 0.4000 0.5000 0.5000 0.4
Sentiment 46.23 2963.45 0.0112 0.8000 0.6667 1.0000 0.8

3
Baseline 127.10 20400.68 0.0253 0.3667 0.4000 0.3667 0.6
Sentiment 110.58 17430.71 0.0216 0.4332 0.4000 0.4074 0.8

5
Baseline 176.20 35922.89 0.0328 0.5600 0.5167 0.6111 0.3
Sentiment 156.60 26966.42 0.0280 0.5400 0.5500 0.5167 0.3

7
Baseline 220.15 55417.49 0.0424 0.3715 0.3583 0.3519 0.2
Sentiment 218.56 52448.64 0.0418 0.5713 0.5416 0.6001 0.5

Table 4.12: Mean prediction scores for Random Forest.

The sentiment-based Random Forest models outperform the baseline models in all
prediction lengths. When compared to VAR and VARMA, Random Forest outperforms
them in 1-day, 3-day, and 5-day predictions. Sentiment-based Random Forest models
had the lowest average RMSE among all 1-day and 3-day predictions (46.23, 110.58).
Sentiment-based Random Forest models also performed well in predicting downward
and upward price trends in 1-day, and 3-day predictions, with an 80% success rate in
both groups.

4.4.5 XGBoost

The XGBoost model was implemented using the xgboost library for Python. Similar
to the Random Forest models, XGBoost models performed significantly better with
stationary data. All non-stationary variables were transformed into stationary variables
using logarithmic first-order differencing. During testing of the models, a lookback
window of 30 days produced satisfactory results; higher values did not result in better
predictions. The number of estimators was set to 500, and the learning rate to 0.01.
The maximum tree depth was set to 5.

The mean prediction scores for XGBoost models are shown in table 4.13 below.
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days method rmse mse mape accuracy recall precision trend

1
Baseline 78.87 9094.80 0.0178 0.4000 0.6667 0.5000 0.4
Sentiment 72.94 6344.49 0.0153 0.6000 0.5000 0.7500 0.6

3
Baseline 205.74 54305.60 0.0363 0.3666 0.5500 0.4000 0.7
Sentiment 123.21 21141.95 0.0227 0.4333 0.4000 0.3834 0.6

5
Baseline 244.52 76990.66 0.0423 0.4200 0.5167 0.4683 0.3
Sentiment 165.09 36378.45 0.0310 0.5000 0.5668 0.5001 0.3

7
Baseline 288.25 106001.57 0.0488 0.4285 0.5750 0.4384 0.3
Sentiment 234.74 66233.60 0.0443 0.4714 0.6251 0.4950 0.4

Table 4.13: Mean prediction scores for XGBoost.

On average, sentiment-based XGBoost models perform noticeably better than
the baseline models in all prediction lengths. The difference is more prominent than
in Random Forest models. The mean RMSE of the baseline models was 205.74, and
244.52, for 3-day, and 5-predictions. For sentiment-based models the RMSEs were 123.21
(40.1% decrease), and 165.09 (32.5% decrease), respectively. Compared to Random
Forest, XGBoost performs worse on average. However, for 1-day, 3-day, and 5-day
predictions, XGBoost performs better than VAR and VARMA.

XGBoost performed slightly below Random Forest in predicting the upward and
downward trends in 1-day and 3-day predictions.

4.4.6 LightGBM

The LightGBM model was implemented using the lightgbm library for Python. As
with Random Forest and XGBoost, logarithmically differenced stationary data yielded
consistently better results with LightGBM as well. The size of the lookback window
was set to 30 days. After hyperparameter testing, the number of estimators was set to
500, the learning rate to 0.001, and the maximum depth of a tree to 5.

The mean prediction scores for LightGBM models are shown in table 4.14 below.
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days method rmse mse mape accuracy recall precision trend

1
Baseline 71.37 6899.81 0.0166 0.3000 0.1667 0.3333 0.3

Sentiment 62.62 6264.31 0.0146 0.3000 0.1667 0.3333 0.3

3
Baseline 120.85 20196.31 0.0238 0.3667 0.3000 0.3333 0.4

Sentiment 113.92 17654.84 0.0220 0.3333 0.3000 0.2593 0.6

5
Baseline 165.65 32002.02 0.0306 0.4400 0.4667 0.4233 0.2

Sentiment 149.16 26977.35 0.0276 0.4000 0.3500 0.3666 0.4

7
Baseline 190.71 43642.27 0.0366 0.4857 0.4334 0.4033 0.3

Sentiment 181.16 39698.35 0.0348 0.5285 0.5499 0.5083 0.2

Table 4.14: Mean prediction scores for LightGBM.

The sentiment-based LightGBM models perform better than the baseline models
in all prediction lengths. LightGBM performs better than XGBoost, which can be
expected, as LightGBM was proposed as an improvement upon XGBoost. LightGBM
performed the best out of all models in 5-day and 7-day predictions. However, LightGBM
did not perform as well as Random Forest for predicting price trends.

4.4.7 LSTM & GRU

Both the LSTM and GRU models were implemented using the Keras library for Python.
A schematic of the models is shown in figure 4.6.

GRU Input Layer
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Dense

LSTM Input Layer
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Figure 4.6: Schematics of the LSTM and GRU models that were used in predictions.

A single layer with 8 neurons produced the best results for both models. Adding
additional layers, or increasing the neuron count resulted in consistently poorer pre-
dictions. The best batch size was found to be 32. Instead of differencing, all data
columns were normalized between a range of [0 . . . 1], using a MinMax scaler, to expedite
convergence.
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The lookback window k was set to 50 days. Neither increasing nor decreasing k
resulted in significant changes to the prediction performance. The network was set up
as a sequence-to-sequence model, i.e. for each batch, the model predicted the next n
steps, n being the prediction length. For each prediction, the original training data was
partitioned into smaller training batches of size k + n. A simplified schematic showing
partitioning for n = 3 predictions is shown in figure 4.7.
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Figure 4.7: A simplified schematic showing training data partitioning for 3-day predictions.

Both models were compiled with an Adam gradient optimizer and Mean Absolute
Error (MAE) as a loss function. The learning rate of the Adam optimizer was set to
0.01. 5% of the training batches were used for validation during training. The maximum
training amount was set to 300 epochs, with the early stop feature enabled.

The mean prediction scores are shown in tables 4.15 and 4.16, for LSTM and
GRU, respectively.

days method rmse mse mape accuracy recall precision trend

1
Baseline 125.01 21711.92 0.029 0.500 0.500 0.600 0.5
Sentiment 131.33 25675.00 0.030 0.400 0.500 0.500 0.4

3
Baseline 191.79 45100.02 0.037 0.367 0.350 0.317 0.7
Sentiment 192.11 47655.96 0.041 0.433 0.550 0.483 0.3

5
Baseline 208.34 51467.38 0.041 0.560 0.617 0.625 0.7
Sentiment 277.53 88910.57 0.057 0.460 0.517 0.442 0.6

7
Baseline 285.66 105100.59 0.055 0.557 0.592 0.565 0.6
Sentiment 532.22 462666.05 0.118 0.500 0.492 0.530 0.3

Table 4.15: Mean prediction scores for LSTM.
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days method rmse mse mape accuracy recall precision trend

1
Baseline 87.10 14322.28 0.0220 0.600 0.333 1.000 0.6
Sentiment 144.61 30764.41 0.0344 0.700 0.667 0.800 0.7

3
Baseline 145.67 24874.36 0.0281 0.600 0.750 0.550 0.5
Sentiment 221.02 57031.16 0.0420 0.400 0.450 0.400 0.6

5
Baseline 241.01 79991.34 0.0482 0.520 0.517 0.518 0.5
Sentiment 294.54 101811.09 0.0579 0.560 0.667 0.607 0.7

7
Baseline 272.98 110469.70 0.0589 0.486 0.525 0.512 0.8
Sentiment 397.96 246997.36 0.0848 0.386 0.583 0.385 0.6

Table 4.16: Mean prediction scores for GRU.

From the results can be seen that both models perform better with the baseline
features only. Adding sentiment-based features resulted in considerably poorer scores.
This is counter to previous results with other models. In addition, in both LSTM and
GRU, all error metrics (RMSE, MSE, and MAPE), were significantly higher than in
all earlier non-RNN models. Considering that neural networks represent the “state of
the art” in current machine learning methods, these results appear perplexing. Despite
extensive testing with different hyperparameters, lookback window sizes, and features,
the performance could not be improved from these results.

The amount of available training data could be one reason behind the inferior
performance of RNNs in these prediction tasks. RNNs are capable of making long-range
connections between thousands of timesteps, but the available amount of training data,
in this case, was limited to approximately 400–500 days, depending on the split point.
Perhaps with more training data, the prediction results could be improved.

To test the plausibility of this idea, four identical 10-split time series validations
were executed. In each round, the training data was progressively truncated from the
beginning. In the first round, 20% of the training data was cut from the beginning, and
in the last, 80%. The results of the mean RMSE scores are plotted in figure 4.8.
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Figure 4.8: Mean RMSE scores of progressively truncated training data. Labels on the x-axis
represent the amount of data that was cut from the beginning.

As can be seen from figure 4.8, there is a propensity for the error to grow when
the amount of training data is decreased. The effect becomes especially noticeable
with the full sentiment-based feature set. With the baseline dataset, the effect is less
pronounced. While these results are insufficient to draw wider conclusions, it can be
said that the amount of training data can have a significant effect on the prediction
results. Perhaps with a larger training dataset, RNNs could approach the results of
statistical and tree-based methods.
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4.5 Summary of sentiment-based results

Below are the summarized results of all sentiment-based models in 1-day, 3-day, 5-day,
and 7-day predictions.

4.5.1 1-day predictions

The average errors (RMSE, MSE, and MAPE) of all sentiment-based models have been
plotted in figure 4.9. Detailed results are in table 4.17.
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Figure 4.9: Average 1-day prediction errors of all sentiment-based models.

model rmse mse mape accuracy recall precision trend

VAR 98.36 13199.57 0.0227 0.1000 0.0000 0.0000 0.1
VARMA 88.54 9819.59 0.0195 0.1000 0.1667 0.2000 0.1

Random Forest 46.23 2963.45 0.0112 0.8000 0.6667 1.0000 0.8
XGBoost 72.94 6344.49 0.0153 0.6000 0.5000 0.7500 0.6
LightGBM 62.62 6264.31 0.0146 0.3000 0.1667 0.3333 0.3
LSTM 131.33 25675.00 0.030 0.400 0.500 0.500 0.4
GRU 144.61 30764.41 0.0344 0.700 0.667 0.800 0.7

Table 4.17: Mean 1-day prediction scores for all sentiment-based models.

For 1-day predictions, Random Forest models had the lowest average RMSE,
MSE, and MAPE scores (46.23, 2963.45, and 0.0112, respectively). It was also the
best model for predicting, whether the price would go up or down (80% accuracy).
All tree-based models performed significantly better than statistical models (VAR and
VARMA). LSTM and GRU models performed noticeably poorer than other models.
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4.5.2 3-day predictions

Summarized results for 3-day sentiment-based predictions are shown in figure 4.10, and
in table 4.18 below.
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Figure 4.10: Average 3-day prediction errors of all sentiment-based models.

model rmse mse mape accuracy recall precision trend

VAR 144.21 23531.97 0.0303 0.3665 0.4500 0.4166 0.5
VARMA 139.27 23066.89 0.0279 0.4667 0.6500 0.5666 0.3

Random Forest 110.58 17430.71 0.0216 0.4332 0.4000 0.4074 0.8
XGBoost 123.21 21141.95 0.0227 0.4333 0.4000 0.3834 0.6
LightGBM 113.92 17654.84 0.0220 0.3333 0.3000 0.2593 0.6
LSTM 192.11 47655.96 0.041 0.433 0.550 0.483 0.3
GRU 221.02 57031.16 0.0420 0.400 0.450 0.400 0.6

Table 4.18: Mean 3-day prediction scores for all sentiment-based models.

For 3-day predictions, Random Forest had the best overall performance in terms of
RMSE, MSE, and MAPE (110.58, 17430.71, and 0.0216, respectively). Random Forest
was also the best model for predicting the trend of the price (80% accuracy). Tree-based
models performed noticeably better than statistical models in 3-day predictions as well.
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4.5.3 5-day predictions

The results for 5-day sentiment-based predictions are shown in figure 4.11 and table
4.19.
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Figure 4.11: Average 5-day prediction errors of all sentiment-based models.

model rmse mse mape accuracy recall precision trend

VAR 166.93 34213.29 0.0322 0.4000 0.4000 0.3958 0.5
VARMA 170.72 32640.43 0.0328 0.4200 0.5667 0.4250 0.3

Random Forest 156.60 26966.42 0.0280 0.5400 0.5500 0.5167 0.3
XGBoost 165.09 36378.45 0.0310 0.5000 0.5668 0.5001 0.3

LightGBM 149.16 26977.35 0.0276 0.4000 0.3500 0.3666 0.4
LSTM 277.53 88910.57 0.057 0.460 0.517 0.442 0.6
GRU 294.54 101811.09 0.0579 0.560 0.667 0.607 0.7

Table 4.19: Mean 5-day prediction scores for all sentiment-based models.

For 5-day predictions, LightGBM had the lowest RMSE, and MAPE scores
(149.16, and 0.0276, respectively). Random Forest had a slightly lower MSE at 26966.42,
suggesting that some 5-day predictions of the LightGBM model had comparatively
larger errors than those of the Random Forest model. As a result, the mean MSE of
the Random Forest model was marginally lower. The trend was predicted poorly by all
models when compared to 1-day and 3-day predictions.
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4.5.4 7-day predictions

The results for 7-day sentiment-based predictions are shown in figure 4.12 and table
4.20.
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Figure 4.12: Average 7-day prediction errors of all sentiment-based models.

model rmse mse mape accuracy recall precision trend

VAR 186.05 46186.04 0.0362 0.4003 0.3916 0.3333 0.5
VARMA 195.66 45254.47 0.0374 0.4145 0.5500 0.4183 0.5

Random Forest 218.56 52448.64 0.0418 0.5713 0.5416 0.6001 0.5
XGBoost 234.74 66233.60 0.0443 0.4714 0.6251 0.4950 0.4

LightGBM 181.16 39698.35 0.0348 0.5285 0.5499 0.5083 0.2
LSTM 532.22 462666.05 0.118 0.500 0.492 0.530 0.3
GRU 397.96 246997.36 0.0848 0.386 0.583 0.385 0.6

Table 4.20: Mean 7-day prediction scores for all sentiment-based models.

Overall, LightGBM had the best performance in 7-day predictions, with VAR
being a close second. In 7-day predictions, statistical models performed significantly
better than Random Forest and XGBoost. The MSE of the RNNs, especially LSTM,
is an order of magnitude larger than those of other models in 7-day predictions. The
longer the prediction, the more erratically RNNs seem to behave.
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5.1 Conclusions

This work investigated whether the Twitter sentiment of popular Bitcoin-related tweets
can be a useful feature in predicting the future price of bitcoin. Furthermore, various
multivariate time series forecasting methods were compared, including statistical, tree-
based, and neural network models. It was demonstrated that compared to the baseline
OHLC price data, sentiment-based features decreased the error of predictions in virtually
all models and prediction lengths tested, excluding the RNN-based models, where the
effect was the opposite.

Tree-based models (Random Forest, XGBoost, LightGBM) performed consistently
better than statistical models (VAR, VARMA) in 1-day, 3-day, and 5-day predictions.
All statistical and tree-based models performed significantly better than the neural net
models. The Random Forest performed the best in 1-day and 3-day predictions, while
LightGBM had the best performance in 5-day and 7-day predictions. In 5-day and 7-day
predictions, the models started to become increasingly inaccurate. Predicting upward or
downward price movements worked the best with Random Forest and XGBoost models,
and in shorter intervals (1-day and 3-day predictions). However, as a whole, the trend
prediction was unreliable.

Overall, RNNs performed poorly when compared to statistical and tree-based
models. A probable explanation for this is that the amount of available training data
was insufficient, as deep learning models are more efficient with larger datasets. It can
therefore be suggested that with smaller training sets, tree-based models may be a
better choice than neural nets for this kind of application.

5.2 Limitations

As was mentioned earlier, the inferior performance of RNNs was perhaps partly due
to the small size of the training dataset. It is reasonable to assume that with a larger,
multi-year dataset, RNNs could eventually leverage their capability of making long-term
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connections in the data, and produce similar or even better results than the statistical
and tree-based models. Unfortunately, the restrictions placed on the Twitter API make
gathering historical tweets exceedingly difficult.

One inherent limitation of studies like this is that there is rarely any information
on how the models perform in the real markets. What may work in a controlled setting
may not work at all in the real world. On the other hand, evaluating performance in
the real world would require developing an algorithmic trading robot, which is a whole
topic unto itself.

5.3 Future work

This work could be extended by adding more historical data and exploring additional
explanatory variables and their combinations. Instead of Twitter, sentiment could be
extracted from other social media platforms, such as StockTwits, or Reddit. Sentiment
data could also be augmented with other topical information, such as Google search
trends, Wikipedia page views, or news headlines about bitcoin. Exploring the price
prediction of other cryptocurrencies would also be a fascinating topic. While bitcoin
may be the most popular cryptocurrency right now, other popular contenders have
emerged in recent years, with expanded technological capabilities, such as Ethereum.

Predicting the future price movements of a highly volatile asset remains a chal-
lenging task. Markets can act quickly and irrationally, and due to the potential rewards,
there is no shortage of competition. François Chollet, the creator of the Keras library
wrote that successful trading amounts to “information arbitraging: exploiting a piece
of information others don’t know” [80]. In situations like this, even a small edge over
the majority can prove valuable. That is, at least until other people find it as well.
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