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1 Introduction
Whereas Cramér [6] in 1938 already went beyond the traditional Law of Large Numbers
and Central Limit Theorem, the large deviation principle, formalised in 1966 by Varad-
han [5], goes even further and describes the behaviour of a sequence of random variables
{Xn}n∈N at very unlikely events. Informally, the idea is that far-off events become expo-
nentially unlikely, and for very large n the sequence of probability measures behaves like
dPn(x) ≈ e−nI(x), where I is called a rate function, and describes the rate of decay. This,
and some more background, is laid out in more detail in [1, 2, 5].

Here one might stop to ask oneself why we even care about highly unlikely events.
To give an example, sometimes extremely anomalous situations can have a massive im-
pact, take for instance a supervolcano erupting, a large asteroid hitting earth, or perhaps
something more mundane, such as a person winning the lottery. These events are signifi-
cant enough not to be disregarded purely based on their rarity. Large deviations theory
can be applied in many situations where we care about very uncommon events. It is
frequently applied in information theory, queuing theory, statistical physics, finance, or,
as in this paper, to the ruin problem, a fundamental topic of risk theory.

Continuing the previous train of thought, it is worth noting that Cramér’s theorem
only concerns empirical means of i.i.d. random variables, a rather sterile situation. The
Gärtner-Ellis Theorem, developed by Gärtner and Ellis [3, 4], and presented as Theorem
2.29 in this thesis, considers a more general setting, one where the object of study is
instead a sequence of random variables {Xn}n∈N, distributed respectively according to
laws {Pn}n∈N, which in some sense resembles the sequence of empirical means studied by
Cramér, but which admits a weak dependence structure. Under certain limit conditions
on the sequence {Xn}n∈N, the Gärtner-Ellis theorem implies the Large Deviation Principle
for the sequence of probability measures {Pn}n∈N.

If one then, instead of examining sequences of empirical means and generalisations
thereof, considers a stochastic process Yn as a generalisation of a random walk, one can still
obtain some large deviations results. In an insurance setting where the starting capital
is M , and Yn is the loss process, considering the time of ruin TM = inf{n : Yn > M},
we present two results from Nyrhinen [9, 10], which together imply the Large Deviation
Principle for the measures PM(·) = P(T/M ∈ ·), when M →∞.

As follows is the structure of this thesis: Chapter 2 concerns generalisations of em-
pirical means, and consists of an introduction of some relevant and necessary concepts and
results, followed by a fairly detailed presentation and proof of the Gärtner-Ellis Theorem.
The proof is split into several parts. Chapter 3 shifts our perspective to generalisations of
random walks. Here we introduce an insurance setting in a more detailed manner, define
a few necessary ideas, state a number of assumptions we will be working under, as well
as Theorems 3.11 and 3.14, the two main results of this Chapter. We then recall or prove
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several auxiliary results from convex analysis and large deviations theory. What remains
of Chapter 3 is dedicated to the proofs of the main theorems.
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2 The Gärtner-Ellis Theorem
This chapter aims to introduce some concepts from large deviations theory, and present a
quite detailed proof of the Gärtner-Ellis theorem, a central result in this field. Here it is
presented as Theorem 2.29, and we will be proving the version of the theorem concerning
random variables in Rd.

Before introducing any new material, we recall a few concepts, in the forms they
will be useful to us, as well as clarify some notation. First up is Hölder’s inequality. Let
X and Y be real-valued random variables, and suppose p, q ≥ 1 such that 1

p
+ 1

q
= 1.

Then
E(XY ) ≤ E

(
X

1
p

)p
E
(
Y

1
q

)q
,

or, in a formulation that is more useful to us, if θ ∈ [0, 1], then

E
(
XθY (1−θ)) ≤ E(X)θE(Y )(1−θ). (2.1)

Second, the exponential form of Chebychev’s inequality. For each a ∈ R, it holds
that

P(X ≥ a) ≤ e−taE
(
etX
)
for all t ≥ 0, and

P(X ≤ a) ≤ e−taE
(
etX
)
for all t ≤ 0.

(2.2)

It is worth noting that the above bounds hold even if the expectation E
(
etX
)
is not finite,

although they are not very interesting in that case.
Third, exponentially tilted probability measures. Let X be a random variable

distributed according to law P and θ ∈ Rd a point such that MX(θ) ∈ (0,∞), where MX

is the moment generating function of X. Then the θ-exponentially tilted random variable
X̂ is distributed according to the density

dP̂(x) = exp(θx− logMX(θ)) dP(x).

Note that P̂ is guaranteed to be a probability measure because∫
Rd

dP̂ =

∫
Rd
eθx−logMX(θ) dP =

1

MX(θ)

∫
Rd
eθx dP = 1.

Throughout the following, 〈·, ·〉 denotes the inner product and ‖ · ‖ the norm in Rd. For
any set A, we denote by A the closure, by intA the interior, and by ∂A the boundary
of A. The complement is simply written as Rd \ A. For any function f : Rd → R, the
gradient is denoted ∇f . We will also be using the convention that inf ∅ =∞. Any other
notation will be defined in context.
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2.1 The Large Deviation Principle

This section aims to present the large deviation principle and a few other important
notions, as well as tie together properties of these new concepts into Lemma 2.16, a
powerful result we will use later as part of the main proof in Section 2.4.

First we define the notion of lower semi-continuity, and also the concept of a rate
function: a lower semi-continuous mapping to the non-negative extended real numbers.

Definition 2.3. A function f : Rd → [−∞,∞] is called lower semi-continuous if any of
the following equivalent conditions hold:

(I) For any sequence xn → x ∈ Rd, it holds that lim infn→∞ f(xn) ≥ f(x).

(II) For any x ∈ Rd, withBε(x) := {y ∈ Rd : ‖x−y‖ < ε}, it holds that limε→0 infy∈Bε(x) f(y) =
f(x).

(III) For any c ∈ R, the set Lc(f) := {x ∈ Rd : f(x) ≤ c} = f−1((−∞, c]) is closed. In
other words, f has closed level sets.

Proofs of the equivalence of the above definitions are simple and can be found in
Chapter IV.6.2 of [7].

Example 2.4. It is worth noting that any continuous function is also lower semi-continuous.
Other examples of lower semi-continuous functions are the function

f(x) =

{
0, if x ≤ 0,

1, if x > 0,

and the indicator function Ix∈A(x), where A is an open set.
In the one-dimensional case, a function being lower semi-continuous intuitively

means that in the case of a jump discontinuity, the value of the function at that point is
less than or equal to the lowest of the one-sided limits.

An important property of lower semi-continuous functions is that they obtain their
minimum over non-empty, compact sets.

Lemma 2.5. If f : Rd → [−∞,∞] is a lower semi-continuous function, and K ⊂ Rd is
a compact set, then there exists a point x0 ∈ K such that f(x0) = infx∈K f(x).

Proof. Denote m := infx∈K f(x). Then for any n ≥ 1, by property 2.3 (III), the set
Cn := K∩ f−1((−∞,m+ 1

n
]) is closed, as an intersection of two closed sets. From here we

notice that the collection {Cn} is nested, i.e. · · · ⊂ C2 ⊂ C1. Because of property 2.3 (II),
each Cn is non-empty, and as a closed subset of a compact set, Cn ⊂ K is compact.
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As nested sequences of non-empty, compact sets have non-empty intersection in
Rd, the set C := ∩∞n=1Cn must be non-empty. Then for all x ∈ C, we have f(x) ≤ m and
x ∈ K, by the definition of Cn. Since C ⊂ K is non-empty, f achieves its minimum on
K.

We can now define the concept of a rate function, and state the Large Deviation
Principle, a fundamental concept of this thesis. The LDP attempts to characterise the
behaviour of very unlikely events using a rate function, which describes the exponential
rate at which the probabilities of these very unlikely events decrease.

Definition 2.6. A function I : Rd → [0,∞] is called a rate function if it is lower semi-
continuous. If, in addition, I har compact level sets, it is called a good rate function.

Example 2.7. To give two non-continuous examples of rate functions, we will use the
ceiling function, denoted d·e. The function f(x) = dxe is lower semi-continuous, thus a
rate function, but does not have bounded level sets, so it is not a good rate function. On
the other hand, the function g(x) = dx2e is lower semi-continuous and has bounded level
sets, and is therefore a good rate function.

Definition 2.8 (The Large Deviation Principle). A family of probability measures
{Pn}n∈N satisfies the large deviation principle with rate function I if

(I) for any closed set C ⊂ Rd,

lim sup
n→∞

1

n
logPn(C) ≤ − inf

x∈C
I(x),

(II) for any open set O ⊂ Rd,

lim inf
n→∞

1

n
logPn(O) ≥ − inf

x∈O
I(x).

Now, one might wonder why a rate function is required to be lower semi-continuous.
For one, it is a looser condition than true continuity, but it is also sufficient to ensure the
uniqueness of the rate function.

Theorem 2.9. If the family {Pn}n∈N satisfies the large deviation principle with rate func-
tion I, then I is unique.
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Proof. Fix any x ∈ Rd, and for ε > 0 denote Bε(x) := {y ∈ Rd : ‖x− y‖ < ε}. Then

−I(x) ≤ − inf
y∈Bε(x)

I(y)

LDP
≤ lim inf

n→∞

1

n
logPn(Bε(x))

≤ lim sup
n→∞

1

n
logPn(Bε(x))

≤ lim sup
n→∞

1

n
logPn(Bε(x))

LDP
≤ − inf

y∈Bε(x)
J(y)

≤ − inf
y∈B2ε(x)

J(y).

Then letting ε → 0 we get infy∈B2ε(x) J(y) → J(x), since J is lower semi-continuous.
This yields −I(x) ≤ −J(x) for all x ∈ Rd, since x was arbitrary. Also, since I and J
were arbitrarily ordered in the above proof, swapping them yields the opposite inequality
−J(x) ≤ −I(x) for all x ∈ Rd, meaning I ≡ J .

In addition to the regular concept of tightness of measures, the intuition behind
which is that we want to prevent any of the probability mass from ‘escaping to infinity’,
there exists a stronger version of this concept, often used in large deviations theory, known
as exponential tightness. It will be very useful later, in Section 2.4.x

Definition 2.10. A family of probability measures {Pn}n∈N on Rd is exponentially tight
if for any M <∞ there exists some corresponding compact set KM ⊂ Rd such that

lim sup
n→∞

1

n
logPn(Rd \ KM) < −M. (2.11)

Example 2.12. For a simple case of exponential tightness on R, take the mean of n
independent normally distributed random variables ξj with zero mean and unit variance.
Denote this mean by Sn and note that

Sn =
1

n

n∑
j=1

ξj ∼ N
(

0,
1

n

)
.

Let Pn be the law of the variable Sn. Then for any t ≥ 0 and for any a ∈ R, Chebychev’s
inequality (2.2) gives us

P(Sn ≥ a) ≤ e−atE
(
etSn

)
and P(Sn ≤ −a) ≤ e−atE

(
etSn

)
. (2.13)
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These inequalities hold for any n and any t ≥ 0. Recall that the moment generating
function of a normally distributed random variable Y with mean µ and variance σ2 is
E
(
etY
)

= exp
(
µt+ σ2t2

2

)
. Now let ε > 0 be small and note that, when choosing t = n in

(2.13),
P(|Sn| > a) ≤ P(Sn ≥ a− ε) + P(Sn ≤ −a+ ε) ≤ 2e−n(a−ε)+n2

2n .

Then
1

n
logP(|Sn| > a) ≤ 1

n
log
(
2e−n(a−ε)+n

2

)
=

1

n

(
log 2− na+ nε+

n

2

)
=

log 2

n
− a+ ε+

1

2
.

Letting n→∞ and ε→ 0 yields

1

n
logP(|Sn| > a) ≤ 1

2
− a.

Finally, for any M < ∞, choose a > M + 1
2
, and then we have the compact set

KM := [−a, a] which satisfies Definition 2.10.

Here we present a very short and simple lemma, which will be used in the proof
of Lemma 2.16, as well as in the proof of the main theorem of this chapter, specifically
in Section 2.4. It will also be used in the subsequent chapter, which is why we prove the
result in the continuous case.

Lemma 2.14. If K < ∞ is a fixed integer, and for each i = 1, . . . , K and each ρ > 0,
the value of aiρ is non-negative, then

lim sup
ρ→∞

1

ρ
log

(
K∑
i=1

aiρ

)
= max

i=1,...,K
lim sup
ρ→∞

1

ρ
log aiρ.

Proof. For any ρ > 0, we have

max
i=1,...,K

aiρ ≤
K∑
i=1

aiρ ≤ K max
i=1,...,K

aiρ,

thus since the logarithm is strictly increasing, we have

0 ≤ log

(
K∑
i=1

aiρ

)
− log

(
max

i=1,...,K
aiρ

)
and log

(
K∑
i=1

aiρ

)
− log

(
max

i=1,...,K
aiρ

)
≤ logK,
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thus

0 ≤ 1

ρ
log

(
K∑
i=1

aiρ

)
− max

i=1,...,K

1

ρ
log aiρ ≤

1

ρ
logK.

Then since K is finite we can switch the order of maximum and limes supremum, so that

lim sup
ρ→∞

(
1

ρ
log

(
K∑
i=1

aiρ

)
− max

i=1,...,K

1

ρ
log aiρ

)

= lim sup
ρ→∞

1

ρ
log

(
K∑
i=1

aiρ

)
− max

i=1,...,K
lim sup
ρ→∞

1

ρ
log aiρ.

Finally, since this value is sandwiched between 0 and lim supρ→∞
1
ρ

logK = 0, its value,
by the sandwich theorem, must be zero, thus we have our result,

lim sup
ρ→∞

1

ρ
log

(
K∑
i=1

aiρ

)
= max

i=1,...,K
lim sup
ρ→∞

1

ρ
log aiρ.

In addition to the LDP, stated in Definition 2.8, there also exists a Weak Large
Deviation Principle, in which the upper bound holds only for compact sets. We will later
use this, in combination with the subsequent Lemma 2.16, as a convenient stepping stone
in our proof of Theorem 2.29.

Definition 2.15. A family of probability measures {Pn}n∈N satisfies the weak large devi-
ation principle with rate function I if

(I) for any compact set C ⊂ Rd, lim supn→∞
1
n

logPn(C) ≤ − infx∈C I(x),

(II) for any open set O ⊂ Rd, lim infn→∞
1
n

logPn(O) ≥ − infx∈O I(x).

The following lemma is the main result of this section, and will be paramount in
proving Theorem 2.29 later, as it means we can separately prove exponential tightness of
the probability measures and the upper bound in Definition 2.15 for compact sets, thus
implying the upper bound in Definition 2.8 for closed sets. Additionally, proving the lower
bound then immediately implies the goodness of the rate function.

Lemma 2.16. Let {Pn}n∈N be an exponentially tight family of probability measures.

(I) If the upper bound 2.15 (I) holds for all compact sets for {Pn}n∈N with rate function
I, then it also holds for all closed sets.
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(II) If the lower bound 2.8 (II) holds for {Pn}n∈N with rate function I, then I is a good
rate function.

Proof. (I) Fix a closed set C, and choose M <∞ such that C ⊂ (Rd \ LM), where LM
denotes the level set

LM = {x ∈ Rd : I(x) ≤M}.

This means all x ∈ C satisfy I(x) > M . As the family {Pn}n∈N is exponentially
tight, this M has a corresponding compact set KM such that

lim sup
n→∞

1

n
logPn(Rd \ KM) < −M.

Now clearly C ∩KM is compact, so the upper bound 2.15 (I) holds for this set. Also,
since C ∩ KM ⊂ C ⊂ (Rd \ LM), we have infx∈C∩KM I(x) ≥ M . The final thing to
notice is that since C ⊂ (C ∩KM)∪ (Rd \KM), we have, for all n ≥ 1, the estimation

Pn(C) ≤ Pn(C ∩ KM) + Pn(Rd \ KM).

Now we apply Lemma 2.14, getting

lim sup
n→∞

1

n
logPn(C) ≤ lim sup

n→∞

1

n
log(Pn(C ∩ KM) + Pn(Rd \ KM))

= max

{
lim sup
n→∞

1

n
logPn(C ∩ KM)︸ ︷︷ ︸

≤− infx∈C∩KM I(x)≤−M

, lim sup
n→∞

1

n
logPn(Rd \ KM)︸ ︷︷ ︸
<−M

}

≤ −M.

Then because

inf{−M : C ⊂ (Rd \ LM)} = − sup{M <∞ : ∀x ∈ C, I(x) > M} = − inf
x∈C

I(x),

We have
lim sup
n→∞

1

n
logPn(C) ≤ − inf

x∈C
I(x),

so the upper bound holds for all closed sets as well.

(II) Let M < ∞. Then as the family {Pn}n∈N is exponentially tight, there exists a
compact set KM such that

lim sup
n→∞

1

n
logPn(Rd \ KM) < −M.
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As KM is compact, it is closed, thus Rd \ KM is open, so the lower bound 2.8 (II)
gives us

lim inf
n→∞

1

n
logPn(Rd \ KM) ≥ − inf

x∈Rd\KM
I(x),

thusM < infx∈Rd\KM I(x). This means I(x) > M for all x ∈ Rd\KM , so (Rd\KM) ⊂
(Rd \ LM). This can be rewritten as LM ⊂ KM , thus since LM is closed, it is also
compact. Since M <∞ was arbitrary, I is a good rate function.

2.2 The Gärtner-Ellis theorem

A central concept in the proof of Theorem 2.29 is that of the limiting scaled cumulant
generating function of a sequence of random variables, and the convex conjugate of this
function. Consider random variables Xn ∈ Rd, distributed according to the law Pn,
respectively, where n ∈ N. The cumulant generating function Λn : Rd → R of the scaled
variable nXn is defined as

Λn(λ) := logE
(
e〈λ,nXn〉

)
.

By then scaling this function appropriately, and then taking the limit, we end up with
what we call the limiting scaled cumulant generating function of the sequence {Xn}n∈N

Λ(λ) := lim
n→∞

1

n
Λn(λ). (2.17)

Example 2.18. In the case of Example 2.11, we have

Xn = Sn =
1

n

n∑
j=1

ξj ∼ N
(

0,
1

n

)
,

and the moment generating function of the normal distribution again gives us

E
(
enλXn

)
= e

n2λ2

2n = e
nλ2

2 ,

so

Λ(λ) = lim
n→∞

1

n
log Λn(λ) = lim

n→∞

1

n
log e

nλ2

2 =
λ2

2
.
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Where the Gärtner-Ellis theorem differs from Cramér’s theorem is in its assump-
tions of dependence. Whereas Cramér’s theorem works with a sum of i.i.d. random
variables, the Gärtner-Ellis theorem imposes a looser condition. There can be some form
of weak dependence between the variables, and the setting can be extended to not only in-
clude the distributions of sums of random variables, but in fact any sequence of probability
distributions, as long as they abide by the following assumption.

Assumption 2.19. For every λ ∈ Rd, the limit (2.17) exists as an extended real number.
In addition, 0 ∈ intDΛ, where

DΛ := {λ ∈ Rd : Λ(λ) <∞}

denotes the effective domain of Λ.

Remark 2.20. A little bit later Lemma 2.31 tells us in case the limit (2.17) exists, Λ
is a convex function. This implies DΛ must be an interval, because if this was not the
case, there must exist real numbers a < b < c such that Λ(a) < ∞ and Λ(c) < ∞ but
Λ(b) =∞, which would violate convexity.

It is worth noting that although this assumption does not require independence,
it is still a stringent condition. It only allows for very weak dependence in the sequence
of random variables. In what follows of Chapter 2 we will be working under Assumption
2.19. With this in mind, we also need to introduce the following notion.

Definition 2.21. Denote by Λ∗ : Rd → [−∞,∞] the convex conjugate of Λ, defined as

Λ∗(x) := sup
λ∈Rd
{〈λ, x〉 − Λ(λ)}.

And similarly as above, DΛ∗ := {λ ∈ Rd : Λ∗(λ) <∞}.

The reasoning behind introducing the function Λ and its convex conjugate is that
Λ∗ will act as the rate function with which the family of probability measures may satisfy
the LDP.

Example 2.22. In the case of Example 2.11, we have Λ(λ) = λ2

2
∈ (−∞,∞) everywhere,

so intDΛ = R, and also, since λx− λ2

2
is a parabola with its maximum at λ = x, we have

Λ∗(x) := sup
λ∈R

{
λx− λ2

2

}
=
x2

2
.

We still need to define a handful of concepts before we are ready to state our main
theorem.
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Definition 2.23. The point y ∈ Rd is called an exposed point of the function Λ∗ if there
exists some λ ∈ Rd such that for all x 6= y,

〈λ, x〉 − Λ∗(x) < 〈λ, y〉 − Λ∗(y).

In the above, the point λ is called the exposing hyperplane of the point y.

Remark 2.24. Intuitively, a function f has an exposed point y if f is convex, but also
strictly convex in some neighbourhood around y.

Example 2.25. In the case of Example 2.12, we have Λ∗(x) = x2

2
, so every point y in R

is exposed, with exposing hyperplane λ = d
dy

Λ∗(y) = 2y.

Definition 2.26. Let Λ : Rd → (−∞,∞] be a convex function. Then Λ is called essen-
tially smooth if the following hold:

(I) intDΛ 6= ∅, i.e. Λ is finite in a neighbourhood of the origin.

(II) Λ is differentiable on intDΛ.

(III) If {λi} ∈ intDΛ is a sequence converging to a point λ ∈ ∂DΛ, then limn→∞ |∇Λ(λn)| =
∞. When Λ has this property, we say Λ is steep.

Remark 2.27. Essential smoothness eliminates the possible case of Λ = ±∞ outside the
origin, and, in addition to differentiability throughout the effective domain, imposes a
condition on the behaviour of a function at its boundary, known as steepness. When
approaching the boundary, the absolute value of the derivative (in general, the norm of
the gradient) must approach ±∞, so that the function does not ’abruptly change direction
towards infinity’ at the edge of its effective domain.

Example 2.28. In the case of example 2.12, the effective domain is the whole R, so the
boundary points are {−∞,∞}. Since limλ→∞

λ2

2
= limλ→−∞

λ2

2
= ∞, Λ is essentially

smooth. Another function that is essentially smooth is

f(x) =

{
cos−1(x), if x ∈

(
−π

2
, π

2

)
,

∞, otherwise.

The interior of the effective domain is
(
−π

2
, π

2

)
, and f clearly is differentiable on this

interval. Since

lim
x→π−

d

dx

∣∣∣∣ 1

cos(x)

∣∣∣∣ = lim
x→π−

∣∣∣∣ sin(x)

cos2(x)

∣∣∣∣ =∞, and lim
x→−π+

d

dx

∣∣∣∣ 1

cos(x)

∣∣∣∣ = lim
x→−π+

∣∣∣∣ sin(x)

cos2(x)

∣∣∣∣ =∞,
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we also have the steepness of f .
The convex function

g(x) =

{
x2, if x ∈ (−1, 1),

∞, otherwise.

is not essentially smooth, because it violates the steepness condition.

We are now ready to state our main result, a proof of which will be presented in
Section 2.4.

Theorem 2.29 (Gärtner-Ellis). Under Assumption 2.19, the following holds:

(I) For any closed set C,

lim sup
n→∞

1

n
logPn(C) ≤ − inf

x∈C
Λ∗(x).

(II) For any open set O,

lim inf
n→∞

1

n
logPn(O) ≥ − inf

x∈O∩E
Λ∗(x),

where E denotes the set of exposed points of Λ∗, whose exposing hyperplane belong
to intDΛ

(III) If Λ is essentially smooth and lower semi-continuous, then Λ∗ is a good rate function,
with which the Large Deviation Principle holds for the family {Pn}n∈N.

The power of this theorem lies in that it can tell us when the LDP applies in more
general settings than the one of Cramér’s theorem. It also gives us an even more general
lower bound, which can be turned into the lower bound in the LDP by removing the
intersection with the set E from the infimum in the lower bound, which is allowed if Λ is
essentially smooth.

2.3 A few results from convex analysis

This section presents a few important properties of the previously defined functions Λ
and Λ∗. These will be of great use in our proof of Theorem 2.29, which constitutes the
entirety of the subsection following this one.

Lemma 2.30. The function Λ is convex.

15



Proof. Let n ≥ 1 and θ ∈ [0, 1]. Then Hölder’s inequality (2.1) gives

E
(
(e〈λ1,nXn〉)θ(e〈λ2,nXn〉)(1−θ)) ≤ E

(
e〈λ1,nXn〉

)θ E (e〈λ2,nXn〉
)(1−θ)

.

so

Λn(θλ1 + (1− θ)λ2) = logE
(
e〈(θλ1+(1−θ)λ2),nXn〉

)
= logE

(
(e〈λ1,nXn〉)θ(e〈λ2,nXn〉)(1−θ))

≤ log
(
E
(
e〈λ1,nXn〉

)θ E (e〈λ2,nXn〉
)(1−θ)

)
= θ logE

(
e〈λ1,nXn〉

)
+ (1− θ) logE

(
e〈λ2,nXn〉

)
= θΛn(λ1) + (1− θ)Λn(λ2),

thus Λn is convex for every n ≥ 1. Since λ1 and λ2 i the above were arbitrary, it also
holds that

1

n
Λn(θλ1 + (1− θ)λ2)︸ ︷︷ ︸
→Λ(θλ1+(1−θ)λ2)

≤ θ
1

n
Λn(λ1) + (1− θ) 1

n
Λn(λ2)︸ ︷︷ ︸

→θΛ(λ1)+(1−θ)Λ(λ2)

,

so the limit Λ is also convex.

Lemma 2.31. Under Assumption 2.19, the following holds:

(I) Λ(λ) > −∞ for all λ ∈ Rd.

(II) Λ∗ is a convex, good rate function.

Proof. We prove the statements in order.

(I) First note that Λ(0) = 0. We proceed with a proof by contradiction. Suppose
instead there is some λ ∈ Rd with Λ(λ) = −∞. Since Λ is convex, as we just
proved, we must, for all 0 < θ ≤ 1, have

Λ(θλ) = Λ(θλ+ (1− θ) · 0) ≤ θΛ(λ)︸︷︷︸
=−∞

+(1− θ) Λ(0)︸︷︷︸
=0

= −∞.

Convexity also implies, using θ = 1
2
,

0 = Λ(0) = Λ

(
1

2
(−λ+ λ)

)
≤ 1

2
Λ(−λ) +

1

2
Λ(λ).

This means
−Λ(−λ) ≤ Λ(λ) = −∞

16



so we must have Λ(−λ) =∞, which in turn implies, for all 0 < θ ≤ 1,

Λ(−θλ) = Λ(θ(−λ) + (1− θ) · 0) ≤ θΛ(−λ)︸ ︷︷ ︸
=∞

+(1− θ) Λ(0)︸︷︷︸
=0

=∞.

But Assumption 2.19 states that the interior of DΛ is non-empty, which contradicts
what we have just arrived at. Therefore there cannot exist any λ for which Λ(λ) =
−∞.

(II) From the definition of Λ∗ follows that for any x1, x2 ∈ Rd and θ ∈ [0, 1],

Λ∗(θx1 + (1− θ)x2) = sup
λ∈Rd
{(θx1 + (1− θ)x2)λ− Λ(λ)}

= sup
λ∈Rd
{θ(λx1 − Λ(λ)) + (1− θ)(λx2 − Λ(λ))}

≤ θ sup
λ∈Rd
{λx1 − Λ(λ)}+ (1− θ) sup

λ∈Rd
{λx2 − Λ(λ)}

= θΛ∗(x1) + (1− θ)Λ∗(x2),

thus Λ∗ is convex.

Note that by definition, Λ∗(x) ≥ 0·x−Λ(0) = 0, so Λ∗ is non-negative. Now to prove
that it is a good rate function, it suffices to show that it is lower semi-continuous
and has bounded level sets. In order to show that it satisfies Definition 2.3 (I), let
xn → x be a sequence in Rd. By the definition of Λ∗ we have, for all λ ∈ Rd,

lim inf
n→∞

Λ∗(xn) ≥ lim inf
n→∞

(λxn − Λ(λ)) = λx− Λ(λ),

thus, taking the supremum over all λ ∈ Rd,

lim inf
n→∞

Λ∗(xn) ≥ sup
λ∈Rd
{λx− Λ(λ)} = Λ∗(x),

so Λ∗ is lower semi-continuous. In order to show that it has bounded level sets,
first note that the interior is always an open set, thus Λ is continuous in intDΛ.
Then recall that Assumption 2.19 ensures we can find small enough δ > 0 such that
the closed ball Bδ(0) ⊂ intDΛ. By the continuity of Λ inside this ball we have

17



supλ∈Bδ(0) Λ(λ) <∞. Now we can estimate

Λ∗(x) = sup
λ∈Rd
{〈λ, x〉 − Λ(λ)}

≥ sup
λ∈Bδ(0)

{〈λ, x〉 − Λ(λ)}

≥ sup
λ∈Bδ(0)

〈λ, x〉 − sup
λ∈Bδ(0)

Λ(λ),

= δ|x| − sup
λ∈Bδ(0)

Λ(λ)︸ ︷︷ ︸
<∞

→∞, as x→ ±∞.

therefore the level sets Lc = {x ∈ Rd : Λ∗(x) ≤ c} are bounded for all c ∈ R, so Λ∗

has compact level sets because of the equivalence of Definitions 2.3 (I) and 2.3 (III).
All together this means Λ∗ is a convex, good rate function, as we wanted.

Some times we may only care about a function’s values on some lower-dimensional
subspace of the entire space, and want to remove the boundary points from some set with
respect to this subspace without losing the entire set. In these kinds of situations a useful
concept is that of the relative interior.

Definition 2.32. Let A ⊂ Rd be a convex set. The relative interior of A is the subset
defined as

riA := {x ∈ A : or all a ∈ A there is some ε > 0 such that x− ε(x− a) ∈ A}.

Example 2.33. Take as an example the unit line segment in two dimensions A :=
{(x, 0) ∈ R2 : 0 ≤ x ≤ 1}. The interior in the traditional sense is intA = ∅, but
the relative interior instead gives us riA = {(x, 0) ∈ R2 : 0 < x < 1}.

The following is a result from R. Tyrrell Rockafellar’s book on convex analysis, and
will be useful in proving 2.29 (III).

Lemma 2.34 (Rockafellar). Let Λ : Rd → (−∞,∞] be a convex function. If Λ is
essentially smooth and lower semi-continuous, then riDΛ∗ ⊂ E.

Proof. See Corollary 26.4.1 in [8].
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2.4 A proof of Gärtner-Ellis

We now arrive at the proof of our main theorem. We will begin this proof by proving the
upper bound in two steps, first showing that it holds for compact sets, and then showing
that the family {Pn}n∈N is exponentially tight, two facts which, together with Lemma
2.16 (I) give us 2.29 (I).

Following this, we will define an exponentially tilted family of probability measures
and, after verifying that the limiting scaled cumulant generating function that arises from
this family also satisfies Assumption 2.19, use the already proven upper bound applied to
this new family and its corresponding rate function, to show the lower bound 2.29 (II).

Finally, we use Lemma 2.34 to show that, under the conditions imposed in 2.29 (III),
O∩E can be replaced by O in the infimum in the lower bound, which by 2.16 (II) implies
Λ∗ is a good rate function. This, in conjunction with 2.29 (I) and 2.29 (II), means the
LDP holds for the family {Pn}n∈N with good rate function Λ∗.

The upper bound: compact sets

First and foremost we will define an auxiliary function. For any δ > 0, the δ-rate function
associated with Λ∗ is

Iδ(x) := min{Λ∗(x)− δ, 1

δ
},

and note especially that Iδ(x) < Λ∗(x) for all δ > 0, x ∈ Rd, and that

lim
δ→0

inf
x∈F

Iδ(x) = inf
x∈F

Λ∗(x), (2.35)

for any set F ⊂ Rd.
The reason for introducing this function is that in proving the upper bound it is

instrumental to work with a function whose range is bounded, while still having, in the
limit, properties which agree with those of the rate function we care about.

Now let K ⊂ Rd be a compact subset and choose δ > 0 arbitrary. The definition of
Λ∗ ensures that, for any x ∈ K, there must exist some corresponding λx ∈ Rd such that

Iδ(x) ≤ 〈λx, x〉 − Λ(λx),

since we can pick λx to make the expression 〈λx, x〉 −Λ(λx) arbitrarily close to its supre-
mum Λ∗(x). Since the scalar product is continuous, there exists some γ > 0 such that for
any y ∈ Bγ(x), we have

|〈λx, y〉 − 〈λx, x〉| < δ,

and more specifically,

inf
y∈Bγ(x)

{〈λx, y〉 − 〈λx, x〉} ≥ −δ. (2.36)
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Chebychev’s inequality (2.2) and (2.36) now give us, for all t ≥ 0,

Pn(Bγ(x)) ≤ P(〈λx, Xn〉 − 〈λx, x〉 ≥ −δ)
≤ eδtE

(
et(〈λx,Xn〉−〈λx,x〉)

)
.

Choosing t = n and noting that n〈λx, Xn〉 = 〈λx, nXn〉, we have, by rearranging the
above,

Pn(Bγ(x) ≤ en(δ−〈λx,x〉)E
(
e〈λx,nXn〉

)
.

Thus
1

n
logPn(Bγ(x)) ≤ δ − 〈λx, x〉+

1

n
Λn(λx).

Now, as the set K is compact with a trivial cover
⋃
x∈KBγ(x), for any γ > 0, we can find

some finite subcover, which we will denote
⋃N
i=1Bγi(xi). Now we can estimate

Pn(K) ≤ Pn

(
N⋃
i=1

Bγi(xi)

)
≤

N∑
i=1

Pn (Bγi(xi)) ≤ N max
i=1,...,N

{Pn (Bγi(xi))},

thus

1

n
logPn(K) ≤ 1

n
log

(
N max

i=1,...,N
{Pn (Bγi(xi))}

)
=

1

n
logN + max

i=1,...,N

{
1

n
logPn (Bγi(xi))

}
≤ 1

n
logN + δ + max

i=1,...,N

{
1

n
Λn(λxi)− 〈λxi , xi〉

}
.

Now by taking the limes supremum we get

lim sup
n→∞

1

n
logPn(K) ≤ δ + lim sup

n→∞

(
1

n
logN + max

i=1,...,N

{
1

n
Λn(λxi)− 〈λxi , xi〉

})
= δ + max

i=1,...,N

{
lim sup
n→∞

1

n
Λn(λxi)− 〈λxi , xi〉

}
= δ − min

i=1,...,N

{
〈λxi , xi〉 − Λ(λxi)

}
≤ δ − min

i=1,...,N
Iδ(xi)

≤ δ − inf
x∈K

Iδ(x),
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where lim supn→∞
1
n
Λn(λxi) = Λ(λxi) because of Assumption 2.19 and the penultimate

inequality is due to how we chose each λxi . Letting δ → 0 then yields, by (2.35),

lim sup
n→∞

1

n
logPn(K) ≤ lim

δ→0

(
δ − inf

x∈K
Iδ(x)

)
= − inf

x∈K
Λ∗(x),

so we have the upper bound for compact sets.

The upper bound: exponential tightness

For the random variable Xn = (X1
n, . . . , X

d
n) ∈ Rd following law Pn, define for any i =

1, . . . , d the law Pjn such that for any set measurable set A ⊂ R,

Pin(A) = Pn(X i
n ∈ A) = Pn(R× · · · × R︸ ︷︷ ︸

i−1

×A× R× · · · × R︸ ︷︷ ︸
d−j

).

Now recall that Assumption 2.19 states 0 ∈ intDΛ, thus by 2.31 (I) we know Λ is of finite
value around the origin. For i = 1, . . . , d, let ei denote the i:th unit vector of the space
Rd, and let φi > 0, ϕi > 0 be such that

Λ(−ϕiei) <∞, and Λ(φiei) <∞.

Let α > 0. For all i = 1, . . . , d and n ≥ 1, the Chebychev’s inequality (2.2) gives us two
estimations, the first being

Pin((−∞,−α]) ≤ e−αnϕiE
(
e−nϕiX

i
n

)
= e−αnϕiE

(
e〈−ϕiei,nXn〉

)
= e−αnϕi exp

(
log
(
E
(
e〈−ϕiei,nXn〉

)))
= exp(−αnϕi + Λn(−ϕiei)),

which turns into

lim sup
n→∞

1

n
logPin((−∞,−α]) ≤ lim sup

n→∞

1

n
(−αnϕi + Λn(−ϕiei))

= Λ(−ϕiei)− αϕi
→ −∞, as α→∞.

as ϕi > 0 and Λ(−ϕiei) <∞. The equality above is due to Assumption 2.19.
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The second estimation achieved from the Chebychev’s inequality (2.2) is

Pin([α,∞)) ≤ e−αnφiE
(
enφiX

i
n

)
= e−αnφiE

(
e〈φiei,nXn〉

)
= e−αnφi exp

(
log
(
E
(
e〈φiei,nXn〉

)))
= exp(−αnφi + Λn(φiei)),

giving us the limit

lim sup
n→∞

1

n
logPin([α,∞)) ≤ lim sup

n→∞

1

n
(−αnφi + Λn(φiei))

= Λ(φiei)− αφi
→ −∞, as α→∞,

as φi > 0 and Λ(φiei) <∞.
We now examine the event where X belongs to the complement of the compact set

[−α, α]d. This can also be written

X i
n ∈ (−∞,−α] ∪ [α,∞), for some i = 1, . . . , d.

Then we have the union bound

Pn(Rd \ [−α, α]d) ≤
d∑
i=1

(
Pin((−∞,−α]) + Pin([α,∞))

)
.

Now, using Lemma 2.14 together with what we shower earlier, we find the limit

lim sup
n→∞

1

n
logPn(Rd \ [−α, α]d)

≤ lim sup
n→∞

1

n
log

d∑
i=1

(
Pin((−∞,−α]) + Pin([α,∞))

)
(2.14)
= max

i=1,...,d

{
max

{
lim sup
n→∞

1

n
logPin((−∞,−α])︸ ︷︷ ︸

→−∞ as α→∞, ∀i=1,...,d

, lim sup
n→∞

1

n
logPin([α,∞))︸ ︷︷ ︸

→−∞ as α→∞, ∀i=1,...,d

}}

→ −∞, as α→∞.

Thus, for any M > 0 there is some compact set [−αM , αM ]d =: KM that satisfies the
inequality 2.11 in Definition 2.10, and we have proved exponential tightness. Then 2.16 (I)
implies the upper bound 2.29 (I).
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The lower bound: exponential tilt of measure

Denote by E the set of all exposed points of Λ∗ whose exposing hyperplane belongs to
intDΛ. Then for any open set O, x ∈ O ∩ E and δ > 0 small enough, we have

Pn(O) ≥ Pn(Bδ(x)),

for all n ≥ 1, which means to prove the lower bound 2.29 (II) it suffices to show that

lim
δ→0

lim inf
n→∞

1

n
logPn(Bδ(x)) ≥ −Λ∗(x), for all x ∈ E . (2.37)

First fix x ∈ E , and let κ ∈ intDΛ be an exposing hyperplane of the point x. Then by
Assumption 2.19, we know Λ(κ) exists, so for this κ and all n large enough, Λn(κ) <∞.
We can define an exponentially tilted probability measure P̂n by the measure densities

dP̂n(y) = exp (n〈κ, y〉 − Λn(κ)) dPn(y), for all y ∈ Rd.

Now for n large enough that Λn(κ) <∞, we can calculate

1

n
logPn(Bδ(x)) =

1

n
log

∫
Bδ(x)

dPn(y)

=
1

n
log

∫
Bδ(x)

exp (Λn(κ)− n〈κ, y〉) dP̂n(y)

=
1

n
log

(
exp (Λn(κ)− n〈κ, x〉)

∫
Bδ(x)

e−n〈κ,y−x〉 dP̂n(y)

)
=

1

n
Λn(κ)− 〈κ, x〉+

1

n
log

∫
Bδ(x)

e−n〈κ,y−x〉 dP̂n(y)

≥ 1

n
Λn(κ)− 〈κ, x〉+

1

n
log

(
e−nδ|κ|

∫
Bδ(x)

dP̂n(y)

)
=

1

n
Λn(κ)− 〈κ, x〉 − δ|κ|+ 1

n
log

∫
Bδ(x)

dP̂n(y)

=
1

n
Λn(κ)− 〈κ, x〉 − δ|κ|+ 1

n
log P̂n(Bδ(x)). (2.38)

Now notice that

lim
δ→0

lim inf
n→∞

1

n
Λn(κ)− 〈κ, x〉 − δ|κ| → Λ(κ)− 〈κ, x〉 ≥ −Λ∗(x),

by the definition of Λ∗. Thus, when taking the limes infimum as n → ∞ and then the
limit as δ → 0, we can further estimate (2.38) as

lim
δ→0

lim inf
n→∞

1

n
logPn(Bδ(x)) ≥ −Λ∗(x) + lim

δ→0
lim inf
n→∞

1

n
log P̂n(Bδ(x)). (2.39)

23



Now if we can manage to show that

lim
δ→0

lim inf
n→∞

1

n
log P̂n(Bδ(x)) = 0, (2.40)

then 2.39 implies 2.37, and we have the lower bound 2.29 (II).

The lower bound: using the upper bound

Let X̂n be the random variable whose distribution law is P̂n and denote by Λ̂n the cumulant
generating function of the scaled variable nX̂n. In order to show 2.40, we will show that
Λ̂ also satisfies Assumption 2.19, and use the recently proven upper bound. To this end,
notice that

Λ̂n(λ) = log

∫
Ω

e〈λ,ny〉 dP̂n(y)

= log

∫
Ω

e〈λ,ny〉+n〈κ,y〉−Λn(κ) dPn(y)

= log

∫
Ω

e〈λ+κ,ny〉 dPn(y)− log e−Λn(κ)

= Λn(λ+ κ)− Λn(κ),

which gives us the existence of the limit

Λ̂(λ) := lim
n→∞

1

n
Λ̂n(λ) = Λ(λ+ κ)− Λ(κ) ∈ [−∞,∞]. (2.41)

Now Λ has a defined finite value at the point κ and in some neighbourhood around it,
since κ ∈ intDΛ. Then Λ̂ also is finite in a neighbourhood around 0, meaning 0 ∈ intDΛ̂.
Thus Λ̂ satisfies Assumption 2.19.

Now in 2.40, the set Bδ(x) is open, so we apply the upper bound 2.29 (I) to its
complement. This yields

lim sup
n→∞

1

n
log P̂n(Rd \Bδ(x)) ≤ − inf

y∈Rd\Bδ(x)
Λ̂∗(y).

Now Lemma 2.31 (II) says Λ̂∗ is a good rate function, meaning it is lower semi-continuous
and has compact level sets. By Lemma 2.5, this implies that Λ̂∗ achieves its infimum over
closed sets. Then there must exist some y0 ∈ Rd \Bδ(x) for which

inf
y∈Rd\Bδ(x)

Λ̂∗(y) = Λ̂∗(y0).
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From the definition of Λ∗ we have Λ(κ) ≥ 〈κ, x〉 − Λ∗(x) for all κ ∈ Rd, and since x is
an exposed point of Λ∗ with exposing hyperplane κ, by Definition 2.23, we also have the
inequality

〈κ, x〉 − 〈κ, y0〉 − Λ∗(x) + Λ∗(y0) > 0.

Putting all this together and recalling (2.41) gives

Λ̂∗(y0) = sup
λ∈Rd
{〈λ, y0〉 − (Λ(λ+ κ)− Λ(κ))}

= sup
λ∈Rd
{〈λ+ κ, y0〉 − Λ(λ+ κ)} − 〈κ, y0〉+ Λ(κ)

= Λ∗(y0)− 〈κ, y0〉+ Λ(κ)

≥ Λ∗(y0)− 〈κ, y0〉+ 〈κ, x〉 − Λ∗(x) > 0.

Then for all δ > 0,

lim sup
n→∞

1

n
log P̂n(Rd \Bδ(x)) ≤ − inf

y∈Rd\Bδ(x)
Λ̂∗(y) = −Λ̂∗(y0) < 0.

This means that for any fixed δ > 0 we must have log P̂n(Rd\Bδ(x))→ −∞, and therefore
also P̂n(Bδ(x))→ 1 as n→∞, and so we get

lim
δ→0

lim inf
n→∞

1

n
log P̂n(Bδ(x)) = 0,

which is 2.40, as we wanted, meaning 2.39 implies 2.37, giving us the lower bound 2.29 (II).

The case in which the LDP holds

Employing Lemma 2.34, we now see that under the conditions imposed on Λ in 2.29 (III),
we have, for any open set O,

inf
x∈O∩E

Λ∗(x) ≤ inf
x∈O∩riDΛ∗

Λ∗(x),

meaning that, in light of the already proven upper and lower bounds, it is enough to show
that

inf
x∈O∩riDΛ∗

Λ∗(x) ≤ inf
x∈O

Λ∗(x), (2.42)

as this implies the lower bound 2.8 (II) of the Large Deviation Principle. After this the
goodness of the rate function Λ∗ follows from Lemma 2.16 (II), as we have already proven
the exponential tightness of the family {Pn}n∈N.
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If O ∩ DΛ∗ = ∅, then both sides of the inequality (2.42) evaluate to ∞, and there
is nothing more to prove. We assume instead that DΛ∗ is non-empty. This means we can
choose some arbitrary a ∈ riDΛ∗ and b ∈ O ∩ DΛ∗ . Now for small enough θ > 0 it holds
for the intermediary point that

θa+ (1− θ)b ∈ O ∩ riDΛ∗ .

Since Λ∗ is convex on its effective domain DΛ∗ , it is continuous on riDΛ∗ , in the sense that
if x ∈ riDΛ∗ and xn → x is a sequence with and {xn}n∈N ∈ riDΛ∗ , then f(xn) → f(x).
With this realisation we arrive at the estimation

inf
x∈O∩riDΛ∗

Λ∗(x) ≤ lim
θ→0

Λ∗(θa+ (1− θ)b)

≤ lim
θ→0

θΛ∗(a) + lim
θ→0

(1− θ)Λ∗(b)

= Λ∗(b),

where the second inequality is due to the convexity of Λ∗. This, since a and especially b
were arbitrarily chosen, implies

inf
x∈O∩riDΛ∗

Λ∗(x) ≤ inf
x∈O∩DΛ∗

Λ∗(x) = inf
x∈O

Λ∗(x),

where the equality is due to the definition of DΛ∗ . This is what we wanted to prove.
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3 Large deviations results for the time of ruin
Whereas Cramér’s theorem concerns empirical means of i.i.d. random variables, the
Gärtner-Ellis theorem, presented in the previous chapter, concerns a sequence of ran-
dom variables {Xn}n∈N as a generalisation of such a mean. In this chapter we will instead
be shifting our perspective to a sequence {Yn}n∈N which is a generalisation not of an
empirical mean, but of a random walk (one might liken Yn to nXn). Also, instead of
a discrete family of probability measures {Pn}n∈N, we now consider the continuous case
{PM}M>0.

We will be presenting some large deviations results developed by Nyrhinen in [9, 10],
pertaining to the probabilities PM(A) = P(T/M ∈ A), where T = T (M) = inf{n ∈ N :
Yn > M} is the time of ruin when the starting capital is M > 0. These results are stated
here as Theorems 3.11 and 3.14.

A main stepping stone in the proofs of these results is Theorem 3.24, which can be
thought of as a continuous version of the Gärtner-Ellis Theorem, with some modifications.

3.1 Necessary preliminaries and the two main theorems

Let {Yn}n∈N be a sequence of random variables distributed according to laws {Pn}n∈N,
respectively, and letM > 0. Denote the time of ruin by T = TM := inf{n ∈ N : Yn > M}.
Here we say T =∞ if Yn ≤M for all n ∈ N. Denote the cumulant generating function of
Yn by

cn(t) = logE
(
etYn

)
∈ (−∞,∞].

Also define the upper limiting scaled cumulant generating function of Yn by

c(t) := lim sup
n→∞

1

n
cn(t) ∈ [−∞,∞], (3.1)

and denote

w = sup{t ∈ R : c(t) ≤ 0} ∈ [0,∞]. (3.2)

Remark 3.3. The functions cn and c are very similar to Λn and Λ in the previous chapter,
the main difference being the absence of scaling of the variable Yn (which is really just
a shift in the behaviour of the random variables we are considering) and the relaxed
assumption of (3.1) holding as a true limit. We use this notation in this chapter to mirror
Nyrhinen’s own, and to avoid confusing definitions with those of the previous chapter.
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Similarly to Lemma 2.30, it can be shown that c is convex, meaning there is some
largest open interval J = (a1, a2) for which c is finite and strictly increasing on J . Suppose
J is non-empty. Then w ∈ [a1, a2]. Now denote the right and left limits

b1 = lim
t→a+

1

c(t),

and
b2 = lim

t→a−2
c(t).

Now the restriction of c to the open interval J has an inverse, denoted c−1. Using this,
define the function Γ : R→ (−∞,∞] as

Γ(t) =


−a2, if t ∈ (−∞,−b2]

−c−1(−t), if t ∈ (−b2,−b1)

−a1, if t = −b1

∞, if t ∈ (−b1,∞).

(3.4)

Next, we will present some assumptions we will be working under in what follows.
Our proof of Theorem 3.11 requires only the first three, while all of them are used in our
proof of Theorem 3.14. The reasoning behind these conditions is explained in Section 4
of [9], and in Section 3 of [10].

Assumption 3.5. The following hold:

(I) The open interval J is non-empty.

(II) For all n ∈ N and t ∈ J , we have cn(t) <∞.

(III) If w > 0, then a1 < w.

(IV) For all t ∈ J , (3.1) holds as a limit.

(V) The derivative c′(t) exists for all t ∈ J .

(VI) If a2 ∈ (−∞,∞), we have limt→a−2
c′(t) =∞.

(VII) If a1 ∈ (−∞,∞), we have limt→a+
1
c′(t) = 0.

We still need to define a few further concepts, and some characteristics relating to
them. For any t, u ∈ R, and ϑ > 0, denote the function

CM(t, u;ϑ) =
1

M
logE

(
etYdϑMe+uYdMe

)
. (3.6)
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Then for each τ ≥ 0 and δ > 0 denote

Hδ(t, u; τ) = lim sup
M→∞

sup
ϑ∈Bδ(τ)∩(0,∞)

CM(t, u;ϑ), (3.7)

and let

H(t, u; τ) = lim
δ→0

Hδ(t, u; τ). (3.8)

Now denote the right partial derivative of H with respect to t at the point 0 by the
function

p(u; τ) = lim
h→0+

H(h, u; τ)−H(0, u; τ)

h
. (3.9)

Finally, write
J̃ = {u ∈ J : c′(u) ∈ int c′(J)}.

Remark 3.10. Let u ∈ J and fix τ ≥ 0, ϑ > 0. Because Hδ(t, u; τ) is monotone in δ for
any t ∈ R, the limit (3.8) must exist as an extended real number. In addition, CM(t, u;ϑ)
is convex in t, because for any two points t1, t2 ∈ R and θ ∈ [0, 1], we have

CM(θt1 + (1− θ)t2, u, ϑ) =
1

M
logE

(
euYdMe+(θt1+(1−θ)t2)YdϑMe

)
=

1

M
logE

(
eθ(uYdMe+t1YdϑMe)+(1−θ)(uYdMe+t2YdϑMe)

)
=

1

M
logE

((
euYdMe+t1YdϑMe

)θ (
euYdMe+t2YdϑMe

)(1−θ)
)

(2.1)

≤ 1

M
log
(
E
(
euYdMe+t1YdϑMe

)θ E (euYdMe+t2YdϑMe)(1−θ)
)

= θ
1

M
logE

(
euYdMe+t1YdϑMe

)
+ (1− θ) 1

M
logE

(
euYdMe+t2YdϑMe

)
= θCM(t1, u;ϑ) + (1− θ)CM(t2, u;ϑ),

by use of Hölder’s inequality. Therefore also Hδ(t, u; τ) and H(t, u; τ) are convex in t.
Also, notice that

Hδ(0, u; τ) = lim sup
M→∞

sup
ϑ∈Bδ(τ)∩(0,∞)

1

M
logE

(
e0·YdϑMe+uYdMe

)
= lim sup

M→∞

1

M
logE

(
euYdMe

)
= c(u) ∈ (−∞,∞).
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We can now state the two main results in this chapter.

Theorem 3.11. Suppose assumptions 3.5 (I)-3.5 (III) hold. Then for every t ∈ R\{−b1}
we have

lim sup
M→∞

1

M
logE

(
etT I{T <∞}

)
≤ Γ(t). (3.12)

Also, for every closed set C ⊂ R we have

lim sup
M→∞

1

M
logP

(
T

M
∈ C
)
≤ − inf

x∈C
Γ∗(x). (3.13)

Theorem 3.14. Suppose assumptions 3.5 (I)-3.5 (VII) hold and suppose p(u; τ) < c′(u)
for every u ∈ J̃ and 0 ≤ τ < 1. Then for every t ∈ R we have

lim inf
M→∞

1

M
logE

(
etT I{T <∞}

)
≥ Γ(t). (3.15)

Also, for every open set O ⊂ R we have

lim inf
M→∞

1

M
logP

(
T

M
∈ O

)
≥ − inf

x∈O
Γ∗(x). (3.16)

Theorem 3.11 is one of two main results in [9], and implies the upper bound of
the LDP for the family of probabilities {PM}M>0 under relatively weak conditions on the
behaviour of the sequence {Yn}n∈N. Theorem 3.14 on the other hand, is the main result in
[10], and is a strengthening of another result in [9]. It implies the lower bound of the LDP
under some additional conditions on the behaviour of the sequence {Yn}n∈N. Theorems
3.11 and 3.14 together imply the LDP for the family {PM}M>0, and are proved hereunder
in Sections 3.3 and 3.4. For some justification of the assumptions regarding the derivative
p(u, τ), the reader is referred to Section 3 of [10].

3.2 Auxiliary concepts and results

Many of the functions we will be working with will turn out to be convex, and it can
therefore be of great help to turn to the field of convex analysis for some useful results.
We will be using several concepts and results from R. T. Rockafellar’s book on the subject
[8], including the notion of proper convexity, and that of the lower semi-continuous hull.
More background surrounding these, and on convex analysis in general, can be found in
the aforementioned book.

Definition 3.17. A convex function f is called proper convex, if f(x) > −∞ for all x,
and f(x) <∞ for some x.
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Definition 3.18. Let f be a proper convex function. The lower semi-continuous hull of
f is defined as

fL(x) = lim inf
y→x

f(y).

Remark 3.19. If the function f in the above definition is lower semi-continuous, then
fL ≡ f .

The following three results are stated and proved in [8]. They will be very useful
in the proofs of our main results, and also of the soon to be presented Lemma 3.25.

Theorem 3.20. Let f be a proper convex function. Then the convex conjugate f ∗ is lower
semi-continuous and proper convex. Additionally, (fL)∗ ≡ f ∗, and (f ∗)∗ ≡ fL.

Proof. See Theorem 12.2 in [8].

Corollary 3.21. If f is a convex function on R, then f ∗(x) = supt∈intDf{xt− f(t)}.

Proof. See Corollary 12.2.2 in [8].

Theorem 3.22. If f is lower semi-continuous and proper convex, then inf f = −f ∗(0).

Proof. See Theorem 27.1 in [8].

We have now introduced everything necessary from convex analysis. The following
lemma is simple but very important, as it enables the final steps of the proof of Theorem
3.14 in Section 3.4.

Lemma 3.23. For each ρ > 0, suppose that 0 ≤ bρ ≤ aρ. Suppose also that there is some
c ∈ R such that

lim sup
ρ→∞

1

ρ
log bρ < c ≤ lim inf

ρ→∞

1

ρ
log aρ.

Then
lim inf
ρ→∞

1

ρ
log (aρ − bρ) ≥ c.

Proof. Let ε > 0 be small enough that lim supρ→∞
1
ρ

log bρ < c− 2ε. Then we can find a
suitably large P > 0 so that when ρ > P , it holds that

aρ > eρ(c−ε) and bρ < eρ(c−2ε).
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Then by our choice of ε, we have eρ(c−ε) > eρ(c−2ε), thus we can write

1

ρ
log (aρ − bρ) >

1

ρ
log
(
eρ(c−ε) − eρ(c−2ε)

)
=

1

ρ
log eρ(c−ε) (1− e−ρε)

= c− ε+
1

ρ
log
(
1− e−ρε

)
︸ ︷︷ ︸
→ 0, as ρ→∞

.

Therefore
lim inf
ρ→∞

1

ρ
log (aρ − bρ) ≥ c− ε,

and the proof is completed by letting ε→ 0.

The following theorem can be seen as a continuous version of Theorem 2.29, and
although it is stated a bit differently, its proof is in many ways extremely similar. As our
current case concerns the random variables T

M
and the corresponding probability measures

PM , which are indexed by the real number M > 0, we cannot use Theorem 2.29, so we
will be needing this one instead. It will be used in several places in the proofs in Sections
3.3 and 3.4.

Theorem 3.24. For each ρ > 0, let Zρ be a random variable on the probability space
(Ω,Σ,Qρ). For each t ∈ R, denote

Λ(t) = lim sup
ρ→∞

1

ρ
logE

(
etZρ

)
.

Then the following hold:

(I) For each compact set K ⊂ R, we have

lim sup
ρ→∞

1

ρ
logQρ

(
Zρ
ρ
∈ K

)
≤ − inf

x∈K
Λ∗(x),

and if 0 ∈ intDΛ, the above also holds for all closed sets.

(II) If t0 ∈ R is such that

Λ(t) = lim
ρ→∞

1

ρ
logE

(
etZρ

)
∈ (−∞,∞),
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for every t in some neighbourhood of t0, and if Λ is differentiable at t0, then for any
open set O 3 Λ′(t0),

lim inf
ρ→∞

1

ρ
logQρ

(
Zρ
ρ
∈ O

)
≥ Λ(t0)− t0Λ′(t0).

Proof. See Theorem 4.5.3 in [2] for the proof of 3.24 (I) for compact sets. For the ex-
tension to closed sets, see Theorem 4.5.20 in [2] noting that the assumption 0 ∈ intDΛ

implies exponential tightness of the probability measures Qρ. The proof of this fact in
the continuous case is largely identical to Part 2 of Section 2.4 in this thesis.

By Lemma 2.3.9 in [2], the existence of Λ′(t0) implies that it is an exposed point
of Λ∗, with exposing hyperplane t0. Noting that

Λ∗(Λ′(t0)) = sup
t∈R

{
tΛ′(t0)− Λ(t)

}
= t0Λ′(t0)− Λ(t0),

since Λ′(t0)t − Λ(t) is maximised when t = t0, the proof of 3.24 (II) then follows from
Theorem 4.5.20 in [2].

Finally, before we begin with our main proofs, it will be to our benefit to clarify
some of the properties of the function Γ and its convex conjugate Γ∗.

Lemma 3.25. Suppose assumption 3.5 (I) holds. Then Γ is lower semi-continuous and
proper convex, and its convex conjugate is

Γ∗(x) =


∞, if x ∈ (−∞, 0)

limy→0+ , yc∗
(

1
y

)
if x = 0

xc∗
(

1
x

)
, if x ∈ (0,∞).

(3.26)

Proof. As c is finite, convex and strictly increasing on (a1, a2), its inverse c−1 is finite,
concave and strictly increasing on (b1, b2), meaning Γ is finite, convex and strictly increas-
ing on (−b2,−b1). Then by its definition (3.4), Γ is convex on R. Noticing that a2 is
infinite if and only if b2 is infinite yields the proper convexity of Γ. Also, by finiteness and
convexity, Γ is also continuous on (−b2,−b1). The definitions of a1, a2, b1 and b2 imply
that Γ is lower semi-continuous. As for the convex conjugate Γ∗, we have three cases.

(I) First let x ∈ (0,∞). Notice that Γ being constant on (−∞,−b2] implies that xt−Γ(t)
is a increasing function of t on this interval. Then as Γ(t) =∞ on (−b1,∞) we can
write

Γ∗(x) = sup
t∈R
{xt− Γ(t)} = sup

t∈[−b2,−b1]

{xt− Γ(t)}.
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Now define the function

Γ̄(t) =

{
∞, if t ∈ (−∞,−b2)

Γ(t), if t ∈ [−b2,∞),

and notice that

(Γ̄)∗(x) = sup
t∈R
{xt− Γ̄(t)} = sup

t∈[−b2,−b1]

{xt− Γ̄(t)} = sup
t∈[−b2,−b1]

{xt− Γ(t)} = Γ∗(x).

In fact, by Corollary 3.21, the supremum above can be taken over the open interval,
so

Γ∗(x) = Γ̄∗(x) = sup
t∈(−b2,−b1)

{xt− Γ̄(x)} = sup
t∈(−b2,−b1)

{xt− Γ(x)}.

Thus

Γ∗(x) = sup
t∈(−b2,−b1)

{xt− Γ(t)}

= sup
t∈(−b2,−b1)

{xt+ c−1(−t)}

= sup
c(t)∈(b1,b2)

{−xc(t) + t}

= sup
t∈J

x

{
t

x
− c(t)

}
.

Also, as J is the largest open interval on which c is finite and strictly increasing, we
must have c(t) =∞ for t ∈ [a2,∞), if a2 is finite. Also, c is convex but not strictly
increasing on (−∞, a1], meaning xt− c(t) is an increasing function on this interval.
Then

c∗(x) = sup
t∈R
{xt− c(t)} = sup

t∈[a1,a2]

{xt− c(t)}.

Now, as above with Γ, we can construct a new function whose convex conjugate
agrees with that of c, and whose effective domain is [a1, a2], and, using Corollary
3.21 again, arrive at

c∗(x) = sup
t∈(a1,a2)

{xt− c(t)}.

Therefore
xc∗
(

1

x

)
= sup

t∈J
x

{
t

x
− c(t)

}
= Γ∗(x),

which is the first case.
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(II) Now let x ∈ (−∞, 0). Recall first the definition of w from (3.2). When J is non-
empty, we have w ∈ [a1, a2], meaning 0 = c(w) ∈ [b1, b2], and thus

Γ(0) = −c−1(−c(w)) = −c−1(c(w)) = −w ≤ 0.

Then since Γ is increasing by (3.4), we have Γ(t) ≤ 0 for every t < 0. Thus

Γ∗(x) = sup
t∈R
{xt− Γ(t)} ≥ lim

t→−∞
(xt− Γ(t)) =∞,

and we have shown the second case.

(III) For the final case where x = 0, we turn to Theorem 3.20, which, by the previously
noted proper convexity of Γ, implies Γ∗ is proper convex and lower semi-continuous.
Then as Γ∗ is infinite to the left of the origin, the only possibility is

Γ∗(0) = lim
x→0+

xc∗
(

1

x

)
,

as any other choice would violate either convexity or lower semi-continuity. This is
the final case.

With these results stated, we are now ready to move on to the proofs of our main
results. We begin with the upper bound, i.e. Theorem 3.11, the proof of which constitutes
the entirety of the following section.

3.3 Proof of Theorem 3.11

Throughout this entire section, we assume 3.5 (I)-3.5 (III). We begin with an observation.
First denote P := P(T < ∞). We will show in Part 1 that P > 0. For each M > 0,
choose WM = T I{T <∞}, define the probability measures QM such that for all A ⊂ R,

QM(A) =
1

P
P (A ∩ {T <∞}) .

Denote the functions

Λ(t) = lim sup
M→∞

1

M
log

∫
Ω

etWM (ω) dQM(ω),

and
γ(t) = lim sup

M→∞

1

M
logE

(
etT I{T <∞}

)
.

35



Then by noticing that

P

∫
Ω

etWM (ω) dQM(ω) =

∫
Ω

etT (ω)I{T (ω)<∞}I{T (ω) <∞} dP(ω) = E
(
etT I{T <∞}

)
,

we have

lim sup
M→∞

1

M
logE

(
etT I{T <∞}

)
= lim sup

M→∞

1

M
logP

∫
Ω

etWM (ω) dQM(ω)

= lim sup
M→∞

logP

M︸ ︷︷ ︸
=0

+ lim sup
M→∞

1

M
log

∫
Ω

etWM (ω) dQM(ω)

and thus the identity

Λ ≡ γ, (3.27)

which will be very useful later.
The structure of this proof is as follows. In Part 1 we show that P > 0, which

makes the above identity (3.27) meaningful. In Part 2 we show that γ(t) ≤ Γ(t) for every
t ∈ R \ {−b1}, which is (3.12). In Part 3 we show that γ∗(x) ≥ Γ∗(x) for every x ∈ R,
and how this, in light of (3.27), together with Theorem 3.24 (I) implies (3.13) for compact
sets. In Part 4 we extend (3.13) to closed sets.

Part 1

Let ε > 0. In order to prove that P = P(T < ∞) > 0, let t > 0 be such that
supn≥1 E

(
etYn

)
= ∞. With the intention of arriving at a contradiction, suppose it holds

for some a > 0 that for all n ≥ 1 and x ≥ a that

P
(
etYn > x

)
≤ x−(1+ε).
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Let N ≥ 1 and notice that

E
(
etYnI{etYn ≤ N}

)
≤

N∑
m=1

mP
(
m− 1 < etYn ≤ m

)
=

N∑
m=1

(
P
(
m− 1 < etYn ≤ m

)
+ · · ·+ P

(
N − 1 < etYn ≤ N

))
=

N∑
m=1

P
(
m− 1 < etYn ≤ N

)
=

N−1∑
m=0

P
(
etYn > m

)
−NP

(
etYn > N

)︸ ︷︷ ︸
≥0

≤
N−1∑
m=0

P
(
etYn > m

)
≤ P

(
etYn > 0

)
+ · · ·+ P

(
etYn > bac

)
+

∞∑
m=dae+1

P
(
etYn > m

)
≤ 1 + bac+

∞∑
m=dae+1

m−(1+ε)

︸ ︷︷ ︸
converges

<∞,

even as N → ∞, which is in contradiction to the assumption that supn≥1 E
(
etYn

)
= ∞.

This means that for all i ≥ 1 we can choose a sequence ai > 0, with ai → ∞ as i → ∞,
for which we can find sequences ni ≥ 1 and xi ≥ a such that xi →∞ as i→∞, and for
which it holds that

P
(
etYn > xi

)
> x

−(1+ε)
i . (3.28)

Now by writing Mi := 1
t

log xi and noticing that P(TMi
< ∞) ≥ P(Yni > Mi) and that

Mi →∞, as i→∞, we can use (3.28) to get

lim sup
M→∞

1

M
logP(T <∞) ≥ lim sup

i→∞

1

Mi

logP(Yni > Mi)

= lim sup
i→∞

1

Mi

logP(etYni > xi)

≥ lim sup
i→∞

1

Mi

log(e−(1+ε)tMi) = −(1 + ε)t.
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Now letting ε→ 0 yields

lim sup
M→∞

1

M
logP(T <∞) ≥ −t.

By assumption the interval J is non-empty, and c is convex and strictly increasing on J .
Thus w must be finite. Also, noticing that supn≥1 E

(
etYn

)
<∞ implies c(t) ≤ 0 gives us

sup

{
t > 0 : sup

n≥1
E
(
etYn

)
<∞

}
≤ sup{t ∈ R : c(t) ≤ 0} = w <∞.

Then
lim sup
M→∞

1

M
logP(T <∞) > −∞,

and since P(TM <∞) is decreasing in M , this means that for all M > 0,

P(TM <∞) > 0.

Part 2

To prove (3.12) we show that

γ(t) ≤ Γ(t) (3.29)

for every t ∈ R \ {−b1}. First suppose w > 0. We proceed with three cases:

(I) For t ∈ (−b1,∞), Γ(t) =∞, so (3.29) holds without further investigation.

(II) For t ∈ (−b2,−b1), let ε > 0 be small and tε ∈ J ⊂ (0,∞) for which c(tε) = −t− ε.
Now cn is finite throughout J for all n by assumption, and since for any M > 0,

ecn(tε) = exp
(
logE

(
etεYn

))
≥ E

(
etεYnI{Yn > M}

)
≥ etεME (I{Yn > M})
= etεMP (Yn > M) ,

we have, by rearranging,

P (Yn > M) ≤ ecn(tε)−tεM .
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Then we can estimate

E
(
etT I{T <∞}

)
=
∞∑
n=1

etnP (T = n)

≤
∞∑
n=1

etnP (Yn > M)

≤
∞∑
n=1

etn+cn(tε)−tεM

= e−tεM
∞∑
n=1

en(t+
1
n
cn(tε))

︸ ︷︷ ︸
converges, =:α<∞

= αe−tεM .

Then

γ(t) ≤ lim sup
M→∞

1

M
logαe−tεM = lim sup

M→∞

logα

M
− tε = −tε = −c−1(−t− ε),

and letting ε→ 0 yields (3.29).

(III) Finally, if b2 <∞ and t ≤ −b2, then as we just showed γ(t) ≤ Γ(t) for t ∈ (−b2,−b1)
to get

γ(t) ≤ lim sup
r→−b+2

γ(t) ≤ lim sup
r→−b+2

Γ(t) = Γ(−b2) = −a2 = Γ(t)

because γ is increasing.

We have now shown (3.12) when w > 0. Next suppose w = 0. Then c(t) > 0 for any
t > 0 by the definition of w. Also, since we assumed J is non-empty, either b1 is negative,
or b2 is positive. This means we have five possible cases:

(I) For t ∈ (−b1,∞), the case is trivial, just as when w > 0.

(II) For t = 0, the case is also clear, as as γ(0) = Γ(0) = 0.

(III) If b2 > 0 and t ∈ (−b2, 0), then c(c−1(−t)) = −t ∈ (0, b2). As c(0) = 0, we have
c−1(−t) ∈ (0, a2). Proceeding as in case (II) when w > 0, but choosing ε = 0 and
tε = t0 = c−1(−t), we get

γ(t) ≤ −t0 = −c−1(−t) = Γ(t).
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(IV) If b1 < 0 and t ∈ (0,−b1), then some part of J overlaps the interval (−∞, 0). Let
ε > 0 and find some tε ∈ J ∩ (−∞, 0) such that c(tε) = −t − ε. Now since tε is
negative we get, for all M > 0,

ecn(tε) = exp
(
logE

(
etεYn

))
≥ E

(
etεYnI{Yn ≤M}

)
≥ etεME (I{Yn ≤M})
= etεMP (Yn ≤M) ,

and by rearranging,
P(Yn ≤M) ≤ ecn(tε)−tεM .

In addition, we notice that for each n ≥ 1, it holds that

P(T = n) ≤ P(Yn−1 ≤M).

We can now estimate

E
(
etT I{T <∞}

)
=
∞∑
n=1

etnP (T = n)

≤
∞∑
n=1

etnP (Yn−1 ≤M)

≤
∞∑
n=1

etn+cn−1(tε)−tεM

= e−tεM
∞∑
n=1

ete(n−1)(t+ 1
n−1

cn−1(tε))

︸ ︷︷ ︸
converges, =:β<∞

= βe−tεM .

Then similarly as before

γ(t) ≤ lim sup
M→∞

1

M
log βe−tεM = lim sup

M→∞

log β

M
− tε = −tε = −c−1(−t− ε),

which yields (3.29) when ε→ 0.

(V) If b2 < ∞ and t ≤ −b2, we use the fact that we have just proven (3.29) for t ∈
(−b2,−b1), and see that once again,

γ(t) ≤ lim sup
r→−b+2

γ(t) ≤ lim sup
r→−b+2

Γ(t) = −a2 = Γ(t).
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Part 3

Next we want to show that

γ∗(x) ≥ Γ∗(x) (3.30)

for each x ∈ R. Let K ⊂ R be a compact set. Recall from the beginning of this section
the definitions of P and QM , and notice that

P
(
T

M
∈ K

)
= P

(
WM

M
∈ K ∩ {T <∞}

)
= PQM

(
WM

M
∈ K

)
.

meaning

lim sup
M→∞

1

M
logP

(
T

M
∈ K

)
= lim sup

M→∞

logP

M︸ ︷︷ ︸
=0

+ lim sup
M→∞

1

M
logQM

(
WM

M
∈ K

)
.

By Theorem 3.24 (I) as well as (3.27) and (3.30), this then implies

lim sup
M→∞

1

M
logP

(
T

M
∈ K

)
≤ − inf

x∈K
Λ∗(x) = − inf

x∈K
γ∗(x) ≤ − inf

x∈K
Γ∗(x),

for any compact set K ⊂ R, meaning we have (3.13) for compact sets. In showing (3.30),
we have two cases:

(I) If γ(t) = −∞ for any t ∈ R, then

γ∗(x) = sup
t∈R
{xt− γ(t)} = xt+∞ =∞,

for all x ∈ R, so the case is trivial.

(II) If instead γ(t) > −∞ for all t ∈ R, then by the recently proven (3.29), γ is proper
convex. Now denote by γL the lower semi-continuous hull of γ. Then γL(t) ≤ γ(t) ≤
Γ(t) for all t ∈ R \ {−b1}, and also

γL(−b1) = lim inf
t→−b1

γ(t) ≤ lim inf
t→−b1

Γ(t) = −a1 = Γ(−b1),

so γL(t) ≤ Γ(t) for all t ∈ R. Then for all x ∈ R,

(γL)∗(x) = sup
t∈R
{xt− γL(t)} ≥ sup

t∈R
{xt− Γ(t)} = Γ∗(x).

Now Theorem 3.20 tells us that (γL)∗ ≡ γ∗, thus (3.30) holds.
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We have now shown (3.13) for compact sets. In order to extend it to closed sets,
it again suffices to check two cases.

(I) If a1 < w, then by the definition of w, because w ∈ [a1, a2], and because c is strictly
increasing on J , there must exist some t0 ∈ (a1, w) ⊂ J , such that c(t0) < 0. Now
the definition of Γ and the fact that −c(t0) ∈ (−b2,−b1) implies that

Γ(t) ≤ Γ(−c(t0)) = −t0 <∞,

for every t ∈ (−∞,−c(t0)). Thus by (3.27) and (3.29), for every such t we also have

Λ̄(t) = γ(t) ≤ Γ(t) <∞,

for every t ∈ (−∞,−c(t0)). As the origin belongs to this interval, we have 0 ∈ intDΛ,
so Theorem 3.24 (I) implies that (3.13) also holds for closed sets.

(II) If instead a1 ≥ w, then since w ∈ [a1, a2] we must have w = a1, but since w ∈ [0,∞]
and we assumed that a1 < w for positive w, our case must be w = a1 = 0. As c is
convex and finite, and strictly increasing on (a1, a2), we must have

b1 = lim
t→a+

1

c(t) = lim
t→0+

c(t) = c(0) = 0.

Then the definition of Γ says that Γ(t) =∞ for all positive t. This means that

Γ∗(x) = sup
t∈R
{tx− Γ(t)} = sup

t≤0
{tx− Γ(t)},

which lets us conclude that Γ∗ is decreasing, as x1 < x2 implies

Γ∗(x1) = sup
t≤0
{tx1 − Γ(t)} ≥ sup

t≤0
{tx2 − Γ(t)} = Γ∗(x2).

By Lemma 3.25, Γ is proper convex and lower semi-continuous, so Theorem 3.20
and Remark 3.19 yield (Γ∗)∗ ≡ ΓL ≡ Γ, and Γ∗ is proper convex and lower semi-
continuous. Theorem 3.22 then lets us conclude that

inf
x∈R

Γ∗(x) = −(Γ∗)∗(0) = −Γ(0) = −Γ(−b1) = a1 = 0.

As we recently showed Γ∗ is decreasing, we also have

lim
x→∞

Γ∗(x) = inf
x∈R

Γ∗(x) = 0. (3.31)

Now that we have shown this, we can get to proving (3.13) for closed sets. To this
end, let C be a closed set. If C is compact, we have already shown (3.13) above.
Suppose then C is closed and non-compact. Then C is unbounded, and we have two
cases:
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(a) If C is unbounded to the right, then

inf
x∈C

Γ∗(x) = lim
x→∞

Γ∗(x) = 0,

Now since
P
(
T

M
∈ C
)
≤ 1,

we have
lim sup
M→∞

1

M
logP

(
T

M
∈ C
)
≤ 0 = − inf

x∈C
Γ∗(x),

which is (3.13).

(b) If C is instead bounded to the right, but unbounded to the left, then C ∩ [0,∞)
is compact. Notice also that since we always have T ≥ 0 and M > 0, it holds
for any closed set C that

P
(
T

M
∈ C
)

= P
(
T

M
∈ C ∩ [0,∞)

)
.

Then as we have already proven (3.13) for compact sets we have

lim sup
M→∞

1

M
logP

(
T

M
∈ C ∩ [0,∞)

)
= − inf

x∈C∩[0,∞)
Γ∗(x) = inf

x∈C
Γ∗(x),

where the second equality is due to Lemma 3.25. Putting this together yields

lim sup
M→∞

1

M
logP

(
T

M
∈ C
)

= − inf
x∈C

Γ∗(x),

which is (3.13).

We have now proven Theorem 3.11. The following section constitutes the proof of
the lower bound, Theorem 3.14.

3.4 Proof of Theorem 3.14

Throughout this entire section, we assume 3.5 (I)-3.5 (VII). Before we begin, denote

F :=

{
1

c′(u)
: u ∈ J̃

}
and µ :=


∞, if w = a1,

1
c′(w)

, if w ∈ (a1, a2),

0, if w = a2.
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The structure of this proof is as follows. Part 1 proves a set of important properties
of the set F . We then assume in all that follows that p(u, τ) < c′(u) for all u ∈ J̃ and
0 ≤ τ < 1. Part 2 introduces an auxiliary function and proves an inequality involving
said function. In Parts 3 and 4 we prove that if F is non-empty, then for all x ∈ F and
ε ∈ (0, x),

lim inf
M→∞

1

M
logP

(
T

M
∈ (x− ε, x+ ε)

)
≥ −xc∗

(
1

x

)
. (3.32)

Part 3 proves the above when w > 0, while Part 4 concerns the case w = 0. In Part 5 we
show the desired (3.15) and (3.16), using the result (3.32) in the case of non-empty F .

Part 1

The following lemma serves as a collection of properties of the set F .

Lemma 3.33. Suppose F is non-empty. Then the following hold:

(I) F ⊂ (0,∞), and F is an open interval.

(II) The function c∗ is finite and continuous at 1
x
, for each x ∈ F . Also, c∗

(
1
x

)
= u

x
−c(u),

with u ∈ J chosen such that c′(u) = 1
x
.

(III) The function Γ∗ is finite and continuous throughout F , and DΓ∗ ⊂ F .

(IV) If µ < ∞, then Γ∗(µ) = infx∈R Γ∗(x) = w, and µ is the unique point where this
minimum is attained. Also, Γ∗ is strictly decreasing on (−∞, µ) ∩ F and strictly
increasing on (µ,∞) ∩ F .

Proof. (I) Suppose there exists some point t0 ∈ J such that c′ is discontinuous at
t0. Then as c is convex, finite and strictly increasing on J , this must be a jump
discontinuity, meaning c′(t0) is undefined. This is in contradiction with assumption
3.5 (V), stating the derivative c′ exists at every point t ∈ J , therefore c′ must be
continuous throughout J . Then J being an open interval implies J̃ being an open
interval, by which in turn F must be an open interval. As c is strictly increasing on
J , c′ is positive on J̃ , thus 1

c′(u)
> 0 for each u ∈ J̃ .

(II) Fix x ∈ F . Since t
x
− c(t) is maximised when t = u ∈ J , i.e. when 1

x
= c′(t), we

have
c∗
(

1

x

)
= sup

t∈R

{
t

x
− c(t)

}
=
u

x
− c(u) ∈ (−∞,∞).
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We just showed F is an open interval, thus also c∗ (y) ∈ (−∞,∞) when y ∈ Bε

(
1
x

)
for some small enough ε > 0. Now Theorem 3.20 says c∗ is convex, which together
with finiteness implies c∗ is continuous on Bε(x).

(III) Finite- and continuousness follows from (II) and from Lemma 3.25. Denote the
boundary points of F by κ1 = limt→a−2

1
c′(t)

and κ2 = limt→a+
1

1
c′(t)

. We want to show
that if x < κ1 or x > κ2, then Γ∗(x) =∞. We have two cases.

(a) Let x < κ1. As F ⊂ (0,∞), it must hold that κ1 ≥ 0. If κ1 = 0, then by
Lemma 3.25, Γ∗(x) =∞ for x < 0, so we are done. Suppose instead κ1 > 0 and
x ∈ (0, κ1). Then assumption 3.5 (VI) implies a2 = ∞. Letting t → ∞ = a2,
we see that t

x
− c(t)→∞, because it holds for the derivative that

d

dt

(
t

x
− c(t)

)
=

1

x
− c′(t)→ 1

x
− 1

κ1

> 0.

Then by Lemma 3.25,

Γ∗(x) = xc∗
(

1

x

)
= x sup

t∈R

{
t

x
− c(t)

}
= x lim

t→∞

(
t

x
− c(t)

)
=∞,

and case x = 0 also follows by Lemma 3.25.

(b) Suppose κ2 <∞ and let x > κ2. Assumption 3.5 (VII) then implies a1 = −∞.
Also, as c is convex and strictly increasing, c′ is positive and increasing, meaning
κ2 > 0. Now if we let t→ −∞ we see that t

x
− c(t)→∞, because

d

dt

(
t

x
− c(t)

)
=

1

x
− c′(t)→ 1

x
− 1

κ2

< 0,

Then by Lemma 3.25,

Γ∗(x) = xc∗
(

1

x

)
= x sup

t∈R

{
1

x
− c(t)

}
= x lim

t→−∞

(
t

x
− c(t)

)
=∞.

(IV) Suppose µ <∞. Then w ∈ (a1, a2), so 0 ∈ (−b2,−b1), meaning

Γ′(0) =
1

c′(c−1(0))
=

1

c′(w)
= µ.

Now by Lemma 3.25, Γ is proper convex, so Theorem 3.20 implies Γ∗ is proper
convex and lower semi-continuous, thus by Theorem 3.22,

inf
x∈R

Γ∗(x) = −Γ(0) = c−1(0) = w.
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Also, d
dt
tµ− Γ(t) = µ− Γ′(t), which is equal to zero if and only if t = 0. Then

Γ∗(µ) = sup
t∈R
{tµ− Γ(t)} = −Γ(0) = w,

so the minimum infx∈R Γ∗(x) = w is attained only at the point x = µ. Now Γ∗ must
be strictly decreasing on (−∞, µ)∩F and strictly increasing on (µ,∞)∩F , because
Γ∗ is convex.

Part 2

This part proves a bound used in Part 3. Suppose F is non-empty. Fix x ∈ F , u ∈ J̃ and
0 ≤ τ < 1, and define for each δ > 0 the function gδ : R→ [−∞,∞] as

gδ(t) = −t− u+ xHδ(t, u; τ),

and notice that gδ is convex by the convexity of H in the variable t, shown in Remark
3.10. In the interest of expediting the proof in Part 3, we now aim to show that

lim sup
δ→0+

g′δ(0+) ≤ −1 + xp(u; τ), (3.34)

where g′δ(0+) denotes the right-hand derivative of gδ at the origin. More precisely,

g′δ(0+) = lim
h→0+

gδ(h)− gδ(0)

h
.

Also remember that H(0, u; τ) = Hδ(0, u; τ) = c(u). In proving (3.34), we have two cases:

(I) If p(u; τ) > −∞, let ε > 0, and choose a small enough hε > 0 such that

H(hε, u; τ)−H(0, u; τ)

hε
=
H(hε, u; τ)− c(u)

hε
< p(u; τ) + ε.

After this, choose δε > 0 small enough that for all δ ∈ (0, δε),

Hδ(hε, u; τ) ≤ H(hε, u; τ) + εhε.
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Now the convexity of gδ means its derivative is increasing, so for every δ ∈ (0, δε),

g′δ(0+) ≤ gδ(hε)− gδ(0)

hε

=
−hε − u+ xHδ(hε, u; τ) + u− xHδ(0, u; τ)

hε

= −1 + x

(
Hδ(hε, u; τ)− c(u)

hε

)
≤ −1 + x

(
H(hε, u; τ)− c(u)

hε
+ ε

)
< −1 + xp(u; τ) + 2xε.

Now letting ε→ 0 yields

lim sup
δ→0+

g′δ(0+) ≤ −1 + xp(u; τ),

which is (3.34), as we wanted.

(II) If instead p(u; τ) = −∞, let ε > 0. Then by (3.8), for every h > 0 we can choose
δh > 0 such that when δ ∈ (0, δh),

Hδ(h, u; τ) ≤ H(h, u; τ) + hε.

Then by the convexity of gδ,

g′δ(0+) ≤ gδ(h)− gδ(0)

h

= −1 + x

(
Hδ(h, u; τ)− c(u)

h

)
≤ −1 + x

(
H(h, u; τ)− c(u)

h
+ ε

)
.

Now by first taking the limes supremum as δ → 0, then the limit as h → 0+, and
finally letting ε→ 0, we get

lim
ε→0

lim
h→0+

lim sup
δ→0

g′δ(0+) ≤ lim
ε→0

lim
h→0+

lim sup
δ→0

(
−1 + x

(
H(h, u; τ)− c(u)

h
+ ε

))
,

which reduces down to

lim sup
δ→0

g′δ(0+) ≤ lim
ε→0

(−1 + xp(u; τ) + xε)

= −1 + xp(u; τ)

= −∞,
as x > 0. Thus we have shown (3.34).
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Part 3

In this part we want to show (3.32) when w > 0, whereas Part 4 concerns the case w = 0.
The idea here is to first prove (3.38) in steps, using the auxiliary bounds (3.35), (3.36)
and (3.37). After this we show (3.39), and finally use Lemma 3.23 to arrive at (3.32).

Suppose that p(u; τ) > c′(u) for every u ∈ J̃ and 0 ≤ τ < 1. Suppose that F is
non-empty and fix x ∈ F . Finally suppose that w > 0. Then J lies in its entirety to the
right of the origin, and 0 /∈ J . Recall that F ⊂ (0,∞). Let u ∈ J̃ be such that x = 1

c′(u)
.

This is guaranteed to exist by the definition of F , and in fact this means u > 0. Now let
t ≥ 0, ε ∈ (0, x) and δ′ ∈ (0, ε). Then by Chebychev’s inequality (2.2),

E
(
etYdϑMe+uYdxMe

)
= E

(
e(t+u)( t

t+u
Ydϑ′Me+

u
t+u

YdxMe)
)

(2.2)

≥ e(t+u)MP
(

t

t+ u
Ydϑ′Me +

u

t+ u
YdxMe ≥M

)
= e(t+u)MP

(
tYdϑ′Me + uYdxMe ≥ (t+ u)M

)
≥ e(t+u)MP

(
Ydϑ′Me > M and YdxMe > M

)
,

yielding
1

M
logE

(
etYdϑMe+uYdxMe

)
≥ t+ u+

1

M
logP

(
Ydϑ′Me > M and YdxMe > M

)
.

Let y ∈ [0, x− ε], and denote τ = y
x
∈ [0, 1). Also denote δ = δ′

x
and note that ϑ := ϑ′

x
∈

Bδ(τ) ∩ (0,∞) for every ϑ′ ∈ Bδ′(y) ∩ (0,∞). Now we have

lim sup
M→∞

1

M
log sup

ϑ′∈Bδ′ (y)∩(0,∞)

P
(
Ydϑ′Me > M and YdxMe > M

)
≤− t− u+ lim sup

M→∞
sup

ϑ′∈Bδ′ (y)∩(0,∞)

1

M
logE

(
etYdϑ′Me+uYdxMe

)
≤− t− u+ x

(
lim sup
M→∞

sup
ϑ∈Bδ(τ)∩(0,∞)

1

xM
logE

(
etYdϑxMe+uYdxMe

))
=− t− u+ xHδ(t, u; τ) = gδ(t).

(3.35)

By assumption p(u; τ) < c′(u), so by (3.34) and by the choice of u,

lim sup
δ→0

g′δ(0+) ≤ −1 + xp(u; τ) < −1 + xc′(u) = −1 + 1 = 0,

Then, for small enough δ > 0, the function −t− u+ xHδ(t, u; τ) is decreasing in t on the
right side at the origin. For these δ we can then find small enough t > 0 such that

−t− u+ xHδ(t, u; τ) < −u+ xHδ(0, u; τ) = −u+ xc(u) = −xc∗
(

1

x

)
, (3.36)
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where the last equality is because

xc∗
(

1

x

)
= x sup

t∈R

{
t

x
− c(t)

}
= sup

t∈R
{t− xc(t)} ,

and t− xc(t) is maximised when c′(t) = 1
x
, i.e. when t = u.

Now, T
M
∈ Bδ′(y) means that T = ϑ′M for some ϑ′ ∈ Bδ′(y) ∩ (0,∞). Then it

must also be true that Ydϑ′Me > M . Thus

P
(
T

M
∈ Bδ′(y)

)
≤ P

(
Ydϑ′Me > M for some ϑ′ ∈ Bδ′(y) ∩ (0,∞)

)
,

and therefore

lim sup
M→∞

1

M
logP

(
T

M
∈ Bδ′(y) and YdxMe > M

)
≤ lim sup

M→∞

1

M
logP

(
Ydϑ′Me > M for some ϑ′ ∈ Bδ′(y) ∩ (0,∞) and YdxMe > M

)
≤ lim sup

M→∞

1

M
logd(y + δ′)Me sup

ϑ′∈Bδ′ (y)∩(0,∞)

P
(
Ydϑ′Me > M and YdxMe > M

)
= lim sup

M→∞
sup

ϑ′∈Bδ′ (y)∩(0,∞)

1

M
logP

(
Ydϑ′Me > M and YdxMe > M

)
.

(3.37)

As the balls B′δ(y) together cover the compact set [0, x − ε], we can extract a finite sub-
cover from these. Call these Bδ′i

(yi) with i = 1, . . . , K. Then by applying Lemma 2.14,
we arrive at

lim sup
M→∞

1

M
logP

(
T

M
∈ [0, x− ε] and YdxMe > M

)
≤ lim sup

M→∞

1

M
log

K∑
i=1

P
(
T

M
∈ Bδ′i

(yi) and YdxMe > M

)
= max

i=1,...,K
lim sup
M→∞

1

M
logP

(
T

M
∈ Bδ′i

(yi) and YdxMe > M

)
< − xc∗

(
1

x

)
,

(3.38)

where the last inequality is due to (3.35), (3.36) and (3.37). The above is the first impor-
tant bound in this part. We now want to show the second, i.e. (3.39).
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For all t ∈ R, we have

lim
M→∞

1

xM
logE

(
etYdxMe

)
= c(t).

By assumption 3.5 (IV), this limit exists, and is finite in a neighbourhood of u ∈ J . By
assumption 3.5 (V), the derivative c′(t) exists in some neighbourhood Gu around u. As
F is non-empty, for any ε′ > 0 small enough that x − ε′ ∈ F , we can find tε′ ∈ Gu such
that c′(tε′) = 1

x−ε′ >
1
x
. Then by choosing ε′′ > 0 small enough that 1

x−ε′ − ε
′′ > 1

x
and

applying Theorem 3.24 (II),

lim inf
M→∞

1

M
logP

(
YdxMe > M

x

x− ε′
− xMε′′

)
= x

(
lim inf
M→∞

1

xM
logP

(
YdxMe
xM

>
1

x− ε′
− ε′′

))
≥ x (c(tε′)− tε′c′(tε′))

= −x
(

tε′

x− ε′
− c(tε′)

)
≥ −xc∗

(
1

x− ε′

)
.

Letting first ε′′ → 0 gives

lim inf
M→∞

1

M
logP

(
YdxMe ≥M

x

x− ε′

)
≥ −xc∗

(
1

x− ε′

)
Then as c∗ is continuous at 1

x
by Lemma 3.33, letting ε′ → 0 yields

lim inf
M→∞

1

M
logP

(
YdxMe > M

)
≥ −xc∗

(
1

x

)
. (3.39)

This is the second important bound in this part. We will now show (3.32) using (3.39)
and (3.38).

Since M(x+ ε) > dxMe for large enough M > 0, it also holds that

P
(
T

M
∈ [x+ ε,∞) and YdxMe > M

)
= 0,

and thus

P
(
T

M
∈ (x− ε, x+ ε)

)
≥ P

(
T

M
∈ (x− ε, x+ ε) and YdxMe > M

)
= P

(
YdxMe > M

)
− P

(
T

M
∈ [0, x− ε] and YdxMe > M

)
,
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for large enoughM > 0. Then recalling (3.38) and (3.39), and applying Lemma 3.23 gives
us

lim inf
M→∞

1

M
logP

(
T

M
∈ (x− ε, x+ ε)

)
≥ −xc∗

(
1

x

)
,

which is (3.32).

Part 4

The previous part concerned the case w > 0. In this part we tackle the case w = 0, using
a somewhat similar strategy.

Suppose, again, that p(u; τ) < c′(u) for all u ∈ J̃ and 0 ≤ τ < 1, and that F is non-
empty. Also suppose w = 0. If x ∈ F∩(−∞, µ), we can choose u ∈ J̃ such that c′(u) = 1

x
.

Then c′(u) ≥ c′(w), so since c is convex, and thus c′ increasing, we must have u ≥ 0 = w.
The proof in Part 3 can then be repeated, so (3.32) holds when x ∈ F ∩ (−∞, µ].

If µ = ∞ there is nothing more to prove; suppose instead µ < ∞. We now want
to show that (3.32) holds when x ∈ F ∩ (µ,∞). As µ < ∞ implies a1 < w, we can find
t0 ∈ J such that t0 < 0 and c(t0) < 0. Then Chebychev’s inequality (2.2) gives, for any
n ≥ 1 and M > 0,

E
(
et0Yn

)
≥ et0MP(Yn ≤M).

Thus

lim sup
n→∞

1

n
logP(Yn ≤M) ≤ lim sup

n→∞

1

n
log e−t0ME

(
et0Yn

)
(3.40)

= lim sup
n→∞

1

n
log e−t0M︸ ︷︷ ︸

=0

+ lim sup
n→∞

1

n
logE

(
et0Yn

)
︸ ︷︷ ︸

=c(t0)

(3.41)

= c(t0) < 0. (3.42)

Here we must have logP(Yn ≤ M) → −∞, hence also P(Yn > M) → 1, as n → ∞.
This means T < ∞ with probability 1, for every M > 0. Suppose now x ∈ F ∩ (µ,∞)
and choose u ∈ J̃ such that c′(u) = 1

x
. Then c′(u) < c′(w), so u < 0 = w. Let ε > 0

and choose y ∈ [0, x − ε]. For every δ′ ∈ (0, ε) and small enough t ≥ 0 that t + u ≤ 0,
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Chebychev’s inequality (2.2) gives

E
(
etYdϑMe+uYdxMe

)
= E

(
e(t+u)( t

t+u
YdϑMe+

u
t+u

YdxMe)
)

(2.2)

≥ e(t+u)MP
(

t

t+ u
YdϑMe +

u

t+ u
YdxMe ≥M

)
= e(t+u)MP

(
tYdϑMe + uYdxMe ≥ (t+ u)M

)
≥ e(t+u)MP

(
tYdϑMe > tM and uYdxMe ≥ uM

)
= e(t+u)MP

(
YdϑMe > M and YdxMe ≤M

)
.

We now again proceed similarly to how we did in Part 3 to get the auxiliary bounds
(3.35), (3.36) and (3.37), and arrive at

lim sup
M→∞

1

M
logP

(
T

M
∈ [0, x− ε] and YdxMe ≤M

)
< −xc∗

(
1

x

)
. (3.43)

This is the first important bound in this part. Showing the second, (3.44), is slightly
easier:

We let ε′ > 0 and apply Theorem 3.24 (II) as we did in Part 3, giving us

lim inf
M→∞

1

M
logP

(
YdxMe < M + xMε′

)
= x

(
lim inf
M→∞

1

xM
logP

(
YdxMe
xM

< c′(u) + ε′
))

≥ x(c(u)− uc′(u))

= −xc∗
(

1

x

)
.

Letting ε′ → 0 yields the desired

lim inf
M→∞

1

M
logP(YdxMe ≤M) ≥ −xc∗

(
1

x

)
. (3.44)

This is the second important bound in this part. The aim is now to use (3.44) and (3.43)
to show (3.32).
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To this end, notice that

P
(
T

M
∈ (x− ε,∞)

)
= 1− P

(
T

M
∈ [0, x− ε]

)
= 1− P

(
T

M
∈ [0, x− ε] and YdxMe > M

)
− P

(
T

M
∈ [0, x− ε] and YdxMe ≤M

)
= P

(
T

M
∈ (x− ε,∞) or YdxMe ≤M

)
− P

(
T

M
∈ [0, x− ε] and YdxMe ≤M

)
≥ P

(
YdxMe ≤M

)
− P

(
T

M
∈ [0, x− ε] and YdxMe ≤M

)
By (3.43) and (3.44) and Lemma 3.23 we then have

lim inf
M→∞

1

M
logP

(
T

M
∈ (x− ε,∞)

)
≥ −xc∗

(
1

x

)
.

Applying the previously proved Theorem 3.11 yields

lim sup
M→∞

1

M
logP

(
T

M
∈ [x+ ε,∞)

)
≤ − inf

y≥x+ε
Γ∗(y) = −Γ∗(x+ ε) < −Γ∗(x) = −xc∗

(
1

x

)
,

because Γ∗ is strictly increasing on (µ,∞), by Lemma 3.33. Now by writing as a difference

P
(
T

M
∈ (x− ε, x+ ε)

)
= P

(
T

M
∈ (x− ε,∞)

)
− P

(
T

M
∈ [x+ ε,∞)

)
,

and again applying Lemma 3.23, we get

lim inf
M→∞

1

M
logP

(
T

M
∈ (x− ε, x+ ε)

)
≥ −xc∗

(
1

x

)
,

which is (3.32).

Part 5

This is the final part, where we arrive at the main results (3.15) and (3.16). The proof
of (3.16) is largely split into two cases: either the set F is empty, or it is not. In the
non-empty case, we will use the bound (3.32), which we just spent some effort proving.
The empty case is a little bit more straightforward.

We begin by proving (3.16). Let O ⊂ R be an open set. We have two cases:
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(I) Suppose F is non-empty. If O ∩ F = ∅, then it holds trivially that

lim inf
M→∞

1

M
logP

(
T

M
∈ O

)
≥ − inf

x∈O∩F
Γ∗(x) = −∞,

as we are using the convention that inf ∅ = ∞. If O ∩ F 6= ∅ and x ∈ O ∩ F ,
then choose εx ∈ (0, x) such that (x − εx, x + εx) ⊂ O ∩ F . By Lemma 3.25 and
Theorem 3.20, Γ∗ is proper convex and lower semi-continuous, thus also continuous
throughout DΓ∗ . Using (3.32) and Lemma 3.33(III) we get

lim inf
M→∞

1

M
logP

(
T

M
∈ O

)
≥ lim inf

M→∞

1

M
logP

(
T

M
∈ O ∩ F

)
≥ sup

x∈O∩F

{
lim inf
M→∞

1

M
logP

(
T

M
∈ (x− εx, x+ εx)

)}
(3.32) ≥ sup

x∈O∩F

{
−xc∗

(
1

x

)}
(Lemma 3.25) ≥ − inf

x∈O∩F
Γ∗(x)

(proper convexity) = − inf
x∈O∩F

Γ∗(x)

(Lemma 3.33(III)) = − inf
x∈O∩DΓ∗

Γ∗(x)

(definition of DΓ∗) = − inf
x∈O

Γ∗(x).

This is (3.16) in the case of non-empty F .

(II) Suppose now F is empty. Then the set {c′(t) : t ∈ J} consists only of isolated
point. By assumption 3.5 (V), the derivative function c′ can have no jumps, thus
{c′(t) : t ∈ J} = {λ} is a singleton, with λ > 0. By assumptions 3.5 (VI) and
3.5 (VII), we must have J = (−∞,∞), and thus c(t) = λt, for all t ∈ R. This means
0 = w ∈ J , and thus 1

λ
= µ <∞. We then have

Γ(t) = −c−1(−t) =
t

λ
= µt,

for t ∈ R, so

Γ∗(x) = sup
t∈R
{tx− Γ(t)} = sup

t∈R
{t(x− µ)} =

{
0, if x = µ,

∞, if x 6= µ.
(3.45)
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We showed in Part 4 that in the case w = 0, we have P(T <∞) = 1 for all M > 0.
Recall now from the proof of Theorem 3.11 the convex function

γ(t) = lim sup
M→∞

1

M
logE

(
etT I{T <∞}

)
= lim sup

M→∞

1

M
logE

(
etT
)
.

We showed in Part 2 of the proof of Theorem 3.11 that γ(t) ≤ −c−1(−t) = µt for all
t ∈ (−b2,−b1) = (−∞,∞). Because γ is convex and γ(0) = −c−1(−0) = µ · 0 = 0,
we must have that γ(t) ≡ µt, meaning γ′(0) = µ.

We now aim to show that T
M
→ µ in probability. To this end, let ε > 0. By applying

Chebychev’s inequality (2.2) for t > 0, it holds that

P
(
T

M
− µ ≥ ε

)
= P(T ≥M(µ+ ε)) ≤ e−tM(µ+ε)E

(
etT
)
.

Then

lim sup
M→∞

1

M
logP

(
T

M
− µ ≥ ε

)
≤ −tµ− tε+ lim sup

M→∞

1

M
logE

(
etT
)

= −tµ− tε+ γ(t)

= γ(t)− tµ︸ ︷︷ ︸
=0

−tε < 0.

This means P
(
T
M
− µ ≥ ε

)
→ 0, as M →∞. Similarly, for t < 0, we get

P
(
T

M
− µ ≤ −ε

)
= P(T ≤M(µ− ε)) ≤ e−tM(µ−ε)E

(
etT
)
,

and thus

lim sup
M→∞

1

M
logP

(
T

M
− µ ≤ −ε

)
≤ −tµ+ tε+ lim sup

M→∞

1

M
logE

(
etT
)

= −tµ+ tε+ γ(t)

= γ(t)− tµ︸ ︷︷ ︸
=0

+tε < 0,

implying P
(
T
M
− µ ≤ −ε

)
→ 0, as M →∞. Thus

P
(∣∣∣∣ TM − µ

∣∣∣∣ ≥ ε

)
= P

(
T

M
− µ ≤ −ε

)
+ P

(
T

M
− µ ≥ ε

)
→ 0,
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as M →∞, for any ε > 0. This is convergence in probability.

Recall (3.45). If µ ∈ O, then P
(
T
M
∈ O

)
→ 1, as M →∞, and thus

lim inf
M→∞

1

M
logP

(
T

M
∈ O

)
= 0 = −Γ∗(µ) = − inf

x∈O
{Γ∗(x)}.

On the other hand, if µ /∈ O, then P
(
T
M
∈ O

)
→ 0, as M →∞, therefore

lim inf
M→∞

1

M
logP

(
T

M
∈ O

)
= −∞ = − inf

x∈O
{Γ∗(x)}.

In either case, we have (3.16).

Now that (3.16) is proven, what remains is to show (3.15). To this end, fix x ∈ R
and ε > 0. We have, for all t ∈ R,

E
(
etT I{T <∞}

)
≥ E

(
etT I

{
T

M
∈ Bε(x)

})
≥ E

(
exp

(
inf

y∈Bε(x)
tyM

)
I
{
T

M
∈ Bε(x)

})
= exp

(
inf

y∈Bε(x)
tyM

)
P
(
T

M
∈ Bε(x)

)
.

Therefore, by the already proven (3.16),

lim inf
M→∞

1

M
logE

(
etT I{T <∞}

)
≥ lim inf

M→∞

1

M
inf

y∈Bε(x)
tyM + lim inf

M→∞

1

M
logP

(
T

M
∈ Bε(y)

)
≥ inf

y∈Bε(x)
ty − inf

y∈Bε(x)
Γ∗(y)

≥ tx− |tε| − Γ∗(x)

→ tx− Γ∗(x),

as ε→ 0. Now recall that by Lemma 3.25, Γ is proper convex and lower semi-continuous,
so by Theorem 3.20, (Γ∗)∗ ≡ Γ. Now as our choice of x ∈ R above was arbitrary, we have

lim inf
M→∞

1

M
logE

(
etT I{T <∞}

)
≥ sup

x∈R
{tx− Γ∗(x)} = (Γ∗)∗(t) = Γ(t).

This is (3.15).
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4 Conclusions
The foundations of large deviations theory were developed by actuaries such as H. Cramér,
studying risk and insurance from a mathematical perspective. Since then, it has grown
into a field of its own, and many new important results have been developed. One of these
is the Gärtner-Ellis theorem, presented here as Theorem 2.29. This result has even been
expanded upon, to apply also to the continuous case under slightly different assumptions,
see Theorem 4.5.20 in [2]. This result is stated in this paper in a slightly modified form
as Theorem 3.24.

The connection between large deviations theory and actuarial science has not been
undone by time, however, and more recent large deviations results are still frequently
applied in the context of insurance. Two such results, both developed by H. Nyrhinen,
were presented in this paper as Theorems 3.11 and 3.14. These two results were chosen
partly because they depend on a result similar to the Gärtner-Ellis theorem, and partly
because when put together, they yield a very similar result.

The Gärtner-Ellis theorem has later been expanded upon. Theorem 3.24 in this
paper is a continuous version, and originates from Baldi [11]. Another extension of the
Gärtner-Ellis theorem was developed by O’Brien and Vervaat [12], and later this extension
was further strengthened by Comman [13].

The results by Nyrhinen which are presented in this paper have later been expanded
upon by Nyrhinen himself, but their application can also be seen for example in Albrecher
and Asmussen [14]. One can also see the results of [9] investigated via Monte Carlo-
simulation using a Markov dependence structure in Albrecher and Kantor [15].

Finally, for a reference text on the current state-of-the-art of insurance mathematics
in general see the book Risk and Insurance by S. Asmussen and M. Steffensen [16]. This
book uses large deviations theory in several places as tools, but also uses methods from
several other areas of mathematics.

Appendix of notations and definitions
P(·) Probability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

E(·) Expectation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

〈·, ·〉 Inner product . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

‖·‖ Euclidian norm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5

A Closure of set A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5
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intA Interior of set A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5

∂A Boundary of set A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

∇f Gradient of the function f . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5

Bε(x) = {y ∈ Rd : ‖y − x‖ < ε} Open ball of radius ε around x . . . . . . . . . . . . . . . . . . . . . . 6

Lc(f) = {x ∈ Rd : f(x) ≤ c} The c-level set of the function f . . . . . . . . . . . . . . . . . . . . . . . . 6

f ≡ g This means f(x) = g(x) for all x ∈ Rd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

Λn(λ) = logE
(
e〈λ,nXn〉

)
Cumulant generating function of nXn . . . . . . . . . . . . . . . . . . . . . . 12

Λ(λ) = limn→∞
1
n
Λn(λ) Limiting scaled cumulant generating function of nXn . . . . . . . 12

Df = {x ∈ Rd : f(x) <∞} Effective domain of the function f . . . . . . . . . . . . . . . . . . . . . . . 13

Λ∗(x) = supλ∈Rd{〈λ, x〉 − Λ(λ)} The convex conjugate of Λ . . . . . . . . . . . . . . . . . . . . . . . . . . 13

{Yn}n∈N Loss process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

Yn Cumulative loss up to time n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27

M Starting capital . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

T = inf{n ∈ N : Yn > M} Time of ruin when the starting capital is M . . . . . . . . . . . . . .27

PM(A) = P(T/M ∈ A) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27

cn(t) = logE
(
etYn

)
Cumulant generating function of Yn . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27

c(t) = lim supn→∞
1
n
cn(t) Limiting scaled cumulant generating function of Yn . . . . . . . 27

w = sup{t ∈ R : c(t) ≤ 0} . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

J = (a1, a2) Largest open interval on which c is finite and strictly increasing . . . . . . . . 28

b1 = limt→a+
1
c(t) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

b2 = limt→a−2
c(t) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

Γ(t) =


−a2, if t ∈ (−∞,−b2]

−c−1(−t), if t ∈ (−b2,−b1)

−a1, if t = −b1

∞, if t ∈ (−b1,∞).

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
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CM(t, u;ϑ) = 1
M

logE
(
etYdϑMe+uYdMe

)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

Hδ(t, u; τ) = lim supM→∞ supϑ∈Bδ(τ)∩(0,∞) CM(t, u;ϑ). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29

H(t, u; τ) = limδ→0Hδ(t, u; τ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

p(u; τ) = limh→0+
H(h,u;τ)−H(0,u;τ)

h
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

J̃ = {u ∈ J : c′(u) ∈ int c′(J)} . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29

fL(x) = lim infy→x f(y) Lower semi-continuous hull of f . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

Γ∗(x) = supt∈R{tx− Γ(t)} The convex conjugate of Γ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

P = P(T <∞) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

WM = T I{T <∞} . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

QM(·) = 1
P
P (A ∩ {T <∞}) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
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