
https://helda.helsinki.fi

Pattern Discovery in Colored Strings

Liptak, Zsuzsanna

2021-12

Liptak , Z , Puglisi , S J & Rossi , M 2021 , ' Pattern Discovery in Colored Strings ' , ACM

Journal of Experimental Algorithmics , vol. 26 , no. 1 , pp. 1-26 . https://doi.org/10.1145/3429280

http://hdl.handle.net/10138/343970

https://doi.org/10.1145/3429280

unspecified

acceptedVersion

Downloaded from Helda, University of Helsinki institutional repository.

This is an electronic reprint of the original article.

This reprint may differ from the original in pagination and typographic detail.

Please cite the original version.

1

Pattern Discovery in Colored Strings

ZSUZSANNA LIPTÁK, University of Verona, Department of Computer Science, Italy

SIMON J. PUGLISI, Helsinki Institute of Information Technology (HIIT) and Department of Computer

Science, University of Helsinki, Finland

MASSIMILIANO ROSSI, University of Florida, Department of Computer and Information Science and

Engineering, United States

In this paper, we consider the problem of identifying patterns of interest in colored strings. A colored string

is a string where each position is assigned one of a finite set of colors. Our task is to find substrings of the

colored string that always occur followed by the same color at the same distance. The problem is motivated by

applications in embedded systems verification, in particular, assertionmining. The goal there is to automatically

find properties of the embedded system from the analysis of its simulation traces.

We show that, in our setting, the number of patterns of interest is upper-bounded by O(𝑛2), where 𝑛 is the

length of the string. We introduce a baseline algorithm, running in O(𝑛2) time, which identifies all patterns

of interest satisfying certain minimality conditions, for all colors in the string. For the case where one is

interested in patterns related to one color only, we also provide a second algorithm which runs in O(𝑛2 log𝑛)
time in the worst case but is faster than the baseline algorithm in practice. Both solutions use suffix trees, and

the second algorithm also uses an appropriately defined priority queue, which allows us to reduce the number

of computations. We performed an experimental evaluation of the proposed approaches over both synthetic

and real-world datasets, and found that the second algorithm outperforms the first algorithm on all simulated

data, while on the real-world data, the performance varies between a slight slowdown (on half of the datasets)

and a speedup by a factor of up to 11.
1

CCS Concepts: • Theory of computation → Design and analysis of algorithms; • Computer systems
organization → Embedded systems.

Additional Key Words and Phrases: property testing, suffix tree, pattern mining, efficient algorithm

ACM Reference Format:
Zsuzsanna Lipták, Simon J. Puglisi, and Massimiliano Rossi. 2020. Pattern Discovery in Colored Strings. ACM
J. Exp. Algor. 1, 1, Article 1 (January 2020), 27 pages. https://doi.org/10.1145/3429280

1 INTRODUCTION
In recent years, embedded systems have become increasingly pervasive and are becoming funda-

mental components of everyday life. In line with this, embedded systems are required to perform

more and more demanding tasks, and in many circumstances, peoples’ lives are now dependent on

the correct functioning of these devices. This, in turn, has led to an increasingly complex design

1
A preliminary version of this paper was presented at SEA2020 [25]

Authors’ addresses: Zsuzsanna Lipták, zsuzsanna.liptak@univr.it, University of Verona, Department of Computer Science,

Strada le Grazie, 15, Verona, Italy; Simon J. Puglisi, puglisi@cs.helsinki.fi, Helsinki Institute of Information Technology

(HIIT), Department of Computer Science, University of Helsinki, Helsinki, Finland; Massimiliano Rossi, rossi.m@ufl.edu,

University of Florida, Department of Computer and Information Science and Engineering, Gainesville, United States.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2020 Association for Computing Machinery.

1084-6654/2020/1-ART1 $15.00

https://doi.org/10.1145/3429280

ACM J. Exp. Algor., Vol. 1, No. 1, Article 1. Publication date: January 2020.

https://doi.org/10.1145/3429280
https://doi.org/10.1145/3429280

1:2 Zs. Lipták, S. J. Puglisi, and M. Rossi

process for embedded systems, where a major design task is to evaluate and check the correctness

of the functionality from the early stages of the development process. This functionality check-

ing is usually done using assertions — logic formulae expressed in temporal logic such as Linear

Temporal Logic (LTL) or Computation Tree Logic (CTL) — that provide a way to express desirable

properties of the device. Assertions are typically written by hand by the designers, and it might

take months to obtain a set of assertions that is small and effective (i.e. it covers all functionalities

of the device) [17]. In order to help designers with the verification process, methodologies and

tools have been developed which automatically generate assertions from simulation traces of an

implementation of the device [9, 10, 26, 37]. The objective is to provide a small set of assertions that

cover all behaviors of the device, in order to extend the basic manually-defined set of assertions.

A simulation trace can be viewed as a table that records, for every simulation instant𝑇 , the value

assumed by the input and output ports of the device. Figure 1a shows an example of a simulation

trace of a device with three input ports I = {𝑖1, 𝑖2, 𝑖3} and two output ports O = {𝑜1, 𝑜2}. An
assertion is a logic formula expressed in temporal logic that must remain true in the whole trace.

The simplest assertions involve only conditions occurring at the same simulation instant. In the

simulation trace in Figure 1a, from the solid and dashed shaded boxes, we can assert that each

time we have 𝑖1 = 1, 𝑖2 = 0, and 𝑖3 = 1, then 𝑜1 = 1 and 𝑜2 = 1. On the other hand, we cannot

assert that each time we have 𝑖1 = 1, 𝑖2 = 1, and 𝑖3 = 0, then 𝑜1 = 1 and 𝑜2 = 1, because there is a

counterexample in the simulation trace, namely at instant 𝑇 = 9, where 𝑜1 = 0 and 𝑜2 = 0. Note

that the assertions do not need to contain all input and output variables, e.g. we can assert that

𝑖1 = 0 and 𝑖3 = 0 implies 𝑜2 = 0.

Among all possible types of assertions that can be expressed in temporal logic, an interesting

one is given by chains of next: sequences of consecutive input values that, when provided to the

device, uniquely determine their output, after a certain number of simulation instants. For example,

in the simulation trace in Figure 1a, we can assert that each time we have, for (𝑖1, 𝑖2, 𝑖3), the values
(0, 1, 0), (1, 1, 0), (0, 1, 0) in consecutive simulation instants, then, three instants later, we will see

𝑜1 = 1 and 𝑜2 = 0.

We model simulation traces with colored strings. A colored string is a string over an alphabet Σ,
where each position is additionally assigned a color from an alphabet Γ. We will set Σ as the set of

tuples of possible values for the input ports 𝑖1, . . . , 𝑖𝑘 and Γ as that of the output traces 𝑜1, . . . , 𝑜𝑟 .

The objective then is to identify patterns in the string whose occurrence is always followed by the

same color at some given distance.

1.1 Related Work
Pattern mining was originally motivated by the need to discover frequent itemsets and association

rules in basket data, i.e. items that were frequently bought together in a retail store. The seminal

Apriori algorithm [1] can discover that type of pattern and has become very popular (with many

extensions and variations) due to its wide applicability in other data-intensive domains. Time

relationship, e.g., between entries of the database in which the basket data are stored, were later

considered in so-called sequential pattern mining [2].
In sequential pattern mining, episodes are partially ordered sequences of events that appear close

to each other in the sequence [29]. Given episodes of the sequence, it is possible to build episode
rules that establish antecedent-consequent relations among episodes. Sequential pattern mining

has many applications (see,e.g., [6, 12, 24]) and has been surveyed extensively [18, 27, 32].

Unfortunately, the above setting is not applicable to our problem, since here time is given only

in a relative sense, i.e., whether an event happens before (or after) another event, while we need to

count exactly the instants that occurs between the two events.

ACM J. Exp. Algor., Vol. 1, No. 1, Article 1. Publication date: January 2020.

Pattern Discovery in Colored Strings 1:3

(a) Simulation trace.

𝑇 𝑖1 𝑖2 𝑖3 𝑜1 𝑜2

1 0 1 0 0 0

2 1 1 0 1 0

3 0 1 0 0 0

4 1 1 0 1 1

5 0 1 0 0 0

6 1 1 0 1 0

7 1 0 1 1 1

8 0 1 0 1 0

9 1 1 0 0 0

10 0 1 0 0 0

11 1 0 1 1 1

(b) Mapping of the input and output alphabet.
Input alphabet.

𝑖1 𝑖2 𝑖3 Σ

0 1 0 a
1 0 1 b
1 1 0 c

Output alphabet.

𝑜1 𝑜2 Γ

0 0 𝑥

1 0 𝑦

1 1 𝑧

(c) The colored string associated with the simulation trace.

𝑥 𝑦 𝑥 𝑧 𝑥 𝑦 𝑧 𝑦 𝑥 𝑥 𝑧

a c a c a c b a c a b

1 2 3 4 5 6 7 8 9 10 11

Fig. 1. Example of a simulation trace of a device with input ports I = {𝑖1, 𝑖2, 𝑖3}, and output ports O = {𝑜1, 𝑜2}.
The mapping of the input and output values of the trace into the input and output alphabet respectively.
The colored string associated to the simulation trace, after the mapping. The solid and dashed shaded and
non-shaded boxed values in the simulation trace highlight that every time we see the sequence of input
values, then we have the corresponding output value. The solid non-shaded boxed characters in the colored
string are the mapping of the corresponding solid non-shaded boxed values in the simulation trace.

In the string mining problem [11, 14–16, 36], one aims to discover strings that appear as a substring

in more than 𝜔 strings in a collection, where 𝜔 is a user-defined parameter called support of the
string. This can be also used to find strings that discriminate between two collections, i.e., strings

that are frequent in one collection and not frequent in the other. These strings are called emerging
strings and find important applications in data mining [33], knowledge discovery in databases [5]

and in bioinformatics [3]. In the field of knowledge discovery on databases, the problem has been

extended to mining frequent subsequences [22] and distinguishing subsequence patterns with gap

constraints [23, 31, 38, 39].

In [21] Hui proposed a solution for the color set size problem. Here, given a tree and a coloring of

its leaves, the objective is to find, for all internal nodes of the tree the number of distinct colors in

the leaves of its subtree. In [21], the color set size problem is applied to several string matching and

string mining problems, e.g., given a collection of𝑚 strings, find the longest pattern which appears

in at least 1 ≤ 𝑘 ≤ 𝑚 strings. Note that if the tree of the color set size problem is the suffix tree of

a string 𝑠 , then 𝑠 with the coloring of its suffixes can be seen as a colored string. In spite of this

similarity, both, the problems that we solve, and the approaches we use, are different.

In assertion mining, the two existing tools, GoldMine [37] and A-Team [9], are based on data

mining algorithms. In particular, GoldMine [37] extracts assertions that predicate only on one

instant of the simulation trace—i.e. they do not involve any notion of time—, using decision tree

based mining or association mining [1]. Furthermore, using static analysis techniques together

with sequential pattern mining, it extracts temporal assertions. The tool A-Team [9], requires the

user to provide the template of the temporal assertions that they want to extract. For example, in

order to extract the properties of our example in Fig. 1a, one needs to provide a template stating

that we want a property of the form: “a property 𝑝1, at the next simulation instant a property 𝑝2,

at the next simulation instant a property 𝑝3, then after three simulation instants a property 𝑝4”.

Given a set of templates, the software, using an Apriori algorithm, extracts propositions (logic

ACM J. Exp. Algor., Vol. 1, No. 1, Article 1. Publication date: January 2020.

1:4 Zs. Lipták, S. J. Puglisi, and M. Rossi

formulae containing the logical connectives ¬, ∨, and ∧) from the trace. Once the propositions

have been extracted, the tool generates the assertion by instantiating the extracted propositions in

the templates, using a decision-tree-based algorithm to find formulas that fit in the template and

are verified in the simulation trace, i.e. if the trace contains no counterexample.

1.2 Our Contribution
In this work we introduce colored strings, and propose and analyze two pattern discovery problems

on colored strings which correspond to a useful simplification of pattern mining w.r.t. assertion

mining. In both problems, we are given a colored string as input. Given a colored string and a color

as input, in the first problem, we must find all minimal substrings that occur followed always at

the same distance by the given color. In the second problem, the color is not fixed, thus we want to

find all minimal substrings which occur followed always at the same distance by the same color.

We define these problems formally in Section 2.

Although these problems are simpler than the original assertion mining problem, the solution to

our problem contains all the information, possibly filtered, to recover the desired set of minimal

assertions in a second stage. For example, let us assume that the device that produced the simulation

trace in Figure 1a has the following behavior: every time that 𝑖1 = 0, at the next instant 𝑖1 = 1, and

at the next instant 𝑖1 = 0, then after three instants 𝑜1 = 1 and 𝑜2 = 0. A solution to our problem will

include all patterns of length 3 for which 𝑖1 takes consecutive values 0, 1, 0, while 𝑖2 and 𝑖3 have

arbitrary values, since all of these will result in 𝑜1 = 1 and 𝑜2 = 0 three instances later.

We first upper bound the number of minimal patterns by O(𝑛2). We then propose two algorithms

which find all minimal patterns, when only one color is of interest (base), and when one is

interested in all colors (base-all). Both of these algorithms use the suffix tree of the reverse string

as underlying data structure. We note that since this is a pattern mining problem, every efficient

algorithm for the problem will necessarily use a dedicated string data structure (or index), such as

a suffix tree, since all occurrences of substrings have to be considered concurrently.

Then we show that, in the case of one color, the first algorithm can be improved. The new

algorithm, referred to as skipping, also uses the suffix tree as its underlying data structure, to-

gether with an appropriately defined priority queue. This allows us to reduce the number of

computations in practice, even though the theoretical running time of the new algorithm is worse,

namely O(𝑛2 log𝑛). We provide an experimental evaluation of the proposed approaches. Finally, we

consider (practically motivated) restrictions on the patterns and show that under these restrictions

performance of the skipping algorithm is further improved.

The paper is structured as follows. In Section 2 we fix definitions and notations and give the

problem statements. In Section 3 we present baseline algorithms, base and base-all, which solve

these problems. In Section 4 we present the modified algorithm skipping, which solves the pattern

discovery problem for only one color. In Section 5 we introduce real-world data oriented restrictions

on the output. In Section 6 we present an experimental evaluation of the proposed approaches.

Conclusions and future work can be found in Section 7.

2 BASICS
Let Σ be a finite ordered set. We refer to Σ as alphabet and to its elements as characters. A string over
Σ is a finite sequence of characters 𝑆 = 𝑆 [1, 𝑛], where |𝑆 | = 𝑛 is the length of string 𝑆 . We denote

by Y the empty string, the unique string of length 0. Note that we number strings starting from 1,

and we use the array-notation for strings: we denote the 𝑖’th character of 𝑆 by 𝑆 [𝑖] and use 𝑆 [𝑖, 𝑗]
to refer to the string 𝑆 [𝑖] · · · 𝑆 [𝑗], if 𝑖 ≤ 𝑗 , while 𝑆 [𝑖, 𝑗] = Y if 𝑖 > 𝑗 . Given string 𝑆 = 𝑆 [1, 𝑛], the

ACM J. Exp. Algor., Vol. 1, No. 1, Article 1. Publication date: January 2020.

Pattern Discovery in Colored Strings 1:5

reverse string is the string 𝑆rev = 𝑆 [𝑛]𝑆 [𝑛 − 1] · · · 𝑆 [1]. For string 𝑆 and 1 ≤ 𝑖 ≤ 𝑛, Pref𝑖 (𝑆) = 𝑆 [1, 𝑖]
is called the 𝑖’th prefix of 𝑆 , and Suf𝑖 (𝑆) = 𝑆 [𝑖, 𝑛] is called the 𝑖’th suffix of 𝑆 . A substring of a string
𝑆 is a string 𝑇 for which there exist 𝑖, 𝑗 s.t. 𝑇 = 𝑆 [𝑖, 𝑗]; in this case the position 𝑖 is referred to as an

occurrence of 𝑇 in 𝑆 . A substring 𝑇 of 𝑆 is called proper if 𝑇 ≠ 𝑆 . When 𝑆 is clear from the context,

then we may refer to 𝑇 simply as a substring.

2.1 Colored strings
Given two finite sets Σ (the alphabet) and Γ (the colors), a colored string over (Σ, Γ) is a string

𝑆 = 𝑆 [1, 𝑛] over Σ together with a coloring function 𝑓𝑆 : {1, . . . , 𝑛} → Γ. We denote by 𝜎 = |Σ| and
𝛾 = |Γ | the number of characters resp. of colors. Given a colored string 𝑆 of length 𝑛, its reverse

is denoted 𝑆rev, and its coloring function 𝑓𝑆rev is defined by 𝑓𝑆rev (𝑖) = 𝑓𝑆 (𝑛 − 𝑖 + 1), for 𝑖 = 1, . . . , 𝑛.

When 𝑆 is clear from the context, we write 𝑓 for 𝑓𝑆 and 𝑓 rev for 𝑓𝑆rev .

We are interested in those substrings which are always followed by a given color 𝑦, at a given

distance 𝑑 . Look at the following example.

Example 2.1. Let 𝑆 = 𝑎𝑐𝑎𝑐𝑎𝑐𝑏𝑎𝑐𝑎𝑏, with colors 𝑥𝑦𝑥𝑧𝑥𝑦𝑧𝑦𝑥𝑥𝑧:

𝑥 𝑦 𝑥 𝑧 𝑥 𝑦 𝑧 𝑦 𝑥 𝑥 𝑧

a c a c a c b a c a b

1 2 3 4 5 6 7 8 9 10 11

The substring aca occurs 3 times in 𝑆 , at positions 1, 3, and 8. In positions 1 and 3 it is followed

by a 𝑦 at distance 3, while at position 8, the corresponding position is beyond the end of the string.

This leads to the following definitions:

Definition 2.2 (𝑦-good, 𝑦-unique, minimal). Let 𝑆 be a colored string over (Σ, Γ), 𝑦 ∈ Γ a color,

𝑑 ≤ 𝑛 a non-negative integer, and 𝑇 = 𝑇 [1,𝑚] a substring of 𝑆 .

(1) An occurrence 𝑖 of 𝑇 is called 𝑦-good with delay 𝑑 (or (𝑦,𝑑)-good) if 𝑓 (𝑖 +𝑚 − 1 + 𝑑) = 𝑦.
(2) 𝑇 is called𝑦-unique with delay𝑑 (or (𝑦,𝑑)-unique) if for every occurrence 𝑖 of𝑇 , 𝑖 is (𝑦,𝑑)-good

or 𝑖 +𝑚 − 1 + 𝑑 > 𝑛.

(3) 𝑇 is calledminimally (𝑦,𝑑)-unique if there exists no proper substring𝑈 of𝑇 which is𝑦-unique

with delay 𝑑 ′, for some 𝑑 ′ s.t.𝑈 = 𝑇 [𝑖, 𝑗] and 𝑑 ′ = 𝑑 + |𝑇 | − 𝑗 .
In the Example 2.1, the occurrence of aca in position 1 is (𝑦, 3)- and (𝑦, 5)-good, that in position

3 is (𝑦, 1)- and (𝑦, 3)-good, while that in position 8 is not (𝑦,𝑑)-good for any 𝑑 . Therefore, the sub-

string𝑇 = aca is a (𝑦, 3)-unique substring of 𝑆 , since every occurrence 𝑖 of aca is either (𝑦, 3)-good
(position 1 and 3) or 𝑖 +𝑚 − 1 + 𝑑 > 𝑛 (position 8). However, aca is not minimal, since its substring

ca is also (𝑦, 3)-unique (where 𝑑 ′ = 𝑑 , since ca is a suffix of aca).

The introduction of minimally (𝑦,𝑑)-unique substrings serves to restrict the output size. Let

𝑇 = 𝑎𝑋𝑏 be (𝑦,𝑑)-unique, with 𝑎, 𝑏 ∈ Σ and𝑋 ∈ Σ∗. We call𝑇 left-minimal if𝑋𝑏 is not (𝑦,𝑑)-unique,
and right-minimal if 𝑎𝑋 is not (𝑦,𝑑 + 1)-unique. We make the following simple observations about

(𝑦,𝑑)-unique substrings. (Note that 2 is a special case of 3.)
Observation 1. Let 𝑆 ∈ Σ∗ and let 𝑇 be a (𝑦,𝑑)-unique substring of 𝑆 .
(1) 𝑇 is minimal if and only if it is left- and right-minimal.
(2) If 𝑇 is a suffix of 𝑇 ′, then 𝑇 ′ is also (𝑦,𝑑)-unique.
(3) If 𝑇 ′ = 𝑈𝑇𝑉 is a superstring of 𝑇 such that |𝑉 | ≤ 𝑑 , then 𝑇 ′ is (𝑦,𝑑 − |𝑉 |)-unique.
We are now ready to formally state the problems treated in this paper.

ACM J. Exp. Algor., Vol. 1, No. 1, Article 1. Publication date: January 2020.

1:6 Zs. Lipták, S. J. Puglisi, and M. Rossi

Problem 1 (Pattern Discovery Problem). Given a colored string 𝑆 and a color 𝑦, report all pairs
(𝑇,𝑑) such that 𝑇 is a minimally (𝑦,𝑑)-unique substring of 𝑆 .

Problem 2 (Unrestricted-Output Pattern Discovery Problem). Given a colored string 𝑆 ,
report all triples (𝑇,𝑦, 𝑑) such that 𝑇 is a minimally (𝑦,𝑑)-unique substring of 𝑆 .

We next give an upper bound on the number of minimally (𝑦,𝑑)-unique substrings.

Lemma 2.3. Given string 𝑆 of length 𝑛, the number of minimally (𝑦,𝑑)-unique substrings of 𝑆 , over
all 𝑦 ∈ Γ and 𝑑 = 0, . . . , 𝑛, is O(𝑛2).

Proof. Note that, given a position 𝑗 and a delay 𝑑 , every substring occurrence ending in 𝑗 is

(𝑓𝑆 (𝑗 + 𝑑), 𝑑)-good. Therefore, for a substring 𝑈 with an occurrence ending in position 𝑗 , and for

fixed 𝑑 , it holds that, if 𝑈 is (𝑦,𝑑)-unique for some 𝑦, then 𝑦 = 𝑓𝑆 (𝑗 + 𝑑). Moreover, it follows from

Observation 1 that, given 𝑦,𝑑 , and 𝑗 , at most one minimally (𝑦,𝑑)-unique substring can end at

position 𝑗 . Altogether we have that the number of minimally (𝑦,𝑑)-unique substrings is O(𝑛2),
over all 𝑦 and 𝑑 . □

2.2 Suffix trees and suffix arrays
Let 𝑆 be a string over Σ and $ a new character not belonging to Σ. We denote by T (𝑆) the suffix
tree of 𝑆$, i.e. the compact trie of the suffixes of 𝑆$. For a general introduction to suffix trees, see,

e.g., [20, 28, 35]. Here we recall some basic facts.

The suffix tree T (𝑆) is a rooted tree in which all internal nodes are branching. Each edge is

labeled with a non-empty substring of 𝑆 such that the labels of any two outgoing edges from the

same node start with a different character. Edge labels are stored in form of two pointers [𝑖, 𝑗]
into the string with the property that 𝑆 [𝑖, 𝑗] equals the label of the edge. If |𝑆 | = 𝑛, then T (𝑆) has
exactly 𝑛 + 1 leaves, each labeled by a position from {1, . . . , 𝑛 + 1}, denoted ln(𝑣) (for leaf number).
For a node 𝑣 in T (𝑆), we denote by 𝐿(𝑣) the concatenation of the edge labels on the path from the

root to node 𝑣 . The string 𝐿(𝑣) is sometimes referred to as the substring represented by node 𝑣 . If 𝑣

is a leaf with ln(𝑣) = 𝑖 , then 𝐿(𝑣) is equal to the 𝑖’th suffix of 𝑆$, Suf𝑖 (𝑆$). For a node 𝑣 , we denote
by td(𝑣) its treedepth, the number of edges on the path from the root to 𝑣 , and by sd(𝑣) = |𝐿(𝑣) | its
stringdepth, the length of the string represented by 𝑣 . Given node 𝑣 not equal to the root, parent(𝑣)
is the node which is next on the path from 𝑣 to the root. Given a node 𝑣 which is not a leaf and a

character 𝑐 ∈ Σ, child(𝑣, 𝑐) returns the unique node 𝑢 with parent 𝑣 such that the label of the edge

(𝑣,𝑢) starts with character 𝑐 , or the empty pointer if no such node exists.

Given a node 𝑢 with parent 𝑣 , a locus is a pair (𝑢, 𝑡) s.t. sd(𝑣) < 𝑡 ≤ sd(𝑢). Let [𝑖, 𝑗] be the label
of edge (𝑣,𝑢) and 𝑘 = 𝑡 − sd(𝑣). We define 𝐿(𝑢, 𝑡) as the string 𝐿(𝑣) · 𝑆 [𝑖, 𝑖 + 𝑘 − 1], the substring
represented by locus (𝑢, 𝑡). Note that if 𝑡 = sd(𝑢), then 𝐿(𝑢, 𝑡) = 𝐿(𝑢). It is an important property

of suffix trees that there is a one-to-one correspondence between loci of T (𝑆) and substrings of

𝑆$. This allows us to define, for a substring 𝑇 of 𝑆 (which is also a substring of 𝑆$), the locus of
𝑇 , loc(𝑇) = loc(𝑇,T (𝑆)) as the unique locus (𝑢, 𝑡) in T (𝑆) with the property that 𝐿(𝑢, 𝑡) = 𝑇 .

Given a substring 𝑇 of 𝑆 with locus loc(𝑇) = (𝑢, 𝑡), the set of occurrences of 𝑇 is given by the set

{ln(𝑣) | 𝑣 is leaf in the subtree rooted in 𝑢}.
Let 𝑢 be a node and 𝐿(𝑢) = 𝑎𝑇 , where 𝑎 ∈ Σ and 𝑇 ∈ Σ∗. The suffix link of 𝑢 is defined as

slink(𝑢) = loc(𝑇). It can be shown that for any node 𝑢, slink(𝑢) is a node of T (𝑆) (rather than
just a locus). Suffix links can also be defined for loci: for locus (𝑢, 𝑡) with 𝐿(𝑢, 𝑡) = 𝑎𝑇 , define

slink(𝑢, 𝑡) = loc(𝑇); these are also called implicit suffix links. Suffix links are often represented by

directed edges, see Figure 2.

ACM J. Exp. Algor., Vol. 1, No. 1, Article 1. Publication date: January 2020.

Pattern Discovery in Colored Strings 1:7

Given a suffix tree T (𝑆) with 𝑘 nodes, and a node 𝑢 of T (𝑆), let 𝑟 be the rank of the node 𝑢 in

the breath-first search traversal of the tree. We define the reverse index BFS of 𝑢 as 𝑖𝐵𝐹𝑆 (𝑢) = 𝑘 − 𝑟 .
Refer to Figure 3 for an example of the reverse index BFS values.

Given the string 𝑆 of length 𝑛, we denote by 𝑆𝐴𝑆 [1, 𝑛 + 1] the suffix array of 𝑆$. We refer the

reader to, e.g., [28], for a general introduction to suffix arrays.

The suffix array 𝑆𝐴𝑆 [1, 𝑛 + 1] of a string 𝑆$ is a permutation of {1, . . . , 𝑛 + 1} such that 𝑆𝐴𝑆 [𝑖] = 𝑗

if and only if 𝑆 [𝑗, 𝑛]$ is 𝑖-th suffix in the lexicographically ordered list of suffixes of 𝑆$. The suffix

array 𝑆𝐴𝑆 and the suffix tree T (𝑆) are deeply related. We can obtain the 𝑆𝐴𝑆 by listing the leaves of

the suffix tree T (𝑆) from left to right, assuming that the children are ordered according to the first

characters of their edge labels. In particular, for an inner node𝑢, the leaves in the subtree rooted in𝑢

yield an interval of the suffix array 𝑆𝐴𝑆 [𝑖, 𝑗] such that {ln(𝑣) | 𝑣 is leaf in the subtree rooted in 𝑢} =
{𝑆𝐴𝑆 [𝑘] | 𝑖 ≤ 𝑘 ≤ 𝑗}.

2.3 Maximum-oriented indexed priority queue
A maximum-oriented indexed priority queue [34, Sec. 2.4] denoted by 𝐼𝑃𝑄 , is a data structure that

collects a set of𝑚 items with keys 𝑘1, . . . , 𝑘𝑚 , and provides the following operations:

• insert(𝑖,𝑘): insert the element at index 𝑖 with key 𝑘𝑖 = 𝑘 .

• promote(𝑖,𝑘): increase the value of the key 𝑘𝑖 , associated with 𝑖 , to 𝑘 ≥ 𝑘𝑖 .
• demote(𝑖,𝑘): decrease the value of the key 𝑘𝑖 , associated with 𝑖 , to 𝑘 ≤ 𝑘𝑖 .
• (𝑖, 𝑘) ←max(): return the index 𝑖 and the value 𝑘 of the item with maximum key 𝑘𝑖 ; if two

items have the same key value, we report the item with larger index.

• 𝑘 ←keyOf(𝑖): return the value of the key 𝑘𝑖 associated with index 𝑖 .

• 𝑏 ←isEmpty(): return 𝑡𝑟𝑢𝑒 if the 𝐼𝑃𝑄 is empty and 𝑓 𝑎𝑙𝑠𝑒 otherwise.

• delete(𝑖): remove the element at index 𝑖 from the 𝐼𝑃𝑄 .

The operations insert, promote, demote and delete run in O(log(𝑚)) time, while the opera-

tions max, keyOf and isEmpty are performed in O(1) time.

For our purposes, we also require a function 𝑏 ←allNegative() that returns 𝑡𝑟𝑢𝑒 if all key

values are negative, and 𝑓 𝑎𝑙𝑠𝑒 otherwise.

We use the 𝐼𝑃𝑄 to store keys associated to nodes 𝑢 of a suffix tree T (𝑆) using 𝑖𝐵𝐹𝑆 (𝑢) as index.
For ease of presentation, in slight abuse of notation, we will use 𝑢 and 𝑖𝐵𝐹𝑆 (𝑢) interchangeably.

2.4 Rank, select, and range maximum query
A bitvector 𝐵 [1, 𝑛] of length 𝑛 is an array of 𝑛 bits. For all 1 ≤ 𝑖 ≤ 𝑛 and 𝑏 ∈ {0, 1}, we define
rank𝑏 (𝐵, 𝑖) as the number of occurrences of 𝑏 in 𝐵 [1, 𝑖], and select𝑏 (𝐵, 𝑖) as the index of the 𝑖-th
occurrence of the symbol 𝑏 in 𝐵. If 𝑖 > rank𝑏 (𝐵, 𝑛) then select𝑏 (𝐵, 𝑖) = 𝑛 + 1. Furthermore, we set

select𝑏 (𝐵, 0) = 0. For both rank and select operations, if 𝑏 is omitted we assume 𝑏 = 1. Given a

bitvector 𝐵, rank and select operations can be supported in O(1) time using 𝑜 (𝑛) bits of extra
space [7].

For an array 𝐴[1, 𝑛] of 𝑛 integers and 1 ≤ 𝑖 ≤ 𝑗 ≤ 𝑛, a range maximum query rMq𝐴 (𝑖, 𝑗) returns
the position of the maximum element of 𝐴[𝑖, 𝑗]. This answer can be provided in O(1) time using

2𝑛 + 𝑜 (𝑛) bits of space [13].
Given 𝐴[1, 𝑛] and the range maximum query data structure for 𝐴, we can compute the position

of the second greatest element of𝐴[𝑖, 𝑗] in O(1) time. In particular, let 𝑎 = rMq𝐴 [𝑖, 𝑗], we have three
cases: (i) if 𝑎 = 𝑖 , then the position of the second greatest element of 𝐴[𝑖, 𝑗] is 𝑐 = rMq𝐴 [𝑎 + 1, 𝑗];
(ii) if 𝑎 = 𝑗 , then the position of the second greatest element of 𝐴[𝑖, 𝑗] is 𝑏 = rMq𝐴 [𝑖, 𝑎 − 1]; (iii)

ACM J. Exp. Algor., Vol. 1, No. 1, Article 1. Publication date: January 2020.

1:8 Zs. Lipták, S. J. Puglisi, and M. Rossi

otherwise, let 𝑏 = rMq𝐴 [𝑖, 𝑎− 1], and 𝑐 = rMq𝐴 [𝑎 + 1, 𝑗]. The position of the second greatest element

of 𝐴[𝑖, 𝑗] is 𝑏 if 𝐴[𝑏] ≥ 𝐴[𝑐], otherwise it is 𝑐 , since 𝐴[𝑐] > 𝐴[𝑏].

3 A PATTERN DISCOVERY ALGORITHM FOR COLORED STRINGS USING THE
SUFFIX TREE

Our main tool will be the suffix tree of the reverse string, T = T (𝑆rev). Note that loci in T
correspond to ending positions of substrings of 𝑆 in the following sense. Given a locus (𝑢, 𝑡) of T ,
let𝑈 = 𝐿(𝑢, 𝑡)rev. Then𝑈 is a substring of 𝑆 , and its occurrences are exactly the positions 𝑖 − |𝑈 | + 1,
where 𝑖 = 𝑛 − ln(𝑣) + 1 for some leaf 𝑣 in the subtree rooted in 𝑢. In the next lemma we show how

to identify (𝑦,𝑑)-unique substrings of 𝑆 with T , the suffix tree of 𝑆rev.

Lemma 3.1. Let 𝑈 be a substring of 𝑆 , T = T (𝑆 rev), and (𝑢, 𝑡) = loc(𝑈 rev,T). Then 𝑈 is 𝑦-unique
with delay 𝑑 in 𝑆 if and only if for all leaves 𝑣 in the subtree rooted in 𝑢, 𝑆 rev [ln(𝑣) − 𝑑] is colored 𝑦
under 𝑓 rev. In particular,𝑈 is 𝑦-unique with delay 0 in 𝑆 if and only if all leaves in the subtree rooted
in 𝑢 are colored 𝑦 under 𝑓 rev.

Proof. It is easy to see that position 𝑖− |𝑈 | +1 is a𝑦-good occurrence of𝑈 in 𝑆 with delay 0 if and

only if𝑈 rev
is a prefix of Suf𝑛−𝑖+1 (𝑆rev) and 𝑓 rev (𝑛−𝑖 +1) = 𝑦. By the properties of the suffix tree, all

occurrences of𝑈 rev
correspond to the leaves of the subtree rooted in 𝑢, where (𝑢, 𝑡) = loc(𝑈 rev,T).

Thus, 𝑈 is (𝑦, 0)-unique if and only if all of its occurrences are (𝑦, 0)-good, which is the case if

and only if all leaves of the subtree rooted in 𝑢 are colored 𝑦 under 𝑓 rev. More generally, position

𝑖 − |𝑈 | + 1 is a 𝑦-good occurrence of 𝑈 in 𝑆 with delay 𝑑 if and only if Suf𝑛−𝑖+1 (𝑆rev) is prefixed by

𝑈 rev
and 𝑓 rev (𝑛 − 𝑖 + 1 − 𝑑) = 𝑦. Thus𝑈 is (𝑦,𝑑)-unique if and only if for all leaves 𝑣 in the subtree

rooted in 𝑢, 𝑆rev [ln(𝑣) − 𝑑] is colored 𝑦 under 𝑓 rev. □

In the following, we will refer to a node 𝑢 of T as (𝑦,𝑑)-unique if 𝐿(𝑢)rev is a (𝑦,𝑑)-unique
substring of 𝑆 . We can now state the following corollary:

Corollary 3.2. Let𝑈 be a substring of 𝑆 , T = T (𝑆 rev), and (𝑢, 𝑡) = loc(𝑈 rev,T) such that 𝑢 is an
inner node of T (𝑆). Then𝑈 is (𝑦,𝑑)-unique in 𝑆 if and only if all children of 𝑢 are (𝑦,𝑑)-unique.

3.1 Finding all (𝑦,𝑑)-unique substrings
Our first algorithm Algo1 uses the suffix tree T of the reverse string to identify all (𝑦,𝑑)-unique
substrings of 𝑆 , not only the minimal ones, for fixed 𝑦 and 𝑑 . It marks the (𝑦,𝑑)-unique nodes of T
in a postorder traversal of the tree. Note that if 𝑖 > 𝑛 − 𝑑 , then position 𝑖 cannot be (𝑦,𝑑)-good,
simply because the position in which we would expect a 𝑦 lies beyond the end of string 𝑆 . In

correspondence with the definition of (𝑦,𝑑)-unique substrings (Definition 2.2), we will treat such

positions as if they were (𝑦,𝑑)-good.
The function 𝑔(𝑢) : 𝑉 (T) → {0, 1} is defined as follows:

• for a leaf 𝑢 with leaf number ln(𝑢) = 𝑖:

𝑔(𝑢) =
{
1 if either 𝑖 ≤ 𝑑 or 𝑓 rev (𝑖 − 𝑑) = 𝑦,
0 otherwise,

• for an inner node 𝑢:

𝑔(𝑢) =
{
𝑦 if 𝑔(𝑣) = 1 for all children 𝑣 of 𝑢,

0 otherwise.

The algorithm computes 𝑔(𝑢) for every node 𝑢 in a bottom-up fashion, assigning 𝑔(𝑢) = 1 if

and only if 𝑢 is (𝑦,𝑑)-unique or if it is too close to the beginning of the string 𝑆rev. If 𝑔(𝑢) = 1,

ACM J. Exp. Algor., Vol. 1, No. 1, Article 1. Publication date: January 2020.

Pattern Discovery in Colored Strings 1:9

Algorithm 1: Algo1
input :A colored string 𝑆 , the suffix tree T of 𝑆rev, and 𝑦 ∈ Γ.
output :All pairs (𝑇,𝑑) such that 𝑇 is a (𝑦,𝑑)-unique substring of 𝑆 .

1 for 𝑑 ← 0 to 𝑛 do
2 Uniqe(root, 𝑦, 𝑑)

3 procedure Uniqe(𝑢,𝑦, 𝑑):
4 if 𝑢 is a leaf then // 𝑢 is a leaf
5 𝑖 ← ln(𝑢)
6 if 𝑖 ≤ 𝑑 or 𝑓 rev (𝑖 − 𝑑) = 𝑦 then
7 𝑔(𝑢) ← 1

8 else
9 𝑔(𝑢) ← 0

10 else // 𝑢 is an inner node
11 𝑔(𝑢) ← ∧𝑣 child of 𝑢Uniqe(𝑣,𝑦, 𝑑)

12 if 𝑔(𝑢) = 1 then
13 if 𝑢 is a leaf then // do not output $-substrings
14 output 𝐿(𝑢, 𝑡)rev for every 𝑡 = sd(𝑝𝑎𝑟𝑒𝑛𝑡 (𝑢)) + 1, . . . , sd(𝑢) − 1
15 else
16 output (𝐿(𝑢, 𝑡)rev, 𝑑) for every 𝑡 = sd(𝑝𝑎𝑟𝑒𝑛𝑡 (𝑢)) + 1, . . . , sd(𝑢)

17 return 𝑔(𝑢)

in addition it outputs all strings represented along the incoming edge of 𝑢, except for substrings

which contain the $-sign, i.e. suffixes of 𝑆rev$. For details, see Algorithm 1.

Analysis: For fixed𝑑 , computing𝑔 takes amortizedO(𝑛) time over the whole tree, since computing

𝑔(𝑢) is linear in the number of children of𝑢, and therefore, charging the check whether for a child 𝑣 ,

𝑔(𝑣) = 1, to the child node, we get constant time per node. So, for fixed 𝑑 , we have O(𝑛+𝐾) = O(𝑛2)
time, where 𝐾 is the number of (𝑦,𝑑)-unique substrings. Altogether, for 𝑑 = 0, . . . , 𝑛, the algorithm

takes O(𝑛3) time.

Example 3.3. In the running example (Fig. 2), for color 𝑦 and delay 𝑑 = 3, the leaf nodes 9, 2, 7, 1,

and 3 are marked with 1, and therefore the only inner node 𝑢 which gets 𝑔(𝑢) = 1 is the parent of

leaves number 9, 2, 7. Algo1 outputs the (𝑦, 3)-unique substrings baca, cbaca, acbaca, cacbaca,
acacbaca, cacacbaca, acacacbaca, caca, acaca, ca, aca, ab, cab, acab, bacab, cbacab, acbacab,
cacbacab, acacbacab, cacacbacab, bac, cbac, acbac, cacbac, acacbac, cacacbac, acacacbac.

Remark: Note that some of these substrings do not occur even once in a position such that the

last character is followed by a 𝑦 with delay 𝑑 = 3. For instance, the only occurrence of the substring

bac in 𝑆 is at position 7, so we would expect to see color 𝑦 at position 9 + 3 = 12, but the string 𝑆

ends at position 11. We will treat this and similar questions in Section 5.

3.2 Outputting only minimally (𝑦,𝑑)-unique substrings
We next modify Algorithm Algo1 to output only minimally (𝑦,𝑑)-unique substrings. As already
noted, the work done by Algo1 in each node is constant except for the output step, which is

proportional to the length of the edge label leading to 𝑢.

ACM J. Exp. Algor., Vol. 1, No. 1, Article 1. Publication date: January 2020.

1:10 Zs. Lipták, S. J. Puglisi, and M. Rossi

In terms of the suffix tree T of 𝑆rev, minimality can be translated into conditions on the parent

node and on the suffix link parent node (equivalently: the suffix link) in T . We first need another

definition:

Definition 3.4 (Left-minimal nodes, left-minimal labels). Let 𝑢 be a node of T = T (𝑆rev), different
from the root, and let 𝑣 = parent(𝑢). We call 𝑢 left-minimal for (𝑦,𝑑) if 𝑢 is (𝑦,𝑑)-unique but 𝑣 is
not and the label of the edge (𝑣,𝑢) is not equal to $. If 𝑢 is (𝑦,𝑑)-unique and left-minimal, then we

can define Left-min(𝑢) = 𝑥1 · 𝐿(𝑣)rev, the left-minimal (𝑦,𝑑)-unique substring of 𝑆 associated to 𝑢,

where 𝑥 = 𝑥1 · · · 𝑥𝑘 ∈ Σ+ is the label of edge (𝑣,𝑢).

Example 3.5. In our running example, let node 𝑢 be the parent of leaf nodes 9, 2, 7, i.e. 𝑢 =

loc(T , aca). Then 𝑢 is left-minimal, since it is (𝑦, 3)-unique but its parent is not. Its left-minimal

label is Left-min(𝑢) = ca. See Fig. 2.

It is easy to modify Algorithm 1 to output only left-minimal substrings: Whenever for an inner

node 𝑢 we get 𝑔(𝑢) = 0, then for every child 𝑣 of 𝑢 with 𝑔(𝑣) = 1, we output Left-min(𝑣) (if defined).
This can be done by replacing lines 12 to 16 in Algorithm 1 by:

12 if 𝑔(𝑢) = 0 then
13 for each child 𝑣 of 𝑢 with 𝑔(𝑣) = 1 do
14 if Left-min(𝑣) is defined then
15 output (Left-min(𝑣), 𝑑)

Example 3.6. The resulting algorithm now outputs, for color 𝑦 and 𝑑 = 3, the left-minimal

substrings ca,ab,bac.

However, we are interested in substrings which are both left- and right-minimal. While left-

minimality can be identified by checking the parent of a node 𝑢, for right-minimality, Observation 1

part (3) tells us that we need to check whether the string without the last character is (𝑦,𝑑 + 1)-
unique. In T , this translates to checking the suffix link of the locus of the left-minimal substring

Left-min(𝑢).

Proposition 3.7. Let 𝑢 be an inner node of T = T (𝑆 rev), different from the root, such that 𝐿(𝑢)rev
is (𝑦,𝑑)-unique in 𝑆 . Let 𝑣 = parent(u), and 𝑥1 be the first character on the edge (𝑣,𝑢). Further, let
𝑡 = sd(𝑣) + 1, and (𝑢 ′, 𝑡 ′) = slink(𝑢, 𝑡). Then the substring𝑈 = 𝑥1 · 𝐿(𝑣)rev is minimally (𝑦,𝑑)-unique
in 𝑆 if and only if 𝑣 is not (𝑦,𝑑)-unique and 𝑢 ′ is not (𝑦,𝑑 + 1)-unique.

Proof. For sufficiency, let 𝑈 be minimally (𝑦,𝑑)-unique in 𝑆 . Since 𝑥1𝐿(𝑣)rev = 𝑈 , and 𝑈 is

left-minimal, therefore 𝑣 is not (𝑦,𝑑)-unique. Similarly, if 𝑈 ′ = 𝐿(𝑢 ′, 𝑡 ′)rev, then we have that

𝑈 = 𝑈 ′𝑎, and 𝑢 ′ is not (𝑦,𝑑 + 1)-unique by right-minimality of𝑈 .

Conversely, since 𝑢 is (𝑦,𝑑)-unique and 𝑣 is not, by definiton of left-minimality,𝑈 = Left-min(𝑢)
is left-minimal (𝑦,𝑑)-unique in 𝑆 . Let 𝑈 ′ = 𝐿(𝑢 ′, 𝑡 ′)rev, thus 𝑈 = 𝑈 ′𝑎, for some character 𝑎 ∈ Σ+.
Since𝑈 ′ is not (𝑦,𝑑 + 1)-unique, therefore𝑈 is right-minimal. □

We can use Proposition 3.7 as follows. Once a left-minimal (𝑦,𝑑)-unique node 𝑢 has been found,

check whether𝑢 ′ is (𝑦,𝑑+1)-unique, where𝑢 ′ is the node below the locus slink(𝑢, sd(𝑝𝑎𝑟𝑒𝑛𝑡 (𝑢))+1).
It is easy to find node 𝑢 ′ by noting that 𝑢 ′ = 𝑐ℎ𝑖𝑙𝑑 (slink(𝑝𝑎𝑟𝑒𝑛𝑡 (𝑢)), 𝑥1), where 𝑥1 is the first

character of the edge label leading to 𝑢. But how do we know whether 𝑢 ′ is (𝑦,𝑑 + 1)-unique?
The answer is that we will process the distances 𝑑 in descending order, from 𝑑 = 𝑛 down to 𝑑 = 0.

At the end of the iteration for 𝑑 , we retain the information, keeping a flag on every node 𝑢 which

ACM J. Exp. Algor., Vol. 1, No. 1, Article 1. Publication date: January 2020.

Pattern Discovery in Colored Strings 1:11

Algorithm 2: Algo2
input :a colored string 𝑆 , the suffix tree T of 𝑆rev with suffix links, and 𝑦 ∈ Γ.
output :all pairs (𝑇,𝑑) such that 𝑇 is a minimally (𝑦,𝑑)-unique substring of 𝑆 .

1 for 𝑑 ← 𝑛 downto 0 do
2 MinUniqe(root, 𝑦, 𝑑)

3 procedure MinUniqe(𝑢,𝑦, 𝑑):
4 if 𝑢 is a leaf then // 𝑢 is a leaf
5 𝑖 ← ln(𝑢)
6 if 𝑖 ≤ 𝑑 or 𝑓 rev (𝑖 − 𝑑) = 𝑦 then
7 𝑔(𝑢) ← 1

8 else
9 𝑔(𝑢) ← 0

10 else // 𝑢 is an inner node
11 𝑔(𝑢) ← ∧𝑣 child of 𝑢MinUniqe(𝑣,𝑦, 𝑑)

12 if 𝑔(𝑢) = 0 then // outputting minimal substrings for children
13 for each child 𝑣 with 𝑔(𝑣) = 1 do
14 if Left-min(𝑣) is defined then
15 (𝑣 ′, 𝑡) ← slink(𝑣, sd(𝑢) + 1)
16 if 𝑣 ′ is not (𝑦,𝑑 + 1)-unique then // flag from previous round
17 output (Left-min(𝑣), 𝑑)

18 return 𝑔(𝑢)

was identified as (𝑦,𝑑)-unique (i.e. which had 𝑔(𝑢) = 1). During the iteration for 𝑑 − 1, we can then

query node 𝑢 ′ to find out whether it is (𝑦,𝑑)-unique. For details, see Algorithm 2.

Example 3.8. In the running example, we know from the previous round that the only nodes that

are (𝑦, 4)-unique are the leaves number 4, 2, 1, 10, 3, and 8. We can now deduce that the substring

ca is right-minimal, because 𝑢 = loc(ca) is not (𝑦, 4)-unique, and slink(loc(T , carev)) = (𝑢, 1).
Looking at the string 𝑆 we see that ca is indeed right-minimal, since c is not (𝑦, 3)-unique: it
has an occurrence, in position 6, which is not followed by a 𝑦 but by an 𝑥 at position 10 = 6 + 4
(delay 4). Similarly, the left-minimal substring ab is also right-minimal, since its suffix link is not

(𝑦, 4)-unique, while the left-minimal substring bac is not (𝑦, 3)-unique, because its suffix link is

(𝑦, 4)-unique, see Fig. 2.

Analysis: For fixed 𝑑 , the time spent on each leaf is constant (lines 5 to 10 in Algo2); we charge

the check of 𝑔(𝑣) in line 12 to the child 𝑣 , as well the work in lines 14 to 18 (computing Left-min(𝑣)
and checking the flag on 𝑣 ′ from the previous round); these are all constant time operations, so we

have amortized constant time per node, and thus O(𝑛) time for fixed 𝑑 . Therefore, the total time

taken by Algorithm 2 is O(𝑛2).

ACM J. Exp. Algor., Vol. 1, No. 1, Article 1. Publication date: January 2020.

1:12 Zs. Lipták, S. J. Puglisi, and M. Rossi

3.3 An algorithm for all colors
In some situations, one is interested in all minimally (𝑦,𝑑)-unique substrings, for any color 𝑦. Our
third algorithm deals with this case (Problem 2). It is similar to Algo2, except it uses a different

coloring function 𝑔′. The new function 𝑔′ : 𝑉 → Γ ∪ {∗, 0}, is defined as follows:

• for a leaf 𝑢 with leaf number ln(𝑢) = 𝑖:

𝑔′(𝑢) =
{
𝑓 rev (𝑖 − 𝑑) if 𝑖 − 𝑑 > 0,

∗ if 𝑖 − 𝑑 ≤ 0

• for an inner node 𝑢:

𝑔′(𝑢) =

∗ if for all children 𝑣 of 𝑢: 𝑔′(𝑣) = ∗,
𝑦 ∈ Γ if 𝑢 has at least one child 𝑣 with 𝑔′(𝑣) = 𝑦 and

for all other children 𝑣 ′ of 𝑢: 𝑔′(𝑣 ′) ∈ {𝑦, ∗} ,
0 otherwise.

Thus a node 𝑢 is colored 𝑦 if and only if all leaves of the subtree rooted in 𝑢 are either colored

𝑦 or ∗, and at least one leaf is colored 𝑦. We refer to such a node as monochromatic. A node is

colored ∗ if all leaves in the subtree are within 𝑑 of the beginning of 𝑆rev; such a node can have

monochromatic ancestors in the tree. Finally, a node is colored 0 if in its subtree there are at least

two leaves which are colored by different colors from Γ. For a node colored 0, all of its ancestors

are also colored 0.

Example 3.9. In our example, for 𝑑 = 3, the leaves 11, 4, and 8 are colored 𝑧, the leaves 9 and 7

are colored 𝑦, the leaves 5, 10, and 6 are colored 𝑥 , and the leaves 1,2, and 3 are colored ∗. The only
monochromatic inner nodes are loc(b) (colored 𝑥), and loc(aca) (colored 𝑦), while all others are
colored 0. See Figure 2b.

Thus, Algorithm 3 finds all minimally (𝑦,𝑑)-unique substrings for all colors simultaneously,

using the same ideas as Algo2. The main difference is that now the coloring function 𝑔′ is not
binary, and accordingly, the information we have to store from the previous round (which will be

needed to decide whether the substring is right-minimal) is no longer binary. See Algo3 for details.

Analysis: The algorithm has 𝑛 iterations, every iteration takes O(𝑛) time, so altogether we have

again O(𝑛2) time.

Therefore, if the color of interest is not part of the input, we can solve the problem in O(𝑛2)
time, which is also a worst-case lower bound on the output size, see Sec. 2. However, if the color 𝑦

is part of the input, then this algorithm can be further improved. We will present this improvement

in the next section.

4 SKIPPING ALGORITHM
In this section, we discuss the discovering of (𝑦,𝑑)-unique substrings that are minimal. As in the

baseline algorithm, we build the suffix tree T (𝑆rev) and, intuitively, we navigate it discovering
all left-minimal (𝑦,𝑑)-unique substrings one by one, reporting only those that are minimal. Thus,

according to Proposition 3.7, we have to discover all left-minimal (𝑦,𝑑 +1)-unique substrings before
discovering left-minimal (𝑦,𝑑)-unique substrings.

To this end, fixing ℓ , for each node 𝑢 of T (𝑆rev), we determine the largest delay 𝑑 smaller than ℓ

such that 𝐿(𝑢)rev can be (𝑦,𝑑)-unique, denoted by ℎ(𝑢, ℓ). We consider four different cases:

• If 𝑢 is a leaf, then 𝐿(𝑢)rev is the 𝑗-prefix of 𝑆 , where 𝑗 = 𝑛 − ln(𝑢) + 1 = |𝐿(𝑢) |

ACM J. Exp. Algor., Vol. 1, No. 1, Article 1. Publication date: January 2020.

Pattern Discovery in Colored Strings 1:13

a b

$

$ $

$

b
c
a
c
a
c
a
$

b
c
a
c
a
c
a
$

b
c
a
c
a
c
a
$

c

a

c

a

c

a

$

c
a
c
a
c
a
$

a
c
a
b
c
a
c
a
c
a
$

$ c

a

c

a

$

12

11 4

9 2 7

1 5 10 3

8 6

d = 4

d = 4

d = 3

d = 3

Legend

(a) The nodes are colored according to function 𝑔 for the character 𝑦, for 𝑑 = 3 (dashed) and for 𝑑 = 4 (solid),
see Example 3.3.

a b

$

$ $

$

b
c
a
c
a
c
a
$

b
c
a
c
a
c
a
$

b
c
a
c
a
c
a
$

c

a

c

a

c

a

$

c
a
c
a
c
a
$

a
c
a
b
c
a
c
a
c
a
$

$ c

a

c

a

$

12

11 4

9 2 7

1 5 10 3

8 6

0

z z y * x x * 0

0x0

0

xzy*y

(b) The nodes are marked according to function 𝑔′ for 𝑑 = 3, see Example 3.9.

Fig. 2. The suffix tree T of the reverse string 𝑆rev = bacabcacaca, where 𝑆 = acacacbacab, see Example 2.1.
For clarity, the edges carry the label itself rather than a pair of pointers into the string. Suffix links are drawn
as dotted directed edges.

ACM J. Exp. Algor., Vol. 1, No. 1, Article 1. Publication date: January 2020.

1:14 Zs. Lipták, S. J. Puglisi, and M. Rossi

Algorithm 3: Algo3
input :a colored string 𝑆 , and the suffix tree T of 𝑆rev with suffix links.

output :all triples (𝑇,𝑦, 𝑑) such that 𝑇 is a minimally (𝑦,𝑑)-unique substring of 𝑆

1 for 𝑑 ← 𝑛 downto 0 do
2 AllColorsMinUniqe(root, 𝑑)

3 procedure AllColorsMinUniqe(𝑢,𝑑):
4 if 𝑢 is a leaf then // 𝑢 is a leaf
5 𝑖 ← ln(𝑢)
6 if 𝑖 ≤ 𝑑 then
7 𝑔′(𝑢) ← ∗
8 else
9 𝑔′(𝑢) ← 𝑓 rev (𝑖 − 𝑑)

10 else // 𝑢 is an inner node
11 𝑋 ← { AllColorsMinUniqe(𝑣,𝑦, 𝑑) | 𝑣 child of 𝑢}
12 if 𝑋 = {∗} then
13 𝑔′(𝑢) ← ∗
14 else
15 if 𝑋 = {𝑦} or 𝑋 = {𝑦, ∗} with 𝑦 ∈ Γ then
16 𝑔′(𝑢) ← 𝑦

17 else
18 𝑔′(𝑢) ← 0

19 if 𝑔′(𝑢) = 0 then // outputting minimal substrings for children
20 for each child 𝑣 with 𝑔′(𝑣) = 𝑦 ∈ Γ do
21 if Left-min(𝑣) is defined then
22 (𝑣 ′, 𝑡) ← slink(𝑣, sd(𝑢) + 1)
23 if 𝑣 ′ is not (𝑦,𝑑 + 1)-unique then // flag from previous round
24 output (Left-min(𝑣), 𝑦, 𝑑)

25 return 𝑔′(𝑢)

– If ln(𝑢) < ℓ , then 𝑗 + ℓ − 1 > 𝑛 thus 𝐿(𝑢)rev is (𝑦, ℓ − 1)-unique since the position of the

color is beyond the end of the string, thus ℎ(𝑢, ℓ) = ℓ − 1.
– If ln(𝑢) ≥ ℓ and there exists an 𝑖 < ℓ such that 𝑓 (𝑗 + 𝑖) = 𝑦, then the highest possible value

𝑑 < ℓ such that 𝐿(𝑢)rev is (𝑦,𝑑)-unique is given by the position of the furthest occurrence

of 𝑦 within a distance of ℓ − 1 from 𝑗 , thus ℎ(𝑢, ℓ) = max{𝑖 < ℓ | 𝑓 (𝑗 + 𝑖) = 𝑦}.
– Otherwise, if such 𝑖 does not exists, we set ℎ(𝑢, ℓ) = −1.
• If 𝑢 is an internal node of T (𝑆rev), then let 𝑘 = min{ℎ(𝑣, ℓ) | 𝑣 child of 𝑢}, since it is not
possible that 𝐿(𝑢)rev is (𝑦,𝑑 ′)-unique, for any 𝑘 < 𝑑 ′ < ℓ , thus ℎ(𝑢, ℓ) = 𝑘 .

When 𝑢 is an inner node in general, we do not know if 𝐿(𝑢)rev is (𝑦,𝑑)-unique for 𝑑 = ℎ(𝑢, ℓ),
unless for all nodes 𝑣 in the subtree rooted in 𝑢, there exists an ℓ𝑣 such that ℎ(𝑢, ℓ) < ℓ𝑣 ≤ ℓ and
ℎ(𝑣, ℓ𝑣) = ℎ(𝑢, ℓ). This is true if ℎ(𝑣, 𝑑 + 1) = ℎ(𝑢, ℓ) for all 𝑣 .

ACM J. Exp. Algor., Vol. 1, No. 1, Article 1. Publication date: January 2020.

Pattern Discovery in Colored Strings 1:15

The definition of ℎ(𝑢, ℓ) is as follows:

ℎ(𝑢, ℓ) =

ℓ − 1 if 𝑢 is a leaf and ln(𝑢) < ℓ,

max{𝑖 < ℓ | 𝑓 (𝑛 − ln(𝑢) + 1 + 𝑖) = 𝑦} if 𝑢 is a leaf and such 𝑖 exists,

min{ℎ(𝑣, ℓ) | 𝑣 child of 𝑢} if 𝑢 is an inner node,

−1 otherwise.

Lemma 4.1. Let 𝑢 be a node of T (𝑆 rev), fix 𝑑 , ℎ(𝑢,𝑑 + 1) = 𝑑 if and only if 𝑢 is (𝑦,𝑑)-unique.

Proof. We first prove that if ℎ(𝑢,𝑑 + 1) = 𝑑 then 𝑢 is (𝑦,𝑑)-unique. We consider two cases. If

𝑢 is a leaf, then, by definition of ℎ(𝑢,𝑑 + 1), we have that 𝑢 is (𝑦,𝑑)-unique. If 𝑢 is an inner node,

then 𝑑 = min{ℎ(𝑣, 𝑑 + 1) | 𝑣 child of 𝑢}. Since for all nodes 𝑣 , ℎ(𝑣, 𝑑 + 1) ≤ 𝑑 , then for all children 𝑣

of 𝑢, we have that ℎ(𝑣, 𝑑 + 1) = 𝑑 . In particular, this holds for all leaves in the subtree rooted in 𝑢,

thus 𝑢 is (𝑦,𝑑)-unique.
We first prove that if 𝑢 is (𝑦,𝑑)-unique then ℎ(𝑢,𝑑 + 1) = 𝑑 . We consider again two cases. If 𝑢 is a

leaf, then, by definition of (𝑦,𝑑)-unique, we have that either ln(𝑢) < 𝑑 +1 or 𝑓 (𝑛− ln(𝑢) +1+𝑑) = 𝑦.
Thus, in both cases, ℎ(𝑢,𝑑 + 1) = 𝑑 . If 𝑢 is an inner node, then, by Lemma 3.1, all leaves in the

subtree rooted in 𝑢 are (𝑦,𝑑)-unique. Thus, for the previous case, for all leaves 𝑣 in the subtree

rooted in 𝑢 we have that ℎ(𝑣, 𝑑 + 1) = 𝑑 , thus ℎ(𝑢,𝑑 + 1) = 𝑑 . □

To evaluate ℎ(𝑢, ℓ) = max{𝑖 < ℓ | 𝑓 (𝑗 + 𝑖) = 𝑦} when 𝑢 is a leaf and such 𝑖 exists, we define a

bitvector 𝑏𝑦 [1, 2𝑛] such that 𝑏𝑦 [𝑖] = 1 only if 𝑓 (𝑖) = 𝑦 or 𝑖 > 𝑛. We preprocess 𝑏𝑦 for O(1)-time

rank and select queries [7]. Given node 𝑢 with ln(𝑢) ≥ ℓ , let 𝑗 = 𝑛 − ln(𝑢) + 1. We have that

ℎ(𝑢, ℓ) = max{select(𝑏𝑦, rank(𝑏𝑦, 𝑗 + ℓ)) − 𝑗,−1}.

Example 4.2. In our running example, whose suffix tree is depicted in Figure 2, let us consider the

node 𝑢 corresponding to the substring aca in the string 𝑆rev. In order to compute ℎ(𝑢, 9), we have to
recursively compute the ℎ function for all children of 𝑢. Let 𝑣 , 𝑠 , and 𝑡 be the leaves corresponding

to the 9-th, 2-nd, and 7-th suffix of 𝑆rev, respectively. If we remove the dollar character from the

end of the string 𝑆rev, then the 9-th, 2-nd, and 7-th suffix of 𝑆rev corresponds to the 3-rd, 10-th,

and 8-th prefix of 𝑆 , respectively. We have that ℎ(𝑠, 9) = ℎ(𝑡, 9) = 8, since the furthest possible

𝑦 at distance smaller than 9 from the 10-th and 8-th prefix of 𝑆 are beyond the end of the string.

While, the furthest possible 𝑦 at distance smaller than 9 from the 3-rd prefix of 𝑆 is at distance 5.

Thus ℎ(𝑣, 9) = ℎ(𝑢, 9) = 5. The intuition is that the highest possible 𝑑 , smaller than 9 such that the

substring aca can be (𝑦,𝑑)-unique cannot be larger than 5, since there is an occurrence of aca that

has no 𝑦’s at distance between 6 and 8.

Let us now compute ℎ(𝑢, 3). We have that ℎ(𝑠, 3) = 2, since the furthest possible 𝑦 at distance

smaller than 9 corresponding to the 10-th prefix of 𝑆 is beyond the end of the string. For the 8-th

prefix of 𝑆 we have that the furthest 𝑦 at distance smaller than 3 is at distance 1, thus ℎ(𝑡, 3) = 1.

While, for the leaf 𝑣 there is no 𝑦 at distance smaller than 3, thus ℎ(𝑣, 3) = −1. Hence, we have that
ℎ(𝑢, 3) = −1.

We use the ℎ(𝑢, ℓ) function in the following way, during the discovery process of all (𝑦,𝑑)-unique
substrings of 𝑆 , provided that we have already discovered all (𝑦,𝑑 + 1)-unique substrings of 𝑆 .

Let ℓ = 𝑑 + 1 , for all nodes 𝑢 of T (𝑆rev) we store the values ℎ(𝑢, ℓ). We discover the minimally

(𝑦,𝑑)-unique substrings of 𝑆 , finding all nodes 𝑢 such that ℎ(𝑢, ℓ) = 𝑑 . Among those, the nodes that

are also left-minimal are those nodes 𝑢 such that, ℎ(parent(𝑢), ℓ) < 𝑑 . We then check if 𝑢 is also

right-minimal by checking if its suffix-link parent is (𝑦,𝑑 + 1)-unique, as in Algorithm 2.

The key idea of the skipping algorithm is to keep the values ℎ(𝑢, ℓ) updated during the process.

Let 𝐻 (𝑢) be the array that, at the beginning of the discovery of all (𝑦,𝑑)-unique substrings of

ACM J. Exp. Algor., Vol. 1, No. 1, Article 1. Publication date: January 2020.

1:16 Zs. Lipták, S. J. Puglisi, and M. Rossi

𝑆 , stores the values ℎ(𝑢, ℓ). We want to keep the array 𝐻 updated in a way such that, after we

discovered all (𝑦,𝑑)-unique substrings of 𝑆 , for all nodes 𝑢, 𝐻 (𝑢) = ℎ(𝑢, ℓ − 1). Thus, once we
discover that a node 𝑢 is left-minimal (𝑦,𝑑)-unique, we update the value of 𝐻 (𝑢) = ℎ(𝑢, ℓ − 1). We

then update the following values:

• for all nodes 𝑣 in the subtree rooted in 𝑢, we update the values 𝐻 (𝑢) = ℎ(𝑢, ℓ − 1).
• for all nodes 𝑝 ancestors of 𝑢, we update the values 𝐻 (𝑝) = min(𝐻 (𝑝), ℎ(𝑢, ℓ − 1))

Lemma 4.3. Given T (𝑆 rev), fix 𝑑 , for all nodes 𝑢 of T (𝑆 rev), let 𝐻 (𝑢) = ℎ(𝑢,𝑑 + 1). If for all
nodes 𝑢 such that 𝐻 (𝑢) = 𝑑 we (i) set 𝐻 (𝑢) = ℎ(𝑢,𝑑), and (ii) for all ancestors 𝑝 of 𝑢, set 𝐻 (𝑝) =
min{𝐻 (𝑝), ℎ(𝑢,𝑑)}, then, for all nodes 𝑢 of T (𝑆 rev), 𝐻 (𝑢) = ℎ(𝑢,𝑑).

Proof. Let 𝐻 ′(𝑢) be the array after all the updates. We now proceed by cases. If 𝑢 is a leaf and

𝐻 (𝑢) = 𝑑 , then we set 𝐻 (𝑢) = ℎ(𝑢,𝑑). Since 𝑢, is a leaf, the value 𝐻 (𝑢) is not modified by any

other operation, thus 𝐻 ′(𝑢) = ℎ(𝑢,𝑑). If 𝑢 is a leaf and 𝐻 (𝑢) < 𝑑 , then, by definition of ℎ(𝑢,𝑑 + 1),
we have that ℎ(𝑢,𝑑) = ℎ(𝑢,𝑑 + 1). Since 𝑢 is a leaf and its value 𝐻 (𝑢) is not modified by ant other

operation, 𝐻 ′(𝑢) = ℎ(𝑢,𝑑).
If 𝑢 is an internal node and 𝐻 (𝑢) = 𝑑 , then we set 𝐻 (𝑢) = ℎ(𝑢,𝑑). Moreover, for all nodes 𝑣 in

the subtree rooted in 𝑢, we have that 𝐻 (𝑣) = 𝑑 and when they perform (ii), they update 𝐻 (𝑢) =
min{𝐻 (𝑢), ℎ(𝑣, 𝑑)} = min{ℎ(𝑢,𝑑), ℎ(𝑣, 𝑑)} = ℎ(𝑢,𝑑) by definition of ℎ(𝑢,𝑑). thus, 𝐻 ′(𝑢) = ℎ(𝑢,𝑑).
Finally, if 𝑢 is an internal node and 𝐻 (𝑢) < 𝑑 , then if for all nodes 𝑣 in the subtree rooted in 𝑢,

𝐻 (𝑣) < 𝑑 , we have that ℎ(𝑢,𝑑 + 1) = ℎ(𝑢,𝑑). Otherwise, let L be the set of nodes 𝑣 in the subtree

rooted in 𝑢 such that 𝐻 (𝑣) = 𝑑 . Each node 𝑣 ∈ L change the value of 𝐻 (𝑢) as min{𝐻 (𝑢), ℎ(𝑣, 𝑑)},
thus we have that 𝐻 ′(𝑢) = min{ℎ(𝑣, 𝑑) | 𝑣 leaf in the subtree rooted in 𝑢} = ℎ(𝑢,𝑑). □

In order to efficiently find all nodes 𝑢 such that ℎ(𝑢, ℓ) = 𝑑 and ℎ(parent(𝑢), ℓ) < 𝑑 , we use a

maximum-oriented indexed priority queue, storing the values of 𝐻 (𝑢) as keys and 𝑖𝐵𝐹𝑆 (𝑢) as index.
Under this condition, if two nodes have the same key value, then parents have higher priority

than their children in 𝐼𝑃𝑄 . We keep the priority queue updated using a demote operation while

we discover left-minimal nodes and we update the values of the array 𝐻 stored as keys of 𝐼𝑃𝑄 .

Algorithm 4 shows how to compute ℎ(𝑢, ℓ) for a given node 𝑢, and how we update the values of

the keys in the 𝐼𝑃𝑄 for all children 𝑣 of 𝑢.

The skipping algorithm summarized in Algorithm 5 initializes priority queue 𝐼𝑃𝑄 by inserting

all nodes of T (𝑆rev) with key 𝑛 + 1. We then repeat the following as long as there exists a node

with non-negative key: extract the max element (𝑢, ℓ) of 𝐼𝑃𝑄 ; decide whether or not it has to be

reported, i.e. if it is right-minimal; apply Algorithm 4 to update the key values of all nodes in the

subtree of 𝑢 and then update the values of the keys of all ancestors of 𝑢.

Analysis: For all nodes 𝑢 in T (𝑆rev), the key value associated to 𝑢 in 𝐼𝑃𝑄 is initially 𝑛 + 1. Each
time Algorithm 5 and Algorithm 4 visit a node, the key value of𝑢 in 𝐼𝑃𝑄 is decreased (via demote())
until it becomes negative. Thus, for each node we perform at most 𝑛 + 1 demote() operations. Since
the number of nodes in T (𝑆rev) is linear in 𝑛, Algorithm 5 runs in O(𝑛2 log(𝑛)) time.

Example 4.4. In our running example, we want to report all minimally (𝑦,𝑑)-unique substrings
of the colored string, for the character 𝑦. Using Figure 3, we now show how we discover that the

substring ca is (𝑦, 3)-unique. We show in Figure 3b the indexed priority queue after 48 iterations

of Algorithm 4. The maximum element in the indexed priority queue 𝐼𝑃𝑄 is the node of T (𝑆rev)
corresponding to the 10-th node in the reverse index BFS of the tree, as shown in Figure 3a. The

associated key value of the maximum element is 3, which means that the corresponding substring

is left-minimal (𝑦, 3)-unique. In order to decide if the corresponding substring is also right-minimal,

we check if the suffix link parent of the node number 10, which is the node number 13, is left-minimal

for 𝑑 = 4. The value of the last even value such that the node number 13 has been left-minimal is

ACM J. Exp. Algor., Vol. 1, No. 1, Article 1. Publication date: January 2020.

Pattern Discovery in Colored Strings 1:17

iBFS index

IPQ key
Left_minimal[0]
Left_minimal[1]

sn

Legend

a b

$

$ $

$

b
c
a
c
a
c
a
$

b
c
a
c
a
c
a
$

b
c
a
c
a
c
a
$

c

a

c

a

c

a

$

c
a
c
a
c
a
$

a
c
a
b
c
a
c
a
c
a
$

$ c

a

c

a

$

12

01

89

11 4

9 2 7

1 5 10 3

8 6

2

1 0 3 3 1 0 3 2

010

0

223
4
5

12
5

4
3

33
234

5

13

17

141516

67101112

12
5

4
5

8
7

12
11

6
5

8
910

11

12
11

4
11

12
11

4
11

4
5

4
11

6
7

10
9

9
3

4

4
5

(a) The suffix tree of T of 𝑆rev, reporting the values of 𝐼𝑃𝑄 , 𝑙𝑒 𝑓 𝑡_𝑚𝑖𝑛𝑖𝑚𝑎𝑙 [0], and 𝑙𝑒 𝑓 𝑡_𝑚𝑖𝑛𝑖𝑚𝑎𝑙 [1] for each
node, after 48 iterations of Algorithm 4.

10

9

3

1

15 8

17

7

0

11 13

6

4

14 16

2

12 5

(3)

(3)

(3)

(2)

(0) (1)

(0)

(0)

(2)

(0) (0)

(3)

(3)

(1) (2)

(3)

(1) (2)

(b) Indexed priority queue 𝐼𝑃𝑄 after 48 iterations
of Algorithm 4.

9

3

1

8

15 10

7

17

0

11 13

6

16

14 4

5

12 2

(3)

(2)

(2)

(1)

(-1) (-1)

(0)

(-1)

(2)

(0) (0)

(3)

(2)

(1) (-1)

(2)

(1) (1)

(c) Indexed priority queue 𝐼𝑃𝑄 after 49 iterations
of Algorithm 4.

Fig. 3. Top (3a): The suffix tree of T of the reverse string 𝑆rev = bacabcacaca, reporting the values of 𝐼𝑃𝑄 ,
𝑙𝑒 𝑓 𝑡_𝑚𝑖𝑛𝑖𝑚𝑎𝑙 [0], and 𝑙𝑒 𝑓 𝑡_𝑚𝑖𝑛𝑖𝑚𝑎𝑙 [1] for each node, after 48 iterations of Algorithm 4. In red, in the upper
left of each node, we report the reverse index BFS of the node, below each leaf we report the associated
suffix number, on the right of the node we report the values of 𝐼𝑃𝑄 , 𝑙𝑒 𝑓 𝑡_𝑚𝑖𝑛𝑖𝑚𝑎𝑙 [0], and 𝑙𝑒 𝑓 𝑡_𝑚𝑖𝑛𝑖𝑚𝑎𝑙 [1].
Bottom: The indexed priority queue 𝐼𝑃𝑄 after 48 (3b) and 49 (3c) iterations of Algorithm 4. In the nodes of
the priority queue we have the index of the nodes of the suffix tree T (𝑆rev) numbered in the reverse index
BFS. Below each node, in red and in brackets, the value of the key associated to each index.

ACM J. Exp. Algor., Vol. 1, No. 1, Article 1. Publication date: January 2020.

1:18 Zs. Lipták, S. J. Puglisi, and M. Rossi

Algorithm 4: Highest possible value of 𝑑 .

input :A node 𝑢 in the suffix tree T (𝑆rev) and integer ℓ .

output :Maximum delay 𝑑 < ℓ such that 𝐿(𝑢)rev can be (𝑦,𝑑)-unique.
1 procedure ℎ(𝑢, ℓ):
2 𝑚𝑖𝑛𝑑 ← ℓ − 1
3 if 𝑢 is a leaf then
4 𝑗 ← 𝑛 − ln(𝑢) + 1
5 𝑚𝑖𝑛𝑑 ← max{select(𝑏𝑦, rank(𝑏𝑦, 𝑗 + ℓ)) − 𝑗,−1}
6 else
7 forall children 𝑣 of 𝑢 do
8 𝑑 = ℎ(𝑣, ℓ)
9 if 𝑚𝑖𝑛𝑑 < 𝑑 then
10 𝑚𝑖𝑛𝑑 ← 𝑑

11 𝐼𝑃𝑄.demote(𝑢,𝑚𝑖𝑛𝑑)

12 return𝑚𝑖𝑛𝑑

Algorithm 5: Skipping
input :A colored string 𝑆 , and a color 𝑦 ∈ Γ
output :All minimal (𝑦,𝑑)-unique substrings of 𝑆 .

1 forall nodes 𝑣 of T (𝑆 rev) do
2 𝐼𝑃𝑄 .insert(𝑣, 𝑛 + 1)
3 while 𝐼𝑃𝑄.allNegative()= 𝑓 𝑎𝑙𝑠𝑒 do
4 (𝑢,𝑑) ← 𝐼𝑃𝑄.max()

5 (𝑢 ′, 𝑡) = 𝑠𝑙𝑖𝑛𝑘 (𝑢, 𝑠𝑑 (𝑝𝑎𝑟𝑒𝑛𝑡 (𝑢)) + 1)
6 if 𝑢 ′ is not (𝑦,𝑑 + 1)-unique then // flag from previous round
7 output (𝑑, Left-min(𝑢))
8 𝑚𝑖𝑛𝑑 = ℎ(𝑢,𝑑)
9 forall ancestors 𝑣 of 𝑢 do
10 if 𝐼𝑃𝑄.keyOf(𝑣) > 𝑚𝑖𝑛𝑑 then
11 𝐼𝑃𝑄.demote(𝑣,𝑚𝑖𝑛𝑑)

set to 12. Thus the node 10 is minimally (𝑦, 3) − 𝑢𝑛𝑖𝑞𝑢𝑒 and has to be reported. We now compute

the ℎ(𝑢, ℓ) function for the node number 10, 𝑢, and ℓ = 3 . As shown in Example 4.2, we have that

the ℎ function for the nodes number 2, 3, and 4 are 1, 2, −1. Thus, the value of the ℎ function for

the node number 10 is −1. We then update the values of all parents of the node number 10. This

results in an update of the values of the indexed priority queue 𝐼𝑃𝑄 as reported in Figure 3c.

4.1 Right-minimality check
According to Proposition 3.7, in order to decide if a node is left-minimal (𝑦,𝑑)-unique, we have to
check that the suffix link parent 𝑢 ′ = slink(𝑢) is not a left-minimal (𝑦,𝑑 + 1)-unique node. Since we

ACM J. Exp. Algor., Vol. 1, No. 1, Article 1. Publication date: January 2020.

Pattern Discovery in Colored Strings 1:19

discover (𝑦,𝑑)-unique substrings in decreasing order of 𝑑 , it is enough to store, for each node, the

previous value of 𝑑 such that the node is left-minimal.

Given a node 𝑢, we store this information in two arrays, indexed by the 𝑖𝐵𝐹𝑆 (𝑢) values. In
one array we store the last even values of 𝑑 such that the node was left-minimal. In the other

array we store the last odd values of 𝑑 such that the node was left-minimal. This prevents possible

overwriting of information, e.g., let 𝑣 = slink(𝑢) such that 𝑣 is left-minimal (𝑦,𝑑 + 1)-unique
and left-minimal (𝑦,𝑑)-unique node. Let us assume that 𝑣 is processed before the node 𝑢 that is

left-minimal (𝑦,𝑑)-unique. If we had only one array holding the information of the last value of 𝑑

such that a node was left-minimal, then this value for 𝑣 would now be 𝑑 , instead of 𝑑 + 1. Thus, we
would erroneously conclude that 𝑣 is also right-minimal, hence that it is minimally (𝑦,𝑑)-unique.
Using one array to store even values of 𝑑 and one array to store odd values of 𝑑 , we avoid this

problem, since 𝑣 updates the array associated to the parity of 𝑑 , while 𝑢 queries the one associated

to the parity of 𝑑 + 1.
We can replace lines 6 to 7 with the following lines of code, where we set at the beginning

𝑙𝑒 𝑓 𝑡_𝑚𝑖𝑛𝑖𝑚𝑎𝑙 [𝑏] [𝑢] = ∞ for all 𝑏 = {0, 1} and for all nodes 𝑢.

6 𝑟𝑒𝑝𝑜𝑟𝑡 ← (𝑙𝑒 𝑓 𝑡_𝑚𝑖𝑛𝑖𝑚𝑎𝑙 [(𝑑 + 1) mod 2] [𝑢 ′] ≠ 𝑑 + 1)
7 if 𝑟𝑒𝑝𝑜𝑟𝑡 then
8 output (𝑑, Left-min(𝑢))
9 𝑙𝑒 𝑓 𝑡_𝑚𝑖𝑛𝑖𝑚𝑎𝑙 [𝑑 mod 2] [𝑢] ← 𝑑

See Figure 3a for an example of the values of the arrays 𝑙𝑒 𝑓 𝑡_𝑚𝑖𝑛𝑖𝑚𝑎𝑙 [0] and 𝑙𝑒 𝑓 𝑡_𝑚𝑖𝑛𝑖𝑚𝑎𝑙 [1].

5 OUTPUT RESTRICTIONS AND ALGORITHM IMPROVEMENT
We now discuss some practically-minded output restrictions. They can be implemented as a filter

to the output, thus discarding some solutions, but if they are considered as part of the problem

specification, then they lead to an improvement for the skipping algorithm.

Note that our definition of (𝑦,𝑑)-unique allows that a substring occurs only once, or that none

of its occurrences is followed by a 𝑦 with delay 𝑑 , because they are all close to the end of string. We

now restrict our attention to (𝑦,𝑑)-unique substrings with at least two occurrences followed by 𝑦

with delay 𝑑 .

Given a colored string 𝑆 , let 𝑇 be minimally (𝑦,𝑑)-unique. We report (𝑇,𝑑) if and only if the

following holds:

(1) There are at least two occurrences of 𝑇 in 𝑆 .

(2) Let 𝑖 be the second smallest occurrence of 𝑇 in 𝑆 , then 𝑖 + |𝑇 | − 1 + 𝑑 ≤ 𝑛.
A substring 𝑇 that satisfies the above conditions is called a real type minimally (𝑦,𝑑)-unique

substring. Note that any algorithm that computes all minimally (𝑦,𝑑)-unique substrings can be

easily modified to output only those that are of real-type, by checking the two conditions before

outputting (in line 7 of Algorithm 5, resp. line 17 of Algorithm 2): if the node 𝑢 is not a leaf and

the value of the second largest suffix of 𝑆rev in the subtree rooted in 𝑢 is greater than or equal to 𝑑 .

Since each node 𝑢 in the suffix tree T (𝑆rev), corresponds to an interval [𝑖, 𝑗] of the suffix array of

𝑆rev, we can find the second largest suffix using a range maximum query 𝑟𝑀𝑞 data structure [13]

built on the suffix array of 𝑆rev (see Sec 2).

We now turn to the skipping algorithm specifically, which we can modify such that it only

computes real-type solutions. The ℎ(𝑢, ℓ) function is used in Algorithm 5 in order to find left-

minimal nodes in the suffix tree. If we consider the output restrictions as part of the problem,

then we do not have to report minimally (𝑦,𝑑)-unique substrings that occur only once, i.e., leaves

ACM J. Exp. Algor., Vol. 1, No. 1, Article 1. Publication date: January 2020.

1:20 Zs. Lipták, S. J. Puglisi, and M. Rossi

in T (𝑆rev). Then, for all nodes 𝑢 such that all children of 𝑢 are leaves, we can directly compute

the highest value of 𝑑 < ℓ such that 𝐿(𝑢)rev is (𝑦,𝑑)-unique. This leads to the definition of the

fast_ℎ(𝑢, ℓ) function for a node 𝑢 of T (𝑆rev). The function fast_ℎ(𝑢, ℓ) is defined similarly to the

function ℎ(𝑢, ℓ) with the additional following case:

• If all children of 𝑢 are leaves, we can directly compute the highest value of 𝑑 < ℓ such that

𝐿(𝑢)rev is (𝑦, ℓ)-unique as the largest value 𝑑 < ℓ such that, for each child 𝑣 of𝑢,ℎ(𝑣, 𝑑+1) = 𝑑 .
In other words, we are looking for the largest𝑑 < ℓ such that all children of 𝑣 are (𝑦,𝑑)-unique.

The definition of fast_ℎ(𝑢, ℓ) is as follows:

fast_ℎ(𝑢, ℓ) =

ℓ − 1 if 𝑢 is a leaf and ln(𝑢) < ℓ,

max{𝑖 < ℓ | 𝑓 rev (ln(𝑢) − 𝑖) = 𝑦} if 𝑢 is a leaf and such 𝑖 exists,

max{𝑖 < ℓ | fast_ℎ(𝑣, 𝑖 + 1) = 𝑖 if all children of 𝑢 are leaves

for all 𝑣 child of 𝑢} and such 𝑖 exists,

min{fast_ℎ(𝑣, ℓ) | 𝑣 child of 𝑢} if 𝑢 is an inner node,

−1 otherwise.

The additional case of fast_ℎ(𝑢, ℓ) can be computed as follows. Let 𝑢 be a node such that all

children of 𝑢 are leaves. We set 𝑖 = ℓ , and compute the values ℎ(𝑣, 𝑖) where 𝑣 is a child of 𝑢. We

update the value of 𝑖 = min(𝑖, ℎ(𝑣, 𝑖) + 1), compute the value of ℎ(𝑣 ′, 𝑖) where 𝑣 ′ is the next child of

𝑢, and update the value of 𝑖 = min(𝑖, ℎ(𝑣 ′, 𝑖) + 1). We continue iterating until all children 𝑣 of 𝑢 have

the same value ℎ(𝑣, 𝑖), possibly −1. Algorithm 6 summarizes these improvements to Algorithm 4.

In order to use the fast_ℎ(𝑢, ℓ) function in Algorithm 5, it is enough to replace the ℎ() function at

line 8 by the fast_ℎ() function.

6 EXPERIMENTAL RESULTS
We implemented the algorithms presented in the previous sections and measured their performance

on randomly generated datasets and on real-world datasets. The implementation is available online

at https://github.com/maxrossi91/colored-strings-miner.

6.1 Setup
Experiments were performed on a 3.4 GHz Intel Core i7-6700 CPU equipped with 8MiB L3 cache

and 16GiB of DDR4 main memory. The machine had no other significant CPU tasks running, and

only a single thread of execution was used.

The OS was Linux (Ubuntu 16.04, 64bit) running kernel 4.4.0. All programs were compiled using

g++ version 5.4.0 with -O3 -DNDEBUG -funroll-loops -msse4.2 options. All given runtimes were

recorded with the C++11 high_resolution_clock time measurement facility.

6.2 Data
We used two different datasets; the first one consists of randomly generated data, while the second

one consists of real-world data.

The randomly generated data are colored strings generated using the C library function rand().
We varied the length 𝑛 = 100, 1000, 10 000, 100 000, the alphabet size 𝜎 = 2, 4, 8, 16, 32, and the

number of colors 𝛾 = 2, 4, 8, 16, 32. In all cases except for 𝑛 = 100 000, we used seeds 0, 9843, 27 837,

19 341, 29 044; for 𝑛 = 100 000, we used only seed 0. The string is generated one character (and its

color) at a time, i.e. fixing 𝜎 and 𝛾 , the string of length 𝑛 = 1000 is a prefix of the string 𝑛 = 10 000.

The strings are generated using a uniform distribution of characters and colors. We report only the

results of experiments for the values of length 𝑛 = 1000, 10 000, 100 000, alphabet size 𝜎 = 2, 8, 32,

ACM J. Exp. Algor., Vol. 1, No. 1, Article 1. Publication date: January 2020.

https://github.com/maxrossi91/colored-strings-miner

Pattern Discovery in Colored Strings 1:21

Algorithm 6: Highest possible value of 𝑑 .

input :A node 𝑢 in the suffix tree T (𝑆rev), and integer ℓ .

output :Maximum delay 𝑑 < ℓ such that 𝐿(𝑢)rev can be (𝑦,𝑑)-unique.
1 procedure 𝑓 𝑎𝑠𝑡_ℎ(𝑢, ℓ):
2 𝑚𝑖𝑛𝑑 ← ℓ − 1
3 if 𝑢 is a leaf then
4 𝑗 ← 𝑛 − ln(𝑢) + 1
5 𝑚𝑖𝑛𝑑 ← max{select(𝑏𝑦, rank(𝑏𝑦, 𝑗 + ℓ)) − 𝑗,−1}
6 else if all children of 𝑢 are leaves then
7 repeat
8 𝑖𝑠_𝑐ℎ𝑎𝑛𝑔𝑒𝑑 ← 𝑓 𝑎𝑙𝑠𝑒

9 forall children 𝑣 of 𝑢 do
10 𝑑 = 𝑓 𝑎𝑠𝑡_ℎ(𝑣,𝑚𝑖𝑛𝑑 + 1)
11 if 𝑚𝑖𝑛𝑑 < 𝑑 then
12 𝑖𝑠_𝑐ℎ𝑎𝑛𝑔𝑒𝑑 ← 𝑡𝑟𝑢𝑒

13 𝑚𝑖𝑛𝑑 ← 𝑑

14 until 𝑖𝑠_𝑐ℎ𝑎𝑛𝑔𝑒𝑑 AND𝑚𝑖𝑛𝑑 ≥ 0

15 else
16 forall children 𝑣 of 𝑢 do
17 𝑑 = 𝑓 𝑎𝑠𝑡_ℎ(𝑣, ℓ)
18 if 𝑚𝑖𝑛𝑑 < 𝑑 then
19 𝑚𝑖𝑛𝑑 ← 𝑑

20 𝐼𝑃𝑄.demote(𝑢,𝑚𝑖𝑛𝑑)

21 return𝑚𝑖𝑛𝑑

number of colors 𝛾 = 2, 8, 32, and seed 0, since these are representative of the trend we observed in

all our experiments.

The real-world data is the result of a simulation on a set of established benchmarks in embedded

systems verification [4, 8, 30], reported in Table 1. The benchmarks are descriptions of hardware

design at the register-transfer level (RTL) of abstraction. Each design consists of a set of primary

input bits (PIs) and a set of primary output bits (POs). Primary inputs and primary outputs are

grouped into ports. The simulation of designs is a sequence of temporal events which act to capture

the effects of the values given as inputs for the design into the design itself, and consequently the

effects of the input values on the values assumed by the outputs. We simulated the benchmarks

providing as inputs randomly generated sequences using an automatic test pattern generator

(ATPG). The result of the simulation is collected in a simulation trace, which stores, for each

temporal event, the values of the primary inputs and of the primary outputs. For each simulation

event, we consider the values of all primary inputs as characters of the alphabet Σ, and the values

of a port of the primary outputs as colors. In other words, for simulation event 𝑖 , 𝑆 [𝑖] is the value
of the primary inputs, and 𝑓𝑆 (𝑖) is the value of the primary outputs.

6.3 Algorithms
We compared the following implementations:

ACM J. Exp. Algor., Vol. 1, No. 1, Article 1. Publication date: January 2020.

1:22 Zs. Lipták, S. J. Puglisi, and M. Rossi

Design Description PIs POs 𝑛 𝜎 𝛾 𝑛𝑦
b03 Resource arbiter [8] 6 4 100 000 17 5 3210

b06 Interrupt handler [8] 4 6 100 000 5 4 44 259

s386 Shynthetized controller [4] 9 7 100 000 129 2 8290

camellia Symmetric key block cypher [30] 262 131 103 615 70 224 2292

serial Serial data transmitter 11 2 100 000 118 2 16 353

master Wishbone bus master [30] 134 135 100 000 417 80 759

Table 1. Real-world datasets used in the experiments. In the column Design and Description we report the
name and the description of the hardware design that we used to generate the simulation trace. In column PIs
we give the number of primary inputs of the design, while in POs that of its primary outputs. In column 𝑛 we
report the length of the simulation trace, and in columns 𝜎 and 𝛾 the size of the alphabet and the number of
colors, respectively. For each design we fixed a color 𝑦, and the value 𝑛𝑦 refers to the number of 𝑦 characters
in the simulation trace.

• base: the baseline algorithm (Algorithm 2)

• skip: the skipping algorithm (Algorithm 5) using the ℎ function (Algorithm 4)

• real: the skipping algorithm (Algorithm 5) using the 𝑓 𝑎𝑠𝑡_ℎ function (Algorithm 6)

• base-all: the baseline algorithm for all colors (Algorithm 3)

All algorithms report minimally (𝑦,𝑑)-unique substrings only if they are real type. We used the

sdsl-lite library [19] for compressed suffix trees, range maximum query, and rank and select

supports for bit vector implementations.

6.4 Results
We performed all experiments five times and report the average execution time over the five runs.

Experimental results are reported in Figures 4 and 5, and Table 2.

Single color analysis. Figure 4 shows the results of the executions of base, skip, and real
algorithms over the randomly generated strings data.

We can observe how the algorithms scale

(1) with respect to an increase in the numbers of colors, which has the effect of reducing the

number of 𝑦-colored characters;

(2) with respect to an increase in the alphabet size; and

(3) with respect to an increase in the length of the text.

We see that all three algorithms behave the same in all cases. Increasing the number of colors

(case 1), the running time decreases. Conversely, when the size of the text alphabet increases (case

2), the running time increases also. Finally, we observe a quadratic dependence of the running time

on text length (case 3); this is in accordance with our theoretic results (see Sec. 3 and 4).

Figure 4 shows that the skip algorithm is almost always faster than the base algorithm, and

that the average speedup is 1.30, with a maximum of 1.75. Moreover, we have that the the real
algorithm is almost always faster than the skip algorithm, and the average speedup is 1.25, with a

maximum of 1.64. Finally, the average speedup between real and base is 1.65, with a maximum of

2.60 in the case of 𝑁 = 100 000, 𝜎 = 32 and 𝛾 = 32.

Figure 5 shows the results for base, skip and real algorithms on the real-world dataset. Here,

we observe a similar trend to the random data, but the speedup of real with respect to base is

much higher — 3.40 on average, with a maximum of 11.88 on the master device. However, on three

of the six datasets, base is faster than skip, and faster than real.

ACM J. Exp. Algor., Vol. 1, No. 1, Article 1. Publication date: January 2020.

Pattern Discovery in Colored Strings 1:23

0.25

0.50

0.75

1.00

1.25

1.50

T
i
m
e

[
s
e
c
]

N = 1000

50

100

150

200
N = 10000

5000

10000

15000

20000

25000

N = 100000

2 8 32
σ

1.0

1.5

2.0

2.5

S
p
e
e
d
u
p

2 8 32
σ

2 8 32
σ

Legend

base - γ = 2

skip - γ = 2

real - γ = 2

base-all - γ = 2

base - γ = 8

skip - γ = 8

real - γ = 8

base-all - γ = 8

base - γ = 32

skip - γ = 32

real - γ = 32

base-all - γ = 32

Fig. 4. Results of the execution of algorithms base (color blue), skip (color orange), real (color green), and
base-all (color red) over the randomly generated data for 𝑁 = 10

3, 104, and 10
5. The 𝑥 axis represents the

values of 𝜎 = {2, 8, 32}, and the different markers represents the values of 𝛾 = {2, 8, 32} (circles, crosses, and
boxes, respectively). The three plots in the first row report execution times. The plots in the second row report
speedups of skip, real, and base-all with respect to algorithm base represented as the dashed blue line at
constant 1.0.

b03 b06 camellia s386/ master serial
Design

0

1000

2000

3000

4000

5000

6000

7000

8000

T
i
m
e

[
s
e
c
]

Algorithms

base

skip

real

base-all

(a) Time

b03 b06 camellia s386/ master serial
Design

0

2

4

6

8

10

12

S
p
e
e
d
u
p

Algorithms

base

skip

real

base-all

(b) Speedup

Fig. 5. Results of the execution of algorithms base, skip, real, and base-all over the real-world dataset.
The plot in Figure 5a reports execution times. The plot in Figure 5b reports speedups of skip, real, and
base-all with respect to algorithm base represented as the dashed blue line at constant 1.0.

ACM J. Exp. Algor., Vol. 1, No. 1, Article 1. Publication date: January 2020.

1:24 Zs. Lipták, S. J. Puglisi, and M. Rossi

Alphabets Number of Properties

𝜎 𝛾 base base-all
2 2 26 894 50 922

8 1745 15 563

32 76 3996

8 2 30 219 56 241

8 1516 12 919

32 75 3306

32 2 25 120 46 758

8 1245 10 578

32 40 2585

(a) Number of properties for 𝑁 =1000.

Alphabets Number of Properties

𝜎 𝛾 base base-all
2 2 2 374 231 4 699 647

8 187 202 1 447 913

32 11 767 370 303

8 2 2 844 680 5 607 007

8 167 431 1 294 765

32 9989 317 444

32 2 1 466 242 2 892 791

8 83 320 642 806

32 4948 156 947

(b) Number of properties for 𝑁 =10 000.

Alphabets Number of Properties

𝜎 𝛾 base base-all
2 2 239 039 415 473 572 454

8 17 680 770 145 246 888

32 1 129 991 37 254 203

8 2 279 720 849 552 304 418

8 15 517 256 127 614 675

32 947 858 31 264 100

32 2 243 283 926 479 770 368

8 11 982 556 98 601 898

32 713 137 23 592 691

(c) Number of properties for 𝑁 =100 000.

Number of Properties

Design base base-all
b03 999 191 361 224 140

b06 223 070 824 409 476 680

s386 5 012 263 558 001 254

camellia 77 261 2 470 894

serial 2 085 855 11 653 080

master 252 231 34 812 555

(d) Number of properties for real-world dataset.

Table 2. Number of properties for randomly generated strings and the real-world dataset. The first two
columns of 2a, 2a, and 2a report the size of the text alphabet 𝜎 and the number of colors 𝛾 , while the first
column of 2d reports the name of the design where the simulation trace is retrieved. The last two columns
report the number of properties extracted from the base and the base-all algorithms, respectively.

All colors analysis. Next, we compare the experimental results of the base and base-all algo-
rithms. The setup is the same as in the previous case, i.e. we performed five runs of each experiment

and give the average execution time. The results on the randomly generated and real-world datasets

are reported in Figure 4 and 5, respectively.

From Figures 4 and 5, we can observe that the running time of the base algorithm is not heavily

affected by the fact that we are looking for a specific color: there is a small increase in running

time from base (reporting all real-type minimally (𝑦,𝑑)-unique substrings for any 𝑑 and just one
color 𝑦), to base-all, reporting all real-type minimally (𝑦,𝑑)-unique substrings for any 𝑑 and for

all colors 𝑦.
On the real-world data, base outperforms base-all on all six datasets. Note that the number of

patterns is considerably larger for base-all.

ACM J. Exp. Algor., Vol. 1, No. 1, Article 1. Publication date: January 2020.

Pattern Discovery in Colored Strings 1:25

7 CONCLUSION
We studied pattern discovery problems on colored strings motivated by applications in embedded

system verification. To the best of our knowledge this is the first principled algorithmic treatment

of these problems.

Colored strings are strings such that each position of the string is assigned a color from a finite

set of colors. We studied two different pattern discovery problems on colored strings. The first

problem is to find all minimally (𝑦,𝑑)-unique substrings of the colored string, for a given color 𝑦

and any delay 𝑑 . We proposed two different approaches, which we refer to as baseline approach

and skipping approach. Both algorithms use a suffix tree on the reverse of the colored string as

underlying data structure. They discover the patterns starting from the ones with highest delay

to the ones with the lowest delay. The two algorithms differ in the way in which minimality

information is propagated along the suffix tree. The baseline algorithm traverses the whole tree

separately for each delay value, propagating a coloring function from the leaves to the root of the

suffix tree. During each traversal, the algorithm goes through all distinct substrings of the text, and

uses the coloring function to identify which substrings are minimally (𝑦,𝑑)-unique.
On the other hand, the skipping algorithm stores, for each distinct substring, the next delay value

such that the substring is (𝑦,𝑑)-unique, during the discovery process. It uses a maximum-oriented

indexed priority queue to find these values and to identify minimally (𝑦,𝑑)-unique substrings.
Even though the theoretical analysis we provided for the skipping algorithms results in a worse

upper bound on the running time than for the baseline algorithm, we show in our experiments

that it is faster in practice on simulated data, and on half of the real-world data. Even though the

skipping algorithm outperforms the baseline algorithm only on half of the real-world datasets

(camelia, master, serial), it is significant that the gain on these is considerable, as opposed to only a

slight slowdown on the others (b03, b06, s386), see Figure 5. Moreover, the traces on which we see

a speedup are derived from devices which perform more complex tasks, thus indicating that our

algorithm may be well suited for the application in embedded system verifiaction.

We also proposed a variant of the minimality condition oriented toward real-world application

instances. Those conditions allow us to develop a faster core function of the skipping algorithm,

resulting in a more effective performance in practice.

The second problem we proposed is to find all minimally (𝑦,𝑑)-unique substrings of the colored
string, for all colors 𝑦 concurrently. We modified our baseline algorithm, defining a new coloring

function, noting that for fixed 𝑑 , a substring can be (𝑦,𝑑)-unique for at most one color 𝑦. The

introduction of the new coloring function and the fact that now all colors 𝑦 are of interest, increases

the running time with respect to the baseline algorithm only negligibly, an effect we observed in

the experiments on both randomly generated data and real-world data.

We are currently working with colleagues in embedded systems to integrate these algorithms

into their analysis workflows.

ACKNOWLEDGMENTS
We thank Johannes Fischer, Travis Gagie, and Ferdinando Cicalese for interesting discussions, and

Alessandro Danese for providing an updated data set of traces. We also thank the reviewers for

carefully reading the paper. SJP’s research was partially funded by the Academy of Finland via

grant 319454. MR was partially funded by the Scuola di Dottorato dell’Università degli Studi di

Verona, Italy, and is supported by the National Science Foundation (NSF) IIS (Grant No. 1618814).

REFERENCES
[1] RakeshAgrawal and Ramakrishnan Srikant. 1994. Fast algorithms formining association rules. In Proc. 20th International

Conference on Very Large Data Bases (VLDB), Vol. 1215. Morgan Kaufmann, 487–499.

ACM J. Exp. Algor., Vol. 1, No. 1, Article 1. Publication date: January 2020.

1:26 Zs. Lipták, S. J. Puglisi, and M. Rossi

[2] Rakesh Agrawal and Ramakrishnan Srikant. 1995. Mining sequential patterns. In Proc. Eleventh International Conference
on Data Engineering (ICDE), Vol. 95. IEEE Computer Society, 3–14.

[3] Fabian Birzele and Stefan Kramer. 2006. A new representation for protein secondary structure prediction based on

frequent patterns. Bioinformatics 22, 21 (2006), 2628–2634.
[4] Franc Brglez, David Bryan, and Krzysztof Kozminski. 1989. Combinational profiles of sequential benchmark circuits.

In Proc. 1989 IEEE international symposium on circuits and systems (ISACS), Vol. 3. IEEE, 1929–1934.
[5] Sarah Chan, Ben Kao, Chi Lap Yip, and Michael Tang. 2003. Mining emerging substrings. In Proc. Eighth International

Conference on Database Systems for Advanced Applications (DASFAA 2003). IEEE, 119–126.
[6] Chung-Wen Cho, Ying Zheng, Yi-Hung Wu, and Arbee LP Chen. 2008. A tree-based approach for event prediction

using episode rules over event streams. In Proc. International Conference on Database and Expert Systems Applications
(DEXA 2008) (LNCS), Vol. 5181. Springer, 225–240.

[7] David Clark. 1997. Compact PAT trees. Ph.D. Dissertation. University of Waterloo.

[8] Fulvio Corno, Matteo Sonza Reorda, and Giovanni Squillero. 2000. RT-level ITC’99 benchmarks and first ATPG results.

IEEE Design & Test of computers 17, 3 (2000), 44–53.
[9] Alessandro Danese, Nicolò Dalla Riva, and Graziano Pravadelli. 2017. A-TEAM: Automatic template-based assertion

miner. In Proc. 2017 54th ACM/EDAC/IEEE Design Automation Conference (DAC). IEEE, 1–6.
[10] Alessandro Danese, Tara Ghasempouri, and Graziano Pravadelli. 2015. Automatic extraction of assertions from

execution traces of behavioural models. In Proc. 2015 Design, Automation & Test in Europe Conference & Exhibition
(DATE). IEEE, 67–72.

[11] Jasbir Dhaliwal, Simon J Puglisi, and Andrew Turpin. 2010. Practical efficient string mining. IEEE Transactions on
Knowledge and Data Engineering 24, 4 (2010), 735–744.

[12] Lina Fahed, Armelle Brun, and Anne Boyer. 2018. DEER: Distant and Essential Episode Rules for early prediction.

Expert Systems with Applications 93 (2018), 283–298.
[13] Johannes Fischer and Volker Heun. 2011. Space-Efficient Preprocessing Schemes for Range Minimum Queries on

Static Arrays. SIAM J. Comput. 40, 2 (2011), 465–492.
[14] Johannes Fischer, Volker Heun, and Stefan Kramer. 2005. Fast frequent string mining using suffix arrays. In Proc. Fifth

IEEE International Conference on Data Mining (ICDM 2005). IEEE, 609–612.
[15] Johannes Fischer, Volker Heun, and Stefan Kramer. 2006. Optimal string mining under frequency constraints. In Proc.

European Conference on Principles of Data Mining and Knowledge Discovery (PKDD 2006) (LNCS), Vol. 4213. Springer,
139–150.

[16] Johannes Fischer, Veli Mäkinen, and Niki Välimäki. 2008. Space efficient string mining under frequency constraints. In

Proc. Eighth IEEE International Conference on Data Mining (ICDM 2008). IEEE, 193–202.
[17] Harry D Foster, Adam C Krolnik, and David J Lacey. 2004. Assertion-based design. Springer Science & Business Media.

[18] Philippe Fournier-Viger, Jerry Chun-Wei Lin, Rage Uday Kiran, Yun Sing Koh, and Rincy Thomas. 2017. A survey of

sequential pattern mining. Data Science and Pattern Recognition 1, 1 (2017), 54–77.

[19] Simon Gog, Timo Beller, Alistair Moffat, and Matthias Petri. 2014. From Theory to Practice: Plug and Play with

Succinct Data Structures. In 13th International Symposium on Experimental Algorithms, (SEA 2014) (LNCS), Vol. 8504.
Springer, 326–337.

[20] DanGusfield. 1997. Algorithms on Strings, Trees, and Sequences : Computer Science and Computational Biology. Cambridge

University Press, Cambridge, United Kingdom.

[21] Lucas Chi Kwong Hui. 1992. Color Set Size Problem with Application to String Matching. In Proc. Third Annual
Symposium on Combinatorial Pattern Matching (CPM 1992) (LNCS), Vol. 644. Springer, 230–243.

[22] Koji Iwanuma, Ryuichi Ishihara, Yoh Takano, and Hidetomo Nabeshima. 2005. Extracting frequent subsequences

from a single long data sequence a novel anti-monotonic measure and a simple on-line algorithm. In Proc. Fifth IEEE
International Conference on Data Mining (ICDM 2005). IEEE, 186–195.

[23] Xiaonan Ji, James Bailey, and Guozhu Dong. 2007. Mining minimal distinguishing subsequence patterns with gap

constraints. Knowledge and Information Systems 11, 3 (2007), 259–286.
[24] Srivatsan Laxman, Vikram Tankasali, and Ryen W White. 2008. Stream prediction using a generative model based on

frequent episodes in event sequences. In Proc. 14th ACM SIGKDD international conference on Knowledge discovery and
data mining (KDD 2008). ACM, 453–461.

[25] Zsuzsanna Lipták, Simon J. Puglisi, and Massimiliano Rossi. 2020. Pattern Discovery in Colored Strings. In Proceedings
of 18th Symposium on Experimental Algorithms, SEA 2020 (Leibniz International Proceedings in Informatics), Vol. 160.
12:1–12:14.

[26] Lingyi Liu, David Sheridan, Viraj Athavale, and Shobha Vasudevan. 2011. Automatic generation of assertions from

system level design using data mining. In Proc. Ninth ACM/IEEE International Conference on Formal Methods and Models
for Codesign. IEEE Computer Society, 191–200.

ACM J. Exp. Algor., Vol. 1, No. 1, Article 1. Publication date: January 2020.

Pattern Discovery in Colored Strings 1:27

[27] Nizar R Mabroukeh and Christie I Ezeife. 2010. A taxonomy of sequential pattern mining algorithms. ACM Computing
Surveys (CSUR) 43, 1 (2010), 3.

[28] Veli Mäkinen, Djamal Belazzougui, Fabio Cunial, and Alexandru I. Tomescu. 2015. Genome-Scale Algorithm Design.
CUP.

[29] Heikki Mannila, Hannu Toivonen, and A Inkeri Verkamo. 1997. Discovery of frequent episodes in event sequences.

Data mining and knowledge discovery 1, 3 (1997), 259–289.

[30] OpenCores. [n. d.]. Available at https://opencores.org/. Accessed 05-03-2019.

[31] Tinghai Pang, Lei Duan, Jesse Li-Ling, and Guozhu Dong. 2017. Mining Similarity-Aware Distinguishing Sequential

Patterns from Biomedical Sequences. In Proc. Second International Conference on Data Science in Cyberspace (DSC 2017).
IEEE, 43–52.

[32] Jian Pei, Jiawei Han, and Wei Wang. 2007. Constraint-based sequential pattern mining: the pattern-growth methods.

Journal of Intelligent Information Systems 28, 2 (2007), 133–160.
[33] Atif Raza and Stefan Kramer. 2019. Accelerating pattern-based time series classification: a linear time and space string

mining approach. Knowledge and Information Systems (2019), 1–29.
[34] Robert Sedgewick and Kevin Wayne. 2011. Algorithms. Addison-Wesley Professional.

[35] Bill Smyth. 2003. Computing Patterns in Strings. Pearson Addison-Wesley, Essex, England.

[36] Niko Välimäki and Simon J Puglisi. 2012. Distributed string mining for high-throughput sequencing data. In Proc. 12th
International Workshop on Algorithms in Bioinformatics (WABI 2012) (LNCS), Vol. 7534. Springer, 441–452.

[37] Shobha Vasudevan, David Sheridan, Sanjay Patel, David Tcheng, Bill Tuohy, and Daniel Johnson. 2010. Goldmine:

Automatic assertion generation using data mining and static analysis. In Proc. 2010 Design, Automation & Test in Europe
Conference & Exhibition (DATE 2010). IEEE, 626–629.

[38] Xianming Wang, Lei Duan, Guozhu Dong, Zhonghua Yu, and Changjie Tang. 2014. Efficient mining of density-aware

distinguishing sequential patterns with gap constraints. In International Conference on Database Systems for Advanced
Applications (DASFAA 2014) (LNCS), Vol. 8421. Springer, 372–387.

[39] Xindong Wu, Xingquan Zhu, Yu He, and Abdullah N Arslan. 2013. PMBC: Pattern mining from biological sequences

with wildcard constraints. Computers in Biology and Medicine 43, 5 (2013), 481–492.

ACM J. Exp. Algor., Vol. 1, No. 1, Article 1. Publication date: January 2020.

https://opencores.org/

