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Abstract
Expanded porphyrins, porphyrinoids, porphycenes and N-doped nanographenes are multi-

ring molecules whose aromaticity cannot be easily predicted based on NMR chemical

shifts. The magnetically induced current-density susceptibility and the ring-current path-

ways have been elucidated for these molecules at ab initio and density functional theory

(DFT) levels using the gauge including magnetically induced current (GIMIC) method.

Calculations showed that the lowest electronic transition of the antiaromatic molecules

are purely magnetic transitions which is also the main reason why these molecules sus-

tain large net paratropic ring currents.

The photophysical properties of expanded porphyrins, acenes and pyrene have also been

studied using quantum mechanical methods. The absorption spectrum including vibra-

tional bands of the acenes and pyrene were simulated and compared with those obtained

in high-resolution measurements of the absorption spectra in the visible range. The vibra-

tional contributions to the absorption spectra were obtained by using a time-generating

function approach, which is computationally faster than alternative approaches. The 0-0

transition energies of acenes and pyrene are reported. Various vibrational modes con-

tributing to the vibrational fine structure of these molecules have been identified. The

quantum yield of luminescence was determined for the expanded porphyrins by calculat-

ing rate constants for radiative and non-radiative transitions between excited electronic

states and the ground state.
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2 1 Introduction

1 Introduction

The interaction of light with molecules can result in transfer of the photon energy to the

electrons of the molecules. The light absorption leads to an excitation of electrons in the

molecule to a higher energy state. Since each electronic state has its own unique vibra-

tional energy levels, this results in a fine structure of the absorption band. At ambient

conditions, the excitation from the ground energy state occurs from the lowest vibrational

energy level. The transition probability from the lower energy state to a vibrational energy

level of the higher electronic energy state depends to first order on the shape of the po-

tential energy surface of the excited state and the overlap of the vibrational wavefunction

of the two states. Experimentally, this is observed as a fine structure in high-resolution

electronic absorption spectra.

Nowadays, simulating absorption spectra of molecules including fine details, such as

the coupling between the nuclear and electronic degrees of freedom, and changes in the

molecular structure of excited states is an active field of research.1–6 These studies com-

prise computing vertical excitation energies combined with molecular dynamics (MD)

simulations, computing vertical excitation energies and combining them with the calcula-

tions of individual Franck-Condon factors between the involved vibrational levels.1,7–10

The development of time-dependent density functional theory (TDDFT) methods has

provided a powerful tool, which chemists can use in calculating vertical excitation ener-

gies of molecules. This approach can be used for estimating the band maximum of the

absorption spectrum, which provides a first estimate for the energy of the electronic transi-

tion.11–14 Even though this approach yields a crude approximation, it is often used because

it is computationally cheaper than more accurate approaches. However, fine details about

the vibrational structure of the molecule, which can be deduced from the recorded spec-

trum are lost. In this thesis, absorption spectra of the molecules have been simulated using

the RADLESS module of the TURBOMOLE program package.4,15 The RADLESS mod-

ule calculates the vibrational contributions to the absorption band using a time-generating

function instead of computing individual Franck-Condon factors.

Aromaticity is one of the most vague concepts in chemistry. Since the discovery of

benzene by Kekulé,16 chemists have been intrigued by the concept. Aromaticity is cur-

rently an active research area.17–20 Understanding molecular aromaticity provides useful

information about the electronic structure of the molecule and the electron delocalization

pathways.21–23 Several criteria are used for defining the extent of molecular aromatic-

ity.24–30 One of the often used method to determine the degree of aromaticity is based

on the strength of the ring current, which is determined indirectly by calculating mag-

netic shielding constants or by measuring NMR chemical shifts. The gauge including

magnetically induced current (GIMIC) approach used in this thesis is based on a ring-

current integration approach. The GIMIC approach has been widely used to determine

the aromatic or antiaromatic character of varieties of molecule.31–34

This thesis is organized as follows. Chapter 2 provides a brief overview of the elec-

tronic structure theory methods used in the thesis. Chapter 3 focuses on the theory of

magnetically induced current densities in molecules and the theoretical framework of the

GIMIC method. Chapter 4 elaborates on some photophysical properties of molecules.
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The obtained results are summarized in chapter 5 and concluding remarks are given in

Chapter 6.



4 2 Electronic Structure Theory

2 Electronic Structure Theory

In this section, the theory of electronic structure methods, which were used in this thesis

is briefly reviewed.

2.1 Schrödinger Equation

The Schrödinger equation is the fundamental equation for describing the quantum me-

chanical behaviour of particles.35 It is a first order differential equation with respect to

time (t).

i�
∂Ψ(r, t)

∂t
= ĤΨ(r, t) (2.1)

where r represents the Cartesian x, y and z coordinates, Ψ is the time-dependent wave

function, and Ĥ is the Hamiltonian. Equation 2.1 is the time-dependent Schrödinger

equation. The time-independent equation is an eigenvalue equation and is written as

Ĥψ = Eψ (2.2)

where E is the energy eigenvalue and, ψ, the time-independent wave function is the eigen

solution of the eigenvalue equation. The wave function contains all information we may

need about our system.

The Hamiltonian operator is the sum of the potential V̂ and kinetic T̂ energy operators.

Ĥ = T̂ + V̂ (2.3)

The kinetic energy operator is given by

T̂ = −
(

�

2m

)
∇2 (2.4)

where � is the Dirac constant, m is the mass of the particle, and ∇2 is the Laplace operator

that is given in Cartesian coordinates as

∇2 =
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
(2.5)

For a system of n-electrons and and N -nuclei, the total Hamiltonian is the sum of the

kinetic energy terms of the electrons (Te) and nuclei (TN ) and the potential (V ) energy

term representing the interaction between the particles of the system .

H = Te + TN + V (2.6)

For simplicity, the Hartree atomic unit for energy (a.u) is used in the rest of this chapter.

The atomic units are defined by setting the charge of the electron, e, its mass me, the Dirac



2.2 Hartree-Fock Approximation 5

constant �, and the Bohr radius a0 to unity. The total Hamiltonian can then be written as

H = −
n∑

i=1

1

2
∇2

i −
N∑

A=1

1

2MA

∇2
A −

∑
i,A

ZA

riA
+
∑
i>j

1

rij
+

∑
B>A

ZAZB

RAB

(2.7)

where MA is the mass of the nuclei; ZA and ZB are the nuclei charge; RAB is the in-

ternuclear distance; riA is the electron-nuclear distances, and rij is the electron-electron

distance. Analytical solutions for Equation 2.6 exist only for systems with one electron

such as the hydrogen atom. Going beyond a single electron problem, the equation be-

comes analytically unsolvable. In order to solve the Schrödinger equation for systems

with more than one electron, several approximations are introduced.

The Born-Oppenheimer approximation is based on the fact that the nuclei are much

heavier than the electrons and thus the electrons can respond almost instantaneously

to displacements of the nuclei.36 Hence, by keeping the nuclei fixed we can solve the

Schrödinger equation of the electrons. Applying this approximation, the electronic Hamil-

tonian of the Schrödinger equation to be solved is

Ĥ = −
n∑

i=1

1

2
∇2

i −
∑
i,A

ZA

riA
+
∑
i>j

1

rij
+

∑
B>A

ZAZB

RAB

(2.8)

The Born-Oppenheimer approximation assumes that the nuclear kinetic energy term can

be ignored, while the electronic interactions depend parametrically on the nuclei posi-

tions. However, it is a well-known fact that the vibrational and electronic interaction

are interrelated.37 This is referred to as vibronic coupling, which has to be considered in

non-adiabatic processes.38

2.2 Hartree-Fock Approximation

In the Hartree-Fock (HF) approximation,39,40 one looks for approximate one-electron

wave function for the Schrödinger equation. It is assumed that the electrons do not inter-

act instantaneously with with each other, the interaction is rather treated as a mean field

created by the other electrons. The wave function can then be approximated as product of

the one-electron wave functions which is the called the Hartree product.

ψ(r1, r2, ..., rN) = φ1(r1)φ2(r2)...φN(rN) (2.9)

The electrons possess an intrinsic angular momentum, namely the up or down spin. Thus

the electronic wave function must also include the spin, which can adopt two values, often

called α or β, in addition to the spatial wave function. The spin orbital (χ) is written as a

product of the spatial orbital (φ) and the spin function.

Equation 2.9 does not satisfy the antisymmetry principle, which requires that the wave

function describing fermions must be antisymmetric under the exchange of any two elec-

trons. The antisymmetry principle is fulfilled by writing the many-electron wave function
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as a Slater determinant.

Ψ =
1√
(N !)

∣∣∣∣∣∣∣∣∣

χ1(r1) χ2(r1) · · · χN(r1)
χ1(r2) χ2(r2) · · · χN(r2)

...
... · · · ...

χ1(rN) χ2(rN) · · · χN(rN)

∣∣∣∣∣∣∣∣∣
(2.10)

The Hartree-Fock energy can then be expressed as

EHF = 〈ΨHF |Ĥ|ΨHF 〉 =
n∑
i

hi +
1

2

n∑
i=1

n∑
j=1

(Jij −Kij) (2.11)

where n is the number of electrons; VNN is the nuclei-nuclei potential; hi is given by

hi =

∫
ψ∗
i

[
− 1

2
∇2

i −
N∑
A

ZA

|RA − ri|
]
ψidv (2.12)

where N is the number of nuclei. Jij and Kij in Equation 2.11 are referred to as the

Coulomb and exchange integrals, respectively.

Jij =

∫
ψ∗
i (1)ψ

∗
j (2)

(
1

r12

)
ψi(1)ψj(2)dv1dv2 (2.13)

The Coulomb term accounts for the average repulsion between two electrons

Kij =

∫
ψ∗
i (1)ψ

∗
j (2)

(
1

r12

)
ψi(2)ψj(1)dv1dv2 (2.14)

The exchange term describes the interaction due to the interchange of electrons.

Solving equation 2.11 is a difficult task, as one has to evaluate the value of the orbitals

at every single point in space. Roothaan suggested that the one-electron wave functions

are expanded as a linear combination of atomic orbitals (LCAO), where φk forms the basis

set.41

ψi =
n∑
k

ckiφk (2.15)

The Hartree-Fock equation can then be formulated as a matrix equation, called the Hartree-

Fock-Roothaan equation which is given by

Fc = Scεi (2.16)

where F is the Fock matrix, c is a matrix containing the molecular orbital coefficients, S
is the overlap matrix of the basis functions, and εi are the orbital energies.

The Hartree-Fock method is sometimes referred to as the self-consistent field method

because it is a non-linear equation that is solved iteratively until convergence criteria are

satisfied for the orbitals and the energy.42 Since the electrons interact instantaneously
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with each other, the assumption made in the derivation of the Hartree-Fock method that

electrons interact with the mean-field potential created by the other electrons is a severe

approximation. The difference between the mean-field approximation and the instanta-

neous interactions is referred to as electron correlation.

2.3 Post Hartree-Fock Methods

The main limitations of the Hartree-Fock (HF) method can be avoided by using a multi-

determinant wave function ansatz. Methods that incorporate electron correlation effects

are called post Hartree-Fock methods.

2.3.1 Configuration Interaction

In the configuration interaction (CI) method, the wave function is expressed as a linear

combination of Slater determinant. By using the Hartree-Fock determinant as a starting

point, a linear expansion of the determinant is formed by exciting electrons from occupied

orbitals to the virtual space. The CI wave function is expressed as a linear combination of

the many-body state functions.

ΨCI =
∑
i=0

ciφi = c0φ0 + c1φ1 + c2φ2 + · · · (2.17)

The first term in Equation 2.17 is generally the Hartree-Fock determinant. The higher-

order terms are configurations that are obtained by formally ‘exciting’ electrons to the

virtual space. When all electrons are ‘excited’, the model is called full configuration in-

teraction (FCI), which is the exact solution of the Schrödinger equation in the employed

basis set. The ci coefficients are obtained variationally by diagonalizing the Hamiltonian

matrix of the configuration space. However, for most practical purposes, this is com-

putationally too expensive. Thus, the expansion in configuration state functions must

be truncated. When the construction of the configuration state functions are truncated

to singles, doubles and triples ‘excitations’, configuration interaction singles (CIS), con-

figuration interaction singles and doubles (CISD) and configuration interaction singles,

doubles and triples (CISDT) models are obtained, respectively. Truncated CI methods are

size-inconsistent, implying the energy when two particles are separated infinitely apart is

not exactly twice that of the energy of the single particle.

2.3.2 Coupled-Cluster

The coupled-cluster approach is in principle similar to the configuration interaction method.

However, in coupled-cluster methods an exponential cluster operator is used when ‘ex-

citing’ electrons from the occupied orbitals to virtual ones. The coupled cluster wave

function is expressed as

|Ψ〉 = eT̂ |φ0〉 (2.18)
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where φ0 is the reference wave function, which in most cases is the Hartree-Fock Slater

determinant. T̂ is the excitation operator which acts on the reference wave function to

generate correlating Slater determinants by applying single, double etc. excitations. The

coupled-cluster energy is expressed using a similarity transformed Hamiltonian as

〈φ0|e−THeT |φ0〉 = E〈φ0|φ0〉 (2.19)

The exponential operator eT̂ is expanded as a Taylor-series

eT̂ =
∞∑
j=0

T̂ j

j!
= 1 + T̂ +

T̂ 2

2!
+ · · · (2.20)

The cluster operator T̂ is written as a sum of different excitation orders as

T̂ = T̂1 + T̂2 + · · ·+ T̂N (2.21)

where T̂1 is the operator considering single excitations, T̂2, is the operator for double

excitations, etc. The cluster operator for single excitations T̂1 is given by

T̂1φ0 =
N∑
a=1

n∑
i=1

tai φ
a
i (2.22)

where n is the number of occupied spin orbitals; N is the number of virtual orbitals; and

φa
i is the singly excited Slater determinant in which an occupied orbital i is replaced with

a virtual orbital a; tai is a coefficient called the cluster amplitude. Similarly, the cluster

operator for two electron excitations is

T̂2φ0 =
N∑
j>i

n∑
b>a

tabij φ
ab
ij (2.23)

φab
ij is the Slater determinant obtained when the occupied orbitals i and j are replaced

by virtual orbitals a and b, and tabij is the cluster amplitude. The excitation operator T
is generally truncated to lower order excitations such as in the coupled-cluster singles

and doubles (CCSD) level. Coupled-cluster singles, doubles and triples (CCSDT) which

includes also triple excitations gives very accurate correlation energies but are computa-

tionally expensive.

The second-order approximate coupled-cluster singles and doubles model (CC2) is an

approximation to CCSD which is often used in calculation of excitation energies.43 The

main difference between the CCSD and CC2 method is that, in CC2 the doubles equations

is approximated to the form occurring in first order but the singles are retained to provide

an approximate description of orbital relaxation. The quality of the ground-state total

energy in the CC2 model is similar to that of Møller-Plesset perturbation theory (MP2).

The CC2 model is mainly used in the calculation of excited state energies.
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2.3.3 Møller-Plesset Perturbation Theory

The Møller-Plesset perturbation theory considers electron correlation as a perturbation.

Ĥ = Ĥ0 + λV̂ (2.24)

where Ĥ0 is the unperturbed Hamiltonian, V̂ is the perturbation and λ is an arbitrary real

parameter that determine the extent and order of the perturbation. The idea of pertur-

bation theory goes back to the work of Schrödinger and Rayleigh, however, the current

form of perturbation theory used in electronic structure codes was published in the early

1930s by Møller and Plesset.44 Their method uses the Fock operator as the unperturbed

Hamiltonian and the fluctuation potential as the perturbation. The wave function and the

energy are expressed as a power series

Ψ =
n∑

i=0

λnΨ(n) (2.25)

E =
n∑

i=0

λnE(n) (2.26)

The expansion is truncated, and the truncation level gives the order of perturbation. The

zeroth, first, second and so forth order of perturbation theory are obtained when truncating

at λ0, λ1, λ2 and so forth. The first order energy correction term is given by

E(1) = 〈Ψ(0)|V̂ |Ψ(0)〉 (2.27)

This is part of the Hartree-Fock energy because the Fock operator is the starting point.

The second order energy correction is

E(2) = 〈Ψ(0)|V̂ |Ψ1)〉 (2.28)

The Møller-Plesset perturbation theory is truncated at order n, thus yielding methods

that are abbreviated as MPn. Second-order Møller-Plesset (MP2) is the most widely used.

The working equation for MP2 energy calculations is written as

EMP2 =
1

4

∑
ij

∑
ab

tabij 〈ij||ab〉 (2.29)

where tijab is given by

tabij =
〈ij||ab〉

εi + εj − εa − εb
(2.30)

i and j denote occupied orbitals, a and b are virtual orbitals while εa, εb, εi and εj are the

corresponding orbital energies. 〈ij||ab〉 = 〈ij|ab〉 − 〈ij|ba〉 are two-electron integrals.
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2.3.4 Multi-Configurational Self-Consistent Field

In the multi-configurational approach, many electronic configurations or Slater determi-

nants are used as the reference wave function. In this approach, one specify which set of

molecular orbitals that are occupied in the reference configuration. One optimizes vari-

ationally both the coefficient of the determinants and the occupied molecular orbitals to

obtain the electronic wave function giving the lowest energy.45,46 The multi-configuration

self-consistent field (MCSCF) approach requires that one consider the chemistry of the

molecule when choosing the orbitals that are included in configurations of the reference

wave function. This sometimes requires that one compute and analyse the orbitals of the

molecule at a lower computational level of theory. The multiconfigurational second-order

perturbation theory (CASPT2) is one of the mostly used multiconfiguration approaches

for studies of the ground and excited states.47

2.4 Basis Sets

The basis set consists of a number of functions that are used for expanding the orbitals

(ψi(r)) in electronic structure calculations.

ψi(r) =
∑
r

cjφj(r) (2.31)

In equation 2.31, φj(r) is a basis function and cj is the molecular orbital coefficient.

Originally Slater-type orbitals (STOs) were used to represent the atomic orbitals since

they decay exponentially at long distances and near the nucleus similar to the wave func-

tion of the hydrogen atom.48 However, the two-electron integrals of the STOs are difficult

to compute. Boys realized that STOs could be approximated as linear combination of

Gaussian-type orbitals (GTOs), rendering fast calculation of the two-electron integrals

feasible.49 GTOs can be written in terms of spherical coordinates as

Gζ
nlm(r, θ, φ) = Nrn−1e−ζr2Y m

l (θ, φ) (2.32)

where N is a normalization constant, r is the distance from the nuclear position where

the basis function is located, and Y m
l (θ, φ) is a spherical harmonic functions where n is

the principal quantum number, l and m are angular momentum and magnetic quantum

numbers, respectively.

The expansion in GTOs is not exact. However, it is possible to approach the basis set

limit by systematically increasing the basis set size.50,51 Most quantum chemical calcu-

lations use GTOs basis sets. Series of calculations employ for example double-ζ , triple-

ζ , quadruple-ζ basis sets augmented with polarization and diffuse functions. For large

molecules one has to use small to medium size basis set. In the calculations, we have

mainly used the Karlsruhe triple-ζ quality basis sets (def2-TZVP) which is an accurate

and compact basis set that can be used in studies of large molecules.52,53
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2.5 Density Functional Theory

In density functional theory (DFT), one searches for an approximate solution to the

Schrödinger equation by optimizing the electron probability density function (ρ) instead

of the many-body wave function. The DFT method of today is based on the Kohn-Sham

approach which is premised on the two Hohenberg-Kohn theorems, where they proved

that the electron density is unique for any system of interacting particles in an external

potential (Vext). They also showed that the ground state energy (E0) can be written as a

functional of the ground state electron density (ρ).54,55

For non-interacting N-particle system, the many-body ground-state wave function is

a single Slater determinant (Ψ(r)) constructed from a set of orbitals (φ)

Ψ(r) =
1√
(N !)

∣∣∣∣∣∣∣∣∣

φ1(r1) φ2(r1) · · · φN(r1)
φ1(r2) φ2(r2) · · · φN(r2)

...
... · · · ...

φ1(rN) φ2(rN) · · · φN(rN)

∣∣∣∣∣∣∣∣∣
(2.33)

The single-particle orbital φj(r) satisfy the Schrödinger equation

(
− ∇2

2
+ μs(r)

)
φj(r) = εjφj(r) (2.34)

The ground-state Kohn-Sham electron density is for the N-particle system is then ex-

pressed in terms of the orbitals as

ρ(r) =
N∑
j=1

|φ(r)|2 (2.35)

The energy functional can then be expressed as

E[ρ(r)] = Tn[ρ(r)] + Vne[ρ(r)] + Vee[ρ(r)] + ΔT [ρ(r)] + ΔVee[ρ(r)] (2.36)

Tn is the kinetic energy of non-interacting electrons

Vne is the nuclear-electron interaction

Vee is the electron-electron interaction

ΔT is a correction to the kinetic energy term due to the electron-electron interaction

ΔVee is the electron correlation contribution to the electron-electron repulsion

The kinetic energy of the non-interacting electrons (n) is given in terms of the Kohn-

Sham orbitals (φi(r)) by

Tn = −1

2

n∑
i

∫
drφ∗

i (r)∇2φi(r) (2.37)

The nucleus-electron potential Vne, and the classical electron-electron repulsion are de-
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fined as in the Hartree-Fock theory. The remaining terms, ΔT and ΔVee are given by the

exchange-correlation functional.

EXC [ρ(r)] = ΔT [ρ(r)] + ΔVee[ρ(r)] (2.38)

The construction of the exchange-correlation functional has used various approxima-

tions which has led to a rapidly expanding field of DFT research.56–63 The functionals are

grouped into local density, generalized-gradient approximation (GGA), meta-GGA, and

hybrid functionals.

In the local density approximation (LDA), the EXC is computed exclusively from the

density (ρ) at some position r , and includes VWN correlation functional64 in combination

with Slater exchange functional.54,55,65 The GGA functionals account for varying electron

density by including the gradient of the electron density. The exchange-correlation en-

ergy is obtained from the sum of the exchange and correlation terms. The meta-GGA

functionals include the second derivative of the electron density via the kinetic-energy

density term. More advanced functionals are obtained by adding HF exchange to the

functionals. Hybrid functionals have the same amount of HF for all electron-electron dis-

tances, whereas in range-separated functionals the amount of HF exchange differs at short

and long inter-electronic distances.66,67

2.6 Time-Dependent Density Functional Theory (TDDFT)
The time-dependent density functional theory (TDDFT) is based on the Runge-Gross

theorem68 which states that for a given initial state, the time-dependent density is a unique

functional of the external potential.

The derivation of TDDFT follows closely that of the time-dependent Hartree-Fock

equation, except that in density functional theory, the time-dependent electron density,

ρ(r, t), is used instead of the time-dependent wave function. TDDFT can be formulated

as a time-dependent Kohn-Sham DFT equation

i
∂φi(r, t)

∂t
=

[
− 1

2
∇2 + νs[ρ](r, t)

]
φi(r, t) (2.39)

νs[ρ](r, t) is called the Kohn-Sham potential and is given by

νs[ρ](r, t) = νext(r, t) + νH [ρ](r, t) + νxc[ρ](r, t) (2.40)

Here, νext(r, t) is the external field, νH [ρ](r, t) is the Hartree potential which accounts for

the classical electrostatic interaction between the electrons, and νxc[ρ(r, t)] is the time-

dependent exchange-correlation potential.

The time-dependent exchange-correlation potential (νxc[ρ(r, t)]) is the difficult term

to determine. In the adiabatic approximation, the potential is estimated using a functional

of static DFT and evaluated as

νxc[ρ(r, t)] ≈ ∂Exc

∂ρ

∣∣
ρ=ρ(r,t)

(2.41)
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In many applications, linear response theory is sufficient to obtain the change in the

electron density due to a time-dependent perturbation. Casida69 derived a linear response

equation for the calculation of excitation energies at the TDDFT level within the adiabatic

approximation. [
A B
B∗ A∗

] [
X
Y

]
= ω

[
1 0
0 −1

] [
X
Y

]
(2.42)

Here ω is the excitation energy, X and Y are coefficients representing the response of the

density with respect to the applied electric field and I is the unit matrix The expressions

for the A and B matrices are

(A+ B)iaσ,jbσ′ = (εaσ − εiσ)δi,jδa,bδσσ′ + 2(iaσ|jbσ′) + 2fxc
iaσ,jbσ′

− cxδσσ′ [(jaσ|ibσ) + (abσ|ijσ)] (2.43)

and

(A− B)iaσ,jbσ′ = (εaσ − εiσ)δi,jδa,bδσσ′ + cxδσσ′ [(jaσ|ibσ)− (abσ|ijσ)] (2.44)

where εiσ and εaσ are the orbital energies of the occupied and virtual Kohn-Sham orbitals,

(pqσ|rsσ′) is a two-electron integral in Mulliken notation and fxc
iaσ,jbσ′ is a matrix element

of the exchange-correlation kernel in the adiabatic approximation.
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3 Magnetically Induced Current Densities

3.1 Quantum Theory of The Magnetic Fields

A classical particle with a charge of q and velocity of v will experience a Lorentz force,

F in the presence of an electric field E and a magnetic field B.

F = q(E + v × B) (3.1)

The electric and magnetic field are described by Maxwell’s equations which are given

in differential form as

∇ · E =
ρ

εo
(3.2)

∇ · B = 0 (3.3)

∇× E = −∂B

∂t
(3.4)

∇× B = μoj (3.5)

The four equations in 3.2, 3.3, 3.4 and 3.5 are also known as Gauss’ law for electricity or

the Coulomb’s law, Gauss’ law for magnetism, Faraday’s law of induction, and Ampére’s

law, respectively. The symbols j, ρ, εo, μo stand for the current density, charge density,

vacuum permittivity and permeability, respectively. The magnetic field can be expressed

as the curl of a vector potential A of a homogeneous external magnetic field.

B = ∇× A (3.6)

The vector potential A associated with an external magnetic field is defined as

A0(r) =
1

2
B × ri0 (3.7)

where ri0 is the distance from the gauge origin r0. The magnetic interaction of an intrinsic

field due to a nuclear magnetic moment and an external magnetic field can be expressed

using the generalized momentum operator π̂ = p − A0(r) inserted in the expression for

the kinetic energy operator, T̂ , which then reads

T =
1

2
π2 (3.8)

where p̂ = −i∇ is the momentum operator. The current density J(r) can be expressed in

terms of the momentum operator as

J(r) =
1

2
(Ψ∗p̂Ψ−Ψp̂Ψ∗) (3.9)

where Ψ is the wave function. The current density in the presence of an external magnetic
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field is given by

J(r) =
1

2
(Ψ∗p̂Ψ−Ψp̂Ψ∗ + A|Ψ|2) (3.10)

3.2 Aromaticity

When Michael Faraday isolated benzene in 1825,70 the determination and understanding

of its structure posed a great challenge to chemists. Though the empirical formula was

long known, the determination of its cyclic structure is generally attributed to August

Kekulé.16 The term aromaticity was coined for benzene and other compounds because of

their unusual stability and distinct odour.

Over the years the concept of aromaticity has evolved with several forms such as

spherical aromaticity,71,72 Möbius aromaticity,73,74 Hückel aromaticity,75 excited state

aromaticity,76 metalloaromaticity77 etc. Currently there is no universal aromaticity defini-

tion,78–80 although IUPAC’s definition includes many aspects of aromaticity.81 However,

compounds that are considered aromatic have distinct electronic, structural, or chemical

properties. The aforementioned form of aromaticity is based on the molecular electronic

properties that are obtained by studying the electronic response in the presence of an

external magnetic field.82–84

In the presence of an external magnetic field the electrons in a molecule will move

around a molecule or part of the molecule leading to a magnetically induced current den-

sity in the molecule. According to Faraday’s law, classically, the induced magnetic field

will align in opposite direction to the external magnetic field. However, when quantum

effects are considered, the induced magnetic field can also align with the direction of the

external magnetic field. Aromaticity studies over the years have been based on investiga-

tion of the induced magnetic current generated by an external magnetic field.85

Quantum mechanical methods for studying magnetic interactions employ perturbation

theory to calculate magnetically induced current density susceptibilities (MICDS). The

external magnetic field is considered to be uniform and infinitely weak. Thus, the MICDS

is calculated as the first order linear response to the applied external magnetic field, in the

limit of zero field.

3.3 Gauge Including Magnetically Induced Current

The ring current concept was first introduced by London86 in 1937, when he discussed in-

teratomic currents and superconductivity of aromatic compounds. However, the seminal

work of quantifying the intensity of the ring current was pioneered by Pople,87 Coulson88

and McWeeny.89 By using the molecular orbital theory, Pople87 and McWeeny90 indepen-

dently studied the ring current in aromatic compounds. Calculation and visual analyses

of the current densities progressed with increasing computational power.91 Current den-

sity profiles for benzene was reported by Atkins and Gomes.92 However, calculations of

current densities and visual presentation of these currents were hampered by the gauge-

origin problem, which stems from the use of finite basis sets to represent molecular or-

bitals in the calculation of second-order molecular response magnetic properties.93–95 The
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gauge-origin problem was later tackled using the individual gauge for localized orbitals

(IGLO)95 and the gauge-including atomic orbital (GIAO)96 approaches.

The individual gauge for localized orbital (IGLO) methods uses unique gauge origins

for localized molecular orbitals associated with inner shell, bonding orbitals and lone

pairs for the calculation of NMR chemical shifts. The gauge-including atomic orbitals

(GIAO) on the other hand, uses atomic basis functions which are chosen such that they are

dependent on the external magnetic field. The GIAO approach makes the calculation of

nuclear shielding tensors independent of the origin. The gauge-including atomic orbitals

are defined as

χμ(r) = e−( i
2
)(B×[Rμ−Ro])χ(0)

μ (r) (3.11)

where χ
(0)
μ (r) is a standard Gaussian-type basis function. Rμ and Ro denote the center of

the basis function and the chosen gauge origin,respectively.

The gauge-including magnetically induced current (GIMIC) method31,97 can be used

for determining the degree of aromaticity using the ring-current criterion. GIMIC uses

the strength of the ring current that is induced by the external magnetic field in a molec-

ular ring to determine the degree of aromaticity. Aromatic rings sustain a net diatropic

ring current whereas the net ring current of antiaromatic molecules are paratropic. The

input required for GIMIC calculations are the one-electron unperturbed and perturbed

density matrices, basis set information and the molecular structure data. The expression

for calculating of the MICDS with the GIMIC approach is

JBτκ
υ (r) =

∑
μν

Dκ
μν

∂χ∗
μ(r)

∂Bτ

∂h̃(r)

∂mk
υ

χν(r) +
∑
μν

Dκ
μνχ

∗
μr
∂h̃(r)

∂mk
υ

∂χν(r)

∂Bτ

+
∑
μν

∂Dκ
μν

∂Bτ

χ∗
μ(r)

∂h̃(r)

∂mk
υ

χν(r)−
∑
δ

ευτδ

[∑
μν

Dκ
μνχ

∗
μr

∂2h̃(r)

∂mk
υ∂Bδ

χν(r)

]
(3.12)

Here, Bτ is the external magnetic field and mk
υ is the nuclear magnetic moment. Dκ

μν and
∂Dκ

μν

∂Bτ
are elements of the density matrix and the magnetically perturbed density matrices

of α and β electrons (κ), respectively.
∂2h̃(r)

∂mk
υ∂Bτ

and
∂h̃(r)
∂mk

υ
describe the coupling between

the external magnetic field and the nuclear magnetic moment. ευτδ is the Levi-Civita

permutation tensor and χν denotes the basis function used.

When the MICDS is calculated on a grid, equation 3.12 can be reformulated in vector

notation as

JBβ
α = vTPβdα − bT

β Ddτ + vTDqαβ − εαβγ
1

2
(vTDv)rγ (3.13)

where D is the atomic orbital (AO) density matrix, Pα are the perturbed AO density ma-

trices, v is the basis set vector, rγ is a vector containing the grid points, and the basis set
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derivatives bα, dα, qαβ are given by

bα =
∂v

∂Bα

(3.14)

dα =
∂v

∂rα
(3.15)

qαβ =
∂2v

∂rαBβ

(3.16)

with (α, β = x, y, z) The density matrices D and Pα are obtained from standard ab
initio and DFT calculations of nuclear magnetic shielding tensors. GIMIC is interfaced to

Turbomole,98,99 Cfour,100 Gaussian101 and QChem102 for the studies of current densities

using GIAOs.

3.4 Magnetically Induced Current Density Calculation
The GIMIC approach has the unique ability of quantifying the strength of both the para-

tropic and diatropic ring current sustained by a molecule. The ring-current strength sus-

ceptibility in the limit of zero magnetic field is obtained by integration of the current-

density flow along selected bonds in a molecule. This feature of GIMIC has been used

to quantify and classify whether molecules are aromatic, non-aromatic or anti-aromatic.

The ring current of the archetypal benzene molecule has been reported to be 11.4 nA/T at

the CCSD(T) level using a TZP basis set.31 The approach has been used in studies of the

aromaticity of polyaromatic hydrocarbons (PAHs ),103 porphyrinoids,104 Möbius-twisted

molecules,105 and inorganic Al4
2- and Al4

4- compounds.106

In the present work, the GIMIC approach has been used to study the aromaticity of

carbaporphyrinoids, porphycenes, and expanded porphyrins. The degrees of aromaticity

of the compounds were obtained by calculating the ring-current strength and analyzing the

current-density pathways. The studied molecules are multi-ring systems, whose aromatic

character is not easily investigated by other means.
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4 Photophysics

4.1 Electronic Excitations

When a molecule absorbs energy in the form of light, it can result in the promotion of

an electron from a lower energy state to a higher one, or cause a chemical reaction by

breaking chemical bonds. The later process is referred to as photochemistry, while the

former one that is of interest in this thesis is referred to as photophysics.

The light-absorption process of molecules can be described using time-dependent per-

turbation theory. The electromagnetic radiation causes the initial wave function (Ψ) to

evolve to a new wave function (Ψ
′
). For such a transition, the transition dipole moment

integral, μ is given by

μ = 〈Ψ|μ̂|Ψ′〉 (4.1)

The transition dipole moment, d, is separated into a sum of the electronic, μe and nuclei,

μn components, μ = μe + μn. The molecular wavefunction, Ψ, can be approximated as

the product of the electronic (ψe) and nuclear (ψn) wavefunctions.

Ψ = ψeψn (4.2)

By substituting Equation 4.1 into 4.2,

〈Ψ|μ̂|Ψ′〉 =
∫ ∫

ψe*ψn*(μe + μn)ψ
′
eψ

′
ndτedτn (4.3)

Equation 4.3 can be expanded to give

〈Ψ|d̂|Ψ′〉 =
∫

ψn*ψ′
n

[∫
ψe*μeψe*

]
dτn +

∫
ψn*μnψ

′
n

[∫
ψe*ψ

′
e

]
τedτn (4.4)

The electronic wavefunction ψe depends parametrically on the nuclear coordinates, since

ψe* and ψ′
e are orthogonal, the second term in equation 4.4 vanishes in Born-Oppenheimer

approximation. Thus, the equation reduces to

〈Ψ|μ̂|Ψ′〉 =
∫

ψn*ψ′
n

[∫
ψe*μeψ

′
e

]
dτn (4.5)

This indicates that an electronic transition will only be allowed if the term in the bracket

is not equal to zero.

4.2 The Perrin-Jablonski Diagrams

The photophysical processes that occurs when a molecule absorbs a photon of UV-Vis

radiation is summarized by a Jablonski107 diagram shown in Figure 4.1.
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Figure 4.1: A Perrin-Jablonski diagram

4.2.1 Absorption

When a molecule absorbs a photon, an electron is excited from a lower energy state to a

higher energy state. The energy of the absorbed photon must be equal to the energy differ-

ence between the states. The process is very fast and occurs on a femtosecond timescale.

At ambient temperature, the excitation usually occurs from the lowest vibrational energy

level. The intensity of the absorption bands is proportional to the square of the transition

dipole moment.

4.2.2 Vibrational Relaxation

Molecular excited state strives towards energetically lower states. The excited molecule

also loses some of its energy through structural relaxation and non-radiative processes.

Vibrational relaxation, internal conversion (IC) and intersystem crossing (ISC) are non-

radiative processes.

Vibrational relaxation implies a molecule in a higher vibrational energy level returns

to a lower vibrational energy level by the dissipation of its energy to its environment.

This can occur via intermolecular vibrational energy transfer or via a redistribution of

the vibrational energy to other vibrational modes called intramolecular vibrational energy

transfer. Vibrational relaxation is a very fast process occurring with a rate constant of

1011s−1–1012s−1
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4.2.3 Internal Conversion and Intersystem Crossing

Internal conversion (IC) is the dissipation of energy between vibrational states of differ-

ent electronic level. This happens as a result of overlap of the vibrational and electronic

energy states in some molecules. The electronic states must have the same spin multiplic-

ities.108

Intersystem crossing (ISC) is a radiationless process, which involves a transition be-

tween two electronic states with different spin multiplicities implying that there is a

change of the spin state during the radiationless transition. Although ISC is a spin for-

bidden transition, it occurs nevertheless, due to a strong spin-orbit coupling that allows

a spin-flip. Spin-orbit coupling is a relativistic effect that is large for molecules con-

taining heavy elements. At the relativistic level of theory, spin is not a good quantum

number, which implies that molecular states are not pure spin states rendering formally

spin-forbidden transitions allowed.

4.2.4 Fluorescence

When an electron is excited to a higher electronic state with the same spin multipilicity,

fluorescence is the radiative process by which the molecule loses energy. Fluorescence

involves a de-excitation from a higher singlet state to the singlet ground state (S0) ac-

companied by light emission. Usually, the de-excitation occurs from S1 to S0 following

Kasha’s rule, which states that photon emission occurs in appreciable yield mainly from

the lowest excited state of a given multiplicity.109

Fluorescence quantum yield (φf ) is the fluorescence efficiency relative to competing

processes from the excited electronic states.

φf =
nE

nA

(4.6)

where nA and nE are the number of absorbed and emitted photons per unit time respec-

tively. Generally, the fluorescence quantum yield is calculated in terms of the rate constant

of radiative and non-radiative processes as

φf =
kf

kf +
∑

knr
(4.7)

where kf and
∑

knr are the rate constant for fluorescence and the sum of the rate constants

of all competing non-radiative processes, respectively.110

4.2.5 Phosphorescence

The luminescent electronic transition from an excited triplet state to a singlet state is called

phosphorescence. The triplet state is populated from the singlet manifold via intersystem

crossing. The quantum yield of phosphorescence (φph) is defined in terms of the rate of
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radiative and non-radiative processes occurring from the triplet state.

φph =
kT
r

kT
r + kT

nr

φisc (4.8)

where kT
r and kT

nr are the rate constant for radiative and non-radiative transition from

the triplet state to the ground state, and φisc is the quantum yield of intersystem crossing

which is defined as

φisc =
kisc

kr + knr
(4.9)

where kr and knr are the rate constants of radiative and non-radiative transitions of the

singlet states.

Phosphorescence is a slow process with a typical rate constant of 102s−1 –10−3s−1.

Phosphorescence emission generally occurs at a longer wavelength than fluorescence

emission and absorption because the T1 state is usually below the S1 state.

4.3 Franck-Condon Principle
The Franck-Condon (FC) principle111–113 gives a qualitative explanation for the intensities

of the vibronic bands that are observed in highly resolved absorption spectra. The princi-

ple states that during an electronic transition, a change from one vibrational energy level

of an electronic state to a vibrational state of another electronic state is more probable if

the two vibrational wave functions have a large overlap. The FC principle is based on the

fact that electronic transitions are much faster than the vibrational motion of the nuclei.

The electronic transition can be considered to occur vertically between the two electronic

states.

The quantum mechanical treatment of the FC principle starts with calculations of

the expression for the transition dipole moment given in equation 4.1.114 The interaction

between the electronic and vibrational motion is neglected in equation 4.5 which gives the

electronic contribution to the transition dipole moment multiplied with the overlap of the

vibrational wave functions. Thus, in the FC approximation, the vibrational contribution

to the transition dipole moment is

μn =

∫
ψn*ψ

′
ndτn (4.10)

yielding relative intensities of the bands observed in the absorption or emission spectra

4.4 Herzberg-Teller Approximation
The Herzberg-Teller approximation115,116 goes beyond the FC approximation by account-

ing for changes in the electronic contribution to the transition moment with respect to

changes in molecular structure.

The transition dipole moment is expanded in a Taylor series with respect to the normal

coordinates of the vibrational modes.
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μif (Q) � μif (Q0) +
N∑
k=1

(∂μif

∂Qk

)
Qk +

1

2

N∑
k=1

N∑
l=1

( ∂2μif

∂QkQl

)
QkQl (4.11)

where Q0 is the equilibrium molecular structure, μif is the transition dipole moment.

The partial derivatives consider changes in the transition dipole moment with respect to

changes in the nuclear coordinate Qk. The second term plays an important role for weakly

allowed dipole-transitions with a small value for the first term in equation 4.11.

Truncating the expansion to include the first two terms gives the Herzberg-Teller ap-

proximation which explains observed bands in situations where μif (Q0) is almost zero or

vanishes for weakly allowed and dipole forbidden transitions, respectively.38

4.5 Duschinsky Mixing Effect

It may also be important to consider the nature of vibrational normal modes of the two

electronic states.117 For molecules whose initial and final electronic states significantly

differ, the normal modes will also significantly differ which can be accounted for by

introducing the mixing of the normal modes of the two states.

Duschinsky proposed that the normal modes of the involved states are related by a lin-

ear transformation. The normal mode of the final state (Qf ) can be expressed by rotating

the normal coordinates of the initial state (Qi) and shifting them with (K).118

Qf = JQi +K (4.12)

In equation 4.12, J is the Duschinsky rotation matrix and K is a geometric displacement

vector.

4.6 Calculation of Vibrational Energies and Frequencies

It is possible to express the potential energy of a polyatomic molecule with 3N coordinate

as a Taylor series about any local minima as

V (rj) = V (0) +
N∑
j

(∂V
∂qj

)
qj +

1

2

∑
i,j

qiHi,jqj + · (4.13)

where V (0) is the minimum energy of the molecule,

the second term
∑N

j

(
∂V
∂qj

)
qj is gradient of the energy along the qj coordinate.

Hi,j is the second-derivative or Hessian matrix written as

Hi,j =
∂2V

∂qi∂qj
(4.14)
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The equation of motion for the atomic vibration can be expressed in a matrix form as

d2q

dt2
= −Aq (4.15)

where A is the mass-weighted Hessian matrix with matrix elements

Aij =
1

mj

Hij (4.16)

The normal modes and corresponding vibrational frequencies can be calculated once the

mass-weighted Hessian matrix A is determined. The Hessian matrix will have 3N-5 and

3N-6 positive eigenvalues for linear and non-linear molecules, respectively. The eigenval-

ues of the Hessian matrix are squares of the so-called normal mode vibrational frequencies

which are usually computed at the harmonic approximation.

4.7 Calculation of Absorption Spectra

In simulating the vibrationally resolved absorption spectra, two classes of methods at the

Franck-Condon approximation are used.

Calculations in the frequency domain require explicit computation of Franck-Condon

integrals between vibrational levels of the ground and the electronic excited state.119,120

Even though the approach is straightforward, it is computationally expensive because of

the large number of vibrational degrees of freedom. To reduce the number of Franck-

Condon integrals that must be computed, pre-screening conditions have been introduced

where only the relevant Franck-Condon integrals are explicitly computed.121 The obtained

spectrum is broadened using Gaussian or Lorentzian functions.

The time-domain approach circumvents explicit computations of Franck-Condon inte-

grals by using a time-generating function introduced by Kubo.122–126 A Fourier transform

of the generating function yields the vibrational fine structure and Franck-Condon factors.

The line broadening occurs as a result of the damping of the time-dependent function.

The absorption cross section for a transition from the lowest vibrational state of the

initial electronic state i to a vibrational state in the final electronic state f in the Franck-

Condon approximation is given by

σabs(ω) =
4π2ω

3c
|μif |2

∑
vi

∑
vf

|〈ψvf (Qf )|ψvi(Qi)〉|2δ(Evf − Evi − ω), (4.17)

where ω is the transition energy, c is the speed of light, μif is the electronic transition

dipole moment, vi and vf are vectors containing the vibrational quantum numbers for the

initial and final vibrational states ψvi(Qi) and ψvf (Qf ), respectively. δ(Evf − Evi − ω
ensures the energy conservation.

The vibrational wave functions of the ground and excited electronic states are approx-
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imated as a product of one-dimensional harmonic oscillator wave functions given by

ψr(Qr) =
∏
j

χj(Qj, vj) =
∏
j

|vj〉 (4.18)

where r denotes the final or initial electronic state, and χj(Qj) are one-dimensional har-

monic oscillator wave functions, whose energies in the final and initial states are

Evi =
1

2

∑
j

ωi
j (4.19)

Evf = ΔEif +
∑
j

(1
2
+ vfj

)
ωf
j (4.20)

where ωi
j and ωf

j are the vibrational energies in the ground and excited state, respectively,

and ΔEif is the adiabatic electronic excitation energy. Here, one assumes that only the

lowest vibrational state of the initial electronic state is occupied.

The efficiency of the time-domain approach originates from the Fourier transform of

the δ function. Equation 4.17 can then be written as

σabs(ω) =
4π2ω

3c
|μif |2

∫ −∞

∞
dt exp[−it(ΔEvf − Evi − ω)]G(t) (4.21)

where G(t) is the generating function for a molecule with N vibrational degrees of free-

dom. The generating function in Equation 4.21 is given by

G(t) =
∑
vf

|〈ψvf (Qf )|ψvi(Qi)〉|2exp

(
−it

N∑
j

(
vfj +

1

2

)
ωf
j

)
(4.22)

Calculation of the generating function in equation 4.22 includes all possible combina-

tions of vibrational quantum numbers of the final states, defined by the quantum numbers

in vector vf and their vibrational frequencies ωf
i . The approach is implemented in the

RADLESS module of the TURBOMOLE program package.4,98
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5 Results

5.1 Studied Molecules
5.1.1 Expanded Porphyrins

Expanded porphyrins are macrocycles consisting of more than four pyrrolic rings joined

together directly or having one or two carbon atoms bridging the pyrrolic rings together.

(a) Sapphyrin (b) Cyclo[6]-pyrrole (c) Rubyrin

(d) Orangarin (e) Rosarin (f) Amethyrin

Figure 5.1: The studied expanded porphyrins

The first expanded porphyrin reported in literature was sapphyrin shown in Figure

5.1a. Its name stems from its brightly blue colour. It was serendipitously obtained when

Woodward et al. wanted to synthesize vitamin B12.
127 Since then many synthetic routes

have been reported.128–130 The molecule in Figure 5.1b is cyclo[6]-pyrrole which has six

pyrrolic rings that are directly linked at the α–carbon. Figure 5.1c shows rubyrin whose

name originates from the Latin word rubeus because of the bright red colour of its dipro-

tonated form. Sessler et al. reported the synthesis of an alkyl-substituted derivative of

rubyrin.131 Orangarin shown in Figure 5.1d is the smallest expanded porphyrin that has

been reported.132 It consists of five pyrrolic ring. Sessler et al. reported the synthesis of

rosarin shown in Figure 5.1e.133 Its name stems from the bright-red-to-purple colour of

the triprotonated form. Amethyrin in Figure 5.1f has six pyrrolic rings with two methine

(-CH) bridges and four directly fused pyrrolic rings.
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5.1.2 Porphycenes

Porphycenes are porphyrin-like compounds with four linked pyrrolic rings. They were

synthesized for the first time in the mid-1980s by Vogel et al.134

(a) Porphycene (b) Dihydroporphycene (c) Hemiporphycene

(d) Corrphycene (e) Porphyrin 3.0.0.1 (f) Porphyrin 2.0.0.2

Figure 5.2: The studied porphycenes

Porphycene in Figure 5.2a is a planar molecule with direct links between two of the

pyrrole rings. The inner hydrogen can have two cis and one trans configuration. The

lowest cis sturcture lies 2.7 kcal/mol above the trans conformer. Dihydroporphycene

in Figure 5.2b has four inner hydrogens which distort the planarity of the molecule. It

has a saddle-shaped structure where the inner hydrogens are bent outward. Ostapko et
al. recently reported the synthesis of free-base hemiporphycene shown in Figure 5.2c.135

The trans tautomer is the minimum energy structure. The molecular structure of cor-

rphycene is shown in Figure 5.2d. It has one ethylidene bridge, two methine bridges

and one direct link between pyrrolic rings. Sessler et al. first reported the synthesis of

corrphycene.136 The configuration with the inner hydrogens in trans position and the Z-

configuration of the ethylidene bridge is energetically lowest structure. Porphyrin 3.0.0.1

and porphyrin 2.0.0.2 shown in Figure 5.2e and 5.2f, respectively are porphycenes that

have been predicted by Waluk et al.137 but to the best of my knowledge they have not yet

been synthesized.
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5.1.3 N-Doped Nanographenes

The molecular structure of the studied nanographenes are shown in Figure 5.3. A first

look may suggest that they might have similar properties as polycyclic aromatic hydro-

carbons. However, the presence of the nitrogen heteroatoms alters the chemistry of these

compounds as shown in our work.138

(a) Double [6]helicene (b) Double [5]helicene

(c) Substituted double [5]he-

licene

(d) diaza-nanographene

Figure 5.3: Molecular structure of the N-doped nanographenes

5.2 Aromatic Pathways
The gauge including magnetically induced current density (GIMIC) approach has been

used to elucidate the aromatic pathways and the aromaticity of the studied molecules.

5.2.1 Expanded Porphyrins

By using the GIMIC approach, we confirmed that sapphyrin, cyclo-[6]-pyrrole and rubyrin

are aromatic and they sustain ring-current strengths in the range of 24-30 nA/T, which is of

same size as those of classical porphyrin.104 The current-density pathway of the aromatic

rubyrin is shown in Figure 5.4. Calculations of the ring-current strength using different

DFT functionals yield similar values for the ring-current strengths. The ring current di-

vides into an inner and outer pathways at the α–carbon atoms of the pyrrolic ring showing
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Figure 5.4: Current-density pathways and net ring current strength (in nA/T) passing

selected bonds of rubyrin. The ring-current strengths were calculated at the B3LYP/def2-

TZVP level of theory.

that all π-electrons of the pyrrolic rings participate in the aromatic pathway and contribute

to the aromatic character.

Figure 5.5: Current-density pathways and net ring-current strength (in nA/T) passing

selected bonds of rosarin. The ring-current strengths were calculated at the MP2/def2-

TZVP level of theory.

Orangarin, rosarin and amethyrin are antiaromatic according to the GIMIC calcula-

tions, which confirms the aromatic character that was deduced from experimental data.139,140

However, the ring current strengths calculated using different DFT functionals differ sub-

stantially. Assuming that the ab initio MP2 method is the most reliable level of theory,

hybrid functionals give the best result whereas pure DFT functionals tend to overestimate

the strength of the paratropic ring current.

5.2.2 Porphycenes

Dihydroporphycene is an antiaromatic porphycene that is obtained by reducing the inner

nitrogen atom of the pyrrolic rings with hydrogen atoms. The antiaromatic analogue of

porphycene sustains a net paratropic ring current of -9 nA/T, whereas the pyrrolic rings

sustain weak local diatropic ring current of 3 nA/T. Porphycene on the other hand sustains
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(a) (b)

Figure 5.6: Calculated ring-current strength and current pathways for (a) free-base cis-

porphycene and (b) dihydroporphycene. The diatropic ring current is shown in black

and the paratropic ring current is red. The ring-current strengths were calculated at the

B3LYP/def2-TZVP level of theory

a net diatropic current of 24 nA/T, which is of the same size as for free-base porphyrin.104

The current-density pathways of porphycene and dihydroporphycene are shown in Figure

5.6. Calculations of the vertical excitation energies showed that the antiaromatic dihy-

droporphycene has a smaller vertical excitation energy than the aromatic porphycene,

even though the HOMO-LUMO gap of dihydroporphycene is larger for porphycene.

All other studied porphycene derivatives were aromatic according to GIMIC calcula-

tions. They sustain net diatropic ring-current strengths in the range of 17 – 26 nA/T. A

comparison of the 1H NMR shielding of the inner hydrogen atoms and the ring current

strengths in these molecules did not show any clear correlation between the calculated 1H

NMR shielding and the ring current strength.

5.2.3 N-Doped Nanographenes

The current-density pathways in the N-doped nanographenes are a classical example

of multi-ring systems, whose ring-current pathways and aromaticity are difficult to de-

duce from 1H NMR studies. The calculated current-density pathways of the N-doped

nanographenes offer insights into how the aromaticity of subrings of multiring systems

can alternate between aromatic, non-aromatic and antiaromatic. The current-density also

reveals how current-density pathways can split and join at molecular rings. The seven-

membered antiaromatic ring weakens the global diatropic ring current. However, the

peripheral six-membered benzene rings sustain a local diatropic ring current. Compari-

son of the ring-current strengths and pathways of the aza-nanographenes with polycyclic

aromatic hydrocarbons (PAHs) like hexabenzocoronene (HBC), shows that the diatropic

current that flows along the edge of the aza-nanographene is much weaker than for HBC.
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(a) (b)

Figure 5.7: Calculated ring-current strength and current-density pathways for (a) double

[6]helicene and (b) hexabenzocoronene. The ring-current strengths were calculated at the

B3LYP/def2-TZVP level of theory. The bent arrows illustrate local ring currents, whereas

the arrows along the bonds show the flux of the current density.

The outer benzene rings sustain weak diatropic ring current in both molecules.
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5.3 Rate Constants and Quantum Yield
Calculations of rate constants for non-radiative transitions require computing accurate

energy differences between the involved electronic states. Vertical excitation energies

calculated at ab initio and TDDFT levels of theory showed that the energy of the S1 state

of the aromatic expanded porphyrins are overestimated at the CC2 and TDDFT levels of

theory, whereas XMC-QDPT2 calculations, on the other hand, underestimate the vertical

excitation energy of the S1 state. For the antiaromatic molecules the excitation energy

of S1 state calculated at the CC2, TDDFT and XMC-QDPT2 levels agrees well with

experimental data.139,141

(a) (b)

Figure 5.8: Calculated rate constants for (a) aromatic sapphyrin and (b) antiaromatic

rosarin

The energy dissipation pathways were studied for the expanded porphyrins by cal-

culating the rate constants for internal conversion (IC), intersystem crossing (ISC), flu-

orescence and phosphorescence. The rate constant calculations for aromatic sapphyrin,

show that the IC rate from S1 to S0 is as fast as the ISC process from S1 to T1. The ISC

process from S2 to T4 is a factor of 10 slower and the IC from S2 to S0 is about 250 times

slower. The fluorescence rate is much slower in this molecule. The rate constant calcula-

tions of rosarin show that the decay from the S2 state is dominated by internal conversion.

There is a fast internal conversion (IC) process from the S1 to the S0 state for the antiaro-

matic molecules. Though fluorescence from the S1 has been experimentally detected,141

our calculation shows that the rate is slower. Omitting the Herzberg-Teller effect in the

calculation may lead to underestimation of the radiative transitions probabilities.
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5.4 Vibrationally Resolved Absorption Spectra
The absorption spectra of naphthalene, anthracene, pentacene and pyrene were simulated

at the zeroth-order Franck-Condon approximation using the approach based on the time-

generating function, which is an efficient approach that does not require any calculation of

individual Franck-Condon factors. Excitation energies calculated at the CC2 and ADC2

levels for the molecules were in good agreement with those of experimental values. The

excitation energies calculated at the TDDFT level using the Becke-half-and-half (BH-

LYP) functional are larger than the ones obtained using the Perdew-Burke-Ernzerhof hy-

brid (PBE0) functional, suggesting that a larger amount of Hartree-Fock exchange in the

functional leads to a blue shift of calculated vertical excitation energies that are also larger

than the experimental values.142–145

The vibrationally resolved absorption spectrum of pentacene in Figure 5.9 obtained

with the RADLESS code is qualitatively similar to the experimental one. The 0–0 transi-

tion energy is 0.57 eV smaller than the experimental one. A more accurate 0–0 transition

energy is expected at the CC2 level, because the vertical excitation energy is 0.38 eV

larger than the vertical excitation energy calculated using the PBE0 functional. However,

by introducing a shift of 0.57 eV, we obtained at the PBE0 level a nearly perfect agreement

between the simulated and experimental absorption spectra of pentacene.

Figure 5.9: Vibrationally resolved absorption spectrum of the 1B2u state of pentacene

calculated at the PBE0 level. The experimental spectrum is taken from ref. 146

Comparing higher vibrational bands of the simulated spectra to those of experimental

ones shows that there is a blue shift of the simulated spectra, because vibrational fre-

quencies are often overestimated in the harmonic approximation. A better agreement is

obtained using a scaling factor to slightly reduce the vibrational energies obtained in the

harmonic approximation. In the scaled spectrum in Figure 5.9, the vibrationally energies
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have been multiplied by a factor of 0.95. The scaled spectrum agrees very well with the

experimental one.

The vibrational bands of the absorption spectrum can be assigned to mode or com-

bination modes of the vibrational frequencies. This is done by identifying the totally

symmetric irreducible representation of the point group. The energy difference between

a given vibrational band and the 0–0 transition energy corresponds to the energy of the

vibrational frequency of the totally symmetric irreducible representation or to the sum of

the energy of the vibrational frequencies. The assignment of the individual vibrational

peaks of the 1B2u state of pentacene is shown in Table 5.1

Table 5.1: Assignment of the vibrational peaks in the absorption spectrum of pentacene

calculated at the PBE0 level. The vibrational bands originate from transitions involving

the totally symmetric (Ag) vibrational modes of the 1B2u excited state. The transition

energies (in eV), the vibrational shift of the transition energies (in cm−1) and the relative

intensities are reported.

Energy Shift Relative intensity Assignment

(in eV) (in cm−1)

2.286 0 1.000 0–0

2.319 265 0.245 15 Ag

2.381 767 0.052 39 Ag

2.433 1184 0.082 64 Ag

2.438 1226 0.117 68 Ag

2.462 1417 0.141 78 Ag

2.467 1460 0.331 81 Ag

2.479 1522 0.144 85 Ag

2.484 1560 0.028 87 Ag

2.494 1653 0.036

2.500 1680 0.076 15 Ag + 78 Ag

2.512 1787 0.034 15 Ag + 85 Ag

2.614 2621 0.041 60 Ag + 87 Ag

2.619 2662 0.039 60 Ag + 90 Ag

2.643 2855 0.044 75 Ag + 85 Ag

2.648 2896 0.056 75 Ag + 87 Ag

2.660 2992 0.049
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6 Summary and Conclusions
The concept of aromaticity continues to evolve because novel aromatic and antiaromatic

molecules are synthesized. Expanded porphyrins belong to a class of molecules that has

received much attention because of their potential use in technological devices147–149 In

Article I, the aromatic and photophysical properties of selected expanded porphyrins were

studied. The ring-current pathways were elucidated using the GIMIC approach. The study

showed that the lowest electronic transition in antiaromatic expanded porphyrins is a mag-

netic transition leading to the strong paratropic ring-current of the antiaromatic expanded

porphyrins. The calculated rate constants show that the energy dissipation pathways is

dominated by IC for the studied molecules.

Porphycene and porphycene derivatives are porphyrin analogues of interest because

of their unique structure making them good candidates for use as sensitizers for photody-

namic therapy, in catalysis, and as dyes in solar cells.150–153 Article II provides insights

into the ring-current strength and pathways. The poprhycene studies in Article II showed

that the interaction between the inner hydrogens and inner nitrogen were more significant

for difference in the observed 1H NMR chemical shift than the global ring current.

The vibrational modes that contribute to the absorption spectrum of anthracene, naph-

thalene, pentacene and pyrene have been calculated using the RADLESS approach where

a time-generating function is used at the Franck-Condon level. The calculations show that

the method is very efficient for simulating vibrationally resolved absorption spectra that

are very reminiscent of the experimental. This study is presented in Article III.

The aromatic character of N-doped nanographenes has been studied in Article IV. The

current-density pathways of N-doped nanographenes differ from that of PAHs. The N-

doped nanographenes have weak diatropic current at the edges of the molecules, whereas

the edge current is very strong in PAHs. The local and global ring-current strengths have

been calculated. In the N-doped nanographenes with a seven-membered subring, local

ring-current strength alternate between aromatic, nonaromatic and antiaromatic in the

subring.
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[78] von Ragué Schleyer, P.; Jiao, H. Pure Appl. Chem. 1996, 28, 209.

[79] Hoffmann, R. Am. Sci 2015, 103, 1511.
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Schleyer, P. Org. Letters 2005, 7, 1457–1460.

[85] Sundholm, D.; Fliegl, H.; Berger, R. J. F. WIREs Comput. Mol. Sci. 2016, 6, 639–

678.



39

[86] London, F. J. Phys. Radium 1937, 8, 397–409.

[87] Pople, J. A. J. Chem. Phys. 1956, 24, 1111.

[88] C. A. Coulson, J. A. N. F. Gomes and R. B. Mallion, Mol. Phys 1975, 30, 713.

[89] McWeeny, R. Mol. Phys. 1958, 1, 311–321.

[90] Pople, J. A. Mol. Phys. 1958, 1, 175–180.

[91] Hegstrom, R.; Lipscomb, W. J. Chem. Phys. 1968, 48, 809–811.

[92] Atkins, P.; Gomes, J. Mol. Phys. 1976, 32, 1063–1074.

[93] Helgaker, T.; Jaszun̈ski, M.; Ruud, K. Chem. Rev. 1999, 99, 293–352.

[94] Malkin, M. K. M. B. V. G. Calculation of NMR and EPR parameters : theory and
applications; Wiley-VCH, 2004.
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