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Abstract

String Matching in Labelled Graphs (SMLG) is a generalisation of the classic
problem of finding a match for a string into a text. In SMLG, we are given
a pattern string and a graph with node labels, and we want to find a path
whose node labels match the pattern string. This problem has been studied
since 1992, and it was initially intended to model the problem of finding
a link in a hypertext. Recently, the problem received attention due to its
applications in bioinformatics, but all of the solutions, old and new, failed
to run in truly sub-quadratic time.

In this work, based on four published papers, we study SMLG from different
angles, first proving conditional lower bounds, and then proposing efficient
algorithms for special classes of graphs.

In the first paper, we unveil the reason behind the hardness of SMLG, show-
ing a quadratic conditional lower bound based on the Orthogonal Vectors
Hypothesis and the Strong Exponential Time Hypothesis. The techniques
that we employ come from the fine-grained complexity, and involve finding
linear-time reductions from the Orthogonal Vectors problem to different
variations of SMLG.

In the second paper, we strengthen our findings by showing that an in-
dexing data structure built in polynomial time is not enough to provide
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subquadratic time queries for SMLG. We devise a general framework for
obtaining indexing lower bounds out of regular lower bounds, and we prove
the indexing lower bound for SMLG as an application of this technique.

In the third paper, we surpass the limitations of our lower bounds by iden-
tifying a class of graphs, called founder block graphs, which support linear
time queries after subquadratic indexing. This class of graph effectively
represents collections of strings called multiple sequence alignments, if gap
characters are not present.

In the fourth paper, we significantly improve our previous results on effi-
ciently indexable graphs. We propose elastic founder graphs, a superset of
founder block graphs, that are able to represent multiple sequence align-
ments with gaps. Moreover, we propose algorithms for constructing elastic
founder graph, indexing them, and perform queries in linear time.

Computing Reviews (2012) Categories and Subject
Descriptors:

Theory of computation → Problems, reductions and completeness
Theory of computation → Graph algorithms analysis
Theory of computation → Pattern matching
Theory of computation → Sorting and searching
Theory of computation → Dynamic programming
Applied computing → Genomics

General Terms:
algorithms, graphs, strings, bioinformatics

Additional Key Words and Phrases:
exact pattern matching, indexing, orthogonal vectors, complexity theory,
reductions, lower bounds, edit distance, graph query, lower bounds,
fine-grained complexity, string matching, multiple-sequence alignment,
exact pattern matching, graph query, graph search, labelled graphs, string
matching, string search, strong exponential time hypothesis,
heterogeneous networks, variation graphs
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Chapter 1

Introduction

In this thesis we present conditional lower bounds as well as efficient al-
gorithms for the problem of String Matching in Labelled Graphs (SMLG).
Finding a match for a pattern string inside a text is a fundamental problem
of theoretical computer science, representing the inner core of many algo-
rithms. In its simplest forms, the problem has been undoubtedly solved,
while some variations and generalisations still remain open. This thesis
explores a generalisation of this problem to graphs, explaining why this
problem is hard in general, and identifying special cases that are easier to
solve.

Given string T , the simplest form of string matching consists in finding
a substring of T that equals a given pattern string P . One of the most
celebrated solutions for this problem is the algorithm based on the KMP
function [30], a classical result proved in the ’70s that solves the problem in
linear time O(|T |+ |P |). We call this type of string matching exact, and we
can see it as a special case of the more general approximate string matching,
which is the problem of finding a substring of T of minimum distance with
P . The distance measure typically adopted is the edit distance, that is the
number of single-character insertions, deletions and substitutions needed
to turn one string into the other.

Computing the edit distance between stringA and stringB is a quadratic
problem, solvable with dynamic programming approaches in time O(|A||B|)
[20, 21]. Contrary to exact string matching, for which the linear-time algo-
rithm is clearly optimal, the question of whether the quadratic algorithms
were optimal remained open for several decades. Backurs and Indyk gave
a final answer to this question in 2015 [10, 12], when they proved that it is
not possible to improve over a quadratic time complexity, exploiting a new
technique for proving conditional lower bounds for polynomial problems.
This technique relies on the strong exponential time hypothesis (SETH),
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2 1 Introduction

which also implies the orthogonal vector hypothesis (OVH). The former is
a hypothesis on the complexity of solving SAT [28], the latter is a hy-
pothesis on the complexity of solving the orthogonal vectors problem, and
they are both used in the field of fine-grained complexity for proving con-
ditional lower bounds. The strength of this technique resides in allowing
to study the exponent of polynomial time complexities, something that is
hardly achieved by methods for unconditional lower bounds or for condi-
tional lower bounds based on the NP �= P hypothesis. In the case of edit
distance, given strings A and B such that |A| = |B| = n, the lower bound
states that no algorithm can compute EDIT(A,B) in time O(n2−ε), unless
SETH is false.

Approximate string matching is one possible generalisation of exact
string matching, but we can push the limits even further and wonder how
much harder can it be to match a string into a graph. We call this problem
string matching in labelled graphs (SMLG) and, as standard string match-
ing, it can be divided in exact SMLG and approximate SMLG. Given node-
labelled graph G and pattern string P , exact SMLG asks to find a path
in G whose concatenation of node labels, namely its path label, matches
string P exactly. Approximate SMLG consists in finding the path label in
G of minimum edit distance with P .

Manber and Wu [31] pioneered this line of research in 1992, propos-
ing the first algorithm for approximate string matching in labelled graphs.
This first algorithm was slightly slower than quadratic, because it featured
a small logarithmic factor. In the following years, the research commu-
nity proposed many other solutions to different variations of the problem,
both for exact and approximate SMLG. Unfortunately, nobody was able to
break thought the quadratic barrier, with the best results being achieved
by Amir et al. [7, 8] in 1997 for the exact version of the problem, and
one year later by Navarro [34, 35] for the approximate version. Thus, we
could say that approximate SMLG had become not harder than computing
edit distance, catching up with the string-versus-string case, but for exact
SMLG the performance difference with the linear KMP algorithm remained
substantial.

With no improvement over these results, the scientific focus for SMLG
progressively shifted away, also because the main practical application was
pattern matching in the internet hypertext, which was being solved by
other means. In recent years, bioinformatics sparked new interest in this
problem, for it naturally models several biological scenarios, especially in
the field of pangenomics [19]. Thus, in the absence of an efficient online
(i.e. not indexed) solution for the problem, researchers started to look
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into alternatives that involved indexing the graph to achieve fast queries
for the pattern. This led to new complications, as subquadratic queries
and reasonable indexing time were not willing to marry. Using the index
proposed by Thachuk [41], there still remain worst cases in which queries are
quadratic; the approach of Sirén et al. [40] succeed in providing linear time
queries, but the procedure for building the index, although it is expected
to be linear, may require exponential time in the worst case.

Given these difficulties on both the online and the indexed fronts, re-
search started to look for compromises. If generalising the problem from
strings to a string and a graph is so much harder, maybe there is still
hope for those structures that are, in a sense, between a string and a
graph. Such structures can be, for example, special classes of graphs, like
Wheeler graphs [26], or special collections of strings, like generalized degen-
erate strings (GDSs) [6] and elastic degenerate strings (EDSs) [9, 14] (and
references therein). Wheeler graphs are graphs whose nodes can be sorted
to support efficient string matching, while GDSs and EDSs are a sequence
of sets of strings with specific properties, where a match for a pattern string
span several sets, one string per set. Among all of these data structures,
EDSs are the ones that are most suitable for pangenomics applications,
that is, those applications in which we represent several similar genomic
sequences as a multiple sequence alignment (MSA). Indeed, a MSA is a col-
lection of sequences disposed in a matrix-like fashion, one sequence for each
row, possibly with gap characters to better align the same characters on
the same columns. Thus, the MSA can be divided into segments, that is,
sets of columns, that can be turned into the sets of strings of an EDS. In
doing so, we are virtually representing a larger set of sequences than those
in the original MSA, and this often is a desired feature in biology contexts,
as it models recombination. Nevertheless, the way in which EDSs control
recombination is quite rigid, because we cannot decide what to include or
exclude from the representation at the level of single sequences. Moreover,
the time complexity for querying an EDS is subquadratic, but this result
is achieved only with a randomized approach, and seems to be unlikely
otherwise [14].

1.1 Overview of the Thesis

For SMLG, there are some questions that remain open, both in terms of
lower bounds and upper bounds. Are the quadratic algorithms for exact
SMLG optimal? Is it possible to index a graph in polynomial time and
obtain subquadratic time queries? Are there graphs for which SMLG is a
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subquadratic problem, that also are a representation of an MSA with an
accurate control of recombination? In this thesis, we provide answers for
all of these questions.

Chapter 1 is the introduction you are reading. Chapter 2 introduces the
formal concepts and tools needed to understand the results presented in this
thesis. The subsequent two chapters give an overview of the landscape of
algorithms and lower bounds prior to our work. In particular, Chapter 3
presents the main design details of the first algorithm for SMLG, of the
optimal online algorithms for exact and approximate SMLG, and of the
indexed algorithms for exact SMLG. Chapter 4 discusses the origin of SETH,
why it is considered to be reliable, and its ties with OVH. Chapters 5-8 are
dedicated to the original publications.

Chapter 5 presents Paper I. We address the question of whether online
exact SMLG could be solved in subquadratic time with a conditional lower
bound for the problem. We show how it is possible to define a linear time
reduction from OV to SMLG, proving that a subquadratic time algorithm
for SMLG would contradict OVH. This also holds under SETH, thanks to its
relation with OV. We extend this result for very simple graph structures,
and in the case of undirected graphs we prove that the lower bound holds
even for a chain of nodes, a result yet unpublished.

Chapter 6 presents Paper II. We provide another lower bound for exact
SMLG, this time addressing the indexed case. We prove that indexing
the graph in polynomial time is not enough to achieve subquadratic time
queries for the pattern, under OVH and SETH. Instead of devising an ad-
hoc reduction, we present this result as a special case of a more general fact.
We define the concept of linear independent-components (lic) reduction and
prove that, for every problem with such a reduction from OV, both an online
and indexing conditional lower bounds hold. This is achieved by reducing
a generalised version of OV to many smaller instances of OV itself. We also
show how this allows us to obtain indexing lower bounds for other problems
like edit distance basically for free, if they already have a lic reduction from
OV.

Chapter 7 presents Paper III. We introduce the notion of founder block
graph (FBG), a special class of graphs built on top of an MSA without gap
characters. In a FBG, nodes are organised in subsequent blocks, which allow
us to selectively decide which sequences to express by placing or not placing
edges between nodes in consecutive blocks. We show that, by adding a
feature called repeat-free property, FBGs can be indexed in polynomial to
solve SMLG queries in linear time. We also give an algorithm to build
such FBGs from a gapless MSA in linear time. Moreover, as novel content,
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we present a property discovered after the publication of Paper III, which
simplifies and strengthens the techniques.

Chapter 8 presents Paper IV. We significantly improve the previous
results on FBGs by generalising them to elastic founder graphs (EFGs).
The advantage is that we retain all the useful properties of FBGs, but now
we can also handle MSAs with gap characters, and we relax the repeat-free
property to semi-repeat-free. We start by proving that SMLG on EFGs is
hard in general, finding a reduction from OV and applying the techniques
of Paper II to automatically obtain an indexing lower bound as well. Then,
we achieve similar results as for FBGs, proving that indexed exact SMLG
on the special class of semi-repeat-free EFGs can still be solved with linear
time queries, after polynomial indexing. The techniques used are more
involved, since managing gap characters and the semi-repeat-free property
require additional care. For constructing such EFGs, we offer two solutions,
optimising two different objective functions, and we provide the details of
one of these algorithms. Additionally, as novel content, we discuss whether
there can be EFGs of different orders.

Chapter 9 assesses what we were able to achieve, where there is still
room for improvement, and possible future directions.

1.2 Personal Contribution to the Original Publi-
cations

What follows is a list of my personal contributions to each original publi-
cation.

Paper I. This paper provides the conditional lower bound for online exact
SMLG. I devised the first version of the reduction for OV to SMLGmostly by
myself, and I have been one of the main contributors of every improvement
on that model.

Paper II. This paper provides the conditional lower bound for indexed
exact SMLG and proves that a similar result holds for every problem with
a lic-reduction from OVH. I suggested the lines to follow and proposed the
main ideas, which have been developed jointly with the other authors.

Paper III. This paper introduces FBGs and provides an efficient indexing
scheme for them, as well as an algorithm to construct them from a gapless
MSA. The main ideas were devised by the first author, while I checked the
correctness of the formal definitions and algorithms, and I contributed to
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the writing of some parts of the paper. The software was developed by the
first and fourth author, I did not contribute to it.

Paper IV. This paper improves over Paper III, introducing EFGs, prov-
ing a conditional lower bound and efficient indexing solutions for the special
case of semi-repeat-free EFGs, as well as an algorithm to construct them
from an gapped MSA. I have been one of the main contributors in finding
the reduction from OV for the special case of EFGs, and I participated in the
reasoning process discovering the novel property described in Chapter 7,
which served as a building block for the design for the matching algorithm.



Chapter 2

Preliminaries

We now introduce the notation and the formal definitions of key concepts
adopted throughout the thesis. We also present and discuss some back-
ground concepts that are fundamental in order to understand and appre-
ciate our results. This chapter is intended to be a glossary that the reader
can refer to, in case a technical detail is unclear or forgotten.

2.1 Strings and Labelled Graphs

Strings and labelled graphs are the core concepts of this work. In this
thesis, we will adopt the following definitions.

Pattern string. Given a string P of m characters from alphabet Σ, we
denote its length as |P | = m. The i-th character in P is P [i], with indexes
starting from 1, and P [i..j] is the substring of P that starts at position i
and ends at position j, P [i] and P [j] included.

Graph. A node-labelled graph G = (V,E, �) has |V | nodes, |E| edges and
labelling function � : V → Σ, which assigns to every node v ∈ V a label �(v)
over alphabet Σ. We may refer to nodes labelled with σ ∈ Σ as σ-nodes. A
walk is a sequence of nodes π = v1, v2, . . . , vk such that (vz, vz+1) ∈ E for
1 ≤ z ≤ k − 1. A path is a walk where no node is repeated. The label of
path or walk π = v1, v2, . . . , vk is the concatenation of its node labels, that
is �(π) = �(v1) ◦ �(v2) ◦ · · · ◦ �(vk), where ◦ indicates string concatenation.
The set of in-neighbours and the in-degree of node v ∈ V are in(v) and
indeg(v), respectively; for out-neighbours and out-degree the notation is
out(v) and outdeg(v).

7



8 2 Preliminaries

Throughout this thesis, if not better specified, we always use the fol-
lowing conventions: P and G = (V,E, �) refer to this definition of pattern
and labelled graph, index i refers to positions in the pattern, index j refers
to nodes in the graph.

We formally define the core problem of this thesis, that is, matching
a pattern string into a node-labelled graph.

Problem 2.1 Exact String Matching in Labelled Graphs (Exact SMLG)

Input : Graph G = (V,E, �) and pattern string P ∈ Σ+ over alphabet Σ.

Output : True if and only if there is a walk (v1, v2, . . . , v|P |) in G such that
P [i] = �(vi) holds for all 1 ≤ i ≤ |P |.

We observe that the node labels could be defined using strings instead of
single characters, namely � : V → Σ+, but this does not make a significant
difference. On one hand, single-character node labels can be seen as a
special case of string node labels, and since our lower bounds work for the
former, they consequently work for the latter. On the other hand, we can
always replace a string-labelled node with a chain of nodes labelled with
single characters, and then connect the original in-neighbours to the first
node of the chain and the last node to the original out-neighbours [8]. Thus,
using this transformation, every algorithm for string node labels can run
also for single-character node labels, and the opposite is also trivially true.
For some algorithms, it might be the case that term |V | turns into N in
the time complexity, where N is the total numbers of characters in all node
labels, but this does not significantly affect the asymptotic behaviour.

As mentioned in the introduction, we can define a more general version
of SMLG in which we try to find approximate matches for a pattern string
into a graph. Since matches are not exact, scientific literature sometimes
phrases the problem as aligning a sequence against a graph, especially in
more applied bioinformatics contexts. There are several ways of defining
the approximate match of a sequence in a graph, because there are several
ways of defining an approximate match already between two strings. Here,
we adopt the edit distance as a measure of the quality of a match, and we
discuss why alternative and more general definitions might pose a prob-
lem. We recall that the edit distance between two strings A and B is the
minimum number of single-character insertions, deletions and substitutions
needed to turn A into B. In this thesis, notation EDIT(A,B) is the value
of the edit distance between strings A and B, while EDIT is the problem of
computing such values.
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Problem 2.2 Approximate String Matching in Labelled Graphs (Approxi-
mate SMLG)

Input : Graph G = (V,E, �) and pattern string P ∈ Σ+ over alphabet Σ.

Output : Value EDIT(P, �(π)), and possibly π itself, where
π = (v1, v2, . . . , v|P |) is a walk in G such that, for every other walk π′

of length |P | in G, EDIT(P, �(π)) ≤ EDIT(P, �(π′)).

A more general way of defining approximate SMLG is by allowing errors
also in the graph. In the definition we just gave, we allow errors only in the
pattern, that is we apply edit operations to the pattern to make it match
a walk in the graph. We could also define edit operations to apply to the
graph so that it provides a match for the pattern. The reason why we do
not consider this possibility is because Amir et al. [8] already proved that
allowing errors only in the graph or in the graph and the pattern makes
the problem NP -complete for a generic alphabet. This result has been
recently strengthened by Jain et al. [29], extending it to binary alphabet
and hamming distance.

2.2 Hypothesis for Conditional Lower Bounds

The conditional lower bound for EDIT, and thus for approximate SMLG, is
based on an assumption on the time complexity needed for solving CNF-
SAT. In a CNF-SAT problem we are given a Boolean formula F in conjunc-
tive normal form over n Boolean variables v1, . . . , vn, and we are asked to
determine whether F is statisfiable, i.e. if there exists a truth assignment
for the n variables that makes F true.

The aforementioned assumption on the complexity of SAT is the so
called strong exponential time hypothesis (SETH) [28]. Here we present
the original definition of SETH, which provides the tools to explain why
such a hypothesis is reasonable in the first place. Later we show a simpler
version of this definition, which is the most commonly used in the proofs
of conditional lower bounds.

Definition 2.1 (SETH - Original) Let q-SAT be an instance of CNF-
SAT with n Boolean variables and at most q literals per clause.
Given sq = inf {α : There is an algorithm solving q-SAT in time O(2αn)},
SETH states s∞ = lim

q→∞ sq = 1.

In other words, this means that the exponent in the O(2n) time com-
plexity needed to solve a SAT problem cannot be improved, not even by a
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constant factor. Hence, SETH can be defined in a different way, which is
more suitable for proving conditional lower bounds.

Definition 2.2 (SETH - Alternative) For every ε > 0, a generic in-
stance of SAT with n variables cannot be solved in O(2(1−ε)n) time.

Closely related to SETH is also the even more reliable exponential time
hypothesis (ETH), where by “more reliable” we mean that SETH ⇒ ETH,
but not the contrary.

Definition 2.3 (ETH) For q ≥ 3, sq > 0.

When proving lower bounds for problems that are solvable in polynomial
time, the proofs based on SETH often make use of another problem named
OV (Orthogonal Vectors) and of the related hypothesis OVH (Orthogonal
Vectors Hypothesis).

Definition 2.4 (OV) Let X,Y ⊆ {0, 1}d be two sets of n binary vectors
of length d. Determine whether there exist x ∈ X, y ∈ Y such that x · y =∑d

i=1 x[i] · y[i] = 0.

Notation x[i] · y[i] indicates the scalar product when used for two single
entries of vectors x and y, while it refers to the dot product x · y when
applied on the vectors themselves.

Definition 2.5 (OVH) For any constant ε > 0, no algorithm can solve
the OV problem in O(m2−εpoly(d)) time.

2.3 Multiple Sequence Alignment and
Block Graphs

A multiple sequence alignment MSA[1 . . .m, 1 . . . n] is a matrix with m
strings drawn from Σ ∪ {-}, each of length n, as its rows. Here - /∈ Σ
is the gap symbol. For a string X ∈ (Σ ∪ {-})∗, we denote spell(X) the
string resulting from removing the gap symbols from X.

The MSA serves as the basis for the construction of special classes of
graphs called block graphs. Here we give a definition of such graphs, and
in Chapters 7 and 8 we see how to refine this definition to construct these
graphs on top of MSAs using the concept of segmentation.
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Definition 2.6 (Block Graph) A block graph is a graph G = (V,E, �)
where � : V → Σ+ is a function that assigns a string label to every node
and for which the following properties hold.

1. Set V can be partitioned into a sequence of b blocks V 1, V 2, . . . , V b,
that is, V = V 1 ∪ V 2 ∪ · · · ∪ V b and V i ∩ V j = ∅ for all i �= j;

2. If (v, w) ∈ E then v ∈ V i and w ∈ V i+1 for some 1 ≤ i ≤ b− 1; and

3. if v, w ∈ V i then |�(v)| = |�(w)| for each 1 ≤ i ≤ b and if v �= w,
�(v) �= �(w).

To construct block graphs out of MSAs, we take advantage of several
data structures: tries, suffix trees, suffix arrays and the Burrows-Wheeler
transform.

A trie [15] of a set of strings is a rooted directed tree with outgoing edges
of each node labelled by distinct characters such that there is a root to leaf
path spelling each string in the set; the shared part of the root to leaf paths
to two different leaves spell the common prefix of the corresponding strings.
Such a trie can be computed in O(N log σ) time, where N is the total length
of the strings, and it supports string queries that require O(q log σ) time,
where q is the length of the queried string. In a compact trie the maximal
non-branching paths of a trie become edges labeled with the concatenation
of labels on the path.

A suffix tree is the compact trie of all suffixes of string T$. In this
case, the edge labels are substrings of T and can be represented in constant
space as an interval. Such a tree takes linear space and can be constructed
in linear time [25] so that when reading the leaves from left to right, the
suffixes are listed in their lexicographic order.

The suffix array [32] of string T is an array SA[1..n + 1] such that
SA[i] = j if T [j..n+1]$ is the i-th smallest suffix of string T$ in lexicographic
order. A generalized suffix tree or array is one built on a set of strings. In
this case, string T above is the concatenation of the strings with symbol $
between each.

Burrows-Wheeler transform BWT[1..n+1] [17] of string T is such that
BWT[i] = T ′[SA[i]−1], where T ′ = T$ and T ′[−1] is regarded as T ′[n+1] =
$.

Finally, we explain our indexing algorithms for block graphs using an
Aho-Corasick automaton. An Aho-Corasick automaton [3] is a trie of a
set of strings with additional pointers (fail-links). While scanning a text
string, these pointers (and some shortcut links on them) allow to identify
all the positions in the text at which a match for any of the strings occurs.
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The construction of the automaton takes the same time as that of the trie.
Queries for text string T take O(|T | log σ + occ) time, where occ is the
number of matches.



Chapter 3

Known Solutions for SMLG

Many algorithms have been proposed for solving SMLG in quadratic time.
This chapter showcases key approaches representative of different tech-
niques.

3.1 The First Algorithm for SMLG

The first attempt of solving SMLG dates back to 1992, when Manber and
Wu published their pioneer study [31]. The goal was to find an approxi-
mate match between a pattern string and a graph whose nodes are labelled
with strings; in other words, they wanted to solve approximate SMLG.
They adopted this representation because the graph was meant to model
a hypertext but, as discussed earlier, this problem is equivalent to the one
in which we have single characters as node labels. The proposed algo-
rithm can handle insertions and deletions and, in the worst case, runs in
O(N + R log log |P | + |P |∑v∈G(indeg(v) − 1)) time, where N is the total
number of characters in the graph and R is the total number of ordered
pairs of positions and nodes at which the pattern and the graph match.
The crucial terms are R and the last one, which make the algorithm run
in time O(|P ||V | log log |P |) or O(|P ||E|), respectively, in the worst case.
Their technique relies on keeping updated, for each node, a set of indexes
that represent potential matches. When a node has multiple in-neighbours,
their sets of indexes, potentially each of size O(|P |), have to be merged to-
gether to compute the set of indexes for the current node. This operation
is what leads to the quadratic time complexity O(|P ||E|), since in general
this is the dominant term.

13
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3.2 The Optimal Online Algorithm for
Exact SMLG

A few years later, Amir et al. [7, 8] focused on finding exact matches
between a pattern string and a graph, namely exact SMLG, following a dif-
ferent approach. Their algorithm is based on a product operation between
the graph and the pattern, and we find this technique worth explaining for
its originality.

Consider graph G = (V,E, �) and pattern string P . Compute the Carte-
sian product of the nodes with the positions of the pattern, that is,

V ′ = {vi| v ∈ V, 1 ≤ i ≤ |P |} ∪ {s, f}.

What we are doing is replicating each node |P | times, to represent ev-
ery position of the pattern. Set V ′ constitutes the nodes of a new graph
G′ = (V ′, E′), whose edges E′ are defined as follows. First, we connect s to
every v1, and every v|P | to f if and only if �(v) = P [|P |]. To better picture
the resulting graph, we also add the extra condition �(v) = P [1] for the first
case, not present in the original work [8]. Then, we connect node vi with
node wi+1 if and only if there was an edge between v and w in the original
graph, and if vi represents a match for the i-th character of the pattern,
that is �(v) = P [i]. Again, we add the additional condition �(w) = P [i+1].
Figure 3.1 shows an example of this transformation, which can be formally
defined as

E′ ={(s, v1)| v ∈ V, �(v) = P [1]} ∪ {(v|P |, f)| v ∈ V, �(v) = P [|P |]}∪
{(vi, wi+1)| (v, w) ∈ E, �(v) = P [i], �(w) = P [i+ 1]}.

Existential queries can now be answered by running a DFS starting
from s. If we can reach f there is at least one match, otherwise there is no
match, and the DFS clearly runs in O(|P |) time. Reporting the matches
themselves requires few additional steps. When running the DFS, mark
every node vi such that there is a path from that node to f . Then, scan
each node v of the original graph, and if the corresponding vi is marked
then report v as part of a match for P . Marking nodes vi with a DFS can
be done in O(|V ′|) time, since we can decided whether or not to mark a
node by computing an or of the recursive calls on its children. The final
scan clearly takes O(|V |) time. The overall complexity is given by the most
costly operation, computing the pattern-graph product, which takes both
time and space O(|P ||E|). In Chapter 5, we prove that this is optimal
under OVH and SETH.
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Figure 3.1: An execution of the algorithm of Amir et al. [8] to find a match
for pattern P = ABC. The graph at the top (a) is the original graph in
which we want to find the match, the graph at the bottom (b) is built as
the “product” of the pattern and the original graph. A DFS search starting
from node s and ending at node f finds the path in bold, which corresponds
to a match for P in the original graph.
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3.3 The Optimal Online Algorithm for Approxi-
mate SMLG

The algorithm of Manber and Wu [31] was already able to handle approx-
imate matches that allowed insertions and deletions in the pattern. How-
ever, this solution, besides not dealing with substitutions, features factor
R log log |P | in the time complexity. Since R is the number of position-node
pairs with matching characters, it can be the case that R = O(|V ||P |). This
term dominates over O(|P ||E|) when |E| = O(|V |), meaning that in some
cases the overall time complexity can be worse than quadratic, even if by
just a double-logarithmic factor.

These difficulties are instead not present in the newer algorithm pro-
posed by Navarro [35] in 2000, later refined by Rautiainen and Marschall
[38] in 2017. This algorithm (in the version of Rautiainen and Marschall
[38]) solves approximate SMLG in time O(|V |+ |E||P |), and requires space
O(|V |) on directed graph G = (V,E) and pattern string P . Cycles are
supported, and so are undirected graphs, because undirected edges can be
seen as two directed edges with opposite orientation. Since exact SMLG is
a special case of approximate SMLG, this is also an improvement over the
algorithm of Amir et al. [8], because the space complexity is linear. More-
over, notice that EDIT is a special case of approximate SMLG in which
the graph is a chain of nodes, thus the quadratic conditional lower bound
for the former holds also for the latter, making this quadratic algorithm
optimal under OVH and SETH.

The idea of this solution is to use dynamic programming to compute the
minimum edit distance between the pattern and the graph, allowing errors
only in the pattern. This means finding a path in the graph whose label is
at minimum edit distance with the pattern. In the dynamic programming
table, each row represents a position of the pattern, while graph nodes
are on the columns. The algorithm updates the table row by row, thus
processing one pattern character per iteration. The edges of the graph
define the dependencies between the cells of the table, namely which cells
have to be considered when updating the current cell. As illustrated in
Figure 3.2, the cell in position (i, j) stores the cost ci,j , which represents
the fact of matching P [i] against node label �(vj), possibly performing a
substitution. Each ci,j is defined as

ci,j = min

⎧⎪⎨
⎪⎩
ci−1,k +Δi,j , for vk ∈ in(vj)

ci,k + 1, for vk ∈ in(vj)

ci−1,j + 1.
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1 1 0 0 1
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Figure 3.2: An example of the dynamic programming table used to solve
approximate SMLG for pattern P = TATT. The dashed arrows are the
backtrace, that is, they show which cell was used to update the next one.
The solid arrows highlight an optimal alignment of cost 0, which is also a
solution for exact SMLG. This figure is taken from the work of Rautiainen
and Marschall [38].

As the recurrence shows, there are diagonal dependencies when considering
ci−1,k, horizontal dependencies when considering ci,k, as well as vertical
dependencies when considering ci−1,j . Similarly to edit distance, a diagonal
dependency represents two substitutions, a vertical dependency represents
an insertion and a substitution, and a horizontal dependency represents
a deletion and a substitution. Hence, each row depends on the previous
ones, but there are also horizontal dependencies among cells of the same
row. This raises the issue of having cyclic dependencies within the same
row, if the graph has cycles. To handle such dependencies, the authors
define partial costs as follows:

pi,j = min

{
ci−1,k +Δi,j , for vk ∈ in(vj)

ci−1,j + 1

In other words, pi,j is the value of the cost computed by ignoring horizontal
dependencies. These partial costs can be used by the algorithm to update
each row in two steps. First, a partial cost pi,j for all the cells in a row is
computed; then, each pi,j is updated to ci,j by visiting the cells in ascending
partial-cost order. After finishing this process, the minimum edit distance
cost is found as the minimum value in the last row of the table. To justify
why this procedure is correct, the authors prove the following property.
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Lemma 3.1 pi,j−ci,j ∈ {0, 1}, for all i ∈ {2, . . . , |P |} and j ∈ {1, . . . , |V |}

Now, consider partial costs pi,j1 and pi,j2 . If pi,j1 ≤ pi,j2 , then Lemma 3.1
implies that final cost ci,j1 is such that ci,j1 ≤ pi,j2 . Thus, pi,j2 will never be
chosen as the best choice for computing ci,j1 , simply because the choice that
we made when computing pi,j1 was already better. Thus, when scanning
the cells in a row in ascending partial-cost order, we can ignore all the
dependencies coming from cells with greater partial costs, and compute
the final costs considering only the other dependencies.

3.4 Indexed Algorithms for Exact SMLG

As we have seen, researchers struggled to find solutions for SMLG that
run in less than quadratic time, even considering the exact variation of
the problem. Indeed, even without a formally proven lower bound, this
quadratic barrier might seem unbreakable. However, all the solutions for
SMLG that we explored so far follow the same approach, that is, they always
try to solve the problem from scratch every time a new input is given. An
alternative strategy is to first build and index structure on top of the graph,
and then use such an index to handle queries for different patterns. If we
follow this approach, how much time do we have to spend indexing the
graph in order to achieve reasonably fast queries for the pattern?

Thachuk developed the first solution in this direction [41] considering
the case of having strings as node labels, over alphabet Σ, and showing that
it is possible, via succinct data structures, to run queries for pattern P in
graph G = (V,E, �) in time O(|P | log |Σ| + |P | log |V |

log log |V | + γ2 + γ log |V |
log log |V |),

after indexing the graph in time O(|E| log |E|). Here, γ is the number of
occurrences of nodes as substrings of the pattern, and γ2 is the crucial
factor in the time complexity, because in the worst case γ2 = O(|V |2).
Nevertheless, Thachuk underlines that if every node label is the prefix of at
most O(1) other node labels, then the query time reduces to O(|P | log Σ+

|P | log |V |
log log |V |). We come back to this fact in Chapters 7 and 8, where we

introduce the (semi)-repeat-free property, similar but not equivalent to
Thachuk’s. Thanks to this property, we achieve linear time queries for
a special class of graphs.

A different type of result was achieved by Sirén et al. [40], that followed
the strategy of potentially spending a lot of time indexing the graph to
achieve subquadratic time queries for the pattern. This indexing scheme is
called Generalised Compressed Suffix Array (GCSA), and it is based on the
properties of the BWT and of the concept of prefix-sorted nodes of a finite
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automaton. Assume to be given finite automaton A with nodes V where
every node v lies on a path from v1 to v|V | and �(v1) = #, �(v|V |) = $,
and # ≤ σ ≤ $ for every c ∈ Σ. Then, prefix-sorted nodes are defined as
follows.

Definition 3.1 Node v ∈ V of finite automaton A is prefix-sorted by prefix
p(v), if the labels of all paths from v to v|V | share a common prefix p(v),
and no path from any other node u �= v to v|V | has p(v) as a prefix of its
label. Automaton A is prefix-sorted if all nodes are prefix-sorted.

In a prefix-sorted automaton, prefix-sorted nodes allow us to index node
prefixes instead of listing all the paths for locating pattern matches. The
goal is to have a structure that generalizes the BWT. One of the key prop-
erties of the BWT is that suffixes of the text starting with character c are
sorted in the same way as suffixes preceded by character c. In case of a
prefix-sorted automaton, we have prefixes p(v) in place of suffixes, and the
same relationship holds between the prefixes of nodes starting with char-
acter c and the prefixes of nodes that are out-neighbours of nodes with
label c. This property allows indexing the graph so that it is possible to
determine if pattern P matches or not in time linear in |P |. However, if
our input graph is not prefix-sorted, we have to convert it into such form,
and this is the crucial operation. For some graphs (or automata), the size
of an equivalent prefix-sorted graph (or automaton) that accepts the same
language is expected to be linear, but in the worst case there could be an
exponential blow-up in the number of nodes. Thus, from the point of view
of a worst-case analysis, this indexing scheme provides linear time queries
for the pattern at the cost of exponential time for indexing the graph.
Moreover, this technique works for DAGs but not for general graphs.

3.5 Algorithms for Alternative Graph Types

There are many different angles from which we can tackle the difficulty of
solving SMLG in less than quadratic time. Indexing the graph is one way
of making additional assumptions on how we want to handle queries, that
is, we assume that preprocessing and querying can be done at two different
times, with the former taking much longer than the latter. We could make
alternative and complementary assumptions, to find faster algorithms for
at least a simpler version of the problem. This is the motivation behind
the study of Generalized Degenerate Strings (GDS) [5] and Elastic Degen-
erate Strings (EDS) [14]. These structures can be seen as DAGs with very
specific properties, thanks to which string matching can be performed in
subquadratic time.
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A GDS is a sequence of n sets of strings, where the i-th set contains
strings of the same length ki, but this length can vary between different
sets. The sum

∑n
i=1 ki of the lengths of each set is the width of the entire

GDS. An EDS is a GDS where the strings in the i-th set can be of different
lengths. Given a GDS of width W , its language is the set of all the possible
strings of length W obtained by scanning the GDS from left to right, and
concatenating a string of set i with one of set i + 1, for every 1 ≤ i < n.
If we are given two GDSes of the same width, it is possible to determine
whether or not the intersection of their languages is empty, in linear time
in the number of characters in each GDS [5]. For EDSes instead, we know
that it is possible to find a match for a string in expected O(n|P |1.385+N)
time, where n is the number of sets of strings and N the total number
of characters. In EDSes, a match for a string is allowed to start at any
position of any string in any set, can span strings of multiple consecutive
sets, and can end at any position of any string in the last consecutive set.
In Chapters 7 and 8, we identify alternative classes of graphs for which it is
possible to query the pattern in truly linear time, possibly after polynomial
time preprocessing.



Chapter 4

New Lower-Bound Techniques

As already mentioned, the edit distance lower bound is conditioned on
SETH, a hypothesis stating that, for any ε > 0, CNF-SAT cannot be solved
in time O(2(1−ε)n). During the last years, SETH has been extensively used
for proving several other conditional lower bounds. The idea of such a hy-
pothesis comes from the work of Impagliazzo and Paturi [27, 28] in 1999,
where they proved a property on the constant α > 0 involved in the time
complexity O(2αn) of CNF-SAT. In their work, they concluded that it is
reasonable to believe that SETH is true, since α increases as the number
of literals per clause increases. Thus, they proposed the open problem of
providing a formal proof for SETH. A few years later Williams [45] reduced
CNF-SAT to a problem basically equivalent to the OV problem. This gave
the tools to conclude that a strictly subquadratic time algorithm for OV
would provide an improved algorithm for CNF-SAT, i.e. an algorithm run-
ning in O(2(1−ε)n) time. Since this would contradict SETH, it is clear that
there is a strong connection between Impagliazzo and Paturi’s [27, 28] work
and Williams’ [45] work; in particular, SETH implies OVH.

Nowadays, it is common practice to combine these two results to prove
conditional lower bounds for polynomial time problems, and the edit dis-
tance problem is no exception. Indeed, the strategy adopted for proving
the lower bound for EDIT [10] consisted in reducing OV to EDIT, which
automatically proved that a strongly subquadratic time algorithm for com-
puting edit distance would contradict SETH. The lower bound for the edit
distance problem has been a cardinal step in pattern matching and it was
suddenly followed by other strongly related results. Following the same
strategy, the same lower bound was proven for computing the longest com-
mon subsequence and the dynamic time warping distance [1], which are
both alternative definitions of distance between strings and curves, respec-
tively. Moreover, the lower bounds for the edit distance and for the dy-
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namic time warping distance have also been improved by Bringmann and
Künnemann [16]. In fact, they proved that the lower bound still holds even
when the sequences are drawn from a binary alphabet, while the original
lower bound was valid only for an alphabet of size at least 7.

4.1 Reliability of SETH

The lower bound for EDIT heavily relies on SETH, which is a hypothesis
believed to be true although no mathematical proof has been provided yet.
It is reasonable to question how reliable it is, hence we need to explain for
which reason such a hypothesis is supported. All the needed information
is to be found in the original work from Impagliazzo and Paturi [28].

Consider the original statement of SETH given in Definition 2.1. Im-
pagliazzo and Paturi first observed that the best known algorithms that had
been proposed for solving CNF-SAT were running in O(2(1−d/O(q))n) time,
where d is a constant and q is the number of literals per clause. Hence,
the sq constant of their definition clearly had to be sq ≤ 1, and they won-
dered if such a constant could be exactly 1, when q → ∞. Even if showing
that s∞ = 1 still is an open challenge, they proved that assuming ETH it
holds true that sq ≤ (1 − d/q)s∞. The consequence is that sequence {sq}
is increasing infinitely often when q → ∞ .

In order to understand why such inequality is making sequence sq in-
crease infinitely often, consider q and q′ such that q < q′. Hence we have
(1− d/q)s∞ < (1− d/q′)s∞, as shown in Figure 4.1.(

1− d
q

)
s∞

(
1− d

q′

)
s∞

sq
sq′

Figure 4.1: The solid line at the bottom shows the possible values for sq′ .

We then reason about where sq′ could lie on the line of real numbers.
Recall the definition of sq. Since we are assuming ETH, that is, sq > 0
for q > 3, there exist constants sq > 0 and sq′ > 0. It cannot be the case
that sq′ < sq, because in that case we would have found a better constant
for q-SAT, contradicting the very definition of sq. Can it be that sq = sq′?
To explain this, let us consider qi such that q < qi < q′. There must be
only a finite number of constants qi such that sq = sqi . In fact, suppose
by contradiction that sq = sqi for i → ∞. In that case sq = s∞, while we
know that sq ≤ (1− d/q)s∞. Thus, there must be a sqi such that sq < sqi



4.2 Reducing SAT to OV 23

and we consider such a constant to be our sq′ . Since we now proved that
for every q there is a q′ > q such that sq < sq′ , we conclude that sequence
{sq} is increasing infinitely often.

Recall that the time complexity of the best known algorithms for CNF-
SAT is O(2(1−d/O(q))n). Given such time complexity and defining sq =
1 − d/O(q) we notice that sq → 1 when q → ∞, that is, s∞ = 1. We
conclude that it is reasonable to believe that s∞ = 1, namely SETH is true,
because s∞ ≤ 1, sequence {sq} is increasing infinitely often and s∞ = 1 is
true for the known algorithms.

4.2 Reducing SAT to OV

When proving conditional lower bounds, it is common practice to reduce
OV to the problem in question via a subquadratic time reduction. Then
the proof is concluded by showing that a subquadratic time algorithm for
the problem we reduced to would provide a subexponential time algorithm
for CNF-SAT, contradicting SETH. Even if reducing directly from CNF-SAT
is also possible, it is preferable to reduce from OV. This makes the proof
easier to present, because we always work with polynomial time complex-
ities, without having to deal with exponential time complexities. Indeed,
this is possible since CNF-SAT can be reduced to OV. This relationship be-
tween these two problems allows us to use OVH in place of SETH, without
weakening our results. We now explain that OVH is true unless SETH fails,
presenting the following lemma.

Lemma 4.1 SETH ⇒ OVH.

Let us go through a detailed sketch of the proof. The strategy is to start
from an instance of CNF-SAT, reduce it to an instance of OV, and then show
that a O(n2−ε1) algorithm for OV would lead to a O(2(1−ε2)n) algorithm
for CNF-SAT, where ε1 > 0 and ε2 > 0. Since such a conclusion would
contradict SETH, our claim would be proven.

Consider a generic instance of CNF-SAT where formula F is drawn from
n variables v1, . . . , vn and consists of k clauses c1, . . . , ck. Split the variables
in two groups v1, . . . , vn

2
and vn

2
+1, . . . , vn, assuming n to be even w.l.o.g.,

and define sets X and Y as all of the 2
n
2 possible truth assignments for the

first and second group of variables, respectively.

X = {xi | xi = 〈b(i)1 , . . . , b
(i)
n
2
〉 is a truth assignment for v1, . . . , vn

2
}

Y = {yj | yj = 〈b(j)n
2
+1, . . . , b

(j)
n 〉 is a truth assignment for vn

2
+1, . . . , vn}.
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Figure 4.2: The reduction from CNF-SAT to OV. In this example we assume
to have 4 variables (n = 4) and a CNF-SAT formula F with 4 clauses
(k = 4). For each partial truth assignment, a vector is placed. In each
vector, the entries set to 0 represent those clauses that can be satisfied by
the corresponding partial truth assignment.

We call partial truth assignments the elements in X and Y . Each of these
partial truth assignments can be related with a vector in an OV problem.
Consider two sets of binary vectors U and W . Both U and W have m = 2

n
2

vectors each, one for every partial truth assignment. Moreover, such vectors
are of length d = k, that is, they have one entry for each clause in F . For
each vector ui ∈ U , partial truth assignment x ∈ X and clause ch, set the
h-th entry of the vector ui[h] = 0 if and only if partial truth assignment xi
satisfies clause ch (xi |= ch), for 1 ≤ i ≤ 2

n
2 and 1 ≤ h ≤ d. Proceed in the

same way for all the vectors wj of set W , but for the fact that we use the
partial truth assignments yj of set Y . See Figure 4.2 for an example.

At this point, we can observe that there exists a pair of orthogonal
vectors if and only if F is satisfiable. Indeed, ui[h] · wj [h] = 0 if and only
if clause ch is satisfied either by partial truth assignment xi or by partial
truth assignment yj . Hence, ui · wj = 0 if and only if every ch is satisfied
by either xi or yj , for 1 ≤ h ≤ d. Such an observation represents the
cardinal mechanism of the whole proof. Indeed, now we can solve our
instance of OV and have answered the original CNF-SAT problem. Hence,
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we wonder what happens if there exists an algorithm that solves OV in
O(m2−ε1poly(d)) time, for a constant ε1 > 0. Recalling that m = 2

n
2 and

d = k, the consequence is that we can solve CNF-SAT in

O(m2−ε1poly(d)) = O((2
n
2 )2−ε1poly(k))

= O(2(1−
ε1
2
)npoly(k))

= O(2(1−ε2)npoly(k))

where ε2 =
ε1
2 , which would contradict SETH. Thus it holds that ¬OVH ⇒

¬SETH, that is, if there exists a subquadratic time algorithm for OV, then
SETH is false, which leads to the conclusion that SETH ⇒ OVH.
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Chapter 5

Quadratic Conditional Lower
Bound for Exact SMLG

All the attempts at solving SMLG online feature a quadratic term in the
time complexity of their algorithms. This term appears regardless of fac-
ing the exact or approximate variant of the problem, which may suggest
that what we are dealing with is an actual theoretical barrier. Understand-
ing whether this was the case or not was the aim of Paper I, in which we
proved that there do exist quadratic conditional lower bounds that apply
even to very specific graph structures. We found this result to be surprising
if compared to what we know for classical string matching. In fact, exact
string matching in plain text can be solved in linear time [30], while ap-
proximate string matching (under edit distance) has a conditional quadratic
lower bound [10]. Instead, when dealing with graphs, we proved that exact
matching already has a quadratic lower bound, and thus the same holds
for approximate matching too.

In order to prove our conditional lower bounds, we employ the recent
techniques based on OV. At a general level, the strategy is to find a re-
duction from OV to exact SMLG that can be performed in linear time,
implying that a subquadratic-time algorithm for SMLG would provide a
subquadratic-time algorithm for OV, contradicting OVH and thus SETH.
Depending on how we structure the reduction, it is possible to make the
lower bound hold for very specific classes of graphs. The baseline is to de-
fine the pattern string on top of one set of vectors, and the graph on top of
the other set, forcing the pattern to match the graph if and only if there is
a pair of orthogonal vectors. The pattern is just a sequence of characters, a
very simple structure with not much room for clever tricks, thus the crucial
part of the reduction is always defining the graph in such a way that it will
match only the “right” patterns.

27
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We start by presenting the most immediate structure for the graph,
which can be seen as a development of an earlier reduction for a problem
on regular expressions [11]. Then, we shall highlight some weaknesses of
this approach, and shift towards a significantly different graph structure,
which we can further refine to make the reduction work even for a very
restricted class of DAGs. If we allow the graph to be undirected, then the
most basic structure for which we can find a reduction from OV is even
simpler, just a chain of nodes. We present all of the announced results
assuming a constant alphabet tuned to our needs but, as we proved in our
work, the same conditional lower bounds hold even if restricted to a binary
alphabet.

5.1 A First Reduction Scheme

Let us start with a first attempt at finding a reduction from OV to exact
SMLG. Although we will later point out the limits of this approach and
take a different route, this first solution introduces useful graph gadgets
that are the base ingredients also for more refined reductions. Already in
this preliminary reduction, we use directed edges and we do not introduce
cycles in the graph, allowing the result to hold for DAGs.

Let X and Y be the two sets of n binary vectors {x1, . . . , xn} and
{y1, . . . , yn} of length d in the OV problem. We want to define pattern
string P on top of set X and graph G = (V,E, �) on top of set Y , and
we also want P to have a match in G if and only if there exists a pair
(xi, yj) ∈ X × Y of orthogonal vectors. To give a better intuition on how
we proceed, let us consider the following example of an OV instance, which
we will carry on throughout the whole explanation:

X =

⎧⎪⎪⎨
⎪⎪⎩
x1 = 010
x2 = 001
x3 = 101
x4 = 110

001 = y1
011 = y2
100 = y3
110 = y4

⎫⎪⎪⎬
⎪⎪⎭ = Y

The pairs of orthogonal vectors are (x1, y1), (x1, y3), (x2, y3) and (x4, y1),
which are the solutions to OV. We now transform such instance of OV into
an equivalent instance of SMLG, defining first the pattern, and then the
graph.

Pattern. For each vector xi ∈ X, we define subpattern bPxie such that
Pxi = xi (to be precise, Pxi contains characters, while xi contains natural
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b

0 0 0

1 1 1

e b

0 0 0

1 1 1

e b

0 0 0

1 1 1

e

G
(1)
U1 G

(2)
U1 G

(3)
U1

Figure 5.1: Subgraph GU1 for our example. Gadgets G
(j)
U1 in general are

n − 1, where n is the number of vectors in the OV instance. In our case
n− 1 = 3. Subgraph GU2 is identical.

numbers); the final pattern is P = bbPx1ebPx2e, . . . , bPxn−1ebPxne. Thus,
set X in our example becomes

P = b b 010 e b 011 e b 101 e b 110 e e.

Graph. The idea for building the graph is to have some gadgets encoding
the vectors in Y disposed in a column-like manner, and then attach a row
of “overflow” gadgets to the left and one to the right of such a column.
In this way, we can make subpattern Pxi align with any of the gadgets in
the column, and let the rest of the pattern match the overflow rows. If we
devise the gadgets in the column properly, Pxi will match the j-th gadget
if and only if vectors xi ∈ X and yj ∈ Y are orthogonal. Moreover, to
account for the rest of the pattern, the overflow rows should be able to
match any number of subpatterns of any type.

Let us first see how to define the subgraphs representing the overflow
rows. We call the gadgets in these subgraphs universal gadgets, because of

their ability of matching any subpattern Pxi , and we use the notation G
(j)
U1

for those on the left row, and G
(j)
U2

for those on the right row. The entire left
row is subgraph GU1, while the right row is subgraph GU2. The structure
of the gadgets, of which Figure 5.1 shows an example, is identical for all
gadgets, but we use different indexes to refer to their different position in

the final graph. To build gadget G
(j)
U1

, we start by placing a node labelled
with b. Then, we place two parallel lines of d nodes, where recalling that d
is the length of each vector in Y . All the nodes of the first line are labelled
with 1, while all the nodes of the second line are labelled with 0. Finally,
we place a node labelled with e, and we connect these nodes as shown in
Figure 5.1. As is clear in the illustration, for any possible binary string of
length d there is a path from b to e spelling that string, which means that

such a gadget can match any subpattern bPxie. Gadgets G
(j)
U2

are identical
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b

0 0 0

1 1

e

b

0 0 0

1

e

b

0 0 0

1 1

e

b

0 0 0

1

e

e b

G
(1)
W

G
(2)
W

G
(3)
W

G
(4)
W

Figure 5.2: Subgraph GW for our example. There is one gadget G
(j)
W for

each vector yj ∈ V . The dashed e-node and b-node belong to Gn−1
U1 and

G1
U2, respectively, and the dashed edges show the connection with such

gadgets and thus with the universal subgraphs on the left and on the right.

to gadgets G
(j)
U1

. We construct GU1 (GU2) by connecting the e-nodes with

the b-nodes of n− 1 universal gadgets G
(j)
U1 (G

(j)
U2) one after the other, in a

row-like manner as in Figure 5.1.

Now we define the gadgets that encode each vector yj ∈ Y , which we

will denote G
(j)
W and call vector gadgets. These gadgets need to have the

property of matching subpattern Pxi if and only if vectors xi and yj are

orthogonal. To this end, we place the nodes in gadget G
(j)
W as we did for

gadget G
(j)
U1

, but with the difference that we drop the 1-nodes for those
positions h, 1 ≤ h ≤ d, such that yj [h] = 1. Figure 5.2 provides an

example. The logic here is that the nodes in G
(j)
W describe which characters
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are allowed to be present in subpattern Pxi when xi is orthogonal to yj .
For instance, if we have a 0 in vector yj at position h, that is, yj [h] = 0,
then xi[h] can be either 0 or 1 and still respect orthogonality; if yj [h] = 1,
xi[h] is forced to be 0 to respect orthogonality. Analogously, by dropping
the 1-node for position h if yj [h] = 1, we force pattern Pxi to have its own 0

at that position to be able to match, which formally result in the following
lemma.

Lemma 5.1 Subpattern bPxie has a match in GW if and only if there
exists yj ∈ Y such that xi · yj = 0.

In subgraph GW , we dispose the n vector gadgets G
(j)
W one on top of the

other, in a column-like manner as in Figure 5.2. We are now ready to put
together all the gadgets to compose the final graph. As anticipated earlier,
graph G consists of subgraphs GU1, GW and GU2. Universal subgraphs
GU1 and GU2 are identical and serve the purpose of matching up to n− 1
subpatterns of P , while GW implements the logic of the reduction. To

build final graph G, we connect the e-node of G
(
U1n− 1) to the b-nodes of

every G
(j)
W , and the e-node of every G

(j)
W to the b-node of G

(1)
U2, as Figure 5.2

suggests. Notice that the b- and e-nodes of graph G forces pattern P to
properly align each subpattern Pxi against one single graph gadget, with no
possibility to overlap two or more gadgets. Moreover, there are at most n−1
universal subgadgets in GU1 and GU2, which means that one subpattern
Pxi is always forced to match in GW .

Lemma 5.2 Pattern P has a match in G if and only if a subpattern bPxie

of P has a match in subgraph GW .

The correctness of the reduction follows from the combination of Lemma 5.1
and Lemma 5.2. With this reduction, the result that we achieved so far
is a conditional lower bound stating that, given graph G = (V,E, �) and
pattern string P , exact SMLG cannot be solved in time O(|E|1−ε|P |) or
O(|E||P |1−ε), unless OVH, and thus SETH, fail. Can we tighten this lower
bound? The answer is yes, but before fine-tuning the details, our reduction
scheme needs a major restructuring, as we point out in the next section.

5.2 Weaknesses of the First Reduction Scheme

The structure of gadget GW follows the same idea of a reduction provided
in the work of Backurs and Indyk [11], where they study which types of
regular expressions are hard to match. Among many others, they analyse
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regular expressions that are a composition of or operators | · |, as for
instance [(a|b)(b|c)]|[(a|c)b]. Given a regular expression r of type | · | and
a text t, they found a reduction from OV to the problem of determining
whether a substring of t can be generated by r. The idea for the reduction
is to encode the binary vectors x1, . . . , xn of X as t = x12x22 . . . 2xn, where

2 is a separator character; then, define regular expression r = R
(1)
W | R(2)

W |
· · · | R(n)

W , where R
(j)
W can generate xi if and only if xi ∈ X is orthogonal to

yj ∈ Y . Their gadgets R
(j)
W work in the same way as our gadgets G

(j)
W , and

indeed the NFA accepting the same language as r has the same structure
of subgraph GW .

Although for regular expressions this reduction scheme might be good
enough, for graphs it turns out to be quite limiting. The major problem

is the big fan-out needed to connect G
(n−1)
U1 with every G

(j)
W . Indeed, one

valuable improvement to the lower bound would be to make it hold at least
for DAGs of constant degree. This and other improvements are possible,

but to achieve them we have to change the disposition of the G
(j)
W gadgets

in the graph and their connections with the other gadgets.

5.3 Refined Reduction

We are now ready to see how the structure of the reduction can be improved,
and we will do this in two steps: first, we heavily reshape the graph; then,
we fine tune the new graph to achieve even tighter lower bounds. For the
refined reduction, the definition of universal gadgets and vector gadgets
will remain the same, but their disposition and number will change. In the
current graph we have GU1, GW and GU2 placed on the left, in the center
and on the right, respectively, and by limiting the number of universal
gadgets in GU1 and GU2 we force the pattern to use GW in order to find
a match. In the new graph, we avoid the big fan-out between GW and the
universal subgraphs by shaping GW in a row-wise manner as well. The
idea is to have GU1, GW and GU2 disposed on three rows, with GU1 at the
top, GW in the middle and GU2 at the bottom. By using special character
sequences, we can make the pattern always start a match in GU1 or GW

and finish it in GW or GU2, if there is any.
The final graph with a possible pattern match for our example is de-

picted in Figure 5.3. We now describe this new structure and comment on
the benefits. We have again two universal subgraphs, GU1 and GU2, and
they are constructed in the same way as before, with the only difference
that now they feature 2(n− 1)= 2n− 2 universal gadgets instead of n− 1.
Here, we apply the first modification which, as depicted in Figure 5.3, con-
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sists in connecting a new b-node to each already-existing b-node in GU1,
and also in connecting each e-node in GU2 to a new e-node. Formally,

for each b-node b(j) in GU1, we define a new b-node b
(j)
new and we connect

them with the edge (b
(j)
new, b(j)). Similarly, for each e-node e(j) in GU2 we

define e-node e
(j)
new, and we connect the previous e-node with the new one

with edge (e(j), e
(j)
new). In other words, we are placing a new node for each

universal subgadget in both GU1 and GU2. These additional nodes mark
where a match for a pattern could begin and where it could end. Since
there are no consecutive e-nodes in GU1, no match can end there, and no
match can begin in GU2, since it has no consecutive b-nodes.

Vector subgraph GW consists again of the n vectors gadgets G
(j)
W , but

they are now disposed horizontally on a row, and they are not connected
between each other. For each one of these gadgets, we also place both a
new b-node and a new e node, and we connect them as we did for GU1

and GU2. The major difference to the previous graph is that now each one
of the last n − 1 universal gadgets in GU1 is connected to a single vector
gadget in GW , which is in turn connected to a single universal gadget in
GU2, among the first n − 1. The consecutive b-nodes and e-nodes are the
key for correctness. Since the pattern starts with bb . . . and ends with
. . . ee, a match can start only in GU1 or GW , and it can end only in GW

or GU1, because these special substrings cannot be matched anywhere else.
This forces the pattern to always use at least one vector gadget in GW to
have a proper match in the graph, and we know that that can happen if

and only if at least one Pxi matches at least one G
(j)
W , that is xi · yj = 0.

Before improving on this reduction, let us first analyze which are the
advantages with regard to the previous reduction. The main observation
is that now every node has a constant number of incoming and outgoing
edges, thus we are avoiding the big fan-out. This is already a better lower
bound by itself: no algorithm can solve exact SMLG in subquadratic time
on DAGs of constant degree. Note also that the alphabet that we are
using is constant, but we are nonetheless using 4 characters. In the next
section, we will see how to further push the restrictions on the graph and
the alphabet.

5.4 Determinism

The reduced degree in the new graph leads the way to an important fea-
ture: determinism. In our current graph, each node has at most two
out-neighbours, and they almost always have different labels. The only

case in which this does not happen is for the e-nodes of gadgets G
(j)
U1, for
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n − 1 ≤ j ≤ 2n − 2. Thus, we are close to having a deterministic graph,
meaning a graph where all of the out-neighbours of a node have a differ-
ent label, and it is tempting to try to extend our reduction to cover such
a case. This might seem unlikely, because we know that we can check in
linear time whether or not a deterministic finite automaton (DFA) accepts
a given string. With such a reduction, the main difference between DFA
acceptance and exact SMLG would be only the fact that in a deterministic
DAG we do not know where a match for the pattern could start, while in
a DFA we have a single start state. This is actually the case, because the
graph in the reduction can be made deterministic. Let us see how.

As observed before, the only non-deterministic nodes in the graph are

the e-nodes of gadgets G
(j)
U1, because they need to give the choice to either

continue matching GU1 or to jump to GW . However, consider G
(1)
W in our

example. This gadget encodes vector y1 = 010, and up to the first pair of 0-

and 1-nodes it does not differ from a G
(j)
U1 gadget. They shape differently

when we encounter the 1 character in yj , because G
(1)
W lacks a 1-node,

which is instead present in G
(j)
U1. Hence, our idea is to merge every G

(j)
W

with the corresponding G
(n−1+j)
U1 , starting from the left, for as long as they

have the same structure, and divide them only when they start to shape

differently. As depicted by Figure 5.4, we leave the entire G
(j)
W unchanged,

but when we encounter the first 1 in yj to encode in G
(j)
W at position h, we

also place a partial version of gadget G
(n−1+j)
U1 , starting at position h and

continuing until the end of the gadget, that is, until reaching the e-node.

Then, we connect the 0- and 1-nodes of G
(j)
W in position h−1 to the 1-node

in position h in G
(n−1+j)
U1 . We do so also for every subsequent position h

for which yj [h] = 1, that is, we have no 1-node in G
(j)
W . If h = 1, then

we connect the b-node of G
(j)
W to the 1-node in G

(n−1+j)
U1 instead. Finally,

we connect the e-node in G
(j)
W to the b-node in G

(j)
U2, and the e-node in

G
(n−1+j)
U1 to the b-node in G

(j+1)
w

The intuition behind this construction is that gadgets G
(j)
W and G

(j)
U1

are separated only when the pattern has to make a meaningful decision
on how to continue a match, and thus when choosing one path or another

determines whether we are matching G
(j)
W or G

(n−1+j)
U1 . Indeed, if vector yj

has a series of 0s at the beginning, it does not make a difference whether

we are matching G
(j)
W or G

(n−1+j)
U1 . The first meaningful decision point is

when we encounter the first 1 in yj . If the pattern keeps matching G
(j)
W , it

faces the same choice for any subsequent 1 in vector yj . Therefore, there
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0

1 1

e

b· · ·

0 0 0

1

e b

· · ·

Figure 5.4: Gadgets G
(5)
W and G

8)
U1 of our example, merged together. The

G
(5)
W substructure encodes vector x2 = 011.

is no non-determinism anymore, because the path to choose is always only

one: if yj [h] = 0, then we match G
(j)
W ; if yj [h] = 1 and we have a 0 in the

pattern, then we match G
(j)
W ; if yj [h] = 1 and we have a 1 in the pattern,

then we match G
(n−1+j)
U1 from this position onwards.

5.5 Lower Degree and Binary Alphabet

Making the graph deterministic required significant changes to the structure
of the graph. The other features that we include require smaller changes,
and we now list the additional results that we achieved, leaving the more
technical details to the actual paper. In our current graph, the sum of
indegree and outdegree of every node is at most 4, and the alphabet is of
size 4. We would like to see how much we can reduce the degree and the
alphabet size, and still obtain a quadratic problem.

We start by reducing the degree. Let us first observe that if every node
of a DAG has in-degree at most 1 and out-degree at most 2, then it is a tree
or an arborescence (a set of trees whose roots are connected in a chain of
nodes, possibly forming a cycle). The same is true for the reverse, that is
in-degree at most 2 and out-degree at most 1. We know that for trees the
problem is solvable in linear time [4]. A future extended version of Paper I
will also present a linear-time algorithm for arborescences. However, if the
two aforementioned structures coexist in the same graph, then we have a
DAG where the sum of in-degree and out-degree is at most 31. In Paper I,

1To be precise, this definition includes also nodes with in-degree 3 and out-degree 0,
or vice versa. For simplicity, we did not discuss these cases explicitly, but it is easy to
see that they are not necessary for the reduction, so they could be omitted and still we
would achieve the same results.
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we show that the quadratic conditional lower bound holds also for such
DAGs, which we call 3-DDAGs.

The last improvement to our lower bound concerns the alphabet size.
We apply the following encoding to both the pattern and the graph, achiev-
ing a binary alphabet.

α(0) = 0000, α(1) = 1111, α(b) = 10, α(e) = 01 .

Given string x = x[1..m], we define its binary encoding

α(x) = α(x[1]) · · ·α(x[m]).

In the graph, we replace each σ-node with a path of as many nodes as
characters in α(σ). We also need to make the pattern start with characters
ebb (instead of just bb), end with characters eeb (instead of just ee), and
modify the graph accordingly, to exploit the properties of sequence eb.
Then, we observer the following.

Lemma 5.3 For any string x ∈ Σ+, its binary encoding α(x) contains
0110 if and only if x contains eb.

Thus, this transformation of the pattern and the graph is correct because
the encoding of the string eb in the pattern is aligned with the encoding
of the eb-edges in the graph, and thus the encoding of all the characters
and node labels properly align as well. The final result is the core finding
of our work.

Theorem 5.1 For any constant ε > 0, the String Matching in Labeled
Graphs (SMLG) problem for a binary alphabet and a labeled deterministic
directed acyclic graph (DAG) cannot be solved in either O(|E|1−εm) or
O(|E|m1−ε) time unless the OV hypothesis fails. This holds even if it is
restricted to graphs in which the sum of outdegree and indegree of any node
is at most three (i.e, 3-DDAGs).

5.6 Undirected Graphs: Zig-zag Matching

This section is original content for this thesis yet unpublished, thus we
present all the needed formal proofs. We show the results for the special
case of undirected graphs by proving the following theorem.

Theorem 5.2 The conditional lower bound stated in Theorem 5.1 holds
even if it is restricted to undirected graphs whose nodes have degree at most
2, where the pattern and the node labels are drawn from a binary alphabet.
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To this end, we need to modify the previous reduction, defining a new
alphabet, pattern and graph. The main ideas will be the same, but since
the graph will now be a single undirected path, some key changes will be
needed.

The original alphabet Σ = {b, e, 0, 1} is replaced with Σ′ = {b, e, A, B, s, t}.
Characters 0 and 1 are encoded in the following manner:

0 = ABABABA and 1 = ABA.

When such encoding is applied, character s will be used as a separator
marking the beginning and the end of the old characters. As an example,
the subpattern

Pxi = 1 0 1 will be encoded as P ′
xi

= s ABA s ABABABA s ABA s.

A new pattern P ′ is built applying this encoding to each one of the
subpatterns Pxi , thus obtaining new subpatterns P ′

xi
. We then concatenate

all the subpatterns P ′
xi

by placing the new character t to separate them,
instead of eb. Finally, we place characters bt at the beginning of the new
pattern, and te at the end. Here follows an example:

P = bb 100 e b 101 ee

1 0 0

P ′ = b t s ABA s ABABABA s ABABABA s

1 0 1

t s ABA s ABABABA s ABA s t e

Note that for each subpattern we are introducing a constant number
of new characters, hence the size of the entire pattern P ′ still is O(nd).
An analogous encoding will be applied to the graph. The strategy is to
encode GW in an undirected path by concatenating subpaths representing

each G
(j)
W , one after another.

The positions h in which both a 0- and a 1-node are present in G
(j)
W are

replaced by a path that can be matched both by 0 = ABABABA and 1 = ABA.
Positions h with only a 0-node and no 1-node are encoded instead with a
path that can be matched only by 0 = ABABABA (see Figure 5.5). We

use s-nodes to separate these paths. We denote by LG
(j)
W (Linear G

(j)
W )

this linearized version of G
(j)
W . Moreover, given subgraph G

(j)
W , two new

t-nodes will mark the beginning and the ending of its encoding. Figure 5.6

illustrates this transformation for G
(j)
W .

In a similar manner, GU is also encoded as a path. We do not need to
encode all its 2n − 2 subgraphs: since the matching path can go through
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⇓

0

1 · · ·

· · ·

· · ·

· · ·

BAs· · · A s · · ·

⇓

0· · · · · ·

BABAs· · · A B A s · · ·

Figure 5.5: New substructures. (a) The old substructure is replaced by
an undirected path that can match either sABAs (which represents 1) by
going forward only, or sABABABAs (which represents 0), by going forward,
backward, and forward again. (b) An undirected path replacing a 0-node
can match only the string sABABABAs.

nodes more than once, we only need to encode one of these subgraphs, in

the same manner as done for G
(j)
W . Let LGU be the linearized version of

only one of the “jolly” gadgets that were composing the original GU .

Then, for each 1 ≤ j ≤ n, we build structure LG(j) by placing t-nodes,

LGU instances, LG
(j)
W , a b-node on the left and an e-node on the right, as

in Figure 5.7. In such a structure, the b-node and the e-node delimit the
beginning and the end of a viable match for a pattern. The t-nodes are

separating the LGU structures from LG
(j)
W and, in general, they are marking

the beginning and the end of a match for a subpattern P ′
xi
. The idea behind

LG(j) is that a match of P can traverse LGU from the beginning to the
end, backwards and forwards as many times as needed, before starting a

match of some subpattern P ′
xi

inside LG
(j)
W . Notice also that this allows

only subpatterns on even positions i to match inside LG
(j)
W . We will address

this minor issue at the end (see page 42).

In order to construct the final graph LG we concatenate all LG(1),
LG(2), . . . , LG(n) into a single undirected path. Figure 5.8 gives a picture
of the end result.

No issues arise regarding the size of the graph, since we are replacing
every 0-node, or every pair of a 0-node and a 1-node, with a constant

number of new nodes. By construction, the two gadgets LGU and LG
(j)
W

both have size O(d), since for each one of the d entries of a vector we place

one of the two possible encodings. In LG there are n instances of LG
(j)
W ,

each one surrounded by two LGU instances. Hence the total size of the
graph remains O(nd).
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00 0

1

O(d)

A

B

A B A

B

At s A

B

A B A

B

As A

B

A

s ts

G
(j)
W =

⇓

LG
(j)
W

Figure 5.6: A subgraph G
(j)
W is converted into a linear structure LG

(j)
W using

s as separator.

b t LGU t LG
(j)
W

t LGU t e

O(d) O(d) O(d)

LG(j) =

Figure 5.7: The LG
(j)
W structure surrounded by two instances of LGU . The

t-nodes establish the beginning and the end of a match for a subpattern
tP ′

xi
t while the b- and e-nodes are the starting and ending point for a

match of the whole pattern P ′.

In order to prove the correctness of the reduction, we will show some

properties on LG by introducing the following lemmas. We use tlLG
(j)
W tr to

refer to LG
(j)
W extended with the t-nodes on its left and on its right. When

referring to the k-th s-character in P ′
xi

we mean the k-th s-character found
scanning P ′

xi
from left to right; in the same manner we refer to the k-th

s-node in LG
(j)
W .

Lemma 5.4 If subpattern tP ′
xi
t has a match in tlLG

(j)
W tr starting at tl

and ending at tr, then the k-th s-character in P ′
xi

matches the k-th s-node

in LG
(j)
W , for all 1 ≤ k ≤ d+ 1.

Proof. First we prove that all the s-nodes in tlLG
(j)
W tr are matched exactly

once by tP ′
xi
t. By construction, subpattern P ′

xi
has d+1 s-characters, and

LG
(j)
W has d + 1 s-nodes. Since we are working on a chain of nodes and

the match is starting at tl and ending at tr, all the nodes between tl and tr
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LG(1)b e LG(2)b e · · · LG(n)b e

O(d) O(d) O(d)

LG =

Figure 5.8: The final graph LG.

have to be matched at least once by P ′
xi
. Assume by contradiction that one

such s-node is matched more than once. Subpattern P ′
xi

is left with strictly
less than d s-characters available for matching the other d s-nodes and we
reach a contradiction. Now we can prove the statement of the lemma by

induction on k, i.e the index of the s-characters and s-nodes. Let s
(P ′

xi
)

k

denote the k-th s-character in P ′
xi
, and s

(
LG

(j)
W

)

k denote the k-th s-node in

LG
(j)
W .
Base Case k = 1. The match starts at tl hence the only node that

s
(P ′

xi
)

1 can match is the first s-node to the right on tl, i.e., s

(
LG

(j)
W

)

1 .
Inductive Case k > 1. The inductive hypothesis tells us that all the

nodes up to s

(
LG

(j)
W

)

k have been matched by consecutive s-characters of P ′
xi

up to s
(P ′

xi
)

k . We have to prove the statement for k+1. Starting from node

s

(
LG

(j)
W

)

k the next s-nodes that can be matched by s
(P ′

xi
)

k+1 are s

(
LG

(j)
W

)

k−1 and

s

(
LG

(j)
W

)

k+1 . Character s
(P ′

xi
)

k+1 cannot match node s

(
LG

(j)
W

)

k−1 since it has already

been matched by s
(P ′

xi
)

k−1 and, as argued earlier, every s-node can be matched

only once. Thus s
(P ′

xi
)

k+1 has to match s

(
LG

(j)
W

)

k+1 . �

Lemma 5.5 Subpattern tP ′
xi
t has a match in tlLG

(j)
W tr starting at tl and

ending at tr if and only if there exist yj ∈ Y such that xi · yj = 0.

Proof. We have already proved this property for gadgetGW in Lemma 5.1,

thus what we are left to prove is that LG
(j)
W behaves the same as the sub-

gadget G
(j)
W . First recall that in the construction of LG

(j)
W we placed an

encoded 1 if in G
(j)
W we had both a 0-node and a 1-node in the same po-

sition, while we placed an encoded 0 if we had only a 0-node. Lemma 5.4
guarantees that the encoding in P ′ of a single character of P is aligned

with the encoding in LG
(j)
W of a single node of GW , preventing (the encod-

ing of) a character of P from matching (the encoding of) multiple nodes
of GW and vice versa. By construction, 1 = ABA can match the encoding
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of a 1-node while it fails to match the encoding of the 0-nodes, since their
encoding involves too many characters. On the other hand, 0 = ABABABA

can match an encoded 0-node with a natural alignment, but it can also
match the encoding of a 1-node by scanning it forwards, backwards and

forwards again. Therefore the logic behind LG
(j)
W safely implements the

one of G
(j)
W , and from this point onward, one can follow the same reasoning

as in Lemma 5.1 to complete the proof. �
The main difference from the original proof resides in assuming that a

match for P ′
xi

starts at tl and ends at tr. This feature is crucial for the
correctness of the reduction and can be safely exploited since, as shown in
the following, the b- and e-nodes guarantee that in case of a match for P ′

we will cross the LG
(j)
W gadget from left to right at least once.

Lemma 5.6 Pattern P ′ has a match in LG if and only if there exist i and

j such that i is even and subpattern tP ′
xi
t has a match in tlLG

(j)
W tr starting

at tl and ending at tr.

Proof. For the (⇒) implication, first observe that the b- and e-nodes

in LG are forcing a direction to follow. Let LG
(j)
Ul and LG

(j)
Ur be the LGU

gadgets to the left and to the right of LG
(j)
W , respectively. Since pattern P ′

starts with a b and ends with an e, a match can only start at the b-node

on the left of LG
(j)
Ul and end at the e-node on the right of LG

(j)
Ur, for some

j. Hence LG
(j)
W needs to be crossed by a match from left to right at least

once. Thus, there must exist a subpattern tP ′
xi
t that has a match starting

at tl and ending at tr. For such a pattern Lemma 5.5 applies. Moreover,
because of our construction, only a subpattern on even position can achieve
such a match.

The (⇐) implication is immediate since given a subpattern tP ′
xi
t which

has a match in tlLG
(j)
U tr one can match btP ′

x1
t . . . tP ′

xi−1
t in LG

(j)
Ul and

tP ′
xi+1

t . . . tP ′
xn
te in LG

(j)
Ur and have a full match for P ′ in LG. �

Since Lemma 5.6 gives us a property which holds only if a subpattern
is in even position, we need to tweak pattern P ′ to make the reduction
work. Indeed, we define two patterns. The first pattern P ′(1) is P ′ itself;
the second pattern P ′(2) is obtained by swapping the subpatterns P ′

xi
on

odd position with the next subpatterns P ′
xi+1

on even position, for every
i = 1, 3, . . .. For example, if n is even, we will have:

P ′(1) = bt P ′
x1

t P ′
x2

t P ′
x3

t P ′
x4

t . . . t P ′
xn−1

t P ′
xn

te = P ′

P ′(2) = bt P ′
x2

t P ′
x1

t P ′
x4

t P ′
x3

t . . . t P ′
xn

t P ′
xn−1

te
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While P ′(1) checks the even positions of P ′, P ′(2) checks the odd ones. If n
is even then neither P ′(1) nor P ′(2) would be able to have a match in LG,
since after matching an even number of subpatterns it is not possible to
match any e-node. In such a case we can simply add a dummy subpattern
P̄ = s ABA s ABA s . . . s ABA s (with d repetitions of ABA) at the end of P
as if it were its last subpattern, so that the number of subpatterns becomes
odd. Indeed, observe that P̄ corresponds to vector x̄ = (11 . . . 1), which
has null product only with vector ȳ = (00 . . . 0). Hence if ȳ �∈ Y then P̄
does not have a match in any LG(j), while if ȳ ∈ Y every subpattern P ′

xi

has a match in the LG(j) built on top of ȳ. This means that P̄ does not
disrupt our reduction2. Now we are ready to present the end result.

Lemma 5.7 Either P ′(1) or P ′(2) has a match in LG if and only if there
exist vectors xi ∈ X and yj ∈ Y which are orthogonal.

Proof. For (⇒) we assume that either P ′(1) or P ′(2) have a match in LG.

By Lemma 5.6 this means that there exists a subpattern P
′(q)
xi , q ∈ {1, 2}

which has a match in LG
(j)
W , for some j. Lemma 5.5 then ensures that

xi ·yj = 0, thus xi and yj are orthogonal. For the other implication (⇐) we
assume that there exists two orthogonal vectors xi ∈ X and yj ∈ Y . Thanks

to Lemma 5.5 we find a subpattern P ′
xi

matching LG
(j)
W . By construction,

P ′
xi

has to be in even position either in P ′(1) or in P ′(2). By Lemma 5.6

this means that either P ′(1) or P ′(2) has a match in LG. �
Theorem 5.2 follows directly from the correctness of these constructions,

except for the alphabet size reduction to binary, which we leave for the
extended version of Paper I (of which a preprint version is available [24, 23]).

2An alternative strategy is to use only one pattern P ′′ instead of two, defined as

P ′′ = bt P̄ t P ′
x1

t P̄ t P ′
x2

t P̄ . . . t P̄ t P ′
xn

t P̄ te.

The “dummy” subpatterns P̄ encode a 1 in every position and guarantee that we always
have an odd number of subpatterns in P ′′. Moreover, every actual subpattern P ′

xi
has

a chance to be matched in LG
(j)
W , for some j, since every such subpattern occurs in an

even position.
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Chapter 6

Indexing Conditional Lower
Bound for Exact SMLG

In the previous chapter we proved that the quadratic algorithms proposed
more than 20 years ago for exact SMLG were indeed optimal for solving the
problem online, under OVH and SETH. Nevertheless, an indexing scheme
can help improving the situation. As discussed in Chapter 3, there exist
indexing schemes that provide subquadratic time queries, but all of them
present some critical issues, because either the queries are quadratic in some
bad instances, or the time for building the index is exponential in the worst
case. Therefore, one question arises: can we have both subexponential
indexing and subquadratic time queries? We addressed this problem in
Paper II, proving that any polynomial indexing scheme cannot provide
subquadratic time queries, unless OVH and SETH fail. This result can be
achieved by devising a reduction from OV to many instances of SMLG, each
one addressing a different OV subproblem, obtaining the right complexity
by properly setting the size of these instances. Nevertheless, we decided to
follow a slightly different approach partially known as folklore knowledge,
in order to achieve a much more general result. Instead of reducing OV
to SMLG, we reduce OV to smaller instances of OV itself, proving that if
indexing OV in polynomial time would provide subquadratic time queries,
then OVH would fail. This allows us to prove that not only SMLG, but any
problem that has a reduction from OV cannot be indexed in polynomial
time for subquadratic time queries, unless OVH is false. Of course, the
reduction from OV should have a few key properties to make this mechanism
work, and thus we formally define them so that our result could be used
as a black box. The idea is to provide indexing lower bounds basically for
free: if a reduction from OV to a certain problem is found and it respects
some properties, then both the online and indexing lower bounds hold.

45
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6.1 Linear Independent-Components Reduction

One of the main goals of Paper II is to give the tools for using our result
as a black-box, so that it can be easily used to extend lower bounds for
new and old problems, allowing to cover also the indexing case. To make
this possible, we have to properly set up a formal framework of definitions,
of which the two main pieces are the linear independent-components (lic)
reduction and the property stated by Lemma 6.1 below.

As we mentioned, the strategy for obtaining the lower bound is to parti-
tion an OV instance into smaller OV sub-instances of the right size, and then
to show that an index for these sub-instances built in polynomial time pro-
viding subquadratic time queries would lead to a contradiction with OVH.
The way to extend this result to SMLG is to use the reduction that we
already know exists from OV to SMLG, which allows us to convert the OV
sub-instances into SMLG instances. Then, if we assume to have a polyno-
mial index providing subquadratic time queries for SMLG, the same holds
for those OV sub-instances, contradicting OVH. If this scheme works for
SMLG, it should work also for all of those problems that have a reduction
from OV. This make sense intuitively, but we have to be careful, because
not all types of reductions are compatible with our reasoning.

The idea of the lic-reduction is to properly formalize which properties
a reduction from OV to problem P must have in order to make the in-
dexing lower bound hold for P automatically, without further adjustments.
Intuitively, we enforce that the two vectors sets in OV must be addressed
separately, that is the structures built on top of them must not depend on
both sets. Moreover, we want to give the tools to properly address the pa-
rameter d referring to the length of the vectors, and that is, why we provide
a parametrized definition of lic-reduction.

Definition 6.1 (Linear Independent-Components (lic) Reduction)
Problem A has a linear independent-components (lic) reduction with pa-
rameter k to problem B, indicated as A ≤k

lic B, if the following two prop-
erties hold:

i) Correctness: There exists a reduction from A to B modeled by
functions rx, ry and s. That is, for any input (ax, ay) for A, we
have rx(ax) = bx, ry(ay) = by, (bx, by) is a valid input for B, and
s solves A given the output B(bx, by) of an oracle to B, namely
s(B(r(ax), r(ay))) = A(ax, ay).

ii) Parameterized linearity: Functions rx, ry and s can be computed
in linear time in the size of their input, multiplied by kO(1).
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The usefulness of a lic-reduction resides in its ability to implicitly link
the indexability of two problems. In other words, if we have problems A
and B, and we have an index for B, then a lic-reduction allows us to use the
same index also for A. We present this property with the following lemma,
in which a problem is called (α, δ, β)-polynomially indexable with parameter
k if its input can be divided in two parts px and py, and an index built in
time O(kO(1)|px|α) can answer queries in time O(kO(1)(|py| + |px|δ|py|β)).
If this is true only when k = O(1), then we just say that the problem is
(α, δ, β)-polynomially indexable.

Lemma 6.1 Given problems A and B and constants α, β, δ > 0, if it
holds that A ≤k

lic B, and B is (α, δ, β)-polynomially indexable, then A
is (α, δ, β)-polynomially indexable with parameter k.

In Paper II we give a formal proof of this lemma, but it is indeed a natural
result. The idea is that every time we are presented a query for problem
A, we first use the reduction to convert it into a query for problem B, and
then we use the index built for B to answer such a query.

The definition of lic-reduction, combined with Lemma 6.1, can be used
as a black box to transfer the indexing lower bound for OV to many prob-
lems that have a reduction from it. What we have to show now is how to
prove this indexing lower for OV in the first place. There was already a
preliminary folklore result in this sense, but we extended it to provide the
tools for proving even tighter lower bounds. Since the focus of this thesis
is on SMLG, we shall see how to use this technique to provide an indexing
lower bound for this problem. Nonetheless, we also discuss how to apply
the technique to edit distance, and which indexing lower bound we can
obtain for it.

6.2 Indexing Lower Bound for OV

To make our technique work, we need to prove that if OV is (α, δ, β)-
polynomially indexable with parameter d, where d is the length of the
vectors, then OVH is false. A first version of this result with a specific
condition on parameters δ and β is known as folklore knowledge.

Theorem 6.1 (Folklore) If OV is (α, δ, β)-polynomially indexable with
parameter d, and β + δ < 2, then OVH fails.

We extended the condition on parameters δ and β to prove tighter lower
bounds, but for this we first need to introduce a more general version of
OV, that we call (N,M)-OV.
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Problem 6.1 ((N,M)-OV)

Input: Two sets X,Y ⊆ {0, 1}d, such that |X| = N and |Y | = M .

Output: True if and only if there exists (x, y) ∈ X×Y such that x ·y = 0.

The difference from standard OV is that in (N,M)-OV the two vector sets
can have different sizes. This feature is necessary for softening the condition
on parameters δ and β, raising up the lower bound.

Theorem 6.2 If (N,M)-OV is (α, δ, β)-polynomially indexable with pa-
rameter d, and either δ < 1 or β < 1, then OVH fails. That is, under OVH,
we cannot support O(N δMβ)-time queries for (N,M)-OV, for either δ < 1
or β < 1, even after polynomial-time preprocessing.

Here, performing a query means telling whether a set of M vectors has a
vector orthogonal to one of the N vectors on which we built the index. As
we anticipated earlier, the idea behind proving this lower bound is reducing
an instance of OV, with n vectors of length d, to many instances of (N,M)-
OV. Thus, vector set X is divided into � n

N � sub-sets of vectors, each one
containing N vectors; analogously, vector set Y is divided into � n

M � sub-
sets, each consisting of M vectors. Figure 6.1 gives an intuition of this
reasoning. Assuming that we can index (N,M)-OV in time O(Nα) to
answer queries in time O(N δMβ), we can now achieve a subquadratic-time
algorithm for the original OV instance. To give an intuition of why this
works, we present the following example. Suppose that sets X and Y of n
vectors each are an instance of OV, and assume that we can index (N,M)-

OV in time O(N4) and answer queries in time O(N
1
2M

1
2 ). Our goal is to

solve the original OV instance of n vectors in time O(n2−ε), for some ε > 0.
We apply the reduction scheme that we discussed above, splitting set X
into � n

N � subsetsXi, and set Y into � n
M � subsets Yj . Now, each pair (Xi, Yj)

is an instance of (N,M)-OV, and if we solve all of them we get an answer
for the original OV instance. Thus, we first build an index on each Xi, and
then we perform one query for each pair (Xi, Yj). We have � n

N � indexes
to build, so this takes time O(N4� n

M �), and we have � n
N �� n

M � queries to

answer, which takes time O(� n
N �� n

M �N 1
2M

1
2 ). The key is to make the

vector subsets of the right size, so that the overall time complexity results
will be subquadratic in n. For this specific example a good choice is N = n

1
4

and M = n
1
2 (not the only one, for instance M = n works as well). If we

substitute this values for N and M in the time complexities for indexing
and querying we obtain O(n

7
4 +n

7
8 ) = O(n

7
4 ) = O(n2− 1

4 ), that is, ε = 1
4 . In

Paper II, we show that given parameters α, δ and β we can always choose
N and M such that the overall time complexity for the original OV instance
results will be subquadratic, and we provide a formula for doing so.
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Figure 6.1: The splitting of an instance of OV into many sub-instances of
(N,M)-OV.
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6.3 Indexing Lower Bound for SMLG and EDIT

Combining the definition of lic-reduction, Lemma 6.1 and Theorem 6.1, we
have the technique that we wanted for proving lower bound. Now, given
any problem with a reduction from OV, it suffices to prove that that is
a lic-reduction to obtain the indexing lower bound. If we also want the
tighter lower bound, then we have to make the lic-reduction work from
(N,M)-OV as well. For some problems, all of these steps are very simple
or even not needed, as their original reductions already respect all of the
constraints. For other problems, few adjustments are needed. Let us see
how to use this technique on SMLG, for which we have to add some edges
in the reduction graph to tighten the lower bound for cyclic graphs. Then,
to see how the technique generalises to other problems, we also apply it to
EDIT.

Looking at our reduction from OV to SMLG presented in Chapter 5, we
can easily verify that it is indeed a lic-reduction. Starting from vectors sets
X and Y , we defined pattern string P using solely X, thus this definition
implements function rx(X) = P . Similarly, the construction of graph G,
performed using only Y , realises function ry(Y ) = G. Finally, function
s(SMLG(P,G)) returns True when SMLG(P,G) = True, that is, when P
has a match in G, which we know to be a correct answer also for OV thanks
to the correctness of our reduction. Parameter k in this case is the length
d of the vectors, pattern P contains n substrings of length O(d), and graph
G consists of 5n− 4 = O(n) gadgets each of size d. Thus, our reduction is
performed in time O(nd), which is linear in n times k = d, and we achieve
the following result.

Theorem 6.3 For any α, β, δ > 0 such that β+δ < 2, there is no algorithm
preprocessing a labelled graph G = (V,E, �) in time O(|E|α) such that for
any pattern string P we can solve the SMLG problem on G and P in time
O(|P | + |E|δ|P |β), unless OVH is false. This holds even if restricted to a
binary alphabet, and to deterministic DAGs in which the sum of out-degree
and in-degree of any node is at most three.

Difficulties arise when trying to extend this reduction to (N,M)-OV.
In this case we have to address vector sets X and Y of variable length N
and M , respectively. If N ≥ M , the reduction still works with no modifica-
tions, because the graph can always accommodate for shorter patterns, but
the case N < M poses a problem. The reduction cannot work when the
pattern has more characters than the graph has nodes, thus a restructur-
ing is needed. In particular, allowing for cycles to be present in the graph
seemed to us an unavoidable consequence. This can be done by adding two
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back-edges in the reduction, creating a cycle in the universal gadgets able
to account for any number of overflowing subpatterns. We thus achieve the
stronger lower bound.

Theorem 6.4 For any α, β, δ > 0, with either β < 1 or δ < 1, there is no
algorithm preprocessing a labelled graph G = (V,E, �) in time O(|E|α) such
that for any pattern string P we can solve the SMLG problem on G and P
in time O(|P |+ |E|δ|P |β), unless OVH is false.

It remains open whether this tighter lower bound can be achieved also for
DAGs.

To show how to generalize our technique, we would like to provide a
lower bound also for EDIT, but we have to make some considerations first.
A reduction from OV to EDIT has been provided by Backurs and Indyk
[10], but in that reduction the construction of one of the two edit-distance
strings depends on both vector sets of OV. Therefore, that is not a lic-
reduction. This construction choice seems made from convenience and not
from necessity, hence we could try to modify the reduction to make it lic.
However, in an indexing context, it makes more sense to solve a slightly
different version of EDIT, where we build the index on a long text and then
answer queries for shorter strings. In this setting, a query for pattern string
P in text T asks to find substring x of T at minimum edit distance with
P , namely edit(x, P ) is minimized. Thus, we consider it more useful to
find a reduction to this version of EDIT. In their work [10], Backurs and
Indyk refer to this version of the problem as PATTERN, and they use it as
an intermediate step towards their final result. If we stop the reduction at
this step, the construction of the text string depends only on one vector
set, while the pattern string depends only on the other vector set; plus,
PATTERN is proven to have a solution under a certain threshold if and only
if OV has a pair of orthogonal vectors. That is, we have a lic-reduction
from OV to PATTERN that can be performed in linear time, multiplied by
dO(1), and thus we achieve an indexing lower bound.

Theorem 6.5 For any α, β, δ > 0 such that β+δ < 2, there is no algorithm
preprocessing a string T in time O(|T |α), such that for any pattern string
P we can find a substring of T at minimum edit distance with P , in time
O(|P |+ |T |δ|P |β), unless OVH is false.
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Chapter 7

Founder Block Graphs

In Chapters 5 and 6 we showed that it is hard to solve SMLG with a
subquadratic time complexity, no matter if we are considering the exact or
approximate variant, and regardless of the data structures that we are using
for indexing. Thus, if we want to have efficient solutions, we must make
stronger assumptions and look at special cases of the problem. In this
spirit, we focus on graphs that are meant to represent a specific type of
collection of strings, with the goal of identifying a class of graphs for which
SMLG is easier to solve. This type of graphs is heavily used in pangenomics,
an area of bioinformatics that aims to represent multiple similar genome
sequences as compactly as possible, while still retaining information on
their individual variations. Moreover, solving SMLG for these graphs can,
more in general, provide additional knowledge on how to handle collections
of similar strings, for the type of queries specific to SMLG.

To understand the nature of the graphs we mentioned, let us start from
the concept ofmultiple sequence alignment (MSA). AnMSA is a collection of
strings, or sequences, of the same length, usually represented by placing the
strings on top of each other, forming a matrix of characters (see Figure 7.1).
Normally, we say that a string has a match in an MSA when it equals a

A G C G A C T A G A T A C

A G C T A C T A G A T A G

A G C G A T T A G T T A C

A G C T A C T A G T T A C

Figure 7.1: A multiple sequence alignment MSA[4, 13] of 4 strings, with 13
columns.
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substring of one of the strings in the MSA. However, a feature that we are
interested to allow is recombination, that is the possibility for a string to
“jump” from a row to another at specific locations to complete a match.
Moreover, MSAs tend to be redundant structures, where the same substring
can appear in multiple rows at the same column position. Thus, we have
reasons to look for alternative ways of representing MSAs, possibly in a
more compact manner. One initial solution is founder sequences.

Given an MSA, its founder sequences are a set of strings, of the same
length of the sequences in the MSA, and a set of column positions called
discontinuities. The key property is that we must be able to reconstruct
every sequence of the MSA by scanning a founder sequence from left to
right, possibly switching to another sequence at a discontinuity. Founder
sequences are typically much fewer in number than the strings in the origi-
nalMSA [43], and even though finding an optimal set of founders is NP-hard
[37], reasonable approximations are possible [18, 36]. When looking for a
match, a query string can jump from one sequence to another when cross-
ing a discontinuity. In this way, the set of virtually represented sequences
is much larger than the founder sequences themselves, and includes all the
sequences of the MSA. Thus, we both reduced the space needs and achieved
recombination.

Another possible solution to obtain this goal is to represent the MSA
with a variation graph, where different substrings are represented as dif-
ferent paths in a graph. Variation graphs offer a better way to control
recombination than founder sequences. This is because discontinuities al-
ways allow switching from one sequence to any other sequence, allowing
even for too much recombination, while in variation graphs we could sim-
ply drop the edges that we do not want. Unfortunately, general variation
graphs fall into those categories of graphs for which our lower bounds hold.

Given this situation, our work proposes a new type of graphs called
founder block graphs, which are meant to solve SMLG in subquadratic time,
while offering controlled recombination. To define founder block graphs, we
first need to introduce block graphs. A block graph is a labelled directed
acyclic graph consisting of consecutive blocks, where a block represents a
set of sequences of the same length as parallel (unconnected) nodes. There
are edges only from nodes of one block to the nodes of the next block.
A founder block graph is a block graph with each block representing the
segments of founder sequences in between discontinuities. Let us fix all of
these concepts in more formal definitions.

Let P be a partitioning of [1..n], that is, a sequence of subintervals
P = [x1..y1], [x2..y2], . . . , [xb..yb], where x1 = 1, yb = n, and for all j > 2,
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A G C G A C T A G A T A C

A G C T A C T A G A T A G

A G C G A T T A G T T A C

A G C T A C T A G T T A C

Figure 7.2: A possible segmentation for the MSA in Figure 7.1.

xj = yj−1 + 1. A segmentation S of MSA[1 . . .m, 1 . . . n] based on parti-
tioning P is a sequence of b sets Sk = {spell(MSA[i, xk..yk]) | 1 ≤ i ≤ m}
for 1 ≤ k ≤ b; in addition, we require for a (proper) segmentation that
spell(MSA[i, xk..yk]) is not an empty string for any i and k. We call set Sk

a block, while MSA[1..m, xk..yk] or just [xk..yk] is called a segment. The
length of block Sk is L(Sk) = yk − xk + 1 and the width of block Sk is
W (Sk) = |Sk|.
Definition 7.1 (Block Graph) A block graph is a graph G = (V,E, �)
where � : V → Σ+ is a function that assigns a string label to every node
and for which the following properties hold.

1. Set V can be partitioned into a sequence of b blocks V 1, V 2, . . . , V b,
that is, V = V 1 ∪ V 2 ∪ · · · ∪ V b and V i ∩ V j = ∅ for all i �= j;

2. If (v, w) ∈ E then v ∈ V i and w ∈ V i+1 for some 1 ≤ i ≤ b− 1; and

3. if v, w ∈ V i then |�(v)| = |�(w)| for each 1 ≤ i ≤ b and if v �= w,
�(v) �= �(w).

With gapless MSAs, that is MSAs with no gap characters, block Sk equals
segment MSA[1..m, xk..yk], and in that case founder graph G(S) is a block
graph induced by segmentation S. The idea is to have a graph in which
the nodes represent the strings in S while the edges retain the information
of how such strings can be recombined to spell any sequence in the original
MSA. Figures 7.2 and 7.3 show an example of this. In our work, we show
that for a special subclass of founder block graphs it is indeed possible to
solve SMLG in linear time, and we also provide a linear time algorithm to
construct such graphs starting from an MSA.

7.1 Repeat-Free Founder Block Graph

We now introduce a concept that constitutes the core of efficient indexa-
bility for founder block graphs. To make our notation consistent across the
third and fourth paper, we already use the notation of the latter here.
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AGCG

AGCT

ACTA

ATTA

GATAC

GATAG

GTTAC

Figure 7.3: The founder block graph induced by the segmentation in Fig-
ure 7.2.

Definition 7.2 Founder block graph G(S) is repeat-free if each �(v) for
v ∈ V occurs in G(S) only as prefix of paths starting with v.

This is the definition of what we call repeat-free property, which states
that each node label can appear only once in the entire founder block
graph. The primary function of this property is to tailor the matching
algorithm to which node a match could cross. As our reductions have
shown, lacking this information is the main problem in solving SMLG, even
for deterministic DAGs. From an automata-theory point of view, we could
say that the absence of a start state is a source of non-determinism. The
repeat-free property handles this inconvenience by making each node label
a unique identifier. Let us now see how to use this fact to our advantage
for developing a matching algorithm.

7.2 Indexing Repeat-Free Founder Block Graphs

The first matching algorithm we propose consists of two steps, employing
an Aho-Corasick automaton [3] for the first and tries for the second. In the
first step, we build an Aho-Corasick automaton of all node labels �(v), and
then we use it to scan query string Q. Thus, we now know which labels
l(v) appear as a substring of Q, and we can keep a reference to nodes v
to locate them in the graph. The nodes that we found in this way are
potential matches, and we now have to verify which ones extend to actual
matches. This is where step two starts. For each node v, we consider all
labels �(w) such that (v, w) ∈ E, and we build trie F (v) on top of them.
Similarly, we consider all labels �(u)−1, that is, the reverse of �(u), such that
(u, v) ∈ E, and we build trie R(v) on top of them. Assume that substring
Q[i..j] matches label �(v). To verify if the remaining right part Q[i..j] can
extend to a full match, we can visit the tries on the left and on the right
of the block containing �(v). If we can match Q[1..i] in the tries on the
left and Q[j..|Q|] in the tries on the right, then we have a full match for Q;
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if we cannot, then Q[i..j] cannot extend to a full match, and we have to
choose another candidate.

Unfortunately, following this strategy, the time complexity remains
quadratic in the query string length. This is because visiting all the tries for
a candidate �(v) takes O(|Q| log σ) time, where σ is the size of the alphabet,
but we have to repeat this process for each candidate �(v), which at worst
can be as many as O(|Q|). A query time complexity of O(|Q|2 log σ) is not
exactly what we are looking for, but the situation is better than it seems.
In Paper III, we show how BWT-based techniques can yield linear time
matching algorithms without the need of building the tries, but before that
we explain that even the current approach works. Indeed, the missing piece
for achieving linear time queries is observing that matches in repeat-free
founder block graphs are always unique.

Property 7.1 Let G(S) = (V,E, �) be a repeat-free founder block graph.
If string Q has a match in G(S) spanning at least one entire node label, Q
matches nowhere elses in the graph.

Proof. By contradiction, assume that Q matches at least two different
path labels in the graph, and let us call such pathsmatching paths. Consider
one matching path and substring Q[i..j] matching �(v), for some v ∈ V in
that path. Now consider any other matching path, in which Q[i..j] matches
in another position in the graph. We were assuming a repeat-free founder
block graph, but we have found that �(v) appears more than once in the
graph, a contradiction. �

Thanks to this property, we can conclude that it is enough to try to
extend one arbitrary candidate Q[i..j] = �(v) to a full match since, if it
exists, that match is unique.

7.3 Construction of Repeat-Free FBGs from Gap-
less MSA

Now that we know that it is possible to index a repeat-free founder block
graph for linear time queries, we design a method for building such a graph
starting from a segmentation. In order to do so, we need some guarantees
on the graph that we build based on the segmentation from which we start.

Lemma 7.1 (Characterization) Let P = [x1..y1], [x2..y2], . . . , [xb..yb] be
the partitioning corresponding to a segmentation S inducing a block graph
G = (V,E). The segmentation S is valid if and only if, for all blocks V i ⊆
V , 1 ≤ t ≤ m and j �= xi, if v ∈ V i then MSA[t, j . . . j + |�(v)| − 1] �= �(v).
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Intuitively, we are saying that making the segmentation repeat-free is enough
to make the induced founder graph repeat-free. To check this fact, we need
to make sure that each string in a segment appears nowhere else as a sub-
string in the MSA.

The next algorithm that we present outputs a valid (repeat-free) optimal
segmentation given an MSA. In doing so, we have to define what we mean
by optimal segmentation. One can use many different objective functions to
fix this concept, and we start with minimizing the maximal segment length.
The main tool that we employ are values v(j), computed for 1 ≤ j ≤ n.
Value v(j) is the greatest integer such that segment MSA[1..m, v(j) + 1..j]
is valid (thus, it might remain undefined for small j). If such v(j) does not
exist for some j, we set v(j) = 0. That is, given position j, value v(j) tells
which is the smallest valid segment that ends at j.

We could look at this from the reverse point of view, and define a
value that tells us which is the smallest valid segment starting at position
j. These values are called f(j), and we employ them to develop efficient
solutions for building segmentations of MSA with gaps. In this chapter,
we present preliminary techniques for the gapless case using values v(j),
and we limit ourselves to explain how to preprocess these values in time
O(mnsmax log σ), and how to use them to compute an optimal segmentation
in time O(nsmax), where smax is the greatest score among the the scores
computed for MSA[1..m, 1..j], 1 ≤ j ≤ n. In the next chapter, we improve
our results changing the approach and developing segmentation algorithms
for the gapped case using values f(j). The next chapter also covers the
case of the maximum number of blocks as objective function.

We first assume to have already computed values v(j), and we use them
to compute an optimal segmentation. Then, we explain how to compute
them. From the following recursion, we can derive a dynamic programming
algorithm for computing the optimal segmentation.

s(j) = min
j′:1≤j′≤v(j)

max(j − j′, s(j′))

To compute the score s(n) of the optimal segmentation of the MSA, we
start comparing max(j − j′, s(j′)) from j′ = v(j), decreasing j′ by one.
Observe that function s(j′) is monotonically increasing, which actually is
the reason why we can use dynamic programming. Instead, value j − j′ is
monotonically decreasing, thus there must be position j∗ and corresponding
value s∗ such that j − j′ > s(j′) for j′ < j∗, j − j′ = s(j′) = s∗ for j′ = j∗,
and j − j′ < s(j′) for j′ > j∗. Notice that j − j′ > s∗ for j′ < j∗, and
s(j′) > s∗ for j′ > j∗, thus

s(j) = min
j′:1≤j′≤v(j)

max(j − j′, s(j′)) = s∗.
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This means that, starting from j′ = v(j) and decreasing j′, we can stop as
soon as we find that j − j′ > s(j′), because we are sure to have computed
s(j) = s∗ at the previous step. Since j − j′ starts at j − v(j) and increases
by one at each step until it reaches s(j) = s∗, this procedure takes O(s(j))
time, and the overall time complexity is then O(nsmax).

For preprocessing values v(j), in Paper III we use the bidirectional
BWT index [13] of the MSA. Here, we describe a more conceptual algo-
rithm that uses standard BWT. At column j, consider the trie containing
the reverse of the rows of MSA[1..m, 1..j]. If, in this trie, we follow a path
with label p until reaching some node u, the number of leaves in the subtree
rooted at u equals the number of times string p appears as a row of seg-
ment MSA[1..m, j − |p|+ 1..j]. Let this number be k. If the BWT interval
relative to string p is of length k, then p appears exactly k times in the
entire MSA as rows of MSA[1..m, j − |p|+ 1..j], making the segment valid.
If the BWT interval is larger than k, then string p appears also somewhere
else in the MSA, and the segment is not valid. Thus, we choose as v(j)
the closest column to j such that the number of leaves in each trie subtree
equals the length of the corresponding BWT interval. We can search in the
BWT and partially construct the tries in parallel so that we do not have to
actually reach the leaves, but anyway O(m(j − v(j)) log σ) time has to be
spent for each column. As j − v(j) ≤ s(j), the overall time complexity is
O(mnsmax log σ). Paper III improves over this approach so that both pre-
processing and the final evaluation of the score take (randomised) O(mn)
time.
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Chapter 8

Elastic Founder Graphs

Paper III is first of all a proof of concept: we wanted to find at least one
class of graphs admitting linear time queries, and in doing so we studied
graphs with meaningful applications in bioinformatics. Nevertheless, there
are limitation to the approaches that we proposed that we would like to
surpass.

The main issue that we have to handle are gaps. Assuming to have a
gapless MSA is definitely too restrictive a requirement, from both a theo-
retical and practical point of view. This model can manage only collections
of strings of the same length, where their similarity is measured only on
the basis of single-position mismatches, rather than by using more popular
metrics as the (multiple) longest common subsequence. In bioinformatics
applications, insertions and deletions are common features among genomes
of different individuals of the same species. In this chapter, we improve on
this aspect by allowing gaps in the MSA, which in turn leads to the defini-
tion of a different and more general type of graph, called Elastic Founder
Graph (EFG). As we will see, we need to develop new techniques to achieve
linear time queries in EFGs.

Another feature that might seem too demanding is the repeat-free prop-
erty. Anyway, some additional assumption on the structure of the graph
has to be made, as for exact SMLG in generic EFGs we prove a quadratic
lower bound, conditioned on OVH and SETH. Nonetheless, we also try to
relax this constraint as much as possible, introducing the notion of semi-
repeat freeness. To set the basis for this chapter, we formally define the
concept of EFG, exemplified in Figure 8.1.

Definition 8.1 (Elastic block and founder graphs) Recall the defini-
tion of block graph in Chapter 2. We call a block graph elastic if its
third condition is relaxed in the sense that each V i can contain non-empty
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A G C G A C T A G A T A C

A G C - A C T A G - T A G

A G C G A T T A G T T A C

A G C - A C T A G T T A C

→

AGCG

AGC

ACTA

ATTA

GATAC

GTAG

GTTAC

Figure 8.1: An EFG obtained from the segmentation of an MSA with gaps.

variable-length strings. An elastic founder graph (EFG) is an elastic block
graph G(S) = (V,E, �) induced by a segmentation S as follows: For each
1 ≤ k ≤ b we have Sk = {spell(MSA[i, xk..yk]) | 1 ≤ i ≤ m} = {�(v) : v ∈
V k}. It holds (v, w) ∈ E if and only if there exists k ∈ [1..b − 1] and t ∈
[1..m] such that v ∈ V k, w ∈ V k+1 and spell(MSA[t, xk..yk+1]) = �(v)�(w).

8.1 Conditional Hardness of EFGs

To justify the use of the (semi)-repeat-free property for EFGs, we prove that,
without it, exact SMLG is a quadratic problem under OVH, and thus SETH.
Of course, this involves finding a reduction from OV to exact SMLG on EFGs,
but the overall idea and structure of the graph are not too different from
what we already saw in Chapter 5. Thus, we describe the reduction only at
a high level, leaving the details to the full paper, and we concentrate instead
on highlighting the fundamental feature that makes the graph construction
possible.

Consider the graph that we employed in the reduction in Chapter 5
structured on three rows; we want to transform it into an EFG that still
retains the same properties. The important features are the three-rows
structure and the special labels that force the beginning and the end of a
pattern match in specific positions (top and middle row for the beginning,
middle and bottom row for the end). What we need to do is to structure
the graph in blocks, and the first idea is to divide the nodes of the original
graph in logical one-character columns, and place all the node labels in a
column in the same block as one-character nodes. The problem with this
approach is that, when there are two nodes with the same label in the same
logical column, they “collapse” together into the same node when placed
into the same block.

To avoid this, we exploit the fact that, in an EFG, strings of different
length can live together in the same block as different strings. For example,
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Figure 8.2: The structure of the gadgets used in the reduction from OV to
exact SMLG. Notice how we can form the same strings following different
paths in different rows.

we can have b and bb as node labels in the same block. If we look at the
logical columns in the original graph, we notice that the same character
never appears more than three times in the same column. For instance,

character b appears at the beginning of G
(n−1+j)
U1 , of G

(j)
W and of G

(j−1)
U2 .

The trick here, depicted in Figure 8.2, is to use two blocks to encode one
of the logical columns. Looking at character b, in the first block we place
strings b(1), bb(1) and bbb(1), from top to bottom; in the second block we
place strings bbb(2), bb(2) and b(2), from top to bottom (the number in
the exponent refers to the first or second block). Then, we connect these
strings in a row-wise manner, meaning that we connect b(1) with bbb(2),
bb(1) with bb(2) and bbb(1) with b(2). We now have three logical rows such
that each pair of strings spells bbbb, and we could say that we prevented
the representations of character b from collapsing together. It is possible to
apply the same trick to all characters in all logical columns, and thus obtain
an EFG with the same properties of the original graph. Of course, this works
because we change the pattern accordingly, that is, we repeat each character
four times. Since this reduction mimics our original reduction which is a
lic-reduction, both online and indexing hardness results for exact SMLG on
EFGs follow.

Theorem 8.1 For any constant ε > 0, it is not possible to find a match
for a query string Q into an EFG G = (V,E, �) in either O(|E|1−ε |Q|) or
O(|E| |Q|1−ε) time, unless OVH fails. This holds even if restricted to an
alphabet of size 4.

Theorem 8.2 For any α, β, δ > 0 such that β+δ < 2, there is no algorithm
preprocessing an EFG G = (V,E, �) in time O(|E|α) such that for any query
string Q we can find a match for Q in G in time O(|Q|+ |E|δ|Q|β), unless
OVH is false. This holds even if restricted to an alphabet of size 4.
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8.2 Indexing (Semi-)Repeat-Free EFGs

Given that EFGs are hard to query and index in the general case, let us
impose an additional property so that we can take advantage of it in design-
ing our algorithms. We saw in Chapter 7 that we can use the repeat-free
property for this purpose, but we would also like to see if we can relax this
requirement and still achieve the same results. For this reason, we present
the semi-repeat-free property.

Definition 8.2 EFG G(S) is semi-repeat-free if each �(v) for v ∈ V occurs
in G(S) only as prefix of paths starting with w ∈ V , where w is from the
same block as v.

For example, the EFG in Figure 8.1 is semi-repeat-free. We show indexing
and querying algorithms for semi-repeat-free EFGs; clearly, they work for
repeat-free EFGs as well.

For indexing EFG G = (V,E, �), we first build string

D = Πi∈{1,2,...,b}Πv∈V i,(v,w)∈E �−1(w)�−1(v)$,

where �−1(v) is the reverse of �(v), and thus �−1(w)�−1(v) is the reverse of
�(v)�(w). When constructing D, what we are doing is scanning all the edges
(v, w) ∈ E, concatenating �(v) and �(w), reversing it, and adding a $ at
the end. Finally, we concatenate together all the strings obtained this way
into string D. Then, we build the suffix tree of D. This takes linear time in
|D| for a constant alphabet [25, 33, 42, 44]. Queries can now be answered
by reading the query string backwards, following the corresponding path
in the suffix tree, and taking suffix links when we reach a $.

We explain this procedure in more detail with an example. Consider
the EFG of Figure 8.1, and assume that we have built the corresponding
string D, and its suffix tree. First, we search every reversed node label
in the suffix tree and mark the suffix-tree node that we reach in this way.
Then, suppose that we want to find a match for string Q = CGATTAGT. We
traverse down the suffix tree of Figure 8.3 matching TGATTA, then we find
a $, which tells us that this is the beginning of a node label. In fact, there
are nodes v and w in the EFG such that �−1(w)�−1(v)$ = CATTGATTA$,
of which TGATTA$ is a substring, represented by a path in the suffix tree.
Looking at the EFG, this means that we started the match in the middle
of node label GTTAC, and we reached the beginning of label ATTA of its
in-neighbour. To continue our match, we need to find the suffix path that
starts with label �−1(v) = ATTA. We can do so by following suffix links until
we find a marked node. In this example, we follow two suffix links, removing
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Figure 8.3: The search of string Q = CGATTAGT in the suffix tree of string
D for the EFG of Figure 8.1. Inner nodes are round, leaf nodes are squared,
the marked node is black. After matching substring TGATTA, we follow
suffix links until reaching the marked node that we know represents a node
label of the EFG. From here, we descend, completing the match with CG.

characters TG from the beginning of the suffix path and thus discovering
the suffix node relative to suffix path AT. This is almost what we wanted,
we just have to descend down the path until we find a $, and then step
back up by one node. Now we can be sure that the current node has label
ATTA = �−1(v). Notice that this is correct because of the semi-repeat-free
property. Indeed, all the children of the node with label �−1(v) = ATTA are
either a $ branch or branches representing in-neighbours of v in the EFG.
This is ensured by the fact that ATTA is unique in the graph, except as
a prefix of a node label in the same block, and also because we built the
suffix tree with the reverses of node labels, which keeps eventual prefixes in
different suffix paths. At this point, we can follow the children whose label
starts with G and complete the match finding GC. If the match spanned
even more EFG nodes, we would repeat this process of following suffix links
until we found a match or we could not continue.

8.3 Constructing Semi-Repeat-Free EFGs from a
Gapped MSA

As we did in the previous chapter, we build our EFG in two steps: a prepro-
cessing step and an actual construction step. In the preprocesing step, this
time we compute, for each position j, forward value f(j), that is the clos-
est position to j such that segment [j..f(j)] is valid. Clearly, there exists
position J after which f(j) for j > J remains undefined.
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The choice of using values f(j) over values v(j) is deeply linked with the
semi-repeat-free property. If, when indexing and querying EFGs, the semi-
repeat-free property is viewed as a constraint relaxation over the repeat-free
property, it becomes a necessity when constructing EFGs from MSAs with
gaps. To understand why, consider a generic repeat-free segment of an
MSA such that rows MSA[i1, j..k] and MSA[i2, j..k] spell the same string
R. If we extend the segment one position to the right, the first row could
become RA, while the second could become R−, and the segment would
no longer be repeat-free. If we adopt the semi-repeat-free property, this
situation does not pose a problem anymore.

If we used values v(j) in combination with the semi-repeat-free prop-
erty, we would have a similar problem, because we would be looking back-
wards to find semi-repeat-free segments. A segment with rows AR and −R
would not be semi-repeat-free, with rows −AR and A−R yes, and with rows
A− AR and −A−R no. Instead, using values f(j), and thus looking for-
wards, we have that if segment with rows RA and R− is semi-repeat-free,
so it is with rows RA− and R−A, and so they are all of its extensions to the
right. In conclusion, every extension to the right of a semi-repeat-free seg-
ment MSA[1..m, j..f(j)] keeps being semi-repeat-free, and this guarantees
monotonicity, crucial for correctness.

We give an intuition of how to precompute values f(j), leaving the
details to Paper IV. The idea is to do the reverse of what we did in Chapter 7
for values v(j), namely we first build a trie of the rows from column j to n,
and then we traverse it upwards starting from the leaves. We stop when the
reachable leaves from a node are more than the number of rows, and then
we combine this information with searches in the generalised suffix tree of
the rows to identify the exact f(j) value. We achieve a time complexity of
O(nm logm) for this procedure, which a recent work improved to O(nm)
[39].

Once we have values f(j), we can use them to find an optimal seg-
mentation under different objective functions. In Paper IV, we provide
segmentation algorithms for maximising the number of blocks and for min-
imising the maximum block length. The structure of the algorithm is the
same for both cases, but the former involves fewer additional details, so
that is the one that we chose to present here. In this case, the recursion
that we want to compute is

s(j) = max
j′ : 0 ≤ j′ < j,

MSA[1..m, j′ + 1..j] is
semi-repeat-free segment

max(s(j′) + 1, s(j − 1)).
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In order to efficiently compute s(n), we utilise precomputed values f(j).
First, we sort a list of pairs (j1, f(j1)), (j2, f(j2)), . . . , (jn−J , f(jn−J)) by
second component, where J is such that f(jn−J+1), f(jn−J+2), . . . , f(jn)
are not defined. Assume that we have computed all the values of the
recursion up to s(j), and that now we want to compute s(j + 1). Consider
the case in which there are k previous positions j1, j2, . . . , jk such that
j + 1 = f(j1) = f(j2) = . . . = f(jk). Any segmentation ending at position
j+1 must have its last segment starting and ending at one of the positions
pairs (j1, f(j1)), (j2, f(j2)), . . . , (jk, f(jk)). This means that values s(j1) +
1, s(j2)+1, . . . , s(jk)+1) are the scores of all of the possible segmentations
ending at j + 1. There is one last possible segmentation that can end at
j + 1, that is the one that we obtain by extending the block ending at j
to include also the column at position j + 1, and that maintains the same
score s(j). Among all of these possible choices, we chose the best scoring
segmentation as s(j + 1) = max1≤x≤k max(s(jx) + 1, s(j)). If this means
adding a new block to one of the segmentations ending at j1, j2, . . . , jk, then
we say that we open a new block; otherwise, we say that we extend the
old block. In the case in which j + 1 is not the f(jk) value of any position
0 ≤ jk ≤ j, that is, ∀jk ∈ [1, j] . j + 1 �= f(jk), then we cannot open any
new block, but only extend the current one, thus s(j + 1) = s(j).

Notice that if j = f(j1) = f(j2) = · · · = f(jk), clearly j+1 > j = f(jk),
which means that we can process the list of pairs (jx, f(jx)) from left to
right without going back. This implies that the algorithm runs in O(n).
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Chapter 9

Discussion

This thesis analysed the problem of matching strings inside graphs, with the
goal of giving an all-round view of lower and upper bounds. We explained
why the problem is hard to solve in less than quadratic time in general,
and we proposed special cases for which it is possible to work around this
difficulty. We intentionally focused on the theoretical aspects of the prob-
lem, which constitute my personal contribution, while the implementation
for practical bioinformatic purposes is a merit of the other authors. This
work is published in four original papers.

9.1 Summary

Paper I provided a quadratic conditional lower bound for exact SMLG. This
is the first lower bound proposed for the problem, and matches the com-
plexity of the algorithms discovered 20 years earlier, making them optimal
unless OVH and SETH are false. In this paper, we wanted to find the sim-
plest graph structures for which the lower bound held, with regard to the
degree of the graph and the alphabet size. We found that a binary alphabet
is already enough for making the problem quadratic, and that the bound-
ary between linear and quadratic time complexity lies between trees and
3-DDAGs, that is, graphs with a maximum sum of in-degree and out-degree
3.

Paper II provided an indexing lower bound for exact SMLG. We showed
that no index built in polynomial time can provide sub-quadratic time
queries for exact SMLG. We proved this result as an application of a general
framework, which we devised to generalise this indexing lower bound to
any problem with a linear independent-components reduction from OV.
The definition that we gave of linear independent-components reduction

69
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retroactively applies also to older problems like edit distance, providing
indexing lower bounds also for them.

Paper III focused on finding a special class of graphs able to circumvent
the lower bounds from Paper I and Paper II. In doing so, we decided to
concentrate on graphs able to represent collections of strings. This choice
was motivated by theoretical interest in expanding the knowledge on data
structures such as elastic degenerate strings, and by the usefulness of such
data structures in bioinformatics. We found that repeat-free founder block
graphs (FBGs) built on top of gapless multiple sequence alignments (MSA)
allow efficient indexing and linear time queries.

Paper IV expanded and significantly improved Paper III, defining the
larger class of semi-repeat-free elastic founder graphs (EFGs), that can han-
dle gaps in theMSA while still providing similar performances to repeat-free
FBGs. In this paper we provide a complete overview of the problem, show-
ing: a hardness result for general EFGs that motivates the introduction of
the semi-repeat-free property; how to index semi-repeat-free EFGs to ob-
tain linear time queries; how to construct semi-repeat-free EFGs from MSAs
with gaps.

9.2 Future Works

Using a recent technique [2], our lower bound for exact SMLG has been
improved. The new lower bound states that for every algorithm A there
exists a constant c∗ such that A cannot solve SMLG in time O( |E||P |

logc |E|) or

O( |E||P |
logc |P |), for any c ≥ c∗1. In other words, there is a limit to the number

of log-factors that we can shave from the time complexity of SMLG, a
possibility that our lower bound did not rule out. A possible future direction
would be to understand if we can extend this result to the indexing case,
maybe expanding our framework. Indeed, the new lower bound is obtained
with a reduction from Formula-SAT, which is a more general problem than
CNF-SAT.

In our quest of finding a graph structure that allows efficient indexing,
we left the door open for a peculiar type of graphs. Indeed, we do not
have any lower bounds for FBGs that are not repeat-free, and this leaves us
wondering whether the repeat-free property is necessary when all the node
labels in a block have the same length.

When we build FBGs or EFGs, we place the edges using a sort of order-1
criteria: if two node labels of consecutive blocks form a substring of a row

1This lower bound is conditioned on technical complexity hypothesis whose specifica-
tion is out of the scope of this thesis.
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in the MSA, then we place the edge. We could consider studying high order
models, where we decide to place or not to place k edges at the same time.
Nevertheless, we realised that, most probably, any order above the first
always leads to the construction of the exact same graph.

One feature of EFGs is that SMLG is quadratic without the semi-repeat-
free property, but has close to linear (or actually linear) indexing time and
linear query time when adding said property. One future direction can be
exploring the possible trade off, if there are any. For example, is there a
class of graphs indexable in time O(|E|2) and providing queries in time
O(|P | log |E|)?

Instead of trying to find the best class of graphs for our needs, we could
also opt for a drastic change of perspective. If, in general, our model of
computation does not allow us to solve SMLG in subquadratic time, we
could chose another model of computation. In this spirit, we turn our
gaze towards quantum computation. This model of computation allows to
represent an exponential number of values in linear time and space, offering
astonishing improvements in terms of asymptotic time complexities. In our
preliminary work [22], we proposed a quantum algorithm for solving exact
SMLG in linear time for a special class of graphs online, without building
any index. We are interested in developing this line of research, possibly
extending this result to a wider class of graphs.
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Mäkinen. On the complexity of exact pattern matching in graphs: De-
terminism and zig-zag matching. CoRR, Computing Research Repos-
itory, abs/1902.03560, 2019.

[25] Martin Farach. Optimal suffix tree construction with large alpha-
bets. In 38th Annual Symposium on Foundations of Computer Sci-
ence, FOCS ’97, Miami Beach, Florida, USA, October 19-22, 1997,
Proceedings, pages 137–143. IEEE Computer Society, 1997.

[26] Travis Gagie, Giovanni Manzini, and Jouni Sirén. Wheeler graphs:
A framework for bwt-based data structures. Theoretical Computer
Science, 698:67–78, 2017.

[27] Russell Impagliazzo and Ramamohan Paturi. Complexity of k-sat. In
14th Annual IEEE Conference on Computational Complexity, Atlanta,
Georgia, USA, May 4-6, 1999, Proceedings, pages 237–240. IEEE Com-
puter Society, 1999.

[28] Russell Impagliazzo and Ramamohan Paturi. On the complexity of k-
sat. Journal of Computer and System Sciences, 62(2):367–375, 2001.

[29] Chirag Jain, Haowen Zhang, Yu Gao, and Srinivas Aluru. On the
complexity of sequence-to-graph alignment. Journal of Computational
Biology, 27(4):640–654, 2020.

[30] Donald E Knuth, James H Morris, Jr, and Vaughan R Pratt. Fast
pattern matching in strings. SIAM Journal on Computing, 6(2):323–
350, 1977.

[31] U. Manber and S. Wu. Approximate string matching with arbitrary
costs for text and hypertext. In IAPR Workshop on Structural and
Syntactic Pattern Recognition, Bern, Switzerland, Proceedings, pages
22–33, 1992.

[32] Udi Manber and Eugene W. Myers. Suffix arrays: A new method for
on-line string searches. SIAM Journal on Computing, 22(5):935–948,
1993.

[33] Edward M. McCreight. A space-economical suffix tree construction
algorithm. Journal of the ACM, 23(2):262–272, 1976.



References 77

[34] Gonzalo Navarro. Improved approximate pattern matching on hy-
pertext. In Claudio L. Lucchesi and Arnaldo V. Moura, editors,
LATIN ’98: Theoretical Informatics, Third Latin American Sympo-
sium, Campinas, Brazil, April, 20-24, 1998, Proceedings, volume 1380
of Lecture Notes in Computer Science, pages 352–357. Springer, 1998.

[35] Gonzalo Navarro. Improved approximate pattern matching on hyper-
text. Theoretical Computer Science, 237(1-2):455–463, 2000.

[36] Tuukka Norri, Bastien Cazaux, Dmitry Kosolobov, and Veli Mäkinen.
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