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The quantification of carbon dioxide emissions pose a significant and multi-faceted problem for
the atmospheric sciences as a part of the research regarding global warming and greenhouse gases.
Emissions originating from point sources, referred to as plumes, can be simulated using mathemat-
ical and physical models, such as a convection-diffusion plume model and a Gaussian plume model.

The convection-diffusion model is based on the convection-diffusion partial differential equa-
tion describing mass transfer in diffusion and convection fields. The Gaussian model is a special
case or a solution for the general convection-diffusion equation when assumptions of homogeneous
wind field, relatively small diffusion and time independence are made. Both of these models are
used for simulating the plumes in order to find out the emission rate for the plume source.

An equation for solving the emission rate can be formulated as an inverse problem written
as y = F (x) + ε where y is the observed data, F is the plume model, ε is the noise term and x
is an unknown vector of parameters, including the emission rate, which needs to be solved. For an
ill-posed inverse problem, where F is not well behaved, the solution does not exist, but a minimum
norm solution can be found. That is, the solution is a vector x which minimizes a chosen norm
function, referred to as a loss function.

This thesis focuses on the convection-diffusion and Gaussian plume models, and studies both
the difference and the sensibility of these models. Additionally, this thesis investigates three dif-
ferent approaches for optimizing loss functions: the optimal estimation for linear model, Leven-
berg–Marquardt algorithm for non-linear model and adaptive Metropolis algorithm. A goodness of
different fits can be quantified by comparing values of the root mean square errors; the better fit
the smaller value the root mean square error has.

A plume inversion program has been implemented in Python programming language using the
version 3.9.11 to test the implemented models and different algorithms. Assessing the parameters’
effect on the estimated emission rate is done by performing sensitivity tests for simulated data.
The plume inversion program is also applied for the satellite data and the validity of the results is
considered. Finally, other more advanced plume models and improvements for the implementation
will be discussed.
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1. Introduction

Global warming has become one of the greatest threats for modern societies and will have
a great impact to the lives of future generations. The main cause for this global climate
change are greenhouse gases emitted into the Earth’s atmosphere by human activity.
Traffic and industrial activities such as power plants keep increasing the overall amount of
greenhouse gases in the atmosphere. Due to relevance of the global warming, monitoring
greenhouse gas emissions has become a noteworthy research topic among atmospheric
sciences. This research includes modeling how greenhouse gas emissions behave after
ejected into the atmosphere.

In the United Nations Climate Change Conference held on 12.12.2015 in Paris —
shortened as the COP 21 meeting — an agreement on limiting the global warming below
2 degrees Celsius was adopted. This agreement is usually referred to as “The Paris
Agreement on Climate Change” [23]. As a consequence, many countries are required
to reduce their greenhouse gas emissions as soon as possible. These reduction measures
include monitoring and lowering emissions produced by power plants as they are a major
greenhouse gas emission source, alongside traffic of cars and ships. Emissions reported by
the power plants may not always be truthful due to financial and economical gains which
encourages scientists to develop methods to quantify factory emissions using independent
data.

This thesis focuses on quantifying CO2 emissions originated from chimneys. An
emission originated from a point source is called a plume and it can be observed from space
using satellites, e.g. using Orbiting Carbon Observatory-2 (OCO-2) [3]. An estimation
for the magnitude of the plume source is done via a mathematical inversion: the plume
is simulated using a plume model with emission rate as an input parameter and then
compared to the observed satellite data. An approximation for the emission rate is the
emission rate which results in the best representation of the observed data after the plume
model is applied.

In this thesis two different plume models, a Gaussian plume model and a convection-
diffusion plume model, are used for inversion to find out a magnitude of the emission
source. Tests for the sensitivity to the input parameters, pixel size, performance and other
aspects regarding these models are also be discussed. The models and their numerical
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2 Chapter 1. Introduction

implementations are introduced in Chapter 2. Chapter 3 introduces basic knowledge and
theory for inverse problems and Chapter 4 presents briefly the external data products
used for simulating the plumes, as well as a method for interpolating data. Chapter 5
shows and discuss the results when the plume inversion program is applied on different
datasets. The used data includes both synthetic and real world observations collected by
the OCO-2 satellite. Finally, Chapter 6 discusses the used methods, current issues and
further improvements to the plume inversion program.



2. Plume models

This chapter focuses on covering plume models which are used for carbon dioxide plume
inversion. These models are essentially mass transport models which describe how parti-
cles behave when affected by convection and diffusion. The first model is the convection-
diffusion model described in Section 2.1 which is a general partial differential equation
describing particle movement. The second model is called Gaussian plume model given in
Section 2.2 which is a special case of the general convection-diffusion model with certain
conditions assumed.

2.1 Convection-diffusion model

The convection-diffusion plume model is based on the convection-diffusion equation which
is a general equation describing mass or heat transfer in given convection and diffusion
fields. The convection-diffusion equation is a partial differential equation which is a com-
bination of diffusion equation and linear transport equation [9].

2.1.1 Formulation

Define a non-negative function c : Rn ×R+ → [0,∞), where R+ = (0,∞), which tells the
mass concentration at given location x ∈ Rn and at time t ∈ R+. The general convection-
diffusion equation can be formulated as PDE (partial differential equation) by the formula

∂tc(x, t) = ∇ · (D(x, t)∇c(x, t))−∇ · (v(x, t)c(x, t)) + S(x, t), (2.1)

where D is a diffusivity describing diffusion rate at each location, v is a velocity field
describing convection at each location, ∇ is the nabla operator operating with respect to
spatial variable x and S describes the sources and/or sinks. The function c is assumed to
be C2(Rn) with respect to the spatial variable and C1(R+) with respect to the temporal
variable. The diffusion is described by a scalar field and the convection described by a
vector field. The diffusion in this thesis is not a natural diffusion of a gas but rather a
turbulent diffusion caused by the wind field.

3



4 Chapter 2. Plume models

Equation (2.1) can be written in a different form by using the product rule for
divergence as

∇ · (D(x, t)∇c(x, t)) = ∇D(x, t) · ∇c(x, t) +D(x, t)∇2c(x, t),

∇ · (v(x, t)c(x, t)) = (∇ · v(x, t))c(x, t) + v(x, t) · ∇c(x, t).

An usual assumption is that the vector field v has a zero-divergence or ∇ · v(x, t) = 0.
Although numerically the divergence of the velocity may not be exactly zero, the effect of
the divergence is insignificant compared to the convection due to wind. Similarly, the inner
product between the gradient of the diffusion field and the gradient of the concentration is
assumed to relatively small effect so ∇D(x, t) ·∇c(x, t) ≈ 0. The source term S describes
point sources and in this thesis each point source is assumed to be constant in time. With
these assumptions, equation (2.1) becomes

∂tc(x, t) = D(x, t)∇2c(x, t)− v(x, t) · ∇c(x, t) + S(x). (2.2)

Usually the goal is to find a steady state solution which describes a state where the time
dependency vanishes. If the diffusion and wind fields are smooth and regular enough,
then the solution for (2.2) will reach the steady state as t → ∞. In practice, this means
that the diffusion, the wind and the source term balance each other out after enough time
has passed. The steady state solution satisfies the equation

0 = D(x)∇2c(x)− v(x) · ∇c(x) + S(x), (2.3)

which is the same equation as (2.2) but without time dependency. In reality, both the
diffusion and wind fields change in time, which makes finding the steady state solution
impossible. However, Equation (2.2) can be simulated numerically long enough such that
it reaches near stable state. It is worth noting that even with exact forms for diffusion
and wind fields, both of the partial differential equations (2.2) and (2.3) are generally
impossible to solve in analytic form.

The parameters which can be fitted for the convection-diffusion equation are dif-
fusion emission rate and diffusion scale. Diffusion scale is a scalar factor between the
wind speed and the diffusion field at each location introduced later in condition (2.10) in
the next section. Although it may not be obvious, the solution satisfying (2.3) is in fact
linear with respect to the source rate. That is, the values of the steady state solution are
directly proportional to the source rate and separate sources are independently additive
to the total concentration. Linearity with respect to the source rate is assumed without
further consideration.



2.1. Convection-diffusion model 5

2.1.2 Numerical implementation

The goal is to find a way to numerically simulate the equation (2.2). This means that the
next state after time step τ can be computed by using the current state and a zero state
zero will act as an initial state. The wind field changes in time but will not be updated
every time step as it would be computationally too heavy due to updating the wind field
requiring an interpolation and rotation. The diffusion will be directly depended on the
wind field so also the diffusion field will be updated as the wind field updates. The data
product used for the wind field data is presented in Chapter 4.

A numerical computation of the convection-diffusion equation involves derivatives
which are approximated via a method called finite differences. The idea of the method is
to approximate any differential operator at a point by using nearby known values. The
chosen number of nearby points used for approximating the derivative is referred as a
stencil. For example, three-point stencil means that nearest three points are used for the
derivative approximation.

Mathematically, the derivative of a function f : R→ R is defined as a limit

f ′(x) = lim
h→0

f(x+ h)− f(x)
h

if the limit exists. For h small enough the derivative can be numerically approximated as
a forward difference

f ′+(x) ≈ f(x+ h)− f(x)
h

.

or as a backward difference

f ′−(x) ≈ f(x)− f(x− h)
h

.

By taking the average of the forward and backward differences, the derivative can be
approximated as a central difference

f ′(x) = f ′+(x) + f ′−(x)
2 ≈ −f(x− h) + f(x+ h)

2h . (2.4)

For a smooth function, the smaller step size give a better approximation. However, the
parameter h can not be arbitrary small as computers have a finite precision (there exists
the smallest non-zero positive number often referred to as the machine epsilon).

In this thesis, derivatives are required to be approximated using known values in a
regular grid and h is the step size (discretization) used in the grid. The central difference
(2.4) can be written as a difference matrix

1
2h

[
−1 0 1

]
.
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which means that the gird values f(xi−1), f(xi), f(xi+1) are required to compute an ap-
proximation for f ′(xi). The central difference approximation is then

f ′(xi) ≈
1

2h
[
−1 0 1

]
·
[
f(xi−1) f(xi) f(xi+1)

]T
= −f(xi−1) + f(xi+1)

2h .

where h is step size between points xi.
The approximation for the second derivative can be done in a similar fashion. The

second central difference is given by

f ′′(x) ≈
f(x+ h)− f(x)

h
− −f(x− h) + f(x)

h
h

= f(x− h)− 2f(x) + f(x+ h)
h2 ,

which can be written in the matrix form as

1
h2

[
1 −2 1

]
.

Again, this corresponds the computation

f ′′(xi) ≈
1
h2

[
1 −2 1

]
·
[
f(xi−1) f(xi) f(xi+1)

]T
= f(xi−1)− 2f(xi) + f(xi+1)

h2 .

Both of the approximations for f ′ and f ′′ are computed using three-point stencil but
larger number of points could also be used.

The finite differences can be generalized to higher dimensions. In 2D, matrices
corresponding differential operators are two-dimensional where rows corresponds y-axis
and columns x-axis. In 2D, the partial derivative matrices are

∂x =


0 0 0
− 1

2hx 0 1
2hx

0 0 0

 and ∂y =


0 1

2hy 0
0 0 0
0 − 1

2hy 0

 ,
and the second partial derivative matrices are

∂2
x =


0 0 0
1
h2
x
− 2
h2
x

1
h2
x

0 0 0

 and ∂2
y =


0 1

h2
y

0
0 − 2

h2
y

0
0 1

h2
y

0

 .
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Similarly in 3D, the partial derivative matrices are

First layer Second layer Third layer

∂x =


0 0 0
0 0 0
0 0 0

 ,


0 0 0
− 1
h2
x

0 1
h2
x

0 0 0

 ,


0 0 0
0 0 0
0 0 0

 ,

∂y =


0 0 0
0 0 0
0 0 0

 ,


0 1
h2
y

0
0 0 0
0 − 1

h2
y

0

 ,


0 0 0
0 0 0
0 0 0

 ,

∂z =


0 0 0
0 − 1

h2
z

0
0 0 0

 ,


0 0 0
0 0 0
0 0 0

 ,


0 0 0
0 1

h2
z

0
0 0 0

 ,
and the second partial derivative matrices are

First layer Second layer Third layer

∂2
x =


0 0 0
0 0 0
0 0 0

 ,


0 0 0
1
h2
x
− 2
h2
x

1
h2
x

0 0 0

 ,


0 0 0
0 0 0
0 0 0

 ,

∂2
y =


0 0 0
0 0 0
0 0 0

 ,


0 1
h2
y

0
0 − 2

h2
y

0
0 1

h2
y

0

 ,


0 0 0
0 0 0
0 0 0

 ,

∂2
z =


0 0 0
0 1

h2
z

0
0 0 0

 ,


0 0 0
0 − 2

h2
z

0
0 0 0

 ,


0 0 0
0 1

h2
z

0
0 0 0

 .
In practice, plumes evolve in three spatial dimensions, which are longitude, latitude and
altitude, corresponding to x-, y- and z-directions respectively. However, as simulations
in three dimensions can easily become computationally too heavy, the simulations will be
done in two dimensions. The altitude (z-axis) dimension can be removed by properly aver-
aging over different altitudes, as discussed in Appendix A. The two remaining dimensions
are longitude and latitude for which a common discretization hx = hy = h will be used.
This discretization of the longitude and latitude grids can usually vary from h = 0.001◦

to h = 0.1◦. The used discretization and the computation time naturally correlate; larger
grids imply larger matrices and heavier matrix products to compute.

By using a shared discretization h for x and y directions, the first and second partial
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derivative matrices are

∂x = 1
2h


0 0 0
−1 0 1
0 0 0

 and ∂y = 1
2h


0 1 0
0 0 0
0 −1 0

 . (2.5)

∂2
x = 1

h2


0 0 0
1 −2 1
0 0 0

 and ∂2
y = 1

h2


0 1 0
0 −2 0
0 1 0

 . (2.6)

By summing the second partial derivative matrices (2.6) together gives a standard five-
point stencil approximation in 2D for the Laplacian as

∇2 = ∂2

∂x2 + ∂2

∂y2 = 1
h2


0 1 0
1 −4 1
0 1 0

 .
That is, in order to compute a numerical Laplacian for a function f : R2 → R at (xi, yj),
the function evaluations at grid points

(xi, yj−1), (xi−1, yj), (xi, yj), (xi+1, yj), (xi, yj+1)

are required. An approximation for the Laplacian can be written as a matrix product by
reshaping matrices into 1D vectors. By defining a (column) vector of all nearby values of
f as

f =
[
f(xi, yj−1) f(xi−1, yj) f(xi, yj) f(xi+1, yj) f(xi, yj+1)

]T
and defining the Laplacian reduced to 1D as a (row) vector

∇2 = 1
h2

[
0 1 0 1 − 4 1 0 1 0

]
enables the approximation of the Laplacian at (xi, yj) to be computed as a matrix product

∇2f(xi, yj) ≈ ∇2 · f = f(xi, yj−1) + f(xi−1, yj)− 4f(xi, yj) + f(xi+1, yj) + f(xi, yj+1)
h2 .

To get more accurate Laplacian, a nine-point stencil can be used for the Laplacian
which also inludes the corners. The weighting factors for the corners are computed by
weighting the corners with their corresponding Euclidean distance to the center point. In
the paper by O’Reilly and Beck [17], weights for a 27-point discrete Laplacian in 3D are
computed in detail. That is, a Laplacian matrix includes every point inside 3×3 cube. By
following the same idea for 2D case, a nine-point Laplacian could be derived. However,
in 2D case a nine-point Laplacian can be derived with a simpler computation based on a
rotation of the standard stencil as shown in the proof of Theorem 2.1.
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Theorem 2.1. A nine-point Laplacian with grid dicretization h in x and y direc-
tions is given by

∇2 = 1
4h2


1 2 1
2 −12 2
1 2 1

 = 1
h2


1/4 1/2 1/4
1/2 −3 1/2
1/4 1/2 1/4

 .

The nine-point Laplacian can be though as being the average between the standard five-
point stencil and a rotated five-point stencil. The values in both stencils are weighted by
the square of the Euclidean distance to the center.

Proof. The standard stencil, in which points other than the center have a square distance
h2 to the center, is

1
h2


0 1 0
1 −4 1
0 1 0


as presented before. The rotated stencil, in which points other than the center have a
square distance 2h2 to the center, is

1
2h2


1 0 1
0 −4 0
1 0 1

 = 1
h2


1/2 0 1/2
0 −2 0

1/2 0 1/2

 .
Taking the average of these stencils yields to the nine-point stencil as

∇2 = 1
2 ·

1
h2


0 1 0
1 −4 1
0 1 0

+ 1
2 ·

1
h2


1/2 0 1/2
0 −2 0

1/2 0 1/2

 = 1
h2


1/4 1/2 1/4
1/2 −3 1/2
1/4 1/2 1/4

 .

A two-dimensional grid representation with shared discretization h for both dimensions
is illustrated in Figure 2.1. Points typically used for approximating differential operators
are colored. Arbitrary number of surrounding grid points could be used for approximating
the derivative but in this thesis, only nearby pixels are used.
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(xi, yj)(xi−1, yj)

(xi, yj+1)

(xi, yj−1)

(xi+1, yj)

(xi−1, yj+1) (xi+1, yj+1)

(xi+1, yj−1)(xi+1, yj−1)

(xi−2, yj+2) (xi−1, yj+2) (xi, yj+2) (xi+1, yj+2) (xi+2, yj+2)

(xi+2, yj−1)

(xi+2, yj)

(xi+2, yj−1)

(xi+2, yj−2)(xi+1, yj−2)(xi, yj−2)(xi−1, yj−2)(xi−2, yj−2)

(xi−2, yj−1)

(xi−2, yj)

(xi−2, yj+1)

Figure 2.1: Typical points used in a small stencil on a two-dimensional grid with a shared
grid discretization. The center point is green, face points are blue and corner points are
red. For small stencil approximations, black points are not used.

Computing a differential operator approximation simultaneously at every point for a func-
tion in a grid requires a typically large difference matrix. If a function f : R2 → R is
defined in three-dimensional grid of size Ny × Nx, then the values are reduced to a 1D
vector of length NyNx. Consequently, a difference matrix for computing difference op-
erator approximation at each grid point has then shape NyNx × NyNx which can easily
become too large if the used discretization is too dense.

Each row of the difference matrix has non-zero elements equal to the stencil size
used for approximation. The first row of the difference matrix multiplied with value
vector f gives the difference operator approximation at the first grid point, the second
row multiplied with f gives an approximation of the difference operator at the second
grid point and so on.

As an example, consider a partial operator ∂x for a function f : R2 → R defined in
Ny ×Nx regular grid with discretization h. The difference matrix has shape (dimension)
NyNx ×NyNx and has values −1/(2h) below diagonal and values 1/(2h) above diagonal,
representing central differences. As the left boundary has no value to the left and the
right boundary has no value to the right, boundary values are kept as zero. That is, every
time the point for which the central difference would be computed is on the boundary,
the corresponding row in the matrix consists of zeros. This can be characterized by a



2.1. Convection-diffusion model 11

Nx ×NyNx zero matrix

O =


0 . . . 0
... . . . ...
0 . . . 0

 ,
which ensures that every value in the first and last row of the Ny ×Nx grid remains zero.
The actual (central) difference matrix is a Nx(Ny − 2)×NyNx matrix given by

D = 1
2h



0 0 0 . . . 0 0 0
−1 0 1 0 . . . 0 0
0 −1 0 1 0 . . . 0
... . . . . . . . . . . . . . . . 0
0 . . . 0 −1 0 1 0
0 . . . 0 0 −1 0 1
0 0 0 . . . 0 0 0


,

where again the row consists of zeros if the point is in the first or last column of the
Ny × Nx grid. The matrix D computes the partial derivative using central difference
for each non-boundary point by using values to the left and right. The final difference
matrix for operator ∂x in regular Ny×Nx grid is NyNx×NyNx matrix given by a stacked
NyNx ×NyNx matrix

∂x = 1
2h


O

D

O

 ,
The next goal is to find a similar matrix representations for operators in Equation (2.2)
which in 2D has a form

∂tc(x, y, t) = [D(x, y)∇2 − v(x, y) · ∇]c(x, y, t) + S(x, y). (2.7)

The spatial difference operators to consider are D(x, y)∇2 and −v(x, y) ·∇. The operator
D(x, y)∇2 is the Laplacian matrix multiplied with the diffusion at the current location and
the Laplacian can be approximated by using the nine-point stencil presented in Theorem
2.1. The divergence operator v(x, y) ·∇ is determined through partial derivatives defined
in 2.5 as

v(x, y) · ∇ = vx(x, y)∂x + vy(x, y)∂y.

By using the matrices for ∂x and ∂y, it follows that the operator v(x, y) · ∇ can written
as a matrix

v(x, y) · ∇ = vx(x, y)
2h


0 0 0
−1 0 1
0 0 0

+ vy(x, y)
2h


0 1 0
0 0 0
0 −1 0

 .
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The final (spatial) difference operator in equation (2.7) at location (x, y) is then defined
by the matrix D(x, y)∇2 − v(x, y) · ∇ as

D(x, y)∇2 − v(x, y) · ∇ =


D(x,y)

4h2
D(x,y)

2h2 − vy(x,y)
2h

D(x,y)
4h2

D(x,y)
2h2 + vx(x,y)

2h −3 · D(x,y)
h2

D(x,y)
2h2 − vx(x,y)

2h
D(x,y)

4h2
D(x,y)

2h2 + vy(x,y)
2h

D(x,y)
4h2

 . (2.8)

By considering the above difference matrix, one can see how nearby pixels contribute to the
central pixels. The center element describes how the diffusion decreases the concentration
from the center and moves it outwards. The face elements describe how the diffusion
and the convection together increase/decrease the concentration and finally the corner
elements describe how the diffusion from the corners increases the concentration in the
central pixel.

It is worth noting that in this implementation, it is possible that some of the face
values become negative. This means that the convection tries to move the concentration
away from a pixel more than the pixel actually has concentration. Negative concentrations
do not represent a physical state and will usually cause a simulation to completely fail.
To avoid this, diffusion can be chosen to be just large enough so that all the face points
remain positive. That is, at every location (x, y), the conditions

D(x, y)
2h2 − |vx(x, y)|

2h ≥ 0 ⇔ D(x, y) ≥ h |vx(x, y)| and

D(x, y)
2h2 − |vy(x, y)|

2h ≥ 0 ⇔ D(x, y) ≥ h |vy(x, y)| ,

or equivalently, the condition

D(x, y) ≥ h ·max{|vx(x, y)| , |vy(x, y)|} ⇔ h ≤ D(x, y)
max{|vx(x, y)| , |vy(x, y)|}

must be satisfied. Instead of the maximum expression, the norm expression ||v(x, y)||2 =√
vx(x, y)2 + vy(x, y)2 can be used as

D(x, y) ≥ h ·
√
vx(x, y)2 + vy(x, y)2 ⇔ h ≤ D(x, y)√

vx(x, y)2 + vy(x, y)2
(2.9)

naturally satisfies both conditions. The inequality (2.9) will be referred as a spatial
stability condition which sets a limit to the size of discretization h. Unfortunately, even if
the diffusion was about the same magnitude as the wind speed, the required discretization
would be about the size 1 m or about 10−5 in degrees. This discretization is too dense
in order to compute in reasonable time and with acceptable memory usage. Instead,
the spatial discretization is chosen first, about 100 m or 0.001◦ at its smallest, and the
diffusion scaled accordingly such that the stability condition is satisfied. Depending on
the discretization h, the diffusion is chosen to be

D(x, y) = CD · h ·
√
vx(x, y)2 + vy(x, y)2, (2.10)
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where CD is some scaling factor which can be optimized. Typically, the scaling factor
at minimum is about one but can be smaller depending on the stability. Although this
ends up overestimating the true (turbulent) diffusion, the simulations work well with this
choice, as shown in Chapter 5.

The temporal discretization also limits the diffusion. If the diffusion is too large, the
concentration may move out of a pixel faster than the concentration increases in that pixel.
This is especially important in the source pixel. Initially, the state is zero everywhere
and after the first time step, pixels near (or on the top of) the source have positive
concentrations. After the second time step, concentration decreases due to diffusion but
increases again due to the source term. At the source pixel, this can be written as a
process

0
t=0
⇒ τQ

t=τ
⇒ τQ+ τ(−3DτQ/h2 + S)

t=2τ

where τ is the used time step, D is diffusion at the source location and Q is the emission
rate of the source. The term after two time steps must remain non-negative in order to
avoid negative concentrations which yields to the requirement

2τQ− 3Dτ 2Q/h2 ≥ 0⇔ τ ≤ 2h2

3D
which sets an upper limit for the time step. As can been seen, the condition is not
depended on the source rate Q. A similar stability condition must be valid at every
pixel but the condition is the strictest at the source pixel and at the beginning of the
simulation. For other pixels, diffusion and convection from the neighbouring pixels will
always increase the concentration in the central pixel more than the diffusion decreases
it. Thus, at every location (x, y), a temporal stability condition

τ ≤ 2h2

3D(x, y) (2.11)

must be satisfied to avoid negative pixels.
The finite difference matrix (2.8) with the stability conditions (2.9) and (2.11) has

now been successfully constructed such that instability issues have been avoided. The
final term is the source term S(x, y) which can be written as a Ny × Nx matrix. This
matrix is zero everywhere expect near the source. Each point source is assumed to spread
to the neighbouring pixels with the weights given by inverse distance weighting presented
later in Theorem B.1.

The rate of change in time for the function c is defined by the right-hand side of
equation (2.7). The next state can be computed by using the previous state and the
forward difference in time. The current state vector ct is first operated by the spatial
difference matrix M and the source term is then added. The update rule for the state
vector is

ct+τ = ct + τ · (Mct + S) (2.12)
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where τ is the time step. The next state is a one-dimensional vector which when reshaped
to Ny × Nx represents concentration values in the Ny × Nx grid. The difference matrix
needs to be updated whenever the wind field (and/or the diffusion) changes.

The grid can and should be very dense for the computations to be as accurate as
possible. However, for a dense spatial discretization, the total spatial difference matrix
can become very large. For example, if the size of the discretization is about 0.001◦ then
difference matrices can have shapes like 500000 × 500000. Iterating this over each time
step by using standard matrix product is extremely slow, not to mention that an object
with 5000002 64-bit floats takes 5000002 · 64 bits or 5000002 · 8 = 2 Tb (Tera bytes) of
(random access) memory which is not manageable in normal circumstances. Luckily, each
row of this kind of matrix has only nine non-zero elements so most of the elements in the
whole matrix are zeros. For this type of situation, an object called sparse matrix can be
used. A sparse matrix only stores elements (and their row and column locations) which
are non-zero, saving a lot of memory.

Another way to increase computation speed and reduce memory usage is to use
adaptive spatial grids. That is, the spatial grid is only required to cover the area in which
the plume exists and is relevant for the observation. A comparison between a normal
grid and an adaptive grid is presented in Figure 2.2. Especially for long distances and
plumes’ with directions like −135◦,−45◦, 45◦ or 135◦, the adaptive grid clearly decreases
the number of used pixels, which in turn decreases the computation time.

(a) A normal grid. (b) An adaptive grid.

Figure 2.2: A comparison between the normal and adaptive grids. On the left in the
normal grid, there are 15× 15 = 225 pixels, and on the right in the adaptive grid, there
are 10× 18 = 180 pixels, which is 20 % less pixels in this case.

During the simulation, some of the plume concentration may reach the boundary of the
simulation grid in which case it vanishes due to the zero-boundary condition.

The smallest reasonable temporal resolution is 1 second and the smallest reasonable
spatial resolution for simulation grids is 0.001 degree. The evaluation becomes faster as
the discretization step size becomes larger. Unfortunately, such a simple implementation
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of this model using finite differences as used in this thesis may not be accurate enough if
either one of the spatial and temporal discretizations is too large. Moreover, the stability
conditions (2.9) and (2.11) set a huge limitations for this implementation. Possible im-
provements, other implementations as well as other existing mass transport models are
discussed in Chapter 6.

The required simulation time varies depending on the range and the area in which
the plume needs to be simulated. In this thesis, the simulation time is typically from
6 to 8 hours, but may be longer depending on the distance between the source and the
observation. Wind fields from external data set have an hourly discretization as will be
explained in Chapter 4, and by default are updated every half an hour. At half hour, the
wind field is the average of the two closest even hour wind fields.

2.2 Gaussian plume model

A Gaussian plume model is a special case of the general convection-diffusion model (2.2).
The fundamental idea behind the Gaussian model is that the plume is assumed to move
to the wind direction and spread perpendicularly to the wind direction according to a
Gaussian function. A major benefit of the Gaussian model over the convection-diffusion
model is significantly faster to evaluate. Downsides of the Gaussian model is that it
ignores the altitude aspect of the plume and assumes a homogeneous wind everywhere.

2.2.1 Formulation

The Gaussian plume model used in this thesis is the one presented in Nassar et al. [15]
which is a special case of the convection-diffusion equation (2.2). For a single point source
can be formulated as

V (x, y) = Q√
2πσ(x)u

e
− y2

2σ2(x) (2.13)

σ(x) = a ·
(
x

x0

)b
(2.14)

where V is the amount of CO2 per atmospheric column (from the ground level to the
top of the atmosphere) in g/m2, x > 0 is the downwind direction in m, y is the direction
perpendicular to the wind direction in m, Q is the emission rate (or source rate) in g/s,
σ(x) is the standard deviation representing diffusion in y-direction at distance x, u is
the wind speed for the homogeneous wind field inside the considered area in m/s, the
atmospheric stability parameter a, b is the exponent to which power the plume vanished
when moving away from the source and x0 = 1000 m is the characteristic length which
ensures that the argument of the exponent is dimensionless. The expression for σ(x) is
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determined empirically and can not be derived purely with mathematics. The atmospheric
stability parameter is typically between 104 and 213, as explained later, and the exponent
b is 0.894 by default, as stated by Nassar et al. in their paper [15].

The parameters which may be fitted for the Gaussian plume are emission rate Q,
atmospheric stability parameter a, exponent b and the wind direction. All of the parame-
ters present in the model can not be fitted simultaneously. For example, in the Gaussian
model (2.13), the individual values emission Q and the wind speed u do no affect the
generated model values as long as the ratio Q/u stays constant. That is, Q and u have a
direct linear dependency, as stated also by Nassar et al. [15]. Due to this, it is impossible
to find both them together using optimization algorithm. Luckily, the average wind speed
u can be obtained from external dataset.

The atmospheric stability parameter a is related to Pasquill stability classes [1]. To
put it simply, the stability class is dependent on the surface wind speed and the stability
parameter is dependent on the stability class according to Table 2.1. Standard day time
Pasquill stability classes are referred with letters A, B and C.

surface wind speed (m/s) <2 3-5 >5
Pasquill stability class A B C

Atmospheric stability parameter 213 156 104

Table 2.1: Daytime Pasquill stability classes and stability parameter.

The stability parameter changes step-wise when the surface wind speed exceeds a certain
threshold. However, as there is no reason for the stability parameter being a step function,
an interpolating function for it can also be used as stated by Nassar et al. [16] in which
case the points used for interpolation are written in Table 2.2.

surface wind speed (m/s) 2 2.5 4.0 4.5 5.0
Atmospheric stability parameter 213 184.5 156 130 104

Table 2.2: Points and values used for interpolating stability parameter.

Values 184.5 and 130 correspond intermediate stability classes AB and BC [15], corre-
spondingly. If the speed is less than 2 m/s, then the stability is 213 and if the speed
larger than 5 m/s, then the stability is 104. Interpolation between speeds 2 m/s and 5
m/s is done by using Shepard’s method explained in Appendix B.

The Gaussian model (2.13) can be directly derived from the convection-diffusion
equation. The derivation from the general convection-diffusion model to the Gaussian
model will be presented next by following guidelines of the derivation introduced by
Stockie [22].
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First step is to pick a coordinate for the convection-diffusion equation, presented
in equation (2.2). There are three spatial dimensions which means x = (x, y, z). A
(Cartesian) coordinate system is chosen such that the source is at (0, 0, h) where h is
height of the plume source. The x-coordinate is to the direction determined by the first
two components of the wind vector v = (vx, vy, vz) at (0, 0, h), the z-coordinate is upwards
from the source point and y-coordinate is perpendicular to wind, direction determined
by the right-hand rule. Earth’s surface is approximated as a plane z = 0, ignoring the
topography of the surface of earth. In order to derive the expression for the Gaussian
plume mode, following assumptions are made.

1. The source term is given by S(x, y, z) = Qδ(x)δ(y)δ(z −H) where δ is the (Dirac)
delta function centered at zero, Q is the source rate and H = h+ ∆h is the effective
height where h is the height of the actual plume source and ∆h is plume rise along
x-axis.

2. The convection-diffusion equation is assumed to be in steady state. This means
that all variables and parameters are independent of time i.e. D(x, t) = D(x),
v(x, t) = v(x), c(x, t) = c(x) and ∂tc(x, t) = 0. All plumes should eventually reach
steady state if observation/simulation time period is long enough and both diffusion
and wind field remain constant in time and are regular enough.

3. The wind field is assumed to be homogeneous in time and space with some fixed
wind speed and a direction is the direction of x-axis. That is, the wind vector is
a constant vector v(x) = (u, 0, 0) everywhere where u > 0 is the wind speed. The
plume is assumed to move only to positive x-direction.

4. Diffusion is assumed to be only dependent on x coordinate. That is, D(x) = D(x).

5. Diffusion in the x-direction is much smaller than convection which means that the
term D(x)∂2

xc(x, y, z) is insignificant compared to a convection term u∂xc(x, y, z).
Moreover, assuming that the diffusion field is regular enough, also the term ∂xD(x) ·
∂xc(x, y, z) becomes negligible.

With these assumptions, Equation (2.2) becomes

u∂xc(x, y, z) = D(x)∂2
yc(x, y, z) +D(x)∂2

zc(x, y, z) +Qδ(x)δ(y)δ(z −H) (2.15)

where x ∈ (0,∞) (plume moves only to the wind direction), y ∈ (−∞,∞) (plume spreads
perpendicular to wind direction) and z ∈ (0,∞) (plume can not go through the ground).
The boundary conditions for this PDE are

c(0, y, z) = lim
x→∞

c(x, y, z) = lim
y→±∞

c(x, y, z) = lim
z→∞

c(x, y, z) = ∂zc(x, y, 0) = 0. (2.16)
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The source term Qδ(x)δ(y)δ(z−H) in Equation (2.15) can be eliminated by introducing
the delta function to the boundary conditions [22]. New boundary conditions are then

c(0, y, z) = Q

u
δ(y)δ(z −H)

lim
x→∞

c(x, y, z) = lim
y→±∞

c(x, y, z) = lim
z→∞

c(x, y, z) = ∂zc(x, y, 0) = 0
(2.17)

in which case the PDE reduces to

u∂xc(x, y, z) = D(x)∂2
yc(x, y, z) +D(x)∂2

zc(x, y, z). (2.18)

The PDE given in Equation (2.18) will be solved now with boundary conditions (2.17).
Define a new variable

r = 1
u

∫ x

0
D(s)ds, (2.19)

which characterizes the total diffusion (width) of the plume when it is being observed at
distance x from the source. By defining c(x, y, z) = C(r, y, z) and applying the chain rule
yields

u∂xc(x, y, z) = u∂xC(r, y, z) = u∂rC(r, y, z) · ∂xr = D(x)∂rC(r, y, z).

The PDE in Equation 2.18 now becomes

D(x)∂rC(r, y, z) = D(x)∂2
yC(r, y, z) +D(x)∂2

zC(r, y, z)

which after dividing with D(x), assuming it is non-zero, yields

∂rC(r, y, z) = ∂2
yC(r, y, z) + ∂2

zC(r, y, z). (2.20)

New boundary conditions using the variable r are

c(0, y, z) = Q

u
δ(y)δ(z −H),

lim
r→∞

c(r, y, z) = lim
y→∞

c(r, y, z) = lim
z→∞

c(r, y, z) = ∂zc(r, y, 0) = 0.

The PDE in Equation (2.20) can be solved using separation of variables. The solution is
assumed to have a form

C(r, y, z) = Q

u
A(r, y)B(r, z),

which after substituting into (2.20) yields

Q

u
· [B(r, z)∂rA(r, y) + A(r, y)∂rB(r, z)] = Q

u
[B(r, z)∂2

yA(r, y) + A(r, y)∂2
zB(r, z)]

⇔B(r, z)∂rA(r, y) + A(r, y)∂rB(r, z) = B(r, z)∂2
yA(r, y) + A(r, y)∂2

zB(r, z)

To find non-trivial solution for A(r, y) and B(r, z), coefficients for A(r, y) and B(r, z)
must be simultaneously equal in both sides. That is, the equation must be true for
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all r ∈ (0,∞), y ∈ (−∞,∞), z ∈ (0,∞) with some non-constant functions A(r, y) and
B(r, z). Equating the coefficients yields to two partial differential equations

∂rA(r, y) = ∂2
yA(r, y), A(0, y) = δ(y), lim

r→∞
A(r, y) = lim

y→±∞
A(r, y) = 0,

∂rB(r, z) = ∂2
zB(r, z), B(0, z) = δ(z −H), lim

r→∞
B(r, z) = lim

z→∞
B(r, z) = ∂zB(r, 0) = 0.

The first equation for A(r, y) has a form of one-dimensional heat equation where r acts
as the time variable and delta function as the initial condition. The solution is known as
the heat kernel [9] and it is given by

A(r, y) = 1√
4πr

e−
y2
4r .

The second equation for B(r, y) has a similar form although the boundary condition
∂zB(r, 0) = 0 with initial condition B(0, z) = δ(z − h) slightly changes the solution
compared to the standard heat kernel. The solution is given by

B(r, z) = 1√
4πr

(
e−

(z−H)2
4r + e−

(z+H)2
4r

)
,

which satisfies that the boundary conditions for B(r, z) and differentiating verifies that
indeed ∂rB(r, z) = ∂2

zB(r, z). The solution for C(r, y, z) is then

C(r, y, z) = Q

u
A(r, y)B(r, z) = Q

4πure
− y

2
4r

(
e−

(z−H)2
4r + e−

(z+H)2
4r

)
. (2.21)

The Gaussian plume given by equation (2.21) is shown in Figure 2.3. The plume has
Gaussian distribution in both y and z with standard deviations σy and σz, respectively.

y

z

x

Wind direction

H
h

Centerline

σy

σz

Figure 2.3: A diagram of the Gaussian plume model. The wind direction is marked with
a blue arrow in the upper left corner. The red curves indicate the vertical distributions
in the z-direction and the blue curves the horizontal distribution in the y-direction. The
centerline of the plume is marked with solid black line, and the height to which the plume
rises is marked with dashed black line.
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The variable r in Equation (2.21) is related to the standard deviation of the plume.
Hence, it is natural to define σ2(x) = 2r. For a Gaussian plume, the standard deviation
has the form σ(x) = axb where a, b are parameters determined through experimental
measurements. Substituting σ2(x) to the solution (2.21) yields to

G(x, y, z) = Q

2πuσ2(x)e
− y2

2σ2(x)

(
e
− (z−H)2

2σ2(x) + e
− (z+H)2

2σ2(x)

)
. (2.22)

The equation accounts the height of the plume from the ground level. In reality, a satellite
observing the plume is unable to see the actual height of the concentration but rather
observes the total vertical column from the ground level to the top of the atmosphere.
The concentration per atmospheric column can be computed via integrating the solution
(2.22) over the z-axis which yields

V (x, y) =
∫ ∞

0
G(x, y, z)dz

=
∫ ∞

0

Q

u2πσ2(x)e
− y2

2σ2(x)

(
e
− (z−H)2

2σ2(x) + e
− (z+H)2

2σ2(x)

)
dz

= Q

u
√

2πσ(x)
e
− y2

2σ2(x)

(∫ ∞
0

1√
2πσ(x)

e
− (z−H)2

2σ2(x) dz +
∫ ∞

0

1√
2πσ(x)

e
− (z+H)2

2σ2(x) dz

)

= Q

u
√

2πσ(x)
e
− y2

2σ2(x)

(∫ ∞
H

1√
2π
e−

1
2 z

2
dz +

∫ ∞
−H

1√
2π
e−

1
2 z

2
dz

)
.

The function
1√
2π
e−

1
2 z

2 := φ(z)

is the density function of the standardized normal distribution. Since the normal density
is an even function and the integral over the real line is equal to 1, it follows that∫ ∞

H
φ(z)dz +

∫ ∞
−H

φ(z)dz =
∫ ∞
H

φ(z)dz + 1−
∫ −H
−∞

φ(z)dz = 1,

which after substituting into the equation derived for V (x, y) finally yields

V (x, y) = Q

u
√

2πσ(x)
e
− y2

2σ2(x) , (2.23)

which is the same form as the Gaussian plume model given in Equation (2.13) when the
standard deviation σy(x) = (x/x0)0.894.

2.2.2 Numerical implementation

The Gaussian model is simpler and faster to both implement and evaluate compared to
the convection-diffusion model as it requires no simulations. Inputting parameters and a
location (x, y) gives an estimation on the column average of CO2. The plume values can
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first be generated at pixels in Cartesian xy-grid where x is the direction parallel to the
wind and y is direction perpendicular to x. According to the assumptions of the Gaussian
plume, the plume exists only when x > 0. These coordinates can then be rotated around
the source point to the desired wind direction with a rotation matrix

R =
 cos θ − sin θ

sin θ cos θ

 .
Applying the matrix to a point x = (x, y) ∈ R2 rotates it counterclockwise θ degrees (or
radians) around the origin. New coordinates after the rotation are

Rx = (x cos θ − y sin θ, x sin θ + y cos θ)

If the rotation is required around some other point (x0, y0) 6= (0, 0), then the rotation can
be performed as

Rx = ((x− x0) cos θ − (y − y0) sin θ, (x− x0) sin θ + (y − y0) cos θ) + (x0, y0).

The rotation matrix is unitary, so the inverse is the same as the transpose. That is, the
inverse rotation matrix is

R−1 = RT =
 cos θ sin θ
− sin θ cos θ


and applying it to a point x ∈ R2 rotates it clockwise by θ degrees. A Gaussian plume
to a desired wind direction is generated by rotating points in the longitude-latitude grid
around the source point. The grid rotation is illustrated in Figure 2.4. The values remain
the same during the rotation, only their corresponding coordinates change.

(a) Before the rotation. (b) After the rotation.

Figure 2.4: A diagram about the grid rotation. As can be observed, the source point,
marked with a black dot, stays put while the grid and the red lines representing the plume
area are rotated.

The rotated grid is very similar as the adaptive grid, when using the convection-diffusion
model for generation. In the case where there are multiple sources, each of them creates
their own independent Gaussian plume and each source has a corresponding rotated grid.
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The Gaussian plume model requires distances in metres so distances computed in
degrees need to be converted to corresponding changes in metres. Due to Earth having
a spherical shape, the change of longitude in metres per longitudial degree is dependent
on the latitude. At latitude 0◦ (the Equator), small changes in longitudial and latitudial
degree correspond equal small changes in metres along Earth’s surface. That is, a change
dθ in longitudial or latitudial degrees corresponds a change

ds = π

180◦ ·Rdθ

along the Earth’s surface where R is the radius of Earth (≈ 6371 km). As the latitude
increases towards the north pole at 90◦ or decreases towards the south pole at −90◦, the
longitudial change in metres per longitudial degree gets smaller. A general law states that
a small change in degrees corresponds a change

ds = π

180◦ ·R cos(φ)dθ

on the surface of Earth where φ is the latitude. For converting longitudial change from
degrees to metres, a latitude of the source point is used.



3. Inverse problems

This chapter covers inverse problems and related theories on solving them. First, classical
inverse problems and Hadamard conditions for well-posed inverse problems are introduced.
After that, general aspects of solving inverse problems through optimization are discussed.
Finally, a concept of inverse crime is discussed briefly.

3.1 Classical inverse problems

Inverse problems are problems in which unknown quantity or parameters are required to
be solved using indirect measurements which can be noisy and/or incomplete. A known
vector belonging to the data space Rm is called data vector (or measurement) and it is
denoted as y. An unknown vector belonging to the state space Rn is called state vector
and it is denoted as x. A general mathematical model for an discrete inverse problem
using indirect measurements to find out quantity x can be formulated as

y = F (x) + ε (3.1)

where F : Rn → Rm is a forward model and ε ∈ Rm is the noise. In the inverse problem,
the state vector x is required to be solved given the measurement vector y. In comparison,
in a direct problem, the vector y is required to be solved given the state vector x.

The construction of the forward model F is based on a mathematical, statistical,
empirical or physical evidence on how the model should behave. There exists neither
explicit formulas nor restrictions for a generic forward model which makes the inverse
problems challenging. The noise term ε ∈ Rm is something which cannot be modeled
using the forward model. This noise can be measurement error, random background
noise or modeling error. The noise term can also be multiplicative but in this thesis, it is
assumed to be additive.

Different types of problems are characterized via Hadamard conditions [14] first
introduced by Jacques Hadamard. According to the Hadamard, a problem can be either
well-posed or ill-posed. A well-posed problem is a problem which can usually be solved
using linear algebra and satisfies all of the following conditions:

23
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H1: the problem has at least one solution (existence),

H2: the solution is unique (uniqueness), and

H3: the solution depends continuously on data (stability).

If these conditions are met, the forward map F is well-defined, continuous and invertible.
If one or more conditions are not met, the problem is ill-posed, leading to an inverse
problem.

Well-posed problems are not interesting in this context as they can be solved easily.
For example, if the forward map F is linear, in which case it can be written as a Rm×n

matrix, and the problem is well-posed, it can be solved via linear algebra and matrix
calculus by using the inverse matrix F−1. For ill-posed problems, this type of naive
inversion [14] generally fails. As many problems arisen from the real world applications
are ill-posed, the mathematical and statistical methods for solving these inverse problems
have been developing rapidly over the past few decades.

Solving an inverse problem is generally done by defining a loss (cost) function which
somehow measures the distance between the model and the observed data. After finding a
suitable expression for this distance, the problem boils down to an optimization problem.
One of the most common ways to measure this distance is to use norms in Rn and the
most common norm is naturally the Euclidean or l2-norm. The residual (vector) between
the model and the data is defined as

r(x) = F (x)− y, (3.2)

and the norm is

||r(x)||2 = ||F (x)− y||2 =
√∑
i=1

ri(x)2 =
√∑
i=1

(Fi(x)− yi)2.

The benefit of the Euclidean norm is that its square can be written as a matrix product
||r(x)||22 = r(x)Tr(x) = (F (x) − y)T(F (x) − y). This is an example of a simple l2-loss
function. The loss function is not unique but can be chosen freely, depending on what
properties the solution is required to have.

The first addition to the standard l2-loss function is to include the covariance matrix
Σobs of the observation values. The observation covariance matrix can be added to the
loss function as r(x)TΣ−1

obsr(x) = (F (x)−y)TΣ−1
obs(F (x)−y), which is also known as the

weighted l2-norm of r(x). If the covariance matrix is diagonal, each data point has only
internal variance and the measurements are uncorrelated of each other. Furthermore, a
coefficient 1/2 is sometimes added in front of the loss function. It does not affect the
minimization but its related to the multivariate normal distribution defined in Definition
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3.5 and the derivative of the loss function in the proof of Theorem 3.4. The loss function
can now be written as

L : Rn → R,L(x) = 1
2(F (x)− y)TΣ−1

obs(F (x)− y). (3.3)

The loss function can also be regularized in order to promote different properties of
the state vector x. The regularization is done by adding an extra term of the form
(x − x0)TΓTΓ(x − x0) to the loss function where Γ is an arbitrary matrix and x0 is an
arbitrary vector. This type of regularization is known as the Tiknohov regularization [14].
The choice of Γ is not unique and depends on what qualities of the solution are to be
promoted. For example, a common choice is Γ =

√
αI and x0 = 0 where α is called

a regularization parameter and I is the unit matrix. This kind of choice enforces small
norms of x and the regularization parameter α allows a certain control over the regularity
of the solution. Using a different kind of choice, e.g. choosing Γ as a discrete difference
operator and x0 = 0, enforces smoothness of x.

If the solution is required to be close to some chosen state x0, this can be enforced by
adding a prior information to the loss function in quadratic form 1

2(x−x0)TΣ−1
pri(x−x0)

where x0 is a prior value of x and Σpri is a prior covariance matrix. With the prior
information, the loss function becomes

L : Rn → R,L(x) = 1
2(x− x0)TΣ−1

pri(x− x0) + 1
2(F (x)− y)TΣ−1

obs(F (x)− y). (3.4)

That is, the prior information ensures that the optimal x stays near the prior value x0.
The prior is said to be flat (no prior information is given) if the inverse prior covariance
matrix Σ−1

pri is a zero matrix. In this thesis, no prior information has been used.
The goal is to find an optimal vector xopt which minimizes the chosen loss function

or mathematically written as
xopt = min

x∈Rn
{L(x)} .

Finding the optimal xopt can be done with various ways. Section 3.3 introduces an easy
method for solving the optimal x in the case where the forward map F is linear. In the
case of a non-linear forward map, an iterative algorithms, such as Levenberg–Marquardt
algorithm explained briefly in Section 3.4, can be used.

By default, a state vector x in the loss function is not bounded during optimization,
other than by penalizing the distance between the modeled state and the observed data
and the distance to the prior. That is, the optimization is done in whole space Rn.
However, some state vectors, such vectors with a negative emission component(s), should
be avoided as they do not describe a physical situation. If an invalid state vector is
inputted for the model, then the modeled vector F (x) is evaluated with invalid values, such
as NaN values in Python or Matlab, indicating that the loss function is not minimized.
With this, the minimization can be done in some (connected) subset Ω ⊂ Rn.
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As explained, the key aspect of statistically solving an inverse problem is to compare
the distance between the modeled state and the observed data. The modeled state has
never a perfect correspondence, no matter how many parameters will be included. In
the case of synthetic data, which is data generated by using a model with some noise
added to it, the minimization can work ”too well”. If the generated data is from the same
model which is used for modeling the state, then naturally the correspondence between
the modeled state and the synthetic data is better than in a general case; this is called an
inverse crime. The inverse crime can be avoided by using a different model for defining
the loss function than the model used for generating the synthetic data.

3.2 Conditional probability and Bayes’ theorem

In order to better understand the minimization of the loss function and what is actually
minimized, definition of the conditional probability and Bayes’ theorem are formulated
briefly. First, a definition of the conditional probability is given in Definition 3.1.

Definition 3.1. Let (Ω,F ,P) be a probability space, where Ω is a non-empty set,
F is a σ-algebra in the set Ω and P : F → [0, 1] is a probability measure. The
probability of A ∈ F under the condition of B ∈ F is given by

P(A |B) = P(A ∩B)
P(B) , P(B) 6= 0.

The Bayes’s theorem is related to the conditional probability which tells the probability
of an event A given that an event B has been observed. From the Definition 3.1, it follows
that P(A ∩ B) = P(A |B)P(B) = P(B |A)P(A). Using this equality, the Bayes’ theorem
for probabilities states that

P(A |B) = P(B |A)P(A)
P(B) , P(B) 6= 0.

The Bayes’ theorem can be generalized in the case of countably many events. Consider
events (E)i∈I which form a partition of a probability space Ω where I is some index set.
The partition means that

Ω = ∪i∈IEi,

Ei ∩ Ej = ∅, when i 6= j.

The probability of an event A can be written as

P(A) = P(A ∩ Ω) = P(A ∩ (∪i∈IEi)) = P((∪i∈I(A ∩ Ei)))
∣∣∣Pair-wise disjoint sets

=
∑
i∈I

P(A ∩ Ei) =
∑
i∈I

P(A |Ei)P(Ei).
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The Bayes’ theorem can now be formulated as

P(Ei |A) = P(A |Ei)P(Ei)
P(A) = P(A |Ei)P(Ei)∑

i∈I P(A |Ei)P(Ei)
,

where P(Ei |A) is called a posterior probability, P(Ei) is a prior probability, P(A |Ei) is
the likelihood probability and ∑i∈I P(A |Ei)P(Ei) is a marginal probability.

Generalizing conditional probability and Bayes’ theorem for continuous random vari-
ables using density functions is not trivial. The rigorous generalization relies heavily on
measure theoretic aspects of random variables. One the most important related theo-
rems is the Radon-Nikodym theorem which allows defining a new probability measure to
some subset of a probability space. Random variables from a measure theoretic point of
view, Radon-Nikodym theorem as well as rigorous formulation of (regular) conditional
probability distribution are introduced in detail in the book by Dudley [5].

Definition 3.2. Let (Ω,F ,P) be a probability space, where Ω ⊂ Rn is a non-
empty set, F is a σ-algebra in the set Ω and X : Ω→ Rn, Y : Ω→ Rm are random
variables. The conditional probability density function of Y given a realization x
of the random variable X is

fY |X(y |x) = fX,Y (x,y)
fX(x) = fX,Y (x,y)∫

Rm fX,Y (x,y)dy , fX(x) > 0

where fX is the density of X, fY is the density of Y and fX,Y is the joint density.

Definition for the conditional probability density function 3.2 is similar to Definition 3.1
but probabilities have been replaced with integrals of the density functions. For continuous
random variables, the conditional density can be formulated as follows.

Similarly as in the case for conditional probability, from the definition of the con-
ditional density 3.2, it follows that fX,Y (x,y) = fY |X(y |x)fX(x) = fX |Y (x |y)fY (y)
which when put together result in the following Bayes’ theorem for probability densities

fX |Y =y(x) = fY |X=x(y)fX(x)
fY (y) .

It is common to formulate the Bayes’ theorem by using the terms posterior distribution,
prior distribution and likelihood function, similarly as they were used in the formulation
of the Bayes’s theorem for probabilities. The Bayes’s theorem acts as the fundamental
basis of many probabilistic and statistic applications.
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Theorem 3.3. (Bayes) Consider two random variables X ∈ Rn and Y ∈ Rm.
Assume that a random variable X has a prior (distribution) with density πpri and
a likelihood Y |X has density L. The the posterior (distribution) of X |Y is given
by

πpos(x |y) = L(y |x)πpri(x)∫
Rn L(y |x)πpri(x)dx .

Finding an exact form for the posterior is rarely possible. If it is possible, the prior is said
to be a conjugate prior for the likelihood function and the posterior distribution has the
same distribution family as the prior but with different parameters. For example, when
the likelihood is a multivariate normal distribution with a known covariance matrix and
mean, then the conjugate prior is also a multivariate normal distribution.

3.3 Linear optimal estimation

An optimal estimation [21] can be used to find a mean vector x of x for an inverse problem
y = F (x) + ε where F is linear and the loss function is the standard l2-loss function
defined in (3.4). By assuming that the prior and the likelihood have multivariate normal
distributions, an analytical distribution for the posterior, which is also a multivariate
distribution, can be found. The linearity of F is a very strong requirement and may not
true for all parameters of F . However, by using sophisticated guesses or values estimated
beforehand for the non-linear parameters of F , the optimal estimation can be used to
obtain a quick estimation for the magnitude for all the linear parameter(s) of F . These
parameter can then be optimized further with other algorithms, together with non-linear
parameters.

The optimal estimation will be derived using two different ways. The first derivation
is based on minimization of the loss function using the gradient and the Hessian of the
loss function (3.4). Naturally, this method of minimization relies to the fact that the loss
function is at least two times continuously differentiable. Generally, the loss function can
include terms which are not differentiable, making gradient-based optimizations invalid.
In this thesis however, the loss function is always defined through weighted l2-norms or
quadratic forms, which are differentiable functions with respect to x.
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Theorem 3.4. Consider a linear inverse problem y = Fx + ε where F ∈ Rm×n

is a matrix and assume that the loss function L has a quadratic form given by
L(x) = 1

2(x− x0)TΣ−1
pri(x− x0) + 1

2(Fx− y)TΣ−1
obs(Fx− y) where x0 is the prior

value, Σpri is the prior covariance matrix and Σobs is the observation covariance
matrix. The optimization of x is given by

xopt = (FTΣ−1
obsF + Σ−1

pri)−1(FTΣ−1
obsy + Σ−1

prix0)

with (posterior) covariance matrix

Σpos = (FTΣ−1
obsF + Σ−1

pri)−1.

If the prior information is not given (flat prior), then in Theorem 3.4 the inverse prior
covariance matrix Σ−1

pri is a zero matrix. The mean x0 and the covariance matrix Σpri

correspond the prior knowledge of the unknown x, the covariance matrix Σobs includes
the noise information, which can include measurement error, background noise or model
error, and finally, Σpos is the posterior covariance matrix.

Proof. By the definition, any covariance matrix Σ is symmetrical i.e. ΣT = Σ. Hence,
the gradient of the loss function L is

∇L(x) = Σ−1
pri(x− x0) + FTΣ−1

obs(Fx− y) = Σ−1
prix−Σ−1

prix0 + FTΣ−1
obsFx− FTΣ−1

obsy.

Since the loss function included the factor 1/2, taking the gradient conveniently cancels
out this factor. Solving when the gradient is zero vector yields

Σ−1
prix−Σ−1

prix0 + FTΣ−1
obsFx− FTΣ−1

obsy = 0

(FTΣ−1
obsF + Σ−1

pri)x = FTΣ−1
obsy + Σ−1

prix0

x = (FTΣ−1
obsF + Σ−1

pri)−1(FTΣ−1
obsy + Σ−1

prix0).

so the optimal value xopt = (FTΣ−1
obsF + Σ−1

pri)−1(FTΣ−1
obsy + Σ−1

prix0).
Next the Hessian of the loss function is required which is mathematically the same

as the Jacobian of the gradient. By the linearity of the Jacobian and the fact that the
Jacobian of the identity mapping is the identity matrix, the Hessian of the loss function
is

HL(x) = J(∇L(x)) = J(Σ−1
prix−Σ−1

prix0 + FTΣ−1
obsFx− FTΣ−1

obsy) = Σ−1
pri + FTΣ−1

obsF.

The Hessian does not depend on x as taking Hessian of any quadratic form is a constant.
The (posterior) covariance matrix Σpos tells covariance between the estimation xopt and
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the true value xtrue and it can be computed as

Σpos = E[(xopt − xtrue)(xopt − xtrue)T]. (3.5)

It turns out that this covariance is the same as the inverse Hessian of the loss function
or Σpos = H−1

L . This can be shown by starting from the fact that ∇L(xopt) = 0 and
modifying the expression as

0 = Σ−1
pri(xopt − x0) + FTΣ−1

obs(Fxopt − y)

= Σ−1
pri(xopt − xtrue + xtrue − x0) + FTΣ−1

obs(Fxopt − Fxtrue + Fxtrue − y)

= Σ−1
pri(xopt − xtrue) + Σ−1

pri(xtrue − x0) + FTΣ−1
obs(Fxopt − Fxtrue) + FTΣ−1

obs(Fxtrue − y)

= Σ−1
pri(xopt − xtrue) + FTΣ−1

obsF (xopt − xtrue)−Σ−1
pri(x0 − xtrue)− FTΣ−1

obs(y − Fxtrue).

By rearranging the terms yields

(Σ−1
pri + FTΣ−1

obsF )(xopt − xtrue) = Σ−1
pri(x0 − xtrue) + FTΣ−1

obs(y − Fxtrue),

which after taking a matrix product between the transpose and the matrix itself implies

(Σ−1
pri + FTΣ−1

obsF )(xopt − xtrue)(xopt − xtrue)T(Σ−1
pri + FTΣ−1

obsF )T

=(Σ−1
pri(x0 − xtrue) + FTΣ−1

obs(y − Fxtrue))(Σ−1
pri(x0 − xtrue) + FTΣ−1

obs(y − Fxtrue))T

=Σ−1
pri(x0 − xtrue)(x0 − xtrue)T(Σ−1

pri)T + FTΣ−1
obs(y − Fxtrue)(y − Fxtrue)T(Σ−1

obs)TF

+Σ−1
pri(x0 − xtrue)(y − Fxtrue)T(Σ−1

obs)TF + FTΣ−1
obs(y − Fxtrue)(x0 − xtrue)T(Σ−1

pri)T.

By taking the expected value from the both sides of this equation, the desired result will
follow. Note that due to symmetry of the covariance (Σ−1

pri)T = Σ−1
pri and (Σ−1

obs)T = Σ−1
obs.

This also implies that (Σ−1
pri + FTΣ−1

obsF )T = FTΣ−1
obsF + Σ−1

pri. The expected value of the
left side when using the notation 3.5 is becomes

E[(Σ−1
pri + FTΣ−1

obsF )(xopt − xtrue)(xopt − xtrue)T(Σ−1
pri + FTΣ−1

obsF )T]

=(Σ−1
pri + FTΣ−1

obsF )E[(xopt − xtrue)(xopt − xtrue)T](Σ−1
pri + FTΣ−1

obsF )

=(Σ−1
pri + FTΣ−1

obsF )Σpos(Σ−1
pri + FTΣ−1

obsF ),

where E[(xopt−xtrue)(xopt−xtrue)T] = Σpos follows from the fact that the posterior covari-
ance matrix is the covariance between the true state and the estimated state. Similarly,
the E[(x0−xtrue)(x0−xtrue)T] = Σpri since the prior covariance matrix is the covariance
between the prior state and the true state and E[(y−Fxtrue)(y−Fxtrue)T] = Σobs as the
observation covariance matrix is the covariance between the observation and the modeled
state. Finally, as the prior state and observation are assumed to be independent, their
covariance matrix is a zero matrix or

E[(x0 − xtrue)(y − Fxtrue)T] = E[(y − Fxtrue)(x0 − xtrue)T] = O.
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With these, the expected value of the right side is

Σ−1
priΣpri(Σ−1

pri)T + FTΣ−1
obsΣobs(Σ−1

obs)TF + Σ−1
priO(Σ−1

obs)TF + FTΣ−1
obsO(Σ−1

pri)T

=Σ−1
pri + FTΣ−1

obsF.

These deductions show that

(Σ−1
pri + FTΣ−1

obsF )Σpos(Σ−1
pri + FTΣ−1

obsF ) = Σ−1
pri + FTΣ−1

obsF

⇔Σpos = (Σ−1
pri + FTΣ−1

obsF )−1 = H−1
L

which completes the proof of Theorem 3.4.

The fact that the posterior covariance matrix is characterized by the (inverse) Hes-
sian is also true in a non-linear case but it depends on the state x, unlike in the case of
linear model where the covariance matrix is constant everywhere (since Hessian is con-
stant). Given a non-linear model F : Rn → Rm and the default l2-loss function without
prior terms L(x) = 1

2(F (x)− y)TΣ−1
obs(F (x)− y), the posterior covariance at xopt is

Σpos(xopt) = H−1
L (xopt).

where xopt is the optimal value. This is based on the fact that near xopt the loss function
can be linearized as

F (x) ≈ F (xopt) + ∂F (xopt)
∂x

(x− xopt) = F (xopt) + JF (xopt)(x− xopt) (3.6)

where JF is the Jacobian matrix of the forward map. This is analogical to the one-
dimensional case where a differentiable function f : R→ R can be approximated near x0

as
f(x) ≈ f(x0) + f ′(x0) · (x− x0).

This approximation and the multidimensional formulation in 3.6 are first order Taylor
series approximations of the functions f and F near fixed points x0 and xopt, respectively.
Interestingly, the Hessian of the loss function can be characterized by the Jacobian of
the forward map. By applying the first order approximation for the forward map F , the
standard l2-loss function can be approximated near xopt as

L(x) ≈ 1
2(F (xopt) + JF (xopt)(x− xopt)− y)TΣ−1

obs(F (xopt) + JF (xopt)(x− xopt)− y)

which has Hessian
HL = JF (xopt)TΣ−1

obsJF (xopt).

With the prior information included, the Hessian would naturally be

HL = JF (xopt)TΣ−1
obsJF (xopt) + Σ−1

pri.
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The covariance matrix at xopt is the inverse of the Hessian at xopt as stated earlier and
thus, the covariance can be estimated using the approximated Hessian as

Σpos(xopt) = (HL)−1 ≈ (JF (xopt)TΣ−1
obsJF (xopt) + Σ−1

pri)−1 (3.7)

Note that this is analogical to the result of Theorem 3.4 but the linear model matrix F
has been replaced with the Jacobian matrix. The formula (3.7) gives an useful method
for computing covariance matrix at xopt and quantify error estimations for the retrieved
parameters. The linearization of the loss function near some point x is related to the
iteration done by the Levenberg–Marquardt (LM) algorithm given in Section 3.4.

Alternative deduction to validate the optimal estimation can be done by using mul-
tivariate normal distributions.

Definition 3.5. If a random variable Z taking values in Rn follows a multivariate
normal distribution, it has a density function

fZ(z) = 1√
(2π)n |Σ|

e−
1
2 (z−µ)TΣ−1(z−µ)

where µ is the mean of Z, Σ is a positive-definite covariance matrix of Z and
|Σ| = det(Σ). A random variable Z following a normal distribution is denoted as
Z ∼ N (µ,Σ).

By assuming that the forward model F is linear and that both the prior knowledge of x
and background noise ε follow the multivariate normal distribution, a similar result as in
Theorem 3.4 can be recovered.

Theorem 3.6. Assume that distributions of x ∈ Rn and ε ∈ Rm are given
by N (x0,Σpri) and N (0,Σobs) correspondingly. Consider an inverse problem
y = Fx + ε where F ∈ Rm×n is a matrix. The posterior distribution of x given
observation y has a form πpos(x |y) ∝ exp(−1

2(x− xopt)TΣ−1
pos(x− xopt)) where

xopt = (FTΣ−1
obsF + Σ−1

pri)−1(FTΣ−1
obsy + Σ−1

prix0),

with the posterior covariance matrix

Σpos = (FTΣ−1
obsF + Σ−1

pri)−1.

Again, if the prior is flat, then the inverse covariance matrix of the prior Σ−1
pri is a zero

matrix. Theorem 3.6 essentially states the same result as Theorem 3.4 but with slightly
different approach.
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Proof. Since y = Fx + ε, it implies that ε = Fx − y which means that the density of
the noise ε is the same as the likelihood of Y |X. By using the normal density given in
Definition 3.5 and denoting the density of the likelihood Y |X with L(y |x), it follows
that

−2 lnL(y |x) = εTΣ−1
obsε+ c1 = (Fx− y)TΣ−1

obs(Fx− y) + c1,

where c1 is a constant resulted by the normalizing coefficient in front of the exponent after
using the logarithm rules. Note that the negative logarithm of the likelihood − lnL(y |x)
includes a term which is exactly the same as the loss function L(x) given in Equation 3.3.
That is, the likelihood L(y |x) ∝ exp(−L(x)).

Similarly for the prior

−2 ln πpri(x) = (x− x0)TΣ−1
pri(x− x0) + c2,

where again c2 is some constant. By using Bayes’ theorem 3.3, it follows that

πpos(x |y) ∝ πpri(x)L(y |x)

and for the logarithm

−2 lnL(x |y) = (x− x0)TΣ−1
pri(x− x0) + (Fx− y)TΣ−1

obs(Fx− y) + c3,

where c3 contains all constant terms. The posterior density πpos(x |y) is required to have
a form

−2 ln πpos(x |y) = (x− xopt)TΣ−1
pos(x− xopt) + c4.

That is,

(x− x0)TΣ−1
pri(x− x0) + (Fx− y)TΣ−1

obs(Fx− y) + c3 = (x− xopt)TΣ−1
pos(x− xopt) + c4

must be true ∀x ∈ Rn. After opening parentheses, this yields to an equality

xTΣ−1
prix+ xT

0 Σ−1
prix0 − xTΣ−1

prix0 − xT
0 Σ−1

prix+ c2

+yTΣ−1
obsy + xTFTΣ−1

obsFx− yTΣ−1
obsFx− xTFTΣ−1

obsy + c3

=xTΣ−1
posx+ xT

optΣ
−1
posxopt − xTΣ−1

posxopt − xT
optΣ

−1
posx+ c4.

Since this must be true for all x ∈ Rn, the coefficients of terms with both xT and x,
terms with xT and terms with x must be equal.
Equating terms with both xT and x yields

xTΣ−1
prix+ xTFTΣ−1

obsFx = xTΣ−1
posx ∀x ∈ Rn

⇔Σ−1
pos = FTΣ−1

obsF + Σ−1
pri

⇔Σpos = (FTΣ−1
obsF + Σ−1

pri)−1. (3.8)
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and equating terms with xT yields

− xTΣ−1
prix0 − xTFTΣ−1

obsy = −xTΣ−1
posxopt ∀x ∈ Rn

⇔Σ−1
posxopt = Σ−1

prix0 + FTΣ−1
obsy

⇔xopt = Σpos(Σ−1
prix0 + FTΣ−1

obsy)
∣∣∣Substitute Σpos

⇔xopt = (FTΣ−1
obsF + Σ−1

pri)−1(FTΣ−1
obsy + Σ−1

prix0), (3.9)

which is already enough to prove Theorem 3.6. Equating terms with x or constants terms
does not provide any additional information.

The optimal estimation is equivalent to the posterior mode estimation when the posterior
is of the form πpos ∝ e−L. Minimizing the loss function L trivially maximizes the function
e−L. This type of choice is very typical for the posterior distribution.

3.4 Levenberg–Marquardt algorithm

Usually, the forward model F is not linear, or is linear only in some variables. For a
non-linear optimization with the standard l2-loss function without prior knowledge or
observation covariance, the Levenberg–Marquardt algorithm proceeds as given in Defini-
tion 3.7. There are also other possible algorithms for optimizing a non-linear least-square
fitting but in this thesis, the LM-algorithm will be used.

Definition 3.7. Given a parameter vector x, an observed data y and a residual vec-
tor r(x) = F (x)− y. To find the minimum of L(x) = r(x)Tr(x) = ||F (x)− y||22,
a chosen initial value x0 is updated according to the rule

xi+1 = xi + (JF (xi)TJF (xi) + λidiag(JF (xi)TJF (xi)))−1JF (xi)Tr(xi),

where JF (xi) is the Jacobian matrix of F at xi and the parameter λi is a parameter
which is used for defining a termination condition for the iteration.

Details and implementation of the Levenberg–Marquardt algorithm are explained in the
book ”Numerical Recipes” [19]. This thesis uses implementation from Python’s SciPy
[24] optimization module. The LM-algorithm usually gives very good results for the
retrieved parameters, as will be shown by the results in Chapter 5. The covariance matrix
for the retrieved parameters can be estimated by using the numerical Jacobian of the
forward model at the optimal state as stated in the approximation (3.7) for the covariance
matrix. The Jacobian at the optimal state is computed by the LM-algorithm during the
final iteration which can be returned; external codes for computing the Jacobian are not
required.
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3.5 Statistical inversion

Statistical inversion methods are based on random sampling. The main idea is to sample
from a distribution of some unknown variable without actually knowing the exact form
of the distribution. As the sample size increases, the central limit theorem [6] guarantees
that the sample mean converges to the true expected value of the distribution.

3.5.1 Markov chain Monte Carlo method

The term ”Monte Carlo” originally refers to Monte Carlo integration which simply means
integration by using random sampling. As an example, consider a function f : [a, b]→ R
which is assumed to be continuous and non-negative for simplicity. A one-dimensional
integral

∫ b
a f(x)dx is required to be approximated. The integral has an upper bound∫ b

a
f(x)dx ≤ (b− a) · sup

x∈[a,b]
f(x) = (b− a) · ||f ||∞ .

which geometrically represents an area of a rectangle with width b− a and height ||f ||∞.
Random numbers are then sampled from this rectangle such that values in the x-axis are
sampled from [a, b] and values from the y-axis are sampled from [0, ||f ||∞] using uniform
distributions. Each point is accepted or rejected, based on whether or not it falls under
the curve of f . This is illustrated in Figure 3.1.

x
a b

Figure 3.1: An example of the Monte Carlo integration. The function f , marked with
solid black line, is the decision boundary. Out of the generated points, the accepted points
are underneath the boundary in blue and the rejected points are above in red.

As number of samples increases, the ratio between the number of accepted points and the
total number of samples converges to the true value of the integral. That is,

Naccepted

Naccepted +Nrejected
→
∫ b

a
f(x)dx

as the sample size increases.
Monte Carlo integration works also for multidimensional integrals over compact

sets though the number of required samples grows to the power of the dimension. By
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using Monte Carlo method, many kinds of quantities defined through integral, such as an
expected value, can be estimated. As an example, assume that a function f : Rn → R is
a measurable function and π is a density function of a random variable X. The expected
value is defined as

E[f(X)] =
∫
Rn
f(x)π(x)dx.

If the expected value exists, by the strong law of large numbers [6] for a random sample
xi with sample size N from the distribution of X holds

1
N

N∑
i=1

f(xi) →
N→∞

E[f(x)]

almost surely. That is, the expected value E[f(x)] can be estimated simply by drawing
enough samples from the distribution of X, mapping them with f and finally averaging
those values. The estimation is then

1
N

N∑
i=1

f(xi) ≈ E[f(x)]

for large enough N .
The term ”Markov chain” refers to a stochastic process or a sequence of random

variables which have a Markov property. In simple terms, this means that the next state
depends only the present state [6].

Definition 3.8. A sequence (Xn)n∈N of discrete random variables is a Markov chain
if it satisfies a Markov property

P(Xn+1 = x |X0 = x0, . . . , Xn = xn) = P(Xn+1 = x |Xn = xn).

The sequence of random variables moves from the current state to the next state with
transition probability.

Definition 3.9. Let (S,F) be a measurable and countable state space for each Xn.
A function p : F × S → [0, 1] is called a transition probability (kernel) if

1. For each s ∈ S the function A→ p(A, s) is a probability measure on (S,F),

2. For each A ∈ F the function s→ p(A, s) is a F -measurable.

If the state space is uncountable (like Rn), Markov chain is called Harris chain [6].
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Definition 3.10. Let (S,F) be a measurable state space for each Xn and a transi-
tion probability p(x,C) = P(Xn+1 ∈ C |Xn = x) for all states x ∈ S and measurable
sets C ∈ F . A sequence (Xn)n∈N is a Harris chain if there exists a set A ⊂ S, an
arbitrary ε > 0 and a probability measure µ on S such that

1. P(inf{n ≥ 0: Xn ∈ A} <∞|X0 = x0) = 1 for all initial states x0 ∈ S,

2. If x ∈ A is a state and C ⊂ S is a measurable set, then p(x,C) ≥ εµ(C).

The expression inf{n ≥ 0: Xn ∈ A} represents the first time when the random process
enters the region A and by requiring inf{n ≥ 0: Xn ∈ A} <∞ ensures that the set A is
reachable by the random process. The probability

P(inf{n ≥ 0: Xn ∈ A} <∞|X0 = x0) = 1

ensures that the process returns to state inside A almost surely regardless of the initial
state. The condition p(x,C) ≥ εµ(C) is related to the process moving from the state x to
some state inside C. The next state xn+1 ∈ S is generated by flipping a biased coin with
success probability ε. If the coin flip is successful or if ε ≥ 1, the next state is determined
by the probability measure µ and if the coin flip fails, the next state is chosen using the
probability p(x,C). This is the same as random walking in the chosen state space S.

After the random walk has been iterated long enough, the distribution of random
variables in the chain should converge to some stationary distribution. That is, the
values generated from the random walking follow a fixed distribution with some mean
and standard deviation. Thus, generating enough values in the Markov chain enables
the possibility to sample directly from the stationary distribution without knowing the
exact form for it. Using a similar kind of idea, when the prior and the likelihood are
known, values from the posterior in Theorem 3.3 can be generated using random walk
without actually knowing the posterior distribution; the posterior acts as the stationary
distribution. This type of method combining random walk and sampling is called a
Markov chain Monte Carlo. There exists many numerical algorithms to sample long
chains of values from a posterior distribution; perhaps one of the most known of them
is called Metropolis-Hastings algorithm. In this thesis, an adaptive Metropolis algorithm
[11] will be used for generating these random walk chains.

3.5.2 Adaptive Metropolis algorithm

Metropolis-Hastings (MH) algorithm is one of the most used implementations for numer-
ically computing MCMC method. Consider a random variable X which has a target
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distribution supported in some S ⊂ Rn with density p. A standard Metropolis-Hastings
algorithm progresses as follows:

1. Define a proposal distribution of Z |Xt−1 with a density q and sample a candidate
point z from this proposal distribution,

2. Define an acceptance ratio (probability) as

A =

min
(

p(z)q(z |xt−1)
p(xt−1)q(xt−1 |z) , 1

)
, if p(xt−1)q(xt−1 | z) > 0

1, if p(xt−1)q(xt−1 | z) = 0.
,

3. Sample a value u from the uniform distribution U([0, 1]). If u ≤ A, the proposed
point is accepted and the next value in the chain is xt = z. Otherwise, the point is
rejected and the next value in the chain is xt = xt−1.

The longer the algorithm iterates, the more certain it is that the Markov chain has reached
the stationary distribution. There are no explicit rules to tell when the convergence has
been reached as it is dependent on initial condition, proposal distribution and other
parameters. It is also worth noting that the next value can not jump outside the specified
set S as the density p vanishes outside S, making the acceptance ratio zero.

The adaptive Metropolis (AM) algorithm [11] slightly deviates from the standard
MH algorithm. The term ”adaptive” refers to the fact that the proposal distribution with
density q = qt will be updated during the iteration of the algorithm. A proposal distri-
bution is fixed to be a multivariate Gaussian distribution with mean xt−1 and covariance
Ct = Ct(X0, . . . ,Xt−1). It is worth noting that using this kind of covariance makes the
chain non-Markovian as the next value now depends on the entire history in the chain.
As the proposal distribution is a multivariate Gaussian, the symmetry implies

qt(z |x0, . . . ,xt−1) = 1√
(2π)n |Ct|

e−
1
2 (z−xt−1)TC−1

t (z−xt−1)

= 1√
(2π)n |Ct|

e−
1
2 (xt−1−z)TC−1

t (xt−1−z)

= qn(x0, . . . ,xt−1 | z)

in which case the acceptance ratio becomes

A =

min
(

p(z)
p(xt−1) , 1

)
, if p(xt−1) > 0

1, if p(xt−1) = 0.
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The target distribution is generally the posterior of X |Y with density πpos where X is
the random variable of interest as Y characterizes e.g. a measured observation. According
to the Bayes’s theorem, for the posterior

p(x) = πpos(x |y) ∝ L(y |x)πpri(x),

where L is the likelihood of Y |X and πX = πpri is the prior of X. The acceptance ratio
is then

A =

min
(

L(y |z)πpri(z)
L(y |xt−1)πpri(xt−1) , 1

)
, if L(y |xt−1)πpri(xt−1) > 0,

1, if L(y |xt−1)πpri(xt−1) = 0.

In the case of a flat prior, the ratio between the priors is always constant in S. Moreover,
the likelihood L(y |x) and the loss function L(x) are (usually) related by

L(x) = − lnL(y |x)⇔ L(y |x) = e−L(x).

With these, the acceptance ratio reduces to

A =

min
(
e−L(z)+L(xt−1), 1

)
, if z ∈ S

0, if z /∈ S.

The loss function L is not limited to the standard loss function but rather can be any kind
of norm-expression or sum of norm expression which characterizes the distance between
the observed data and the model. This loss function can be used to promote different
properties of the optimal solution, such as sparsity or smoothness, as explained in Section
3.1 when the loss function was first introduced.
The covariance Ct is defined as

Ct =

C0, t ≤ t0

sdcov(X0, . . . ,Xt−1) + sdεId, t > t0,

where C0 is an initial covariance, t0 is the length of an initial time period (burn-in and
warmup), ε ≥ 0 is parameter that ensures that Ct is never singular, sd is a scaling
parameter given by sd = 2.42/d and Id is a d× d unit matrix.

The initial covariance can be chosen freely but the closer it is to the converging
value the shorter the burn-in period needs to be. The covariance cov(X0, . . . ,Xt−1) can
be estimated as the empirical (sample) covariance by using the empirical (sample) mean.
The empirical mean xt ≈ E[Xt] is computed by using previous values in the chain as

xt = 1
t+ 1

t∑
k=0
xk.
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and the empirical covariance Qt ≈ cov(X0, . . . ,Xt−1) can be computed as

Qt = 1
t− 1

t−1∑
k=0

(xk − xt−1)T(xk − xt−1) = 1
t− 1

(
t−1∑
k=0
xT
kxk − txT

t−1xt−1

)
.

As the chain becomes longer, estimating the covariance computationally heavier. Luckily,
there exists a recursion relation both for xt and Ct which saves computation time.

Lemma 3.11. Consider an empirical mean

xt = 1
t+ 1

t∑
k=0
xk,

and an empirical covariance matrix

Qt = 1
t− 1

(
t−1∑
k=0
xkx

T
k − txt−1x

T
t−1

)
.

The mean xt and the covariance Ct = sdQt + sdεId satisfy the recursion relations

xt = 1
t+ 1(txt−1 + xt),

Ct+1 = t− 1
t
Ct + sd

t

(
txt−1x

T
t−1 − (t+ 1)xtxT

t + xtxT
t + εId

)
.

Proof. The recursion for the empirical mean follows easily as

xt = 1
t+ 1

t∑
k=0
xk = 1

t+ 1

(
t−1∑
k=0
xk + xt

)
= 1
t+ 1 (txt−1 + xt) .

For the covariance, first note that
t−1∑
k=0
xkx

T
k = t− 1

sd
Ct − (t− 1)εId + txt−1x

T
t−1

from the definitions of Qt and Ct. By considering Ct+1, it follows that

Ct+1 = sdQt+1 + sdεId

= sd
t

(
t∑

k=0
xkx

T
k − (t+ 1)xtxT

t

)
+ sdεId

= sd
t

(
t−1∑
k=0
xkx

T
k + xtxT

t − (t+ 1)xtxT
t

)
+ sdεId

∣∣∣Substitute t−1∑
k=0
xkx

T
k

= sd
t

(
t− 1
sd

Ct − (t− 1)εId + txt−1x
T
t−1 + xtxT

t − (t+ 1)xtxT
t

)
+ sdεId

= t− 1
t
Ct + sd

t

(
txt−1x

T
t−1 + xtxT

t − (t+ 1)xtxT
t − (t− 1)εId + tεId

)
= t− 1

t
Ct + sd

t

(
txt−1x

T
t−1 − (t+ 1)xtxT

t + xtxT
t − εId

)
which is the desired recursion relation for Ct.
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If Ct does not have tendency to become singular, the AM-algorithm may be utilized with
ε = 0. More information about the algorithm is given in the paper by Haario et al. [11]
in which they introduce the algorithm in detail.

After the AM-algorithm has been iterated long enough, the random samples in the
chain will drawn from the stationary distribution of the chain. In Bayesian formalism, this
stationary distribution is the posterior distribution i.e. the distribution of the parameters
given the observed data. The samples drawn from the posterior distributions can be used
to estimate the mean and the covariance matrix of the posterior.

In the case of the adaptive Metropolis algorithm, the mean estimation x of the state
vector is estimated as the empirical mean over the values in the chain after the burn-in
period t0. Similarly, the covariance matrix is estimated as the empirical covariance matrix
over the values in the chain after the burn-in period t0. The standard deviations for
each component in x is given by the square-root of the diagonal values of the empirical
covariance matrix. Other possible error sources, which are not included during the fitting
of the parameters, may be added included separately.

As for typical Markov chains, length of the burn-in period t0 is arbitrary and depends
mostly on the initial value and covariance matrix of the chain. A common strategy is first
to obtain a good estimation for the state vector using another algorithm and then start
the chain with that value. Similarly for the initial covariance matrix; starting with a good
estimation for the covariance matrix allows shorter burn-in period.

Longer chains give more accurate estimations of the mean and the covariance matrix
of the state vector but every iteration requires two forward model evaluations, which can
make generating long chains slow depending on the evaluating time of the forward model.
The strength of the AM-algorithm, or Markov chain Monte Carlo methods in general, is
that the loss function has no requirements on differentiability. The estimation of the state
vector obtained with the AM-algorithm is the posterior mean estimate which is different
from the posterior mode estimate obtained by applying optimization algorithms, such as
LM-algorithm, for the loss function. If the posterior is or is close to a multivariate normal
distribution, the posterior mean and the posterior mode estimates are close to each other.
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This chapter briefly introduces external data products used in this thesis. These products
include data on the wind components as well as CO2 satellite observations.

4.1 Orbiting Carbon Observatory-2

The Orbiting Carbon Observatory-2 (OCO-2) is a satellite launched on 2.7.2014 by NASA
[3]. This thesis uses the OCO-2 version V10r lite files, which include bias correction
and data screening and are available from NASA’s Goddard Earth Sciences Data and
Information Services Center. The OCO-2 satellite is capable of measuring CO2 in a
vertical atmospheric column with a high spatial resolution, usually eight measurements
over its swath width, which is the width of the area on the Earth’s surface seen by
the satellite, if there are no clouds interfering with the measurement. For OCO-2, the
swath width is about 10 kilometers. Methods, atmospheric sounding algorithms and other
details used by the OCO-2 when performing retrievals are explained in detail in Algorithm
Theoretical Basis Document by NASA’s Jet Propulsion Laboratory [2]. Validation of the
data collected by the OCO-2 are presented in the article by Wunch et al. [25] in which
the OCO-2 data is compared with the data collected by ground based instruments.

If the OCO-2 flies by a strong enough emission source, an enhancement in the CO2

field can be seen. A general overview of this type of measurement is illustrated in Figure
4.1.

Figure 4.1: An overview of the OCO-2 observation. The dashed black rectangle marks
the measured area, the black dot the plume source and the red lines represent the area
where the enhancement of CO2 can be observed. The blue line denotes the swath width
of the satellite which is 10 km.

42
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At each measurement location, the satellite records the dry air column average of CO2 in
parts per million (ppm) which is denoted as XCO2 . The column average of any gas can
be computed from the total column of gas with the formula [4]

Xgas = V Cgas/Mgas
Ps

g·Mdry
− V CH2O · MH2O

Mdry

,

where V Cgas is the total vertical column of gas (kg/m2), Ps is the surface pressure (Pa),
g is the gravitational acceleration (m/s2), MH2O, MH2O and Mgas are molecular masses
(g/mol) of dry air, water and gas of interest, respectively. The gravitational acceleration
g is dependent on the latitude by the empirical formula

g(φ) = 9.780327 · (1 + 0.0053024 · sin2(φ)− 0.0000058 · sin(2φ)),

where φ is the latitude for which of the location for which the column average is computed.
As the OCO-2 measures the fraction of CO2 to dry air, the total column of water vapor
V CH2O can be ignored and the column average can be computed as

Xgas = V Cgas
Ps

g·Mdry/Mgas

= g

Ps
· Mdry

Mgas
· V Cgas. (4.1)

The column average of gas tells the fraction of that gas from the total vertical column of
dry air. A column average of the CO2 in the atmosphere is typically about 419 ppm as
of writing this thesis but it slowly increases all the time due to the anthropogenic CO2

emissions. The satellite measures the column average XCO2 , but the models evaluate the
total column V CCO2 so the total column of CO2 needs to be converted to ppm with the
conversion factor in equation (4.1).

4.2 Atmospheric reanalysis 5

The fifth generation of atmospheric reanalysis (ERA5) is a comprehensive data set pro-
duced by the Copernicus Climate Change Service (C3S) at European Centre for Medium-
Range Weather Forecasts (ECMWF) which includes many atmospheric variables. Some
of these variables are given on different pressure levels [7] while the others are single level
variables [8]. Variables available on different pressure levels include temperature, vortic-
ity of air, divergence of air, wind components and many other similar types of variables.
Single level variables include surface pressure, surface wind components, surface temper-
ature, total column of water (vapor) and many others. The most useful regarding this
thesis are wind components on surface and on pressure levels as well as surface pressures.
Both the single level data and the pressure level data have on hourly temporal resolution
and 0.01◦ longitudial and latitudial resolution. All the possible levels are between 100
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hPa and 1 hPa (100 hPa being the standard surface pressure) with total of 37 layers and
surface level data is typically a few metres above the Earth’s surface.

Horizontal wind in longitudial and latitudial directions are given in units m/s but
the vertical wind is given in Pa/s since the air is moving from pressure level to another.
The wind in Pa/s can be converted to m/s by using Barometric formula and its inverse
presented in equation (4.2) which describes the relation between the altitude h and the
pressure p.

p(h) = p0 ·
(

1− Lh

T0

) gMdry
LR0
⇔ h(p) = T0

L
·

1−
(
p

p0

) LR0
gMdry

 (4.2)

where h is altitude, p is pressure, p0 = 101325 Pa is the standard atmospheric pressure,
L ≈ 0.00976 K/m is temperature lapse rate (for dry air), T0 = 288.15 K (≈ 15◦C) is the
standard temperature, g = 9.8067 m/s2 is the gravitational acceleration, Mdry = 0.0290
kg/mol is molar mass of dry air and R0 = 8.3145 is the universal gas constant. Using the
chain rule and differentiating the function h(p) with respect to time t yields

dh

dt
= dh

dp
· dp
dt

= −dp
dt
· T0R0

gMdryp0
·
(
p

p0

) R0L
gMdry

−1

where the quantity dp/dt is the change in pressure with respect to the time which is
given in the ERA5 data. It is worth noting that barometric formula is only valid inside
troposphere which means that approximately the altitude must be less than 15 km and
the pressure larger than 11.5 hPa. Since the plumes considered in this thesis stay inside
the troposphere, using this kind of conversion is acceptable.

When using ERA5 data, an interpolation for the wind fields is usually required.
Python’s SciPy library has an interpolate module which is an efficient interpolation of
points in Rn using known grid values. Alternatively, if a uncertainty propagation from the
grid values to the interpolated value is relevant, a custom interpolation with Shepard’s
method described in Appendix B can also be used.
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This chapter introduces plume simulations, results and experiments with convection-
diffusion model and Gaussian model. The considered plumes are originated from the
Matimba power station which has latitude-longitude location (−23.6686◦, 27.6117◦). El-
evation is about 920 m above the sea level for the power plant and two chimneys (which
are interpreted as a single source) are about 250 m high. When generating plumes with
the convection-diffusion model, some initial velocity needs to be added for the plume, as
explained in Appendix A. Adding the initial velocity allows the plume is able to spread
further in shorter time. Initial velocities used on different dates are written in Table A.1.

5.1 Inversions with synthetic data

To test sensitivity of different model parameters, an observation can be simulated by
generating a plume from a model. To avoid the inverse crime, the plume should be
generated by using a different model than the model used for inversion. In this section,
the simulated plume is created using the convection-diffusion model according to the
wind fields from ERA5 data set and the inversions are performed with the Gaussian
model. Generating a simulated plume allows a better control over the model parameters.
Furthermore, the background noise will be added artificially so the mean and the standard
deviation of the background can be controlled as well.

Figure 5.1 shows a simulated plume on 11.07.2018. After the plume has been gen-
erated, the background with the mean of 406.0 ppm and the standard deviation of 0.6
ppm is added to every pixel, representing the normal background noise of CO2 in the
atmosphere. The spatial resolution used for plume generation was originally 0.001◦ but
each 10×10 pixel grid was averaged to form one larger pixel, making the spatial resolution
0.01◦. In order for the plume to spread further, some initial velocity has to be added,
as explained in Appendix A. The added initial velocity and slowing scale of that initial
velocity are determined according to Table A.1.
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Figure 5.1: The simulated plume on 11.07.2018 using emission rate 5 ·105 g/s = 43.2 kt/d
and the smallest allowed diffusion. The light orange rectangle presents the background
values of the column average of CO2, whereas the darker red values represent the simulated
plume with higher values of the column average. The background values have a mean of
406 ppm and a standard deviation of 0.6 ppm.

The simulated plume can be sliced with an arbitrary observation rectangle to simulate
an observation. The value representing a pixel in the artificial observation rectangle is
chosen to be the closest known pixel from the generated plume pixels.

The first test is to fit the emission, wind direction and exponent using the Gaussian
model with LM-algorithm. An artificial observation as well as the fitted plume after
the inversion are presented in Figure 5.3. The width of this artificial observation is 0.5◦

which is much wider than the swath of the OCO-2 satellite. The observation rectangle is
interpolated with 0.01◦ discretization and the model resolution is 0.005◦.
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(a) Simulated wide observation.
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(b) Inversion using the Gaussian model.

Figure 5.2: Synthetic data inversion with the Gaussian model on 11.07.2018 with wide
observation. The black square is the plume source and the lighter orange pixels present
the background values of XCO2 , whereas the darker red and orange values represent the
simulated plume with higher values of XCO2 . The background has a mean of 406.0 ppm
and a standard deviation of 0.6 ppm.
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The estimated emission rate is about 782000 g/s or 67.6 kt/d which is an over estimation
compared to the true emission 43.2 kt/d. The wind direction is about −2.70 ≈ −154.7◦,
the average wind speed u is 6.75± 0.32 m/s and the estimated stability parameter from
the surface wind is estimated being about 207.5.

If the atmospheric stability parameter were to be fitted, it turns out that the stability
parameter and the exponent have a strong negative correlation. This implies that they
can not be reliably fitted together, even in the case of such a wide observation. A similar
effect between these parameters is also present for observations from other dates. Since
the stability parameter can be estimated from the surface wind, it is enough to estimate
the stability parameter beforehand and then fit the exponent together with other the
emission rate and the wind direction.

A simulated observation, closer to an observation measured by the OCO-2 satellite,
is shown in Figure 5.3. This observation has width 0.17◦, representing the realistic swath
width of the OCO-2. As before, the spatial resolution of this simulated observation
rectangle is 0.01◦ and the model resolution is 0.005◦.
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Figure 5.3: Simulated narrow observation. The black square is the plume source, and the
orange rectangle presents the background values of the column average of CO2, whereas
the darker red values represent the simulated plume with higher values of the column
average. The background values have a mean of 406.0 ppm and a standard deviation of
0.6 ppm.

The optimal state vector is now xopt ≈ (750000,−2.674, 0.866) which corresponds 64.8
kt/d for the emission rate, −153.2◦ for the wind direction and 0.866 for the exponent. The
estimated average wind speed 6.56 ± 0.31 m/s and the stability parameter is estimated
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as a ≈ 207.6. The covariance and the correlation matrices are

Σx ≈


1.10 · 109 −6.59 · 10−1 2.35 · 102

−6.59 · 10−1 2.06 · 10−4 −3.89 · 10−8

2.35 · 102 −3.89 · 10−8 1.52 · 10−4



corrx ≈


1 −0.001 0.578

−0.001 1 −0.002
0.578 −0.002 1

 .
The wind direction has low correlation to both the emission and the exponent but the
exponent clearly correlates with the emission rate. The estimated emission seems to over-
estimate the true emission rate 43.2 kt/d. The possible reasons for this can be uncovered
by performing further test for the simulated data.

Since the information of the whole plume is available, the simulation rectangle can
be moved freely further or closer to the source. This enables testing on how the distance
affects the estimated emissions rate. The behavior of estimated mean values for the
emission rate with respect to the distance between the observation and the source are
shown in Figure 5.4.
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Figure 5.4: Emission rate estimation with respect to the distance between the observation
and the source using Gaussian model and LM-algorithm. The red dots are the estimated
parameter mean values and the blue line is a second degree polynomial fit.

As the distance gets smaller, the estimated emission seems to be growing. Optimally, the
emission should remain about the same over all distances but clearly it is not true in this
case. Possible reasons for this are that both or one of the use plume models are/is not
consistent in distance. Most likely the problem is with the convection-diffusion model, as
simulating the plume accurately is fairly complicated.

Other factors besides the fitted parameters affecting the inversion result are the
background noise level and the resolution of the observation. For example, increase in the
standard deviation of the background makes it harder to distinguish the plume from the
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background. Naturally, this also makes optimizing the parameters more challenging and
optimization algorithms may not be able to find reasonable model parameters. Figure
5.5 shows the behavior of the emission rate with respect to the background standard
deviation.
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Figure 5.5: Emission rate estimation with respect to the background standard deviation
using Gaussian model and LM-algorithm. The red dots are the estimated emission mean
values and the blue line is a linear regression.

As can be seen, with small standard deviation of the background noise, the estimation
is more consistent. When the noise level standard deviation rises, the emission estima-
tion becomes increasingly more uncertain. This behavior is as expected as for larger
background deviation, fitting a suitable exponents and finding a correct wind direction is
harder, making also the emission estimation also more uncertain. This uncertainty could
possibly be quantified and added as an error propagation for the estimated emission rate.

A similar effect for the retrieved parameters can be seen when the pixel size of
modeled plume increases i.e. the model resolution decreases.
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Figure 5.6: Emission rate estimation with respect to the background standard deviation
using Gaussian model and LM-algorithm. The red dots are the estimated emission mean
values and the blue line is a linear regression.
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The behavior of the emission with respect to the pixel size is illustrated in Figure 5.6.
As before, the inversion is more consistent with smaller pixels and when the pixel size
increases, fitting the parameters becomes more unreliable due to lower amount of pixels
in the modeled plume.

As can be seen from Figures 5.4, 5.5 and 5.6, the distance to the source, the standard
deviation of the background noise level and the pixel size affect the quality of the obtained
estimations for the emission rate. Experimenting on how these parameters affect the
inversion is worth of studying but will not be considered further in this thesis.

5.2 Inversions with satellite data

Estimating emission rates by using measurements collected by the OCO-2 satellite will
be considered next. These inversion can be done with both Gaussian and convection-
diffusion model. Since the real data has no artificially added noise, the noise level needs
to be estimated from the data.

A simple way of estimating the background noise can be done by using the pixels
which are not part of the plume. Computing the mean and the standard deviation of the
pixels far enough from the plume should give a reasonable estimation of the background,
assuming that the other observed pixels do not have CO2 enhancement caused by some
other factor, like other plume source. A simple background noise estimation is illustrated
in the Figure 5.7.

10km

Figure 5.7: A simple background noise estimation. Pixels inside the red circle are con-
sidered as being a part of the plume and are ignored when computing the background
estimation. The mean and the standard deviation of the Gaussian background are esti-
mated using pixels outside the black circle.

Emission source considered in this thesis, the Matimba power station, is relatively remote
location, far enough from other emission sources. Because of this, it is reasonable to
assume that other pixels far enough from the plume are part of the normal background
of XCO2 in the atmosphere. Furthermore, this method also assumes that plume can be
distinguished from the background; for larger sources such as Matimba, the enhancement
is visually distinguishable. If the enhancement in XCO2 is not significant enough, then
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co-emitted gases, such as nitrogen dioxide (NO2), can be used to determine the width and
location of the plume. This related to the fact that emission rates for CO2 and NO2 are
correlated as discussed by Hakkarainen et al. in their article [12].

With this background noise estimation, inversion for the OCO-2 observations can
be performed. In order to compare the model and the observation visually, a cross-section
of the plume is can be plotted. A cross-section is formed when observation and modelled
pixels are projected to the center line of the satellite measurement. This is illustrated in
the Figure 5.8.

Figure 5.8: Cross section of the satellite measurement. Pixels in the observation are
projected to the blue line, representing the cross section of the plume.

The observation to be considered next is a part of OCO-2 observation from date
04.05.2019. The observation is shown in Figure 5.9.
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Figure 5.9: OCO-2 observation on 04.05.2019. The black square represents the location
of the Matimba power station and the color map describes the observed enhancement of
XCO2 in ppm.

First, a cross-sectional fit using the Gaussian model with spatial resolution 0.005◦ with
the optimal estimation is shown in Figure 5.10. The optimal estimation uses the default
exponent b = 0.894 and wind direction −152.0◦. The average wind speed is 4.31 ± 0.26
m/s, the stability parameter is estimated as 213 and the background noise 407.46± 0.49
ppm. These three quantities will be the same for each inversion.
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Figure 5.10: Linear optimal estimation with Gaussian model. Blue dots are the data
points, orange dots is the modeled state, the black line is the noise average and black
dashed lines are the 95% confidence interval for the Gaussian background noise.

The estimated emission rate is xopt ≈ 1235000 g/s and the standard deviation is 42400
g/s which correspond an emission rate of 106.7 ± 7.3 kt/d. The optimal estimation for
linear may not be accurate as it only optimizes the emissions rate but is fast to perform,
requiring only one model evaluation. The emission rate obtained from the linear optimal
estimation can be used as the base line for further optimization with other algorithms.

The Levenberg–Marquardt algorithm can be used for optimizing the wind direction
and the exponent, in addition to the emission rate. The cross-sectional fit using the
Gaussian model and the Levenberg–Marquardt algorithm is shown in Figure 5.11.
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Figure 5.11: Levenberg–Marquardt optimization with Gaussian model. Blue dots are the
data points, orange dots are the modeled state of the optimal state vector, the black line is
the noise average and black dashed lines are the 95% confidence interval for the Gaussian
background noise.

The optimal state vector is xopt ≈ (1066000,−2.505, 0.830) which corresponds 92.1 kt/d
for the emission rate, −143.5◦ for the wind direction and 0.830 for the exponent. The
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covariance matrix of xopt can be estimated using the Jacobian of the forward map JF at
the optimal state as Σx ≈ (JTF Σ−1

obsJ)−1 as explained in Section 3.3. The covariance and
correlation matrices are

Σx ≈


2.03 · 109 2.11 · 100 2.69 · 102

2.11 · 100 8.45 · 10−6 6.98 · 10−7

2.69 · 102 6.98 · 10−7 1.01 · 10−4

 ,

corrx ≈


1 0.02 0.60

0.02 1 0.02
0.60 0.02 1

 .
Final method to estimate the parameters is the adaptive Metropolis algorithm. As

explained in Section 3.5.2, the algorithm draws samples from the posterior distribution
which can be used to estimate the posterior mean and the posterior covariance matrix.
As this method is based on a random process, the results may vary a bit, depending on
the length of the chain. The length of the chain used for this inversion is 5000, with
1000 as the burn-in period. Optimally, the chain generated by the random process should
always converge to the same stationary distribution. A modeled state using the estimated
posterior mean is shown in Figure 5.12.
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Figure 5.12: Sampling using the adaptive Metropolis algorithm with Gaussian model.
Blue dots are the data points, orange dots is the modeled state of the posterior mean, the
black line is the noise average and black dashed lines are the 95% confidence interval for
the Gaussian background noise.

The state vector xopt ≈ (1047000,−2.526, 0.818) which corresponds 90.4 kt/d for the
emission rate, −144.7◦ for the wind direction and 0.818 for the exponent. An example of
a random process or a random walk for each variable is shown in Figure 5.13.
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Figure 5.13: Random walk for each variable. After the burn-in, each variable varies ran-
domly around the supposed mean with some standard deviation. The blue dots describe
the values of the variable at each step after the initial 1000 long burn-in period. The
dashed black lines describes the 95% confidence interval for each variable.

Furthermore, a covariance between each pair of variables can be visualized as in Figure
5.14. After the burn-in period, each variable is plotted as a function of every other
variable, giving a visualization of the covariation between each pair of variables.
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Figure 5.14: Pairwise covarying of variables. Blue dots describes the variables plotted
against another variable and dashed black lines define the 95% confidence region for the
bivariate normal distribution between each pair of variables.
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For this specific run, the covariance and the correlation matrices are

Σx ≈


2.30 · 109 −9.37 · 100 4.12 · 102

−9.37 · 100 1.40 · 10−5 −3.96 · 10−6

4.12 · 102 −3.96 · 10−6 1.53 · 10−4

 ,

corrx ≈


1 −0.05 0.69

−0.05 1 −0.09
0.69 −0.09 1

 .
The covariance and correlation matrices are fairly similar for between the LM-algoritm
and AM-algorithm. The strong negative/positive correlations, as well as correlations close
zero, coincide.

If the correlation between two variables approaches 1 and -1, then the confidence
region ellipse squishes down closer to an increasing or a decreasing line, respectively, corre-
sponding a linear regression line between the two variables. If the correlation approaches
0, then the ellipse approaches a circle, corresponding a bivariate Gaussian distribution of
independent random variables.

Inversion using the convection-diffusion model for the observation 5.9 will be con-
sidered next. Evaluating the convection-diffusion model is more time taking compared to
the Gaussian model. In fact, the convection-diffusion model with the chosen discretiza-
tion of 0.005◦ takes far too long when using the adaptive Metropolis algorithm. Luckily,
the Levenberg–Marquardt algorithm is manageable even with full temporal and spatial
resolution, meaning 0.001◦ spatial and 1 second temporal discretization. Thus, only lin-
ear optimal estimation and Levenberg–Marquardt will be considered when inversions are
performed with the convection-diffusion model.
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Figure 5.15: Linear optimal estimation with convection-diffusion model. Blue dots are
the data points, orange dots are the modeled state of the optimal state vector, the black
line is the noise average and black dashed lines are the 95% confidence interval for the
Gaussian background noise.
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Figure 5.15 shows a modeled state of the optimized emission rate using the optimal
estimation for linear model. The estimated emission rate xopt = 526000 g/s and the
standard deviation 19000 g/s which for the emission rate corresponds 45.4± 3.2 (kt/d).

The magnitude of diffusion can be optimized using the Levenberg–Marquardt algo-
rithm.
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Figure 5.16: Levenberg–Marquardt optimization for linear model with convection-
diffusion model. Blue dots are the data points, orange dots are the modeled state of
the optimal state vector, the black line is the noise average and black dashed lines are the
95% confidence interval for the Gaussian background noise.

The modeled state using the state vector optimized with the LM-algorithm model is
shown in Figure 5.16. The optimal vector xopt ≈ (524000, 0.875). The covariance and the
correlation are

Σx ≈

 9.03 · 108 2.28 · 103

2.28 · 103 8.98 · 10−3


corrx ≈

 1 0.80
0.80 1


which corresponds estimations 45.3 ± 3.7 kt/d for the emission and 0.875 ± 0.095 for
the diffusion scale. For this date, the estimated emission rates with the linear optimal
estimation and Levenberg–Marquardt are close to each other, meaning that the diffusion
scale 1 is already a fairly good approximation. However, results clearly deviate from the
emission rate about 90 kt/D obtained with the Gaussian model. This can happen due
to many reasons but the most likely reason are the problems caused by the unexpected
behavior of the plume simulation. This will be considered in more detail in Chapter 6.

The main interest is to estimate the emission rate using the OCO-2 data. Measuring
the column average of CO2 requires clear sky conditions and the observation should be
close enough to the emission source. Hence, the OCO-2 data is viable to be used for the
plume inversion only for certain dates. Moreover, the inversion may fail if variables have
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too strong positive or negative correlation, if the background noise is too high or if there
are too few pixels which include the plume [12].

Table 5.1 shows emission estimations done with the linear optimal estimation (OE),
the Levenberg–Marquardt algorithm (LM) and adaptive Metropolis (AM). The value of
retrieved emission rate as well as the root-mean-square error (RMSE) are reported. The
root-mean-square error between the model and the data is computed as

RMSE =
√∑N

i=1(ŷi − yi)2

N
,

where yi is an individual observation and ŷi is the corresponding model value. The fitted
model is better, the smaller the value of the RMSE is. Although different dates may have
similar RMSE values, the fitted models may be completely different visually.

Date
Linear optimal estimation Levenberg–Marquardt Adaptive Metropolis
Emission RMSE Emission RMSE Emission RMSE

02.06.2018 47.1± 5.0 0.519 80.1± 11.1 0.498 − −
11.07.2018 81.9± 7.4 0.587 69.5± 7.3 0.582 76.5± 9.1 0.576
20.07.2018 66.6± 5.5 0.561 65.7± 7.0 0.561 67.1± 7.5 0.561
18.11.2018 50.2± 3.5 0.592 113.6± 6.6 0.470 110.6± 6.5 0.452
04.05.2019 106.7± 7.3 0.478 92.1± 6.7 0.471 90.4± 6.8 0.463
23.07.2019 34.8± 2.5 0.525 26.9± 2.3 0.518 27.2± 2.5 0.514
05.11.2019 60.9± 2.6 0.492 96.6± 4.6 0.423 98.3± 5.2 0.416
14.06.2020 32.4± 4.1 0.487 24.7± 3.38 0.479 29.0± 4.3 0.469
16.07.2020 95.0± 4.9 0.406 85.4± 5.1 0.400 88.6± 4.7 0.385
25.07.2020 38.6± 3.3 0.378 39.6± 3.8 0.378 39.0± 3.6 0.377
17.08.2020 113± 10.2 0.663 117.4± 12.1 0.663 139.8± 40.8 0.665
22.10.2020 21.0± 3.2 0.582 38.5± 5.9 0.542 40.5± 6.2 0.530

Table 5.1: Results using the Gaussian model. The emission rate is in kt/d and RMSE
is in ppm. The error estimation is estimated from the covariance matrix and other error
sources, such as uncertainty in the average wind speed, are added.

As can be seen, the RMSE is consistently the smallest with the adaptive Metropolis
algorithm which indicates that it gives the best results. However, the RMSE of fitted
models using Levenberg–Marquardt algorithm has only slight deviation from those of
adaptive Metropolis so using only LM-algorithm is also justified due to it being faster
than AM-sampling. The linear optimal estimation is good only if the optimal exponents
happens to be close to the default exponent 0.894. The linear optimal estimation is very
fast to run and offers an excellent way for visually estimating the optimal exponent when
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comparing the cross-sectional fit with the observation. For date 02.06.2018, the AM-
algorithm consistently fails to obtain a reasonable estimation for the posterior mean and
for date 17.08.2020 the uncertainty can become very large when using the AM-algorithm.

Table 5.2 shows emission estimations done using convection-diffusion model. The
optimal estimation fits the emission rate when diffusion scaling is exactly 1. The Leven-
berg–Marquardt algorithm fits the emission rate and the diffusion scale which is not always
possible if the correlation is too strong. Since the convection-diffusion model is heavy to
evaluate, the adaptive Metropolis algorithm was not tested as of writing these results.
However, as stated earlier in the case of the Gaussian model, the Levenberg–Marquardt
should also give reasonable results for the emission rates.

Date
Linear optimal estimation Levenberg–Marquardt
Emission RMSE Emission RMSE

02.06.2018 15.8± 1.8 0.535 − −
11.07.2018 56.0± 5.1 0.589 56.1± 7.2 0.588
20.07.2018 65.7± 5.6 0.567 65.7± 11.3 0.567
18.11.2018 85.3± 4.4 0.462 85.3± 5.8 0.462
04.05.2019 45.4± 3.2 0.503 45.3± 3.7 0.500
23.07.2019 82.7± 5.9 0.519 81.4± 8.2 0.519
05.11.2019 87.7± 3.8 0.492 87.7± 4.8 0.492
14.06.2020 31.1± 5.9 0.505 − −
16.07.2020 79.6± 4.3 0.437 79.6± 5.5 0.437
25.07.2020 84.2± 7.1 0.376 89.0± 10.3 0.376
17.08.2020 139.8± 14.8 0.705 − −
22.10.2020 65.8± 9.8 0.551 71.0± 11.2 0.550

Table 5.2: Results using the convection-diffusion model. The emission rate is in kt/d and
RMSE is in ppm. The error estimation is estimated from the covariance matrix and other
error sources, such as the uncertainty in the wind field data, are added.

The RMSE is often the same between the two optimization methods as the default diffu-
sion scale is usually a rather good fit. For some dates, the inversion with LM-algorithm
fails due to strong positive or negative correlation between the emission rate and the
diffusion scale, meaning that they can not be estimated together.

The estimated emission rates have reasonable magnitudes for each date but agree
with the results retrieved from the Gaussian model only on some of the dates, such as
20.07.2018 and 05.11.2019. Possible reasons for some of the significant differences between
Gaussian and convection-diffusion models are discussed in Chapter 6.



6. Discussion

Developing a mass transport models for gases and particles in the atmosphere is not an
easy task as there is a lot of chemistry and physics involved. Everything happening in the
atmosphere is impossible to model and some simplifications are always required. Even
the implementation of the general convection-diffusion introduced in Section 2.1 is a very
simple one and is mainly limited due to rather poor stability conditions and negative
pixels appearing. Poor stability follows from the fact that the finite difference introduced
in Section 2.1 is simple but not so reliable method for estimating derivatives when the
function is discrete or has large jumps. Perhaps somehow smoothing or interpolating
the concentration function would give better approximations for the derivatives, making
the simulation more stable. Furthermore, the model requires adding the initial velocity
and a slowing scale to be estimated which in general are challenging variables to both
fit and justify. Finally, the reasons behind the inaccuracy between the total computed
mass and the total expected mass are worth considering. The plume mass disappearing
or appearing seemingly out of nowhere during the simulation may be caused by numerical
errors, divergence of the wind field or there is something wrong in the implementation
itself.

The convection-diffusion model ignores all the chemistry and relies on physical aspect
of the mass transportation, namely wind fields and turbulence caused by the wind. The
behavior of carbon dioxide (CO2) has very little chemistry involved as CO2 does not
interact with other substances in the atmosphere. For other related gases such as nitrogen
dioxide (NO2), the model is not valid as NO2 has a lifetime of few hours whereas CO2

has lifetime of hundreds of years. If the model NO2, or some other gas with a relatively
short lifetime, is required to be simulated, then an exponential decaying term reducing
the amount of the gas needs to be implemented to the simulation. Other physical aspects,
which are ignored in the simulation, include the topography, curvature and rotation of
Earth.

Naturally, more sophisticated mass transport models have already been developed.
One of these models is called a FLEXible PARTicle dispersion model (FLEXPART) [18],
originally released mid-1990s and written in Fortran language. This model is capable
of simulating plumes accurately and takes into account stability conditions, chemical
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reactions, wind fields and other similar variables.
Models which simulate plumes have potential to be very accurate, but also have

tendency to become too heavy to evaluate in order for them to be used in optimization
algorithms. Especially generating long random process chains with algorithms based
on Monte Carlo simulation are impractical to be used with models which are heavy to
evaluate. Due to this, many inversion methods do not actually generate the whole plume
but focus on finding a good fit for the observed cross-section. Examples of these types
of methods are the Gaussian plume model in Section 2.2, which fits a Gaussian function
for the cross-section, or a cross-sectional flux method used in the article by Reuter et al.
[20] which fits a combination of an exponential function and an affine function for the
cross-section.

Different fitting algorithms or loss functions could also be considered. The optimal
estimation for linear model in Section 3.3 and the Levenberg–Marquardt algorithm for
non-linear model in Section 3.4 are based on the properties of l2-norm and differentiability
of the loss function. These gradient-based methods assumes that the (loss) function is
differentiable which is a strong property for a function to have. A typical loss function
given in the equation formulated in Equation (3.4) is defined true matrix products which
also induces a (weighted) l2-norm in Rn and is strongly related to the multivariate normal
distribution 3.5. A function defined as the square of the l2-norm is well-behaved and
has simple expressions for the gradient and Hessian, allowing the use of the gradient-
based methods. However, other kinds of loss functions could be used, like other lp-norm
expressions or adding different regularization terms to the standard l2-loss function. Other
kinds of loss function may not be differentiable so gradient-based algorithms are not valid.
A concrete example of these kind of loss function is a function containing terms with l1-
norm as a function x→ ||x||1 is not differentiable at the origin. As mentioned before, the
adaptive Metropolis algorithm is not gradient based which could be used with various loss
functions. Adding different kinds of regularization terms, prior information and trying
out various norms could be worth of studying.

Finally, a method for finding plume trajectories explained in Appendix A pro-
vides a potentially useful way for simulating plumes. The current implementation of
the convection-diffusion model is an Eulerian simulation method, meaning that the be-
havior of large number of particles in a fixed grid is traced. As mentioned before, a
simple simulation using finite differences causes stability issues due to the limitations in
the grid discretization. The alternative is to use Lagrangian simulation model, such as
FLEXPART, in which single particles or a small batch of particles, are traced. Simulat-
ing single particles in flow and diffusion fields removes the spatial stability limitation as
Lagrangian simulation does not require a fixed grid. However, concepts like non-linear dif-
fusion equation and anomalous power law are involved in this kind of simulation method.
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In simple terms, this means that the terms in the typical convection-diffusion equation
(2.1) may be scaled with some exponential law, yielding to non-linear partial differen-
tial equations. More of these concepts are introduced in the article by Nazarenko and
Grebenev [10]. In the end, implementing this type of simulation may be redundant since
other models, such as FLEXPART, already exists. More useful task would be harness-
ing the FLEXPART model such that it could be efficiently used for performing similar
inversion as has been done in this thesis.



Appendix A. Trajectory of plume
Trajectory is the path which a single particle, or a parcel, traces when moving in the
flow field. Trajectories can be where the particle(s) of a plume end up after ejected to the
atmosphere from the source when they move freely in the wind field. Studying trajectories
is useful when figuring out how far and where the plume particles can reach after ejection.

The trajectory of a particle in a flow field v is can be described as a system of
differential equations

dx

dt
= v(x, t),

or written in components 
dx
dt

= vx(x, y, z, t),
dy
dt

= vy(x, y, z, t),
dz
dt

= vz(x, y, z, t).

This follows from the fact that the motion of the particle is determined purely by the
flow field v. Numerically solving this type of system of differential equations is straight
forward. A simple iteration in order to track a single particle assuming the initial location
(x0, y0, z0) and time step τ proceeds as follows:

1. Interpolate an average wind vector (vx, vy, vz) and uncertainties σvx , σvy , σvz (if avail-
able) from the wind field data at current location vector (xi, yi, zi) of the particle.

2. Sample random all three wind components vx, vy, vz from three normal distribu-
tions N (vx, σ2

vx),N (vy, σ2
vy),N (vz, σ2

vz), correspondingly. If uncertainties are not
available, use mean values for the wind components.

3. Update the location vector as

(xi+1, yi+1, zi+1) = (xi + τvx, yi + τvy, zi + τvz).

4. Repeat until the desired simulation time is reached.

The uncertainty of the wind can be accounted with the deviations σvx , σvy , σvz but in this
context, finding out the average trajectory of the particle is enough, meaning the the
uncertainties may be ignored.

A test for a simple trajectory tracking is shown in Figure A.1. The wind used for
this test are from date 11.07.2018 and the simulation time is from 05:04 to 12:04, where
12:04 corresponds the observation time for the OCO-2 measurement.

62



63

26.8 27.0 27.2 27.4 27.6
Longitude (°)

24.6

24.4

24.2

24.0

23.8

La
tit

ud
e 

(°
)

Trajectory test

Plume maximum
Location

(a) Horizontal trajectory

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Distance (°)

1170

1175

1180

1185

1190

1195

1200

1205

1210

Al
tit

ud
e 

(m
)

Trajectory test
Source
Altitude

(b) Altitude trajectory

Figure A.1: A simple trajectory tracking where the particle moves in longitude, latitude
and altitude directions according to the wind field. On the left, the red line is the horizon-
tal trajectory of the particle, the dashed rectangle is the OCO-2 observation and the black
thick line is the estimated plume maximum. On the right, the blue line is the altitude
trajectory of the particle. The black square is the source in both figures.

As can be seen, the horizontal trajectory aligns poorly with the estimated location where
the plume should be seen. Similarly, the altitude seems to behave irregularly. A sim-
ilar effect happens consistently for several dates when trajectories are tracked and for
some dates, the particles may even hit the ground level. This leads to a conclusion that
something is missing.

A correction to the trajectories can be done by adding some initial velocity for the
particles. Adding some initial velocity is justified by the fact that the gas(es) emitted
from chimneys is hot and tends to naturally rise upwards. When the emitted gas cools
off, the effect of vertical wind gradually becomes the dominating factor in the vertical
movement. The added initial vertical speed at the beginning of the simulation is assumed
to decrease by an exponential law in which the the total vertical speed at time t is given
by

vz(t) = vz,wind(t) + vz,init · e−st·t,

where st is the slowing scale in time variable, vz,init is the initial vertical speed of the
plume and vz,wind(t) is the vertical component of the wind field. As t grows, effect of the
exponential terms gets smaller, eventually becoming insignificant.

The slowing effect can also be expressed with respect to the altitude z since the
altitude is in direct relation to time t. With respect to the altitude, the slowing effect can
be written as

vz(z) = vz,wind(z) + vz,init · e−sd·d(z,zs), (A.1)

where sd is the slowing scale in distance variable, d(z, zs) is the distance between z and
the source z-component zs and vz,wind(z) is the vertical wind at altitude z. Naturally,
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the two terms in equation (A.1) have a strong correlation as both the initial velocity and
the slowing scale affect the wind field component vz,wind(z). Conversely, the wind field
component affects the distance d(z, zs) which affects the term vz,init · e−sd·d(z,zs).

The initial speed and slowing scale are optimized such that the trajectory aligns as
well as possible with the observed plume maximum. That is, the distance between the the
trajectory line and the plume maximum is minimized. The optimization is done by using
minimize function from SciPy’s [24] optimization module which by default uses Nelder-
Mean algorithm. The Nelder-Mead algorithm and its implementation is introduced in
detail in the book "Numerical recipes" [19].

With added initial velocity vz,init ≈ 0.5974 m/s and slowing scale sd ≈ 0.0044 1/m,
a trajectory tracking using the wind fields on 11.07.2018 with simulation time from 05:04
to 12:04 is shown in Figure A.2.
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Figure A.2: Trajectory tracking with added initial velocity. On the left, the red line is
the horizontal trajectory of the particle, the dashed rectangle is the OCO-2 observation
and the black thick line is the estimated plume maximum. On the right, the blue line is
the altitude trajectory of the particle and dashed black line is the location of the plume
maximum. The black square is the source in both figures.

The horizontal trajectory now aligns much better with the estimated plume maximum.
The reason for this is that the wind speed is usually faster with larger altitudes, allowing
the plume more freely and faster. The altitude also behaves as expected; first the plume
rises upwards due to air being hot, but then starts to cool off, causing the plume rising
starting to decay. After a long enough time, the behavior of the particle is entirely
determined by the wind field.

Different initial velocities and slowing scales used on different dates are listed in
Table A.1.
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Date vz,init (m/s) sd (1/m)
02.06.2018 0.6794 0.0039
11.07.2018 0.5974 0.0044
20.07.2018 0.9999 0.0070
18.11.2018 1.0004 0.0068
04.05.2019 0.7500 0.0050
23.07.2019 0.9993 0.0250
05.11.2019 1.0000 0.0050
14.06.2020 1.1500 0.0190
16.07.2020 0.9975 0.0071
25.07.2020 1.0018 0.0047
17.08.2020 0.2200 0.0350
22.10.2020 1.4100 0.0010

Table A.1: Values used for initial velocities and slowing scales on different dates.

For some dates, the observation is fairly close to the source in which case the initial
velocity and the slowing scale affect the plume relatively little. If the observation is far
from the source and the simulation time is relatively long, then optimizing these variables
becomes important so that the trajectory aligns well with the observed plume.

With the help of trajectories, the simulation can be reduced from 3D to 2D by aver-
aging wind fields on different layers. First, an interpolating function for the altitude with
respect to horizontal distance is determined using interp1d function from SciPy’s [24]
interpolation module. At each longitude-latitude location, the horizontal distance to the
source is computed, then the corresponding altitude is interpolated with the interpolat-
ing function. The average wind field value at the longitude-latitude location is given by
interpolating gridded wind field data to the (longitude,latitude,altitude) coordinate with
a function interpnd from SciPy’s [24] interpolation module. This method of averaging
accounts the altitude aspect of the plume without actually simulating the plume in 3D,
saving memory and computation time.

The average wind speed u in the Gaussian model (2.2) can also be estimated by using
the averaged wind fields over altitude layers. First, wind fields at the nearest known time
to the starting time are retrieved from an external data set. Then the wind fields are
averaged over the altitude layers using the interpolating function which tells the altitude
at given distance. The average wind speed of the plume is computed from the averaged
wind field by using the pixels near the plume center line. Averaging these pixels together
gives an estimation for an average wind speed at the starting time. Repeating this over
each known time given in the data, an estimation for the average wind speed at each
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time in the plume region is obtained. Averaging these together gives an estimation for
the average wind speed in the plume region over the entire simulation time.



Appendix B. Shepard’s interpolation
Shepard’s method or Shepard’s interpolation is a simple interpolation based on inverse
distance weighting. Given a set of points on a metric space, a new value can be interpo-
lated to any location using the known points such that the weights are determined by the
distances to each of those points. If the distance increases, then the corresponding weight
approaches zero and if the distance get smaller, the corresponding weight approaches one.
The Shepard’s interpolation can be formulated as in Theorem B.1.

Theorem B.1. Consider points x1, . . . ,xn ∈ Rn and x ∈ Rn. Given function
values f(x1), . . . , f(xN), an interpolated value f(x) is given by

f(x) =


∑N

i=1 wi(x)f(xi)∑N

i=1 wi(x)
, if d(x,xi) 6= 0 for all i

f(xi) if d(x,xi) = 0 for some i
, wi(x) = 1

d(x,xi)p

where d is the metric function and p ≥ 1 is the smoothing parameter.

Proof. Define a functional

F(x, y) =


(∑N

i=1
(y−f(xi))2

d(x,xi)p
)1/p

, if x 6= xi for all i

0, if x = xi for some i

which describes the total deviation between the interpolating function y = y(x) and the
interpolated points f(xi) when weighted with inverse distances. If x = xi for some i,
then the deviation is zero and the minimizing value is trivially y = f(xi). If x 6= xi for
all i, then differentiating F with respect to y and setting it to zero yields

∂F
∂y

=
N∑
i=1

2 · y − f(xi)
d(x,xi)p

· 1
p

(
N∑
i=1

(y − f(xi))2

d(x,xi)p

)1/p−1

= 0

⇔
N∑
i=1

y − f(xi)
d(x,xi)p

= 0

⇔
N∑
i=1

y

d(x,xi)p
=

N∑
i=1

f(xi)
d(x,xi)p

⇔ y
N∑
i=1

wi(x) =
N∑
i=1

f(xi)wi(x)

⇔ y =
∑N
i=1 f(xi)wi(x)∑N

i=1 wi(x)
,

which is the desired function y = y(x) = f(x) to minimize the deviation.
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Since weights in the Shepard’s method include the inverse of the distance, a floating
point overflow may occur when diving with a distance close to a zero. To avoid this, the
numerator and the denominator of the expression∑N

i=1 wi(x)f(xi)∑N
i=1 wi(x)

can be multiplied with a product over all pth powers of distances between x and xi. That
is, ∑N

i=1 wi(x)f(xi)∑N
i=1 wi(x)

=
∏N
j=1 d(x,xj)p

∑N
i=1 wi(x)f(xi)∏N

j=1 d(x,xj)p
∑N
i=1 wi(x)

=
∑N
i=1

∏N
j=1,j 6=i d(x,xj)pf(xi)∑N

i=1
∏N
j=1,j 6=i d(x,xj)p

.

In this form, the weight for the value f(xi) is given by

wi =
∏N
j=1,j 6=i d(x,xj)p∑N

i=1
∏N
j=1,j 6=i d(x,xj)p

, (B.1)

and trivially
N∑
i=1

wi = 1.

A metric d is naturally the Euclidean distance. The smoothing parameter controls the
smoothness of the interpolation. As an example, consider an interpolation in R with
control points x1, x2 and x3 with corresponding values y1, y2 and y3.
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Figure B.1: Shepard’s interpolations in 1D with different values of p. The points with
matching colours stay at the same corresponding places, while the curve changes.
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Interpolations with different values of p are shown in Figure B.1. The interpolation
with p = 1 is close to linear interpolation. In fact, if there were only two points, the
interpolation would be the linear interpolation (line) between the points. With p = 2,
the interpolation is smooth which a very useful property to have in general. With p = 3
the interpolation is also smooth but starts to get steeper from one point to another. As
p increases, the interpolates approaches the nearest point interpolation, corresponding
interpolation in l∞-norm, which means that the interpolated value has the same value as
the nearest point. By default, the interpolation using the Shepard’s method will be done
with p = 2. This is a natural choice since p = 2 is strongly related to Euclidean distance.

As an another example of the Shepard’s interpolation, consider a square in R2.
The corners of the square are (x1, y1), (x2, y2), (x3, y3), (x4, y4) and their corresponding
values are z1, z2, z3, z4 with uncertainties (standard deviations) σ1, σ2, σ3, σ4. The goal is
to interpolate a value to a coordinate (x, y) inside the square using the four corner points
and find a reasonable uncertainty estimation for the interpolated value. Distances to each
corner are given by the standard Euclidean distance di =

√
(x− xi)2 + (y − yi)2. The

situation is illustrated in Figure B.2.

(x, y)

(x1, y1) (x2, y2)

(x3, y3)(x4, y4)

d1 d2

d3
d4

Figure B.2: Shepard’s interpolation in a square using corner values.

By utilizing the Shepard’s interpolation, according to the formula B.1 the weights with
p = 2 are

w1 = (d2d3d4)2

(d2d3d4)2 + (d1d3d4)2 + (d1d3d4)2 + (d1d2d3)2

w2 = (d1d3d4)2

(d2d3d4)2 + (d1d3d4)2 + (d1d3d4)2 + (d1d2d3)2

w3 = (d1d2d4)2

(d2d3d4)2 + (d1d3d4)2 + (d1d3d4)2 + (d1d2d3)2

w4 = (d1d2d3)2

(d2d3d4)2 + (d1d3d4)2 + (d1d3d4)2 + (d1d2d3)2 .

and thus the interpolated value z at (x, y) is

z = w1z1 + w2z2 + w3z3 + w4z4.
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It is clear that if di = 0 for some i, then wi = 1, wj = 0 for j 6= i and the interpolated
value z = zi. Furthermore, if d1 = d2 = d3 = d4, then clearly w1 = w2 = w3 = w4 = 1/4
and the interpolation reduces to the standard arithmetic mean. The interpolation in
Figure B.2 is not continuous over the boundary of the square as the points used for
computing the weights change when moving over the boundary. An easy fix is to use
larger number of surrounding points for the interpolation. If all available grid points are
used for computing the weights for the interpolated value, then the interpolating function
will be at least continuous inside the region defined by the grids. The smoothness of
derivatives of this interpolating function will not be considered further.

With an assumption that the values in the corners have no covariance, the variance
of z is given by

σ2
z = w2

1σ
2
1 + w2

2σ
2
2 + w2

3σ
2
3 + w2

4σ
2
4.

If pair-wise grid values have covariance, then the variance of the z is given by

σ2
z = w2

1σ
2
1 + w2

2σ
2
2 + w2

3σ
2
3 + w2

4σ
2
4

+ 2w2w1cov(z2, z1) + 2w3w1cov(z3, z1) + 2w3w2cov(z3, z2)

+ 2w4w1cov(z4, z1) + 2w4w2cov(z4, z2) + 2w4w3cov(z4, z3).

In a general case, if the set of points used for interpolation have known covariances and
variances, then the variance of the interpolated value is

σ2
z = var

(
N∑
i=1

wizi

)

=
N∑
i=1

var (wizi) + 2
N∑
i=2

∑
j<i

cov (wizi, wjzj)

= w2
i

N∑
i=1

var (zi) + 2
N∑
i=2

∑
j<i

wiwjcov(zi, zj).

Shepard’s interpolation is useful whenever the uncertainty of the interpolated value is
relevant.



Appendix C. Plume inversion
program
This appendix briefly explains the architecture of the Python program used for plume
inversions. The program is written in such a way that adding extensions, such as handling
more plume sources, and modifying individual functions should be easy to do. The plume
inversion program and other realted scripts used in this thesis can be found on GitLab
https://gitlab.com/Jeann96/plume_inversion.

The program relies mostly on Python’s NumPy-library [13] which enables vectorized
list operations using NumPy-array objects; handling arrays with large amounts of elements
is much faster with numpy than with the basic Python. The other important library is
scipy [24] which offers various interpolation, optimization and other useful tools related
to scientific computing.

The program consists of different modules (files), each containing various func-
tions used during the plume inversion. The plume_inversion_functions.py con-
tains the most relevant functions for the plume inversion such as the primary inver-
sion function plume_inversion, optimization algorithms like Adaptive Metropolis, back-
ground noise estimation, wind direction and speed estimation, single particle simula-
tions and other similar functions. Module data_handling.py is similar to the module
plume_inversion_functions.py, but contains more generic data handling functions such
as pixel averaging, projection, distance computations, custom interpolations etc. as well
as functions to read observation data from a local file. The module CDS_handling.py
handles the reading and interpolation of Copernicus data sets (ERA5 data). If the local
data file is missing, then a server request is executed and data will downloaded from the
server. All data input files will be stored in the folder input_data.

The model files gaussian_model.py and convection_diffusion_model.py con-
tain functions which evaluate the corresponding plume models given the input param-
eters. These functions are called whenever a model evaluation is required. Optimizing
these functions is very important as they are usually called many times during the inver-
sion process. Adding a new model as a Python function and using it for the inversion is
straight forward.

The rest of the modules are shorter, containing only a few functions. The module
atmospheric_functions.py contains atmposheric formulas mostly for converting a given
pressure to altitude and vice versa. The module location_params.py only contains a
dictionary which includes information on the location for which the plume inversion is
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performed. The information includes the coordinates for the sources and altitude of the
surface from the sea level near the source. Currently, the Matimba power station is the
only location for which the inversions are performed and tested. The final module which
is a part of the plume inversion is plume_plotting.py. This module contains tools for
visualizing observations and fitted plumes. The plotting tools use Python’s Matplotlib-
library for plotting which is the default plotting tool used with Python language.

The main file of the plume inversion program is plume_inversion_main.py in which
parameters are defined by the user, input data sets are read, plume inversion is executed.
The main functions prints, plots and saves all the results into the results folder. A
simple flow chart of the main program is shown in Figure C.1.

User input
parameters

Read CO2

observation
Read

ERA5 data

Server
request

Execute
plume

inversion

Print, plot
and save
results

no local file

Figure C.1: A flow chart representation of the plume inversion program.

The most tasking part is performing the plume inversion, as it involves various details
and algorithms. A flow chart of the plume inversion program is shown in Figure C.2.
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Figure C.2: A flow chart representation of the plume inversion function.



73

Further details of the code are left out as they are out of the scope of this thesis. Further-
more, the code will keep updating and the smallest details will most certainly change.

In addition to the plume inversion program, there are also modules related to con-
structing simulated plumes. The main program simulation_main.py can be used for
creating a simulated plume using one of the implemented plume models. Alternative,
plumes can also be constructed from an existing plume data by interpolating the data
to desired coordinates using functions from simulation_functions.py. The final addi-
tional file is testing.py which can be used to perform various test for the plume inversion
with different input parameters, as has been done in Section 5.1.
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