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In this manuscript we study the counting problem for harmonic trinomials of the 
form aζn + bζ

m + c, where n, m ∈ N, n > m, and a, b and c are non-zero complex 
numbers. As a consequence, we obtain the Fundamental Theorem of Algebra and the 
Wilmshurst conjecture for harmonic trinomials. The proof of the counting problem 
relies on the Bohl method introduced in [1].

© 2022 The Author(s). Published by Elsevier Inc. This is an open access article 
under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction, main result and its consequences

The computation and the understanding of the roots of a given polynomial of degree n is at the heart of 
many problems in pure mathematics and mathematical modeling. One of the most important and difficult 
problem of research in Complex Analysis is the localization of the roots of a generic polynomial of degree 
n ≥ 5. In other words, given a generic polynomial p of degree n ≥ 5, localization refers to estimate the 
minimum radius R such that all the roots of p belong to the ball of radius R centered at the origin. For 
further details we refer to [16]. Given r > 0 and a function ϕ : C → C, we define the set

Zϕ(r) := {ζ ∈ C : ϕ(ζ) = 0 and |ζ| < r}, (1.1)

where | · | denotes the complex modulus. We denote the cardinality of a given set X by Card(X) and for 
short we write CardZ(X) in place of Card(X ∩ Z).
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An important family of polynomials are the so-called trinomials of degree n. That is to say, polynomials 
h : C −→ C of the form

h(ζ) := aζn + bζm + c, (1.2)

where a, b and c are non-zero complex numbers, and m and n are positive integers satisfying n > m. There 
are vast literature about the behavior of the roots for such polynomials. For instance, it is well-known that 
the zeros are inside an annulus where the minor radius and the major radius depend only on the quantities n, 
m, |a|, |b| and |c|, see [1,2,4,5,8,11,14,17–19] and the references therein. P. Bohl in [1] solves the localization 
and counting problem for h in a ball of radius r centered at the origin according to whether the numbers 
|a|rn, |b|rm and |c| are the lengths of the sides of some triangle (it may be degenerate) or not, and it reads 
as follows:

Theorem 1.1 (Bohl’s Theorem for trinomials [1]). Let r > 0 and assume that |a|rn, |b|rm and |c| are the 
side lengths of some triangle (it may be degenerate). Let ω1 and ω2 be the opposite angles to the sides with 
lengths |a|rn and |b|rm, respectively. Then

Card(Zh(r)) = CardZ((P − ω(r), P + ω(r))),

where h is given in (1.2),

P := n(β − γ + π) −m(α− γ + π)
2π , ω(r) := nω1 + mω2

2π ,

and α, β, γ are the arguments of a, b, c, respectively. Moreover, when |a|rn, |b|rm and |c| are not the side 
lengths of any triangle, then

Card(Zh(r)) =

⎧⎪⎪⎨
⎪⎪⎩

0 if |c| > |a|rn + |b|rm,

m if |b|rm > |a|rn + |c|,
n if |a|rn > |b|rm + |c|.

In this manuscript, we study the localization problem for harmonic trinomials f : C −→ C of the form

f(ζ) := aζn + bζ
m + c, (1.3)

where a, b, c are non-zero complex numbers, n, m ∈ N are positive integers, and ζ denotes the complex 
conjugate of ζ. Along this manuscript we always assume that n > m. It is well-known that (1.3) has at 
most n2 roots, see for instance Theorem 5 of [20]. Moreover, there are harmonic polynomials with exactly 
n2 roots, see Section 2 in [7] or p. 2080 of [20].

Our aim is to analyze the behavior of the non-decreasing function

(0,∞) � r �−→ Card(Zf (r)) ∈ {0, 1, . . . , n2},

where f is given in (1.3) and Zf (r) is defined in (1.1).
In [3], the authors provide a way to count the roots for the family of harmonic trinomials when a = 1, 

c = −1 and b ∈ (0, ∞). Moreover, the maximum number of roots for this family is n +2m, see Theorem 1.1 
in [3]. In [6], the previous result from [3] is extended to cover the case when b ∈ C. As a consequence of our 
main result, Theorem 1.2, we obtain Corollary 1.4 which yields that any harmonic trinomial has at most 
n + 2m roots.
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We also address the Wilmshurst conjecture for the family of harmonic trinomials. Wilmshurst’s conjecture 
is established for harmonic polynomials of the type h(ζ) = p(ζ) −q(ζ), where p and q are complex polynomials 
of degree n and m, respectively, with n > m. Wilmshurst’s conjecture states that the maximum number of 
roots for such h is bounded by 3n − 2 + m(m − 1). In [12], the authors show that there exists a harmonic 
polynomial h with at least 3n −2 zeros. As a consequence of Theorem 1.2 below, we obtain that Wilmshurst’s 
conjecture holds true for harmonic trinomials when n > 2 and n > m. Moreover, we obtain the existence of 
a family of harmonic trinomials with exactly 3n − 2 roots, see Corollary 1.6 below.

The main theorem of this manuscript is the following.

Theorem 1.2 (Bohl’s Theorem for harmonic trinomials). Let r > 0 and assume that |a|rn, |b|rm and |c| are 
the side lengths of some triangle (it may be degenerate). Let ω1 and ω2 be the opposite angles to the sides 
with lengths |a|rn and |b|rm, respectively. Then

Card(Zf (r)) = CardZ(P∗ − ω∗(0, r)) + CardZ(P∗ + ω∗(0, r)), (1.4)

where f is defined in (1.3),

P∗ := n(β − γ − π) + m(α− γ − π)
2π , ω∗(r) := nω1 −mω2

2π , (1.5)

P∗ − ω∗(0, r) := {P∗ − ω∗(u) : u ∈ (0, r)},

P∗ + ω∗(0, r) := {P∗ + ω∗(u) : u ∈ (0, r)},

and α, β, γ are the arguments of a, b, c, respectively. Moreover, when |a|rn, |b|rm and |c| are not the side 
lengths of any triangle, then

Card(Zf (r)) =

⎧⎪⎪⎨
⎪⎪⎩

0 if |c| > |a|rn + |b|rm,

m if |b|rm > |a|rn + |c|,
n + 2m if |a|rn > |b|rm + |c|.

(1.6)

Remark 1.3 (Extending ω∗). By Lemma A.1 in Appendix A we have that ω1 and ω2 are continuous functions 
of r. When |a|rn, |b|rm and |c| are the side lengths of a degenerate triangle, we define

ω∗(r) =

⎧⎪⎪⎨
⎪⎪⎩

0 if |c| = |a|rn + |b|rm,
n
2 if |a|rn = |b|rm + |c|,
−m

2 if |b|rm = |a|rn + |c|,

and extend it continuously as follows

ω∗(r) =

⎧⎪⎪⎨
⎪⎪⎩

0 if |c| ≥ |a|rn + |b|rm,
n
2 if |a|rn ≥ |b|rm + |c|,
−m

2 if |b|rm ≥ |a|rn + |c|.

Theorem 1.2 yields that the number of roots for any harmonic trinomial is at most n + 2m.

Corollary 1.4 (Fundamental Theorem of Algebra for harmonic trinomials). Any harmonic trinomial (1.3)
has at most n +2m roots. Moreover, there exists a family of harmonic trinomials (gr)r>0 with exactly n +2m
roots.
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Remark 1.5. For n and m co-primes, the case a = 1, c = −1 and b > 0 is covered in Theorem 1.1 of [3], 
while the case a = 1, c = −1 and b ∈ C is covered in Theorem 1.1 of [6].

Proof of Corollary 1.4. Let a be the unique positive root of the trinomial A(r) = |a|rn − |b|rm − |c|. For 
r > a we have |a|rn > |b|rm + |c| and hence (1.6) yields the result. �

As a consequence of Corollary 1.4 we obtain Wilmshurst’s conjecture for harmonic trinomials. In general, 
Wilmshurst’s conjecture does not hold for harmonic polynomials, see [10,15].

Corollary 1.6 (Wilmshurst’s conjecture for harmonic trinomials). Given n ∈ N \{1} and m ∈ {1, . . . , n −1}
it follows that any harmonic trinomial possesses at most 3n − 2 roots. Moreover, there exists a family of 
harmonic trinomials (gr)r>0 with exactly 3n − 2 roots. In addition, for m = 1, the number of roots is at 
most n + 2.

Remark 1.7. Using complex dynamics and the argument principle, the authors in [13] prove the conjecture 
of Sheil–Small and Wilmshurst that establishes

Card{ζ ∈ C : p(ζ) − q(ζ) = 0} ≤ 3n− 2, (1.7)

where the polynomial p has degree n > 1 and q(ζ) = ζ for all ζ ∈ C. In the end of p. 413, they also stress 
that the monomial case: 1 < m < n and q(ζ) = ζm for all ζ ∈ C requires a deep analysis of the dynamics 
of a root map on the Riemann surface. Later on, in [9] the author proves that the upper bound 3n − 2 is 
sharp by proving the existence of a complex polynomial p of degree n such that

Card{ζ ∈ C : p(ζ) − q(ζ) = 0} = 3n− 2.

We stress that Corollary 1.6 yields (1.7) for the particular case: n > 2, n > m and p(ζ) = ζn, q(ζ) = ζm for 
all ζ ∈ C. Moreover, it also gives the existence of a family of harmonic trinomials with exactly 3n − 2 roots.

Proof of Corollary 1.6. By Corollary 1.4 we have that any harmonic trinomial possesses at most n + 2m
roots. Since m ≤ n − 1, we have

n + 2m ≤ n + 2(n− 1) = 3n− 2.

The equality holds when m = n − 1. Corollary 1.4 yields the existence of a family of harmonic trinomials 
(gr)r>0 with exactly 3n − 2 roots. �

The manuscript is organized as follows. In Section 2 we develop Bohl’s method for harmonic trinomials. 
Next, in Section 3 we provide the proof of Theorem 1.2. Finally, in Appendix A we state auxiliary results 
that we use throughout the manuscript.

2. The Bohl method

In this section, we develop Bohl’s method [1] for harmonic trinomials. First, Subsection 2.1 allows us 
to reduce the proof of Theorem 1.2 to the co-prime case. Next, Subsection 2.2 yields that the original 
harmonic trinomial (1.3) can be transformed to a simplified harmonic trinomial such that the coefficient 
c is positive and both have the same roots. This allows us to relate the roots of the simplified harmonic 
trinomial according to whether the numbers |a|rn, |b|rm and c (for some r > 0) are the side lengths of some 
triangle. Finally, Subsection 2.3 yields the region of zeros.
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2.1. Reduction to the co-prime case

In this subsection we stress that it is enough to show Theorem 1.2 in the case that n and m are co-prime 
numbers. The general case can be deduced from the co-prime case as follows.

Corollary 2.1 (Reduction to the co-prime case). Assume that Theorem 1.2 holds true for harmonic trinomials 
with co-prime exponents. Let n, m ∈ N such that n > m, then Theorem 1.2 holds true for harmonic 
trinomials with exponents n and m. More precisely, let r > 0 and assume that |a|rn, |b|rm and |c| are the 
side lengths of some triangle (it can be degenerate). Let ω1 and ω2 be the opposite angles to the sides with 
lengths |a|rn and |b|rm, respectively. Then

Card(Zf (r)) = CardZ(P∗ − ω∗(0, r)) + CardZ(P∗ + ω∗(0, r)),

where

P∗ := n(β − γ − π) + m(α− γ − π)
2π , ω∗(r) := nω1 −mω2

2π ,

and α, β, γ are the arguments of a, b, c, respectively. Moreover, when |a|rn, |b|rm and |c| are not side 
lengths of any triangle, then

Card(Zf (r)) =

⎧⎪⎪⎨
⎪⎪⎩

0 if |c| > |a|rn + |b|rm,

m if |b|rm > |a|rn + |c|,
n + 2m if |a|rn > |b|rm + |c|.

Proof. Let d = gcd(n, m) be the greatest common divisor of n and m and set ñ := n/d, m̃ := m/d. We 
observe that gcd(ñ, m̃) = 1. We consider the harmonic trinomial equation

h(ζ) = aζñ + bζ
m̃ + c = 0.

By hypothesis Theorem 1.2 holds true for the exponents ñ and m̃. That is,

Card(Zh(s)) = CardZ(P̃∗ − ω̃∗(0, s)) + CardZ(P̃∗ + ω̃∗(0, s)) (2.1)

for any s ≥ 0, where

P̃∗ := ñ(β − γ − π) + m̃(α− γ − π)
2π and ω̃∗(s) := ñω̃1 − m̃ω̃2

2π .

Recall that ω̃1 and ω̃2 are the interior angles of the triangle with side lengths |a|sñ, |b|sm̃ and |c| opposite 
to the side lengths |a|sñ and |b|sm̃, respectively. We note that for s = rd we have

P∗ = dP̃∗ and ω∗(r) = dω̃∗(rd).

Hence (2.1) yields Card(Zf (r)) = d · Card(Zh(rd)), which implies the statement. �
2.2. Reduction to the case c > 0

As a consequence of Corollary 2.1, without loss of generality, from here to the end of this manuscript, we 
always assume that n and m are co-prime numbers. In this subsection we start showing that the coefficient 
c can be assumed to be positive as the following lemma states.
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Lemma 2.2. Let a, b, c be any complex numbers and consider the harmonic trinomial given by f(ζ) = aζn +
bζ

m + c, ζ ∈ C. Define the harmonic trinomial by f̃(ζ) = a∗ζn + b∗ζ
m + |c|, ζ ∈ C, where a∗ = ae−iγ, 

b∗ = be−iγ and γ = arg(c). Then Zf (r) = Zf̃ (r) for any r > 0.

Proof. We claim that a complex number ζ is a root of f if and only if ζ is a root of f̃ . Indeed, by definition 
we have 0 = f(ζ) = aζn + bζ

m + c, which is equivalent to ae−iγζn + be−iγζ
m + ce−iγ = 0. The latter reads 

as f̃(ζ) = a∗ζn + b∗ζ
m + |c| = 0. This completes the proof of Lemma 2.2. �

By Lemma 2.2 we can assume that a and b are any non-zero complex numbers and c > 0. Then for 
convenience and in a conscious abuse of notation we set

f(ζ) = aζn + bζ
m + c, ζ ∈ C. (2.2)

Let r > 0 and assume that |a|rn, |b|rm and c are the side lengths of some triangle (it may be degenerate). 
Let ω1 and ω2 be the opposite angles to the sides with lengths |a|rn and |b|rm, respectively. In this setting, 
the pivot terms P∗ and ω∗(r) defined in (1.5) are given by

P∗ = n(β − π) + m(α− π)
2π and ω∗(r) = nω1 −mω2

2π . (2.3)

We point out that P∗ only depends on n, m, arg(a) and arg(b). Whereas ω∗(r) only depends on |a|rn, |b|rm
and c.

The following propositions allow us to relate the modulus of the roots for the harmonic trinomial equa-
tion (2.2) with the existence of some triangle and arithmetic properties of the pivots (2.3).

Proposition 2.3. Let ζ0 be any root of the harmonic trinomial equation (2.2) and set r = |ζ0|. Assume that the 
numbers |a|rn, |b|rm and c are the side lengths of some triangle Δ. Then P∗−ω∗(r) ∈ Z or P∗ +ω∗(r) ∈ Z, 
where P∗ and ω∗(r) are given in (2.3).

Proof. The proof is a slight modification of the ideas given in [1], p. 559. We write the complex numbers 
a, b and ζ0 in polar form. That is to say, we write a = |a|eiα, b = |b|eiβ and ζ0 = reiφ for some r > 0 and 
α, β, φ ∈ [0, 2π). Since ζ0 is a root of (2.2), we have

0 = aζn0 + bζ
m

0 + c = |a|eiαrneinφ + |b|eiβrme−imφ + c

= |a|rnei(α+nφ) + |b|rmei(β−mφ) + c.
(2.4)

By hypothesis the numbers |a|rn, |b|rm and c are the side lengths of Δ, and let ω1 and ω2 be the interior 
angles of Δ opposite to the sides with lengths |a|rn and |b|rn, respectively. Then (2.4) with the help of 
Lemma A.3 in Appendix A yields the following two cases:

• Case I: The following relations holds true

α + nφ ≡ π − ω2 and β −mφ ≡ π + ω1. (2.5)

• Case II: The following relations holds true

α + nφ ≡ −π + ω2 and β −mφ ≡ −π − ω1.

In the sequel, we analyze Case I. By definition of the symbol ≡, relation (2.5) reads as follows: α =
π − ω2 − nφ + 2πk1 and β = π + ω1 + mφ + 2πk2 for some k1, k2 ∈ Z. Straightforward computations yield
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P∗ − ω∗(r) = nβ + mα− (n + m)π − nω1 + mω2

2π = k2n + k1m ∈ Z.

The Case II is completely analogous. This completes the proof of Proposition 2.3. �
Roughly speaking, the next proposition is the converse of Proposition 2.3.

Proposition 2.4. Let r > 0 and assume that |a|rn, |b|rm and c are the side lengths of some triangle Δ. Let 
P∗ and ω∗(r) be the pivots defined in (2.3). If P∗ − ω∗(r) or P∗ + ω∗(r) are integers, then the harmonic 
trinomial equation (2.2) has at least one root with modulus r.

Proof. The proof is a slight modification of the ideas given in [1], p. 559. The assumption P∗ − ω∗(r) or 
P∗ + ω(r) are integers reads as follows:

n(β − π) + m(α− π) + ε(nω1 −mω2) = 2πκ, (2.6)

where ε ∈ {−1, 1} and κ := κ(ε) ∈ Z. Since the natural numbers n and m are co-primes, there exist integers 
N and M satisfying

nN −mM = κ. (2.7)

By (2.6) and (2.7) we obtain

n(β − π + εω1 − 2πN + my) + m(α− π − εω2 + 2πM − ny) = 0 (2.8)

for any y ∈ C. Now, we choose the unique z ∈ R such that β − π + εω1 − 2πN + mz = 0. This yields

ω1 ≡ ε(π − β −mz). (2.9)

By (2.8) we have α− π − εω2 + 2πM − nz = 0, which implies

ω2 ≡ ε(α− π − nz). (2.10)

Since |a|rn, |b|rm and |c| are the side lengths of Δ, Lemma A.2 in Appendix A with the help of (2.9)
and (2.10) implies

0 = |a|rne−iω2 + |b|rmeiω1 − c = |a|rne−iε(α−π−nz) + |b|rmeiε(π−β−mz) − c. (2.11)

Recall that α and β are the arguments of a and b, respectively. Then we write a = |a|eiα and b = |b|eiβ . In 
the sequel, we analyze the case ε = 1. Relation (2.11) reads as follows:

0 = |a|rne−i(α−π−nz) + |b|rmei(π−β−mz) − c

= |a|rne−iαeiπeinz + |b|rmeiπe−iβe−imz − c.

Then we have 0 = arne−inz + brmeimz + c = aζn1 + bζ
m

1 + c, where ζ1 := re−iz. Hence ζ1 is a root of (2.2).
We continue with the case ε = −1. Relation (2.11) implies

0 = |a|rnei(α−π−nz) + |b|rme−i(π−β−mz) − c = |a|rneiαe−iπe−inz + |b|rme−iπeiβeimz − c.

The preceding equation yields 0 = arne−inz + brmeimz + c = aζn−1 + bζ
m

−1 + c, where ζ−1 := re−iz. Hence, 
ζ−1 is a root of (2.2). This finishes the proof of Proposition 2.4. �
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In the following proposition, we analyze arithmetic properties of the extremes P∗−ω∗(r) and P∗ +ω∗(r). 
In particular, in the generic case nβ +mα �= kπ for some k ∈ N, we obtain that P∗ − ω∗(r) and P∗ + ω∗(r)
cannot be both integers.

Proposition 2.5. Let P∗ and ω∗(r) be the pivots defined in (2.3). The following statements are valid.

(i) If nβ + mα is an integer multiple of π and P∗ − ω∗(r) is an integer, then P∗ + ω∗(r) is an integer.
(ii) If nβ + mα is an integer multiple of π and P∗ + ω∗(r) is an integer, then P∗ − ω∗(r) is an integer.
(iii) If nβ + mα is not an integer multiple of π, then P∗ − ω∗(r) and P∗ + ω∗(r) cannot be both integers.
(iv) nβ + mα is an integer multiple of π if and only if 2P∗ is an integer.

Proof. We start with the proof of Item (i). If nβ +mα = πk1 for some k ∈ Z and P∗ −ω(r) = k2 ∈ Z, then 
straightforward computations yield

P∗ + ω∗(r) = π(k1 − n−m)
2π + nω1 −mω2

2π = k1 − n−m

2 + k − n−m

2 − k2

= k1 − k2 − n−m ∈ Z.

This finishes the proof of Item (i). The proof of Item (ii) is completely analogous and we omit it. Now, we 
prove Item (iii) by a contradiction argument. Assume that P∗ − ω∗(r) and P∗ + ω∗(r) are integers. Then 
2P∗ is an integer and satisfies

2P∗ + (n + m) = nβ + mα

π
, (2.12)

which is a contradiction due to the left-hand side of the preceding inequality is an integer, whereas the 
right-hand side is not an integer. This completes the proof of Item (iii). Finally, Item (iv) follows directly 
from (2.12). �
2.3. The region with roots

In this subsection, we find the region where the modulus of the roots belong. Recall that we assume that 
c > 0. However, for convenience, in this subsection we write |c| instead of c since the statements of this 
subsection hold true for any c ∈ C \ {0}.

Lemma 2.6. Let r > 0 and suppose that |a|rn, |b|rm and |c| are not the side lengths of any triangle. Then 
there is no solution of modulus r of the harmonic trinomial equation (2.2).

Proof. We use a contradiction argument. Suppose that ζ0 is a root of modulus r of the equation (1.3). 
Assume that |c| > |a|rn + |b|rm. Since ζ0 is a root of (1.3), we have

|c| = | − aζn0 − bζ
m

0 | = |aζn0 + bζ
m

0 | ≤ |a|rn + |b|rm < |c|,

which is a contradiction. A similar reasoning applies for the cases |a|rn > |b|rm + |c| and |b|rm > |a|rn +
|c|. �

The preceding lemma motivates the following definition. We set

T := {r ∈ (0,∞) : |a|rn, |b|rm, |c| are the side lengths of some triangle} . (2.13)
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In (2.13) we have excluded the case of degenerate triangles. They are studied separately. We start analyzing 
the precise shape of T .

Theorem 2.7 (The shape of T). For any r ∈ [0, ∞) let

A(r) = |a|rn − |b|rm − |c|, B(r) = −|a|rn + |b|rm − |c|
and C(r) = −|a|rn − |b|rm + |c|.

Let Bn,m be the maximum of the function B over [0, ∞). Let a and c be the unique positive roots of A and 
C, respectively. Then the following holds true.

(I) If Bn,m < 0, it follows that T = (c, a).
(II) If Bn,m = 0, it follows that T = (c, b) ∪ (b, a), where b is the unique positive root of B.
(III) If Bn,m > 0, then B has exactly two positives roots b1 < b2 and T = (c, b1) ∪ (b2, a).

Proof. The proof of Theorem 2.7 is given in [1]. However, for reader’s convenience, we sketch it here. By the 
Rule of Signs of Descartes, the trinomial A has precisely one positive root, that we denote by a. Similarly, C
has precisely one positive root that we denote c. A more delicate analysis shows that B could have zero, one 
or two positive roots. In fact, the last statement depends whether to the maximum Bn,m of B is negative, 
zero or positive, respectively.

We start by showing that c < a. We note that the function A satisfies the following:

(a) The number r0 = (m|b|
n|a| )

1
n−m is the only positive critical point of the derivative dA

dr . Moreover, the 
derivative of A with respect to r is negative for 0 < r < r0 and positive for r > r0.

(b) A(r) is negative for 0 < r < a, and A(r) is positive for r > a.

The function C has the following properties:

(c) C(r) is positive for 0 < r < c, and C is negative for r > c.

We also note that (A + C)(c) = −2|b|cm < 0. Since C(c) = 0, we have A(c) < 0 which implies a < c. 
Moreover, by Item (b) and Item (c) we deduce that T ⊂ (c, a).

We point out that Lemma 2.6 guarantees that the modules of the roots r of an harmonic trinomial lie in 
the open subset of (0, ∞) determined by the inequalities A(r) ≤ 0, B(r) ≤ 0 and C(r) ≤ 0. We observe the 
following properties for the trinomial B:

(d) The number r0 is the unique critical point of the derivative dB
dr . Moreover, such derivative is positive 

for 0 < r < r0 and negative for r > r0.
(e) Bn,m = B(r0) ∈ R.

First, we prove Item (I). We assume that Bn,m < 0 let r ∈ (c, a) be fixed. Since Bn,m < 0, we have that 
B(r) < 0. Hence, by (2.13) we obtain (c, a) ⊂ T .

Now, we prove Item (II). Since Bn,m = 0, we have that r0 = b and hence B(r) < 0 for any r ∈
(0, r0) ∪ (r0, ∞). Note that (B + A)(r0) < 0 and (B + C)(r0) < 0. By Item (b) and Item (c) we obtain 
r0 = b ∈ (c, a) and then T = (c, b) ∪ (b, a).

Finally, we prove Item (III). Since Bn,m > 0, we have that B has exactly two positive roots b1 and b2
with b1 < b2. Moreover, B(r) ≤ 0 for r ∈ (0, b1] ∪ [b2, ∞). An analogous reasoning used in the proof of Item 
(II) yields T = (c, b1) ∪ (b2, a). �
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In the sequel, we analyze the boundary of T . The proofs of the following three lemmas are straightforward 
and we omit them.

Lemma 2.8 (The boundary cases). Let keep the notation introduced in Theorem 2.7. Then the following is 
valid.

(i) r = c if and only if |c| = |a|rn + |b|rm.
(ii) r = a if and only if |a|rn = |b|rm + |c|.
(iii) Assume Bn,m = 0. Then r = b, if and only if |b|rm = |a|rn + |c|.
(iv) Assume Bn,m > 0. Then r ∈ {b1, b2} if and only if |b|rm = |a|rn + |c|.

In what follows we analyze T
c.

Lemma 2.9 (The complement of T). Let keep the notation introduced in Theorem 2.7. Then the following 
is valid.

(i) r ∈ (0, c) if and only if |c| > |a|rn + |b|rm.
(ii) r ∈ (a, ∞) if and only if |a|rm > |b|rm + |c|.
(iii) r ∈ (b1, b2) and B(r) �= Bn,m if and only if |b|rm > |a|rn + |c|.

Lemma 2.10. Let keep the notation introduced in Theorem 2.7. Then it follows that

(i) If r ∈ (0, c], then ω∗(r) = 0.
(ii) If r ∈ [a, ∞), then ω∗(r) = n

2 .
(iii) If r = b or r ∈ [b1, b2], then ω∗(r) = −m

2 .

Now, we show that in the generic case (iii) of Proposition 2.5 and in the boundary of T , there is no roots 
for the harmonic trinomial. This is precisely stated in the following lemma.

Lemma 2.11. Assume that nβ + mα is not an integer multiple of π and for some r > 0, the numbers 
|a|rn, |b|rm and |c| are the side lengths of some degenerate triangle. Then there is no root of the harmonic 
trinomial (2.2) of modulus r.

Proof. We use a contradiction argument. Let r = c, ζ0 = reiθ and assume that ζ0 is a root of harmonic 
trinomial equation. Then we have

|a|rnei(nθ+α) + |b|rmei(−mθ+β) + |c| = 0. (2.14)

Lemma 2.8 implies |c| = |a|rn + |b|rm. By (2.14) and Lemma A.3 in Appendix A we obtain α+nθ ≡ π and 
β −mθ ≡ π. Hence, α = −nθ + π + 2πk1 and β = π + mθ + 2πk2 for some k1, k2 ∈ Z. By straightforward 
computations we have nβ+mα = π(n +m +2k2n +2k1m) which yields a contradiction. A similar reasoning 
applies for the cases |a|rn = |b|rm + |c| and |b|rm = |a|rn + |c|. �

Now, we prove that the function ω∗ is piece-wise monotone.
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Lemma 2.12. The derivative of the function ω∗ : T → R satisfies the following:

d
drω∗(r) < 0 for r ∈ (c, r0) ∩ T ,

d
drω∗(r) > 0 for r ∈ (r0, a) ∩ T ,

(2.15)

where r0 = (m|b|
n|a| )

1
n−m .

Proof. We compute the derivative of ω∗ in the domain T . For any r ∈ T , the law of cosines yields

|a|2r2n = |b|2r2m + |c|2 − 2|b||c|rm cos(ω1(r)),

|b|2r2m = |a|2r2n + |c|2 − 2|a||c|rn cos(ω2(r)).

For shorthand we write ω1 and ω2 instead of ω1(r) and ω2(r). By straightforward computations we obtain

dω1

dr = n|a|2r2n−1 −m|b|2r2m−1 + m|b||c|rm−1 cos(ω1)
|b||c|rm sin(ω1)

,

dω2

dr = m|b|2r2m−1 − n|a|2r2n−1 + n|a||c|rn−1 cos(ω2)
|a||c|rn sin(ω2)

.

(2.16)

The law of sines implies δ := |b||c|rm sin(ω1) = |a||c|rn sin(ω2) > 0. Hence, (2.16) yields

2π dω∗
dr = n

dω1

dr −m
dω2

dr = (n|a|rn −m|b|rm)(n|a|rn + m|b|rm)
2rδ ,

which has a unique critical point at r0 = (m|b|
n|a| )

1
n−m . This easily implies (2.15). �

3. Proof of Theorem 1.2

In this section, we stress the fact that Theorem 1.2 is just a consequence of what we have already proved 
in Section 2.

Proof of Theorem 1.2. We use the same notation introduced in Theorem 2.7. Now, we give with the proof 
of Case (I). We recall that T = (c, a) and b = r0 = (m|b|

n|a| )
1

n−m . By Lemma 2.10 we have ω∗(c) = 0, 
ω∗(r0) = −m/2 and ω∗(a) = n/2. Then Lemma 2.12 with the help of the Intermediate value theorem 
implies the existence of a unique r1 ∈ (r0, a) such that ω∗(r1) = 0. On the one hand, by Lemma 2.10 we 
have ω∗(r) = 0 for r ∈ (0, c], and hence the right-hand side of (1.4) is equal to zero. On the other hand, 
Lemma 2.6 and Item (i) of Lemma 2.8 imply that the left-hand side of (1.4) is equal to zero. This yields (1.4)
for any r ∈ (0, c].

In what follows, we assume that

nβ + mα is not an integer multiple of π. (3.1)

By Item (iv) of Proposition 2.5, (3.1) is equivalent to 2P∗ /∈ Z. We note that P∗ /∈ Z. We continue with the 
proof of (1.4) for r > c. The analysis is divided in the following two sub-cases.

Case A.1: Assume that the numbers P∗ − ω∗(r) and P∗ + ω∗(r) are not integers for some r ∈ T . Assume 
that r ∈ J1 := (c, b]. By (3.1), Proposition 2.3, Proposition 2.4 and Lemma 2.12 we have

Card(Zf (r)) = CardZ(P∗ − ω∗(0, r)) + CardZ(P∗ + ω∗(0, r)).
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In particular, since 2P∗ /∈ Z, for r = b Lemma 2.11 yields that f does not have any root of modulus b and 
hence Card(Zf (b)) = m.

Next, we assume that r ∈ J2 := (b, r1). We observe that

CardZ(P∗ − ω∗(0, r)) = CardZ(P∗ − ω∗(0, b]) + CardZ(P∗ − ω∗(b, r)),

CardZ(P∗ + ω∗(0, r)) = CardZ(P∗ + ω∗(0, b]) + CardZ(P∗ + ω∗(b, r)),

which implies

CardZ(P∗ − ω∗(0, r)) + CardZ(P∗ + ω∗(0, r))

= CardZ(P∗ − ω∗(0, b]) + CardZ(P∗ + ω∗(0, b]) + CardZ(P∗ − ω∗(b, r)) + CardZ(P∗ + ω∗(b, r))

= m + CardZ(P∗ − ω∗(b, r)) + CardZ(P∗ + ω∗(b, r)).

In particular, by Lemma 2.11 for r = r1 we obtain Card(Zf (r1)) = m + m = 2m.
Finally, we assume that r > r1. Similar reasoning implies

CardZ(P∗ − ω∗(0, r)) + CardZ(P∗ + ω∗(0, r))

= 2m + CardZ(P∗ − ω∗(r1, r)) + CardZ(P∗ + ω∗(r1, r)).

In particular, Lemma 2.11 for r = a we obtain Card(Zf (a)) = 2m + n.
Case A.2: Assume that the numbers P∗ − ω∗(r) or P∗ + ω∗(r) are integers for some r ∈ T . We stress 

that P∗ − ω∗(r) and P∗ + ω∗(r) cannot be both integers. Without loss of generality, one can assume that 
P∗ +ω∗(r) is an integer. Since the number of roots for any harmonic trinomial is finite, for 0 < r̃ < r and r̃
sufficiently close to r by continuity we obtain that P∗ − ω∗(r̃) and P∗ + ω∗(r̃) are not integers,

CardZ(P∗ − ω∗(0, r)) = CardZ(P∗ − ω∗(0, r̃)),

CardZ(P∗ + ω∗(0, r)) = CardZ(P∗ + ω∗(0, r̃)).

Hence Case A.1 implies Card(Zf (r)) = Card(Zf (r̃)) and we conclude (1.4). Case A.1 and Case A.2 complete 
the proof for the Case A under (3.1).

In the sequel, we assume that

nβ + mα is an integer multiple of π. (3.2)

We analyze the following two cases.
Case B.1: If P∗ − ω∗(r) and P∗ + ω∗(r) are not integers for some r ∈ T , then the proof is similar to the 

Case A.1.
Case B.2: If P∗ − ω∗(r) or P∗ + ω∗(r) are integers for some r ∈ T , then Item (i) and Item (ii) of 

Proposition 2.5 imply that P∗ − ω∗(r) and P∗ + ω∗(r) are integers. Recall that nα + mβ satisfies (3.2). By 
perturbation we choose α̃ and β̃ such that nα̃+mβ̃ satisfies (3.1). For such choice, the associated harmonic 
trinomial g is given by g(ζ) = |a|eiα̃ζn + |b|eiβ̃ζ

m + c, ζ ∈ C and it has corresponding pivots

P g
∗ = n(β̃ − π) + m(α̃− π)

2π and ωg
∗(r) = nω1 −mω2

2π .

We stress that ωg
∗(r) = ω∗(r) which is defined in (2.3). In addition, such α̃ and β̃ can be chosen to satisfy 

0 < P g
∗ − P∗ < 1/4, and P g

∗ − ω∗(r), P g
∗ + ω∗(r) are not integers. The preceding choice implies
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Card(Zf (r)) = Card(Zg(r)) − 1,

CardZ(P g
∗ − ω∗(0, r)) = CardZ(P∗ − ω∗(0, r)) + 1,

CardZ(P g
∗ + ω∗(0, r)) = CardZ(P∗ + ω∗(0, r)).

(3.3)

Since nα̃ + mβ̃ satisfies (3.1), Case (I) yields

Card(Zg(r)) = CardZ(P g
∗ − ω∗(0, r)) + CardZ(P g

∗ + ω∗(0, r)).

The preceding equality with the help of (3.3) implies (1.4). Case B.1 and Case B.2 complete the proof for 
the Case B under (3.2).

The proofs of Case (II) and Case (III) follow step by step from the Case (I). The proof of Theorem 1.2
is finished. �
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Appendix A. Continuity and trigonometric equations associated to triangles

This section contains useful properties that help us to make this paper more fluid. Since all proofs are 
straightforward, we left the details to the interested reader.

Lemma A.1 (Continuity). Let Δ be a triangle (it may be degenerate) with side lengths �1, �2 and �3. Let ω1, 
ω2 and ω3 be the interior angles opposite to the sides with lengths �1, �2 and �3, respectively. Then ω1, ω2
and ω3 are uniquely determined by �1, �2 and �3. Moreover, they are continuous functions of them.

Lemma A.2 (P. 558 Equation (3) of [1]). Let Δ be a triangle (it may be degenerate) with side lengths �1, �2
and �3. Let ω1, ω2 and ω3 be the interior angles opposite to the sides with lengths �1, �2 and �3, respectively. 
Then the following trigonometric equation holds true �1e−iω2 + �2e

iω1 − �3 = 0.
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Lemma A.3 (P. 558 Equation (4)-(6) of [1]). Let Δ be a triangle (it may be degenerate) with side lengths 
�1, �2 and �3. Then the real numbers φ and ψ that are solutions of the complex trigonometric equation 
�1e

iφ + �2e
iψ + �3 = 0 satisfy the relations φ ≡ π − ω2, ψ ≡ π + ω1 and φ ≡ −π + ω2, ψ ≡ −π − ω1, where 

A ≡ B means that A −B = 2πk for some k ∈ Z.
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