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Abstract

Multicentric carpotarsal osteolysis (MCTO) is an autosomal dominant condition char-

acterized by carpal–tarsal abnormalities; over half of affected individuals also develop

renal disease. MCTO is caused by mutations of MAFB; however, there is no clear

phenotype–genotype correlation. We describe the first reported family of variable

MCTO phenotype due to mosaicism: the proband had classical skeletal features and

renal involvement due to focal segmental glomerulosclerosis (FSGS), and the father

had profound renal impairment due to FSGS, necessitating kidney transplantation.

Mosaicism was first suspected in this family due to unequal allele ratios in the

sequencing chromatograph of the initial blood sample of proband's father and con-

firmed by sequencing DNA extracted from the father's hair, collected from different

bodily parts. This case highlights the need for a high index of clinical suspicion to

detect low-level parental mosaicism, as well as a potential role for MAFB mutation

screening in individuals with isolated FSGS.
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1 | INTRODUCTION

Multicentric carpotarsal osteolysis (MCTO) is a rare skeletal disorder

caused by mutations of the MAFB (v-maf musculoaponeurotic fibro-

sarcoma oncogene ortholog B) (Zankl et al., 2012). MAFB is a tran-

scription factor; to date, all MCTO-associated mutations cluster

within a narrow (18 amino acid) region of the aminoterminal transcrip-

tional activation domain (Mehawej et al., 2013; Mumm et al., 2014;

Park et al., 2018; Zankl et al., 2012).

MCTO usually presents in early childhood, with painful swelling of

wrists and/or feet. Radiologically, affected individuals develop profound

carpal–tarsal abnormalities, including loss of carpal and/or tarsal bones,

absent or irregular ossification centers, and abnormal bone morphology

including tapering (“sucked candy” appearance) of proximal metacar-

pals, metatarsals, and distal ends of long bones (Whyte, 2010). Over

half of affected individuals also develop renal disease, ranging from mild

proteinuria to end-stage renal failure requiring dialysis or transplanta-

tion. However, there is no clear phenotype–genotype correlation: both

skeletal severity and renal involvement can vary within affected families

and between unrelated individuals carrying the same mutation

(Mehawej et al., 2013; Zankl et al., 2012).

MAFB negatively regulates osteoclast differentiation (Kim

et al., 2007); however, there is surprisingly little evidence to support

MCTO as an osteolytic process per se. Recent evidence of MAFB

expression in sub-articular chondrocytes in regions of endochondral

ossification suggests that the pathophysiology of MCTO may be

abnormal maturation of carpotarsal bones (Lazarus et al., 2017), per-

haps explaining the site specificity of skeletal manifestations. MAFB

also influences nephrogenesis, facilitating podocyte differentiation

and foot process formation (Ikenoue et al., 2018; Moriguchi

et al., 2006). However, neither the mechanisms underlying renal mani-

festations nor those causing bony involvement are fully elucidated.

MCTO is an autosomal dominant condition, with many cases pre-

senting sporadically due to de novo mutations. Although MCTO is

usually considered to be completely penetrant, one example of

reduced penetrance has been described, in which a child with classical

skeletal features of MCTO heterozygous for a MAFB mutation

(c.167C>T; p.Ser56Phe) had inherited from this variant from his

mother—who lacked any clinical, radiological, or biochemical features

of MCTO (Dworschak et al., 2013). No difference was evident in wild-

type versus mutant allele expression between mother and child

(Dworschak et al., 2013).

Here, we describe the first reported family with variable MCTO

phenotype due to mosaicism.

1.1 | Case description

The proband is a 22-year-old male and the first child of unrelated Finn-

ish parents. There was no family history of note of skeletal disease;

however, his father had received a renal transplant (discussed later).

The proband was born at term, with normal measurements at birth.

He learned to walk at 17 months of age. At 2 years of age, he had an

orthopedic evaluation because of foot deformity, and at 3 years

8 months, he had a consultation with a pediatric neurologist. By this

time, he had clumsiness, foot deformity (pes metatarsovarus adductus),

ulnar deviation of wrists, small hands, and swelling of his hands and

feet. He received orthopedic shoes and wrist supports. He was also

noted to have dysmorphic facial features including hypertelorism, deep

set eyes, down-slanting palpebral fissures, small chin, and maxillary

hypoplasia. Skeletal survey detected carpal and tarsal osteolysis, leading

to the clinical diagnosis of MCTO at age 4 years 6 months (radiographs

and images obtained at a later age are shown in Figure 1).

Urine analysis and renal function were initially normal, but at

7 years of age, mild metabolic acidosis and mild proteinuria were

noted. At 8 years of age, he was diagnosed with focal segmental

glomerulosclerosis (FSGS) after renal biopsy. An angiotensin-

converting enzyme inhibitor was initiated, subsequently switched to

angiotensin II receptor blocker, with good control of blood pressure.

His current estimated glomerular filtration rate is 68 ml/min (creati-

nine 128 μmol/ml) and he is eutensive.

At 10 years of age, he was found to have a mild left conductive

hearing loss (40 dB). Neuropsychological performance was age-

appropriate although he had some difficulties in visuospatial function.

He attended normal class with the help of a personal assistant. His

adult height is 183 cm, with weight 95 kg (BMI 28.4), and

occipitofrontal circumference of 59.5 cm (normal range).

The proband's father, now aged 55 years, was diagnosed with

FSGS on renal biopsy at age 26 years. Shortly thereafter hemodial-

ysis was started for end-stage renal failure and he received a living-

related renal transplant from a first-degree relative at age 27 years.

Initially, there was acute rejection of the transplant, which settled

with immunosuppression (including prednisolone). His creatinine

level started to increase 12 years later; renal biopsy of the trans-

plant kidney performed 2 years later showed glomerulosclerosis

but no FSGS. Musculoskeletally, he has osteoporosis of the spine

and hip and mild changes of arthrosis/degenerative osteoarthritis

affecting one to two joints of each hand; but no signs of osteolysis

on radiographs of either his hands or feet (Supplementary

Figure S1).

2 | MATERIALS AND METHODS

This study was conducted under appropriate ethics approval (Human

Research Ethics Approval HREC/12/QPAH/525); written consent

was provided by both the proband and his father.

Sanger sequencing was initially performed on DNA extracted from

saliva from the affected child and from blood from his parents as previ-

ously described (Zankl et al., 2012) (primers available on request). Subse-

quently, DNA was extracted from individual hairs collected from

different bodily parts of the father (head, cheek, chest, arm, and leg),

using the Qiagen EZ1 DNA Tissue Kit (Qiagen, Venlo), and further

Sanger sequencing was performed (Parrini et al., 2004). Sequences were

aligned and analyzed using Genalys software (Invoke Capital, London),

which allows allele ratios to be visualized (Takahashi et al., 2003).
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3 | RESULTS

3.1 | Sequencing results

A mutation in MAFB previously associated with MCTO (Mehawej

et al., 2013; Zankl et al., 2012) was identified in both the proband and

his father (MAFB (NM_005461.3) c.188C>G (p.Pro63Arg) (Figure 2(a)).

The proband's sequencing chromatograph performed on DNA from

buccal swab showed an equal ratio of wild-type to mutant allele,

whereas the father's chromatograph showed an unequal ratio

(Figure 2(a)). Sequencing of DNA from the father's hairs obtained from

different bodily sites showed varying ratios of wild-type to mutant

allele(Figure 2(b)), suggesting somatic mosaicism.

This MAFB variant (c.188C>G; p.Pro63Arg) is situated in the

mutation cluster region of the aminoterminal transcriptional activation

domain. Both this variant (Mehawej et al., 2013; Zankl et al., 2012)

and another affecting the same base and amino acid but with a differ-

ent missense change (c.188C>T, p. Pro63Leu) (Mehawej et al., 2013;

Stajkovska et al., 2018) have been reported previously in MCTO. The

variant is absent from control populations in gnomAD (https://

gnomad.broadinstitute.org/; accessed November 17, 2020) and is

predicted damaging and/or deleterious by in silico prediction pro-

grams Polyphen (Adzhubei et al., 2010), SIFT (Vaser et al., 2016), and

F IGURE 1 Radiographs of the proband's hands and feet.
(a) Radiographs of the proband's hands at 14 years of age, showing
osteolysis with loss of distal ulna, the proximal tapering of the second
to fifth metacarpal bones and the loss of proximal portion of the
middle phalanx of the left fifth finger. The bowing of the deformed
distal radius and the first metacarpal bone and the absence of all
carpal bones other than os pisiforme is noted. (b) Radiographs of the
proband's feet at 14 years of age, showing metatarsus adductus foot
deformity, tapering loss of the proximal metatarsals, abnormally
shaped talus, and calcaneal bone, as well as the absence of navicular
and cuneiform bones. (c) Photograph of the proband's feet [Color
figure can be viewed at wileyonlinelibrary.com]

F IGURE 2 Pedigree and sequencing images. (a) Pedigree of
proband and parents. Red arrow indicates proband. Black arrow
identifies the c.188C>G p.Pro63Arg63 variant in both parent and
child. (b) Chromatographs using DNA obtained from different bodily
parts of the proband's father showing variation in peak ratios and
germline sequence from father for reference (arrow identifying the
c.188C>G p.Pro63Arg63 variant) [Color figure can be viewed at
wileyonlinelibrary.com]
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MutationTaster (Schwarz et al., 2014), also detailed in previous

reports (Mehawej et al., 2013; Zankl et al., 2012); and fulfills criteria

for “likely pathogenic”(Richards et al., 2015).

4 | DISCUSSION

To our knowledge, this is the first reported case of mosaicism in

MCTO. Mosaicism was first suspected in this family because of

unequal allele ratios in the sequencing chromatograph of the initial

blood sample of proband's father (Figure 2(a)). Subsequent sequencing

of DNA from hairs drawn from multiple body sites confirmed the

presence of two cell populations (one with and the other without the

MAFB mutation), and, when present, evident in both forward and

reverse electrophoretogram traces (Supplementary Figure S2). Our

results are consistent with a postzygotic mutational event prior to

germ cell formation in the father, allowing the mutation to be trans-

mitted to his child through his germ line.

Somatic mosaicism is the presence of genetically distinct cell lines

within one individual, such that a genetic mutation is only evident in a

subset of cells, and includes single nucleotide polymorphisms (SNPs),

copy number variation, abnormal chromosomal structure, and aneu-

ploidy (Biesecker & Spinner, 2013). The most obvious example is the

development of cancer. However, somatic mosaicism is increasingly

recognized as a cause of non-Mendelian inheritance and phenotypic

variability for many conditions, including skeletal dysplasias (Freed

et al., 2014). Variable expressivity and/or reduced penetrance of a

mutation can also result in apparent non-Mendelian inheritance

(Dworschak et al., 2013); however, in this situation, both parent and

progeny carry equally the same mutation in all cells.

In the family reported herein, the proband has classical skeletal

features and FSGS with mild renal impairment. In contrast, his father

does not have osteolysis but typical—and profound—renal disease. It

is possible that the father's renal disease is due to a separate disease

process; however, his carriage of a MAFB mutation is highly sugges-

tive that this is the cause. FSGS has been observed in individuals with

Duane retraction syndrome, who carry mutations in MAFB affecting

the DNA-binding domain (Sato et al., 2018). In contrast, individuals

with MCTO have mutations in MAFB affecting the transcriptional

domain. To date, no other individual has been reported with muta-

tions affecting the transcriptional domain of MAFB and isolated renal

disease (i.e., without skeletal features of MCTO); however, MAFB is

not commonly screened in isolated FSGS.

Although conventional Sanger sequencing was used in this fam-

ily, the transition to massively parallel sequencing has greatly

increased both our understanding of and ability to detect somatic

mosaicism. Even low-level somatic mosaicism can be detected with

the high read depths typically achieved with these technologies (Cao

et al., 2019; Dou et al., 2018; Freed et al., 2014). Moreover, extreme

read depth allows a more quantitative assessment of “allele dose,”
as would quantitative PCR. We acknowledge that Sanger sequencing

is not a quantitative methodology, although Sanger sequencing per-

formed on samples with mosaicism identified through exome

sequencing can show similar and consistent electropherogram peak

height changes (Cao et al., 2019). Small peaks can be observed arti-

factually in Sanger sequencing; however, the analysis program used

here was designed in part to optimize detection of varying allele

dose distinct from artifactual noise (Takahashi et al., 2003); and it

would be unusual to see variability in both forward and reverse reac-

tions in different samples drawn from a single individual

(Supplementary Figure S2). We would have liked to have assessed

for mosaicism in DNA from other body fluids and sites; however,

transporting tissue samples (particularly liquid samples) from Finland

to Australia was difficult (in contrast to transporting germline DNA

and labeled hairs).

The presence of parental mosaicism has clear implications for

genetic counseling; and the shift toward massively parallel sequencing

for diagnostic screening will improve the confidence with which muta-

tions can be truly termed de novo and improve the accuracy of advise

given to parents regarding future offspring.

5 | CONCLUSIONS

Genetic mosaicism can cause phenotypic variability in MCTO. In dis-

eases usually attributed to de novo mutations, low-level parental

somatic mosaicism should be considered when non-Mendelian inheri-

tance patterns or genotype/phenotype discrepancy is observed. Our

results also suggest that screening of MAFB in individuals with iso-

lated FSGS may be warranted.
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