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Abstract
In this paper we study the following parabolic system

�u − ∂tu = |u|q−1uχ{|u|>0}, u = (u1, · · · , um) ,

with free boundary ∂{|u| > 0}. For 0 ≤ q < 1, we prove optimal growth rate for solutions u
to the above system near free boundary points, and show that in a uniform neighbourhood of
any a priori well-behaved free boundary point the free boundary is C1,α in space directions
and half-Lipschitz in the time direction.

Mathematics Subject Classification 35B65 · 35R35

1 Introduction

1.1 Background

In this paper we shall study for 0 ≤ q < 1 the parabolic (free boundary) system

�u − ∂tu = f (u) := |u|q−1uχ{|u|>0}, u = (u1, · · · , um) , (1.1)

where u : Q1 → R
m , Q1 = B1(0) × (−1, 1), with B1 being the unit ball in R

n , n ≥ 2,
m ≥ 2, and | · | is the Euclidean norm on the respective spaces. System (1.1) relates to
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concentrations of species/reactants, where an increase in each species/reactant accelerates
the extinction/reaction of all species/reactants. The special choice of our reaction kinetics
would assure a constant decay/reaction rate in the case that ui , for i = 1, · · · ,m are of
comparable size.

A diverse scalar parabolic free boundary problem has been subject of intense studies in
more than half-century. On the other hand there are very few results for problems that involve
systems (see [1, 5, 9]), and probably no results for the system related to equation (1.1).

The elliptic case of the above system is studied in [1, 9] or in the scalar case, when m = 1
in [8], where they prove optimal growth rate for the solutions as well as C1,α-regularity of
the free boundary at points that are a priori well-behaved.

In this paper we shall study the parabolic system (1.1) from a regularity point of view.
The analysis of the above parabolic system introduces several serious obstruction, and hence
a straightforward generalization of the ideas and techniques of its elliptic counterpart is far
from being obvious. Due to its technical nature, and the need for notations and definitions,
we shall explain these difficulties below, during the course of developing the tools and ideas.

1.2 Main results and plan of the paper

Our results concern two main questions: Optimal growth of the solution u at free boundary
points (Theorem 3.3), and the regularity of the free boundary (Theorem 6.5) at well-behaved
points.1

To prove our results we use the regularity theory for the elliptic case, see [1, 9] and follow
the ideas that have been used to treat parabolic free boundary problems, as in [4] that was used
for the no-sign one phase scalar case. In doing so we encounter several technical problems,
that we need to circumvent by enhancing the previous techniques. The first problem we
encounter is the use of the balanced-energy monotonicity formula for proving quadratic
growth estimates from the free boundary points. In parabolic setting, and specially in system
case, the combination of balanced energy and Almgren’s frequency is more delicate than the
elliptic case done in [1].

The second problem we encounter concerns the regularity of the free boundary, where we
are forced to use the epiperimetric inequality in elliptic setting. In order to do this we need
to prove that ∂tu, the time derivative of u, is Hölder regular for q = 0. When q > 0 we need
some modification (see Sect. 5). This, however, can be proved at the so-called regular points.
Indeed, since the set of regular points is open (in relative topology) we can use indirect
argument to show that ∂tu tends to zero at free boundary points close to a regular point.
From here one can bootstrap a Hölder regularity theory for |∂tu|. Once this is done we can
invoke the epiperimetric inequality for equations with Hölder right hand side and deduce (in
a standard way) the regularity of the free boundary in space. The Hölder regularity in time
then follows by blow-up techniques, and indirect argument.

1.3 Notation

For clarity of exposition we shall introduce some notation and definitions here that are used
frequently in the paper.

�s� is the greatest integer below s, i.e. s − 1 ≤ �s� < s.
Points in R

n+1 are denoted by (x, t), where x ∈ R
n and t ∈ R.

1 Later we shall call them regular points.
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Let X = (x, t) and define |X | := (|x |2 + |t |)1/2.
Br (x) is the open ball in Rn with center x and radius r , Br := Br (0).
Qr (x, t) denotes the open cylinder Br (x) × (t − r2, t + r2) in R

n+1.
Q+

r (x, t) = Br (x) × (t, t + r2) (upper half cylinder).
Q−

r (x, t) = Br (x) × (t − r2, t) (lower half cylinder).
Tr ,a := Ba × (−4r2,−r2

]
, Tr := R

n × (−4r2,−r2
]
.

∂Qr (x, t) is the topological boundary.
∂pQr (x, t) is the parabolic boundary, i.e., the topological boundary minus the top of the

cylinder.
∇ denotes the spatial gradient, ∇ = (Dx1 , · · · , Dxn ).
∇u = [∂i u j ]1≤i≤n,1≤ j≤m is the derivative matrix of u with other notations

|∇u|2 =
m∑

i=1

|∇ui |2, ∇u : ∇v =
m∑

i=1

(∇ui · ∇vi ),

∇u · ξ = ξ t∇u = (∇u1 · ξ, · · · ,∇um · ξ), for all ξ ∈ R
n .

We will denote the derivative of the function f by fu.
We fix the following constants throughout the paper

κ := 2

1 − q
, α = (κ(κ − 1))−κ/2. (1.2)

� = �(u) = ∂{|u| > 0}.
�κ(u) = {(x0, t0) ∈ �(u) : ∂ it ∂

μ
x u(x0, t0) = 0 for all 2i + |μ| < κ}.

	t , �t , ∂	t are t-sections of the corresponding sets in Rn+1, at the level t .
H = � − ∂t (the heat operator).
χ	 is the characteristic function of 	.
We denote by G(x, t) the backward heat kernel

G(x, t) =
⎧
⎨

⎩

(−4π t)− n
2 e

|x |2
4t , t < 0

0, t ≥ 0.

The following parabolic scalings at the point X0 = (x0, t0) ∈ � are used,

ur ,X0(x, t) := u(r x + x0, r2t + t0)

rκ
, ur := ur ,(0,0)(x, t).

We say that u is κ-backward self-similar if ur = u for all r > 0, or equivalently Lui ≡ 0,
for i = 1, ...,m, where

Lv := ∇v · x + 2t∂tv − κv.

For u a solution to the system (1.1) inRn × (−4, 0], with a polynomial growth, we denote
by W the parabolic balanced energy

W(u, r) := 1

r2κ

−r2∫

−4r2

∫

Rn

(
|∇u|2 + κ|u|2

2t
+ 2

1 + q
|u|1+q

)
G(x, t)dxdt, (1.3)

for 0 < r < 1. A change of variables implies that

W(u, r) = W(ur , 1).
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For a fixed point X0 = (x0, t0) ∈ �, denote by

W(u, r; X0) := W(ur ,X0 , 1).

For notational simplicity we set
M(u) := W(u, 1).

The class of half-space solutions H is defined as

H :=
{
x 
→ αmax(x · ν, 0)κe : where, ν ∈ R

n, |ν| = 1, e ∈ R
m, |e| = 1

}
,

where α is defined in (1.2). A simple computation yields thatW(h, 1) =: Aq is constant for
every h ∈ H.

We denote by N (r) the monotonicity function of Almgren

N (r) = N (r , h) :=

−r2∫

−4r2

∫

Rn
|∇h(x, t)|2G(x, t)dxdt

−r2∫

−4r2

∫

Rn

1
−t |h(x, t)|2G(x, t)dxdt

,

where h is of polynomial growth in x-variables.

2 Preliminary results and standard facts

2.1 Monotonicity formulas

In this section we shall present a few monotonicity formulas, that are the corner stone of
our approach. The first of these is the standard balanced energy functional, that has strict
monotonicity property for (global) solutions of our equation, unless the solution is backward
self-similar of order κ . See [11] for the similar result for the scaler case.

Theorem 2.1 (Monotonicity formula) Let u be a solution of (1.1) in R
n × (−4, 0), with a

polynomial growth at infinity. ThenW(u, r) is monotone nondecreasing in r .

Proof Using the identity

∇vG = ∇(vG) − x

2t
vG,

we compute the derivative ofW with respect to r

dW(u, r)

dr
=dW(ur , 1)

dr
=

−1∫

−4

∫

Rn

d

dr

(
|∇ur |2 + κ|ur |2

2t
+ 2

1 + q
|ur |1+q

)
Gdxdt

=2

−1∫

−4

∫

Rn

(
∇ur : ∇ dur

dr
+ κur

2t

dur
dr

+ ur |ur |q−1 dur
dr

)
Gdxdt

=2

−1∫

−4

∫

Rn

dur
dr

(
−�ur + ur |ur |q−1 + κur

2t
− x · ∇ur

2t

)
Gdxdt
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=
−1∫

−4

∫

Rn

dur
dr

(
−2

∂ur
∂t

+ κ
ur
t

− x · ∇ur
t

)
Gdxdt

=r

−1∫

−4

∫

Rn

(
dur
dr

)2 G(x, t)

−t
dxdt ≥ 0.

��
The abovemonotonicity functional being limited to global solutions, needs to be enhanced

in order for us to apply to a local setting. This is done by inserting a cutoff function into the
functional, that in turn makes the functional almost monotone and calls for adding an extra
term, as stated in the next theorem. See also [4] for the similar result in obstacle problem.

Theorem 2.2 Given a solution u to (1.1) in Q−
1 , we consider the function v := ηu, where

η ∈ C∞
0 (B3/4) is nonnegative, η ≤ 1, and η = 1 in B1/2. Then there exists a non-negative

function F depending on the given data, satisfying F(0+) = 0, and such thatW(v, r)+F(r)
is monotone nondecreasing in r for 0 < r < 1/2.

Proof As in the previous theorem and applying the relation dvr
dr = 1

r Lvr , we get

dW(v, r)
dr

= dW(vr , 1)
dr

= 2

r2κ+1

−r2∫

−4r2

∫

Rn

Lv
(

−�v + v|v|q−1 + κv
2t

− x · ∇v
2t

)
Gdxdt

= 2

r2κ+1

−r2∫

−4r2

∫

Rn

Lv
(

−�v + v|v|q−1 + ∂tv + Lv
−2t

)
Gdxdt

≥ 2

r2κ+1

−r2∫

−4r2

∫

Rn

Lv
(−�v + v|v|q−1 + ∂tv

)
Gdxdt,

Observe that Hv = Hu = u|u|q−1 = v|v|q−1 in B1/2, and Hv(x, t) = 0 if |x | > 3/4, hence

dW(v, r)
dr

≥ 2

r2κ+1

−r2∫

−4r2

∫

Rn

Lv
(−Hv + v|v|q−1)Gdxdt

= 2

r2κ+1

−r2∫

−4r2

∫

B3/4\B1/2
Lv

(−Hv + v|v|q−1)Gdxdt ≥ − Ce
−1
64r2

rn+2κ−1 ,

where we have used the following relations

Lv = (x · ∇η)u + ηLu, and Hv = �ηu + ηHu + 2∇u · ∇η.

Now the statement of the lemma follows with

F(r) = C

r∫

0

τ−n−2κ+1e
−1
64τ2 dτ.

��
We state the following standard result concerning regularity theory, leaving out the stan-

dard proof. See for example [12] for similar result.
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Corollary 2.3 Let u be a solution to our problem and suppose it has polynomial growth from
a free boundary point X0 = (x0, t0) ∈ �κ(u). Then the following hold:

(1) The functionW(u, r; X0) has a right limit as r → 0+.
(2) Any blow up of u at (x0, t0) is a κ-backward self-similar function.
(3) The function X0 
→ W(u, 0+; X0) is upper semicontinous.

Nextwe state, and for reader’s convenience, proveAlmgren’smonotonicity formula. There
are different versions of this formula in literature, see for example [6].

Lemma 2.4 (Almgren’s frequency formula) Let h be a non-zero caloric function in R
n ×

(−4, 0), with polynomial growth, and recall the definition of Almgren’smonotonicity function
N (r , h). Then

i) N ′(r , h) ≥ 0, for 0 < r < 1.
ii) If N (r , h) ≡ const := N , then h is a backward self-similar caloric function of degree

2N .
iii) For an integer number � ≥ 2, if ∂

j
t ∂

μ
x h(0) = 0 for all 2 j + |μ| ≤ � − 1, we obtain

2N (0+, h) ≥ �. Furthermore, equality 2N (r , h) = � for some r > 0 implies that h is
backward self-similar of degree �.

Proof We have

N (r) :=

−1∫

−4

∫

Rn
|∇hr |2Gdxdt

−1∫

−4

∫

Rn

1
−t |hr |2Gdxdt

,

and

N ′(r) =
2I1

−1∫

−4

∫

Rn

1
−t |hr |2Gdxdt − 2I2

−1∫

−4

∫

Rn

1
−t hr

dhr
dr Gdxdt

(−1∫

−4

∫

Rn

1
−t |hr |2Gdxdt

)2 ,

where

I1 :=
−1∫

−4

∫

Rn

∇hr · ∇ dhr
dr

Gdxdt and I2 :=
−1∫

−4

∫

Rn

|∇hr |2Gdxdt .

Let us recall that dhr
dr = 1

r Lhr . Using integration by parts, and taking into account that h
is caloric, we obtain

I1 :=
−1∫

−4

∫

Rn

(
−�hr − x · ∇hr

2t

)
dhr
dr

Gdxdt

=
−1∫

−4

∫

Rn

−1

2r t

(
(Lhr )

2 + κhr Lhr
)
Gdxdt .

By similar computations,

I2 :=
−1∫

−4

∫

Rn

(
−�hr − x · ∇hr

2t

)
hrGdxdt =

−1∫

−4

∫

Rn

−1

2t
(Lhr + κhr )hrGdxdt . (2.1)
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Now consider

rN ′(r)

⎛

⎝
−1∫

−4

∫

Rn

−1

t
|hr |2Gdxdt

⎞

⎠

2

=
⎛

⎝
−1∫

−4

∫

Rn

−1

t
(Lhr )

2Gdxdt

⎞

⎠

⎛

⎝
−1∫

−4

∫

Rn

−1

t
|hr |2Gdxdt

⎞

⎠

−
⎛

⎝
−1∫

−4

∫

Rn

−1

t
hr LhrGdxdt

⎞

⎠

2

≥ 0.

HenceN is nondecreasing, and ifN ′ = 0, then Lhr = chr . Recalling that Lhr = x · ∇hr +
2t∂t hr − κhr , we obtain x · ∇h − 2t∂t h − (κ + c)h = 0, which is equivalent to h being
backward self-similar of degree c + κ . On the other hand, we have from (2.1)

N (r) =

−1∫

−4

∫

Rn
|∇hr |2Gdxdt

−1∫

−4

∫

Rn

1
−t |hr |2Gdxdt

= c + κ

2
,

hence c + κ = 2N .
The last statement of the lemma follows now by the contradiction argument. Suppose that

2N (s) < � for some s ∈ (0, 1], it follows that 2N (0+) < �. By scaling

wr := hr
(−1∫

−4

∫

Rn

1
−t |hr |2Gdxdt

)1/2 ,

we infer from the boundedness of N (r) that {wr } is bounded2 in L2(−4,−1;W 1,2(BR))

for every R > 0. Now we apply Lemma 7.2 for wr and ∇wr to get that {wr } is bounded in
L2(−4, 0;W 1,2(BR)). Indeed, for −4 < s < −2 and −1 < t < 0 we can write

0∫

−1

∫

BR

|wr (x, t)|2dxdt ≤
0∫

−1

∫

BR

−2∫

−4

∫

Rn

1

2
e− |x |2

t+s

( √
3s

s − t

)n

× |wr (y, s)|2G(y, s)dydsdtdx

≤ eR
2/222n+13n/2|BR |

−2∫

−4

∫

Rn

1

−s
|wr (y, s)|2G(y, s)dyds

≤ eR
2/222n+13n/2|BR |.

Furthermore, the estimates on derivatives for caloric functions imply that {wr } is bounded
in L2(−3, 0;W 2,2(BR)). Consequently, by diagonalization technique there is a weakly con-
vergence sequence wrm⇀w0 in L2(−3, 0;W 2,2

loc (Rn)) as well as wrm → w0 strongly in

2 Note that G ≥ e−R2/4

(16π)n/2 for |x | ≤ R, and h is of polynomial growth.
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L2(−3, 0;W 1,2
loc (Rn)). Therefore, the limit w0 is a caloric function satisfying w0(0) =

∂
j
t ∂

μ
x w0(0) = 0 for all 2 j + |μ| ≤ � − 1. The later equality is a consequence of wrm

being smooth and their derivatives being uniformly bounded by ‖wrm‖L1((−4,0)×BR). We
claim now that for every fixed 0 < r ≤ 1/3,

−r2∫

−4r2

∫

Rn

1

−t
|w0|2Gdxdt = lim

rm→0

−r2∫

−4r2

∫

Rn

1

−t
|wrm |2Gdxdt = 1, (2.2)

and
−r2∫

−4r2

∫

Rn

|∇w0|2Gdxdt = lim
rm→0

−r2∫

−4r2

∫

Rn

|∇wrm |2Gdxdt . (2.3)

Suppose this is true, then we for r < 1/3 we have

N (r , w0) = lim
rm→0

N (r , wrm ) = lim
rm→0

N (rrm, h) = N (0+, h).

So, w0 must be a backward self-similar function of degree 2N (0+, h) < � for 0 < t < 1.
Since w0 is caloric function, so 2N (0+, h) ∈ N, comparing with w0(0) = ∂

j
t ∂

μ
x w0(0) = 0

for all 2 j + |μ| ≤ � − 1, this yields a contradiction with (2.2).
Therefore, 2N (s, h) ≥ � for s ∈ (0, 1]. If 2N (1, h) = �, thenN is constant on (0, 1) and

thereby h is a backward self-similar function of degree �.
To close the argument, we need to prove (2.2) and (2.3). This is a matter of computation

and can be settled easily by Lemma 7.2. Indeed, we just need to show the following uniform
convergence when 0 < r ≤ 1/3 is fixed and rm → 0,

−r2∫

−4r2

∫

Rn\BR

1

−t
|wrm |2Gdxdt ≤

⎛

⎜
⎝

−r2∫

−4r2

∫

Rn\BR

(2
√
3)ne

|x |2
3−t

1

−t
G(x, t)dxdt

⎞

⎟
⎠

×
⎛

⎝
−3∫

−4

∫

Rn

1

−s
|wrm (y, s)|2G(y, s)dyds

⎞

⎠

≤
−r2∫

−4r2

∫

Rn\BR

π

3

(
3

−π t

)n/2+1

exp

( |x |2
3 − t

+ |x |2
4t

)
dxdt

≤
−r2∫

−4r2

∫

Rn\BR

π

3

(
3

−π t

)n/2+1

× e
|x |2
8t dxdt → 0 as R → ∞.

The proof of (2.3) is the same if we apply again Lemma 7.2 for the caloric function
∇wrm . ��

123



Regularity of the free boundary for a parabolic cooperative system Page 9 of 38   124 

2.2 Nondegeneracy

Proposition 2.5 (Nondegeneracy) Let u be a solution of (1.1) with 0 ≤ q < 1. Then there is
a positive constant c = c(q, n) such that if (x0, t0) ∈ {|u| > 0}, and Q−

r (x0, t0) ⊂ Q1, then

sup
Q−
r (x0,t0)

|u| ≥ crκ .

Proof Let U (x, t) := |u(x, t)|1−q . The proof follows in a standard way using

�U − ∂tU = (1 − q) + (1 − q)
|∇u|2
U κ−1 − 1 + q

1 − q

|∇U |2
U

, in {U > 0}.

For any (y, s) ∈ {|u| > 0}, (close to (x0, t0)), set w(x, t) = c(|x − y|2 + (s − t)) for small
constant c > 0 to be specified later. Then h = U − w satisfies in Q−

r (y, s)

Lh − ∂t h := �h − ∂t h + 1 + q

1 − q

(∇(U + w)

U
· ∇h − 4c

U
h

)

= (1 − q) − 4c(
2n + 1

4
+ 1 + q

1 − q
) + (1 − q)

|∇u|2
U κ−1 + 4c2

1 + q

1 − q

s − t

U
≥ 0,

provided that c is small enough. In particular h cannot attain a local maximum in Q−
r (y, s)∩

{|u| > 0} according to the maximum principle for L − ∂t . On the other hand h < 0 on
∂{|u| > 0} and hence the positive maximum of h is attained on ∂pQ−

r (y, s), and we conclude
that

sup
∂pQ

−
r (y,s)

(U − w) ≥ U (y, s) > 0,

which amounts to

sup
∂pQ

−
r (y,s)

U ≥ cr2.

Letting (y, s) → (x0, t0), we arrive at the statement of the proposition. ��

3 Regularity of solutions

In this section we study the regularity of solutions (to equation (1.1)), which according to the
parabolic regularity theory, are known to be C1,β

x ∩ C0,(1+β)/2
t for q = 0 and C2,β

x ∩ C1,β/2
t

for q > 0. Here we will show the optimal growth for solutions from points where u vanish
to the highest order for our problem. In order to study the optimal growth (regularity) of
solution, we start with the following definition; see also [10].

Definition 3.1 The vanishing order of u at point X0 is defined to be the largest value V(X0)

which satisfies

lim sup
r→0+

‖u‖L∞(Q−
r (X0))

rV(X0)
< +∞.

One of main tools in studying a sublinear equation is Lemma 7.5, which is the dual of
[3,Lemma 1.1] for the elliptic case. For the convenience of reader we put the proof in the
Appendix. One of the useful result of Lemma 7.5 is that if u is a solution of (1.1) and X0 ∈
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�(u), then V(X0) ∈ {1, 2, 3, · · · , �κ�, κ}. (recall also nondegeneracy property, Proposition
2.5). Moreover, we can find out easily that if V(X0) = s ≤ κ , then ∂ it ∂

μ
x u(X0) exists and

vanishes for 2i + |μ| < s. Indeed, there is a self-similar vectorial polynomial P of degree
s such that |u(X) − P(X)| ≤ C |X − X0|s . Our main result for case q > 0 is that if
X0 ∈ �κ(u) = {X0 ∈ �(u) : ∂ it ∂

μ
x u(X0) = 0 for all 2i + |μ| < κ}, then V(X0) = κ .

We start with the following lemma which is essential to obtain our result.

Lemma 3.2 For any u solving (1.1) in Q2, and satisfying the doubling

‖u‖L∞(Q−
2 ) ≤ 2κ‖u‖L∞(Q−

1 ), (3.1)

we have

‖u‖L∞(Q−
1 ) ≤ max

{
1,C‖uG1/(1+q)‖L1+q (Q−

1 )

}
,

where C is independent of u.

Proof Suppose the statement of the lemma fails. Then there is a sequence u j satisfying the
hypothesis of the lemma with

‖u j‖L∞(Q−
1 ) ≥ 1, and ‖u j‖L∞(Q−

1 ) ≥ j‖u j G
1/(1+q)‖L1+q (Q−

1 ). (3.2)

Define ũ j = u j/‖u j‖L∞(Q−
1 ), and insert in (3.2), to arrive at

1

j
≥ ‖ũ j G

1/(1+q)‖L1+q (Q−
1 ). (3.3)

Since ũ j satisfies the doubling (3.1), then it yields

‖H(ũ j )‖L∞(Q−
2 ) ≤ 2κq‖u j‖q−1

L∞(Q−
1 )

≤ 2κq .

Therefore we have a subsequence of ũ j which converges to a limit function u0 satisfying

‖ũ0G1/(1+q)‖L1+q (Q−
1 ) = 0, ‖ũ0‖L∞(Q−

1 ) = 1,

which is obviously a contradiction. ��
Theorem 3.3 For u a solution to (1.1), with (0, 0) ∈ �κ(u), there exists a constant C such
that

sup
Q−
r

|u| ≤ Crκ , ∀ 0 < r < 1/2.

Proof Case κ /∈ N: The proof in this case follows by standard blow-up and the use of
Liouville’s theorem, and the only subtle point would be to prove the blow-up solution will
vanish at the origin, of order κ; the latter is taken care of in Appendix. Here is how it works
out. If the statement of the theorem fails, then there exists a sequence r j → 0 such that

sup
Q−
r

|u| ≤ jrκ , ∀r ≥ r j , sup
Q−
r j

|u| = jrκ
j .

In particular the function ũ j (x, t) = u(r j x,r2j t)

jrκ
j

satisfies

sup
Q−

R

|ũ j | ≤ Rκ , for 1 ≤ R ≤ 1

r j
,
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with equality for R = 1, along with

H ũ j = f (ũ j )

j1−q
−→ 0 uniformly in Q−

R .

From this we conclude that there is a convergent subsequence, tending to a caloric function
u0 with growth κ , i.e.

sup
Q−

R

|u0| ≤ Rκ , ∀R ≥ 1, sup
Q−
1

|u0| = 1, Hu0 = 0, (3.4)

and furthermore, |ũ j (X)| ≤ C0|X | in Q−
1 uniformly for some constant C0 > 0 and all j .

Thus |H ũ j | ≤ |ũ j |q ≤ Cq
0 |X |q in Q−

1 . Now if we apply Lemma 7.5 for each component of
ũ j = (ũ1j , · · · , ũmj ), we obtain a caloric polynomial Pi

j of degree at most �2+q� = 2 so that

|ũij (X)−Pi
j (X)| ≤ C1C0|X |2+q inQ−

1 and the constantC1 depends only onn, q and anupper

bound on ‖ũ j‖L∞(Q−
1 ). Since (0, 0) ∈ �κ(u), so Pi

j ≡ 0 and then |ũij (X)| ≤ C1C0|X |2+q .

By a bootstrap argument we find out the uniform estimate |ũ j (X)| ≤ Cε |X |κ−ε for every
ε > 0. Therefore, we get

u0(0, 0) = ∂ it ∂
μ
x u0(0, 0) = 0, for all 2i + |μ| < κ. (3.5)

Obviously (3.4) and (3.5), along with the fact that κ /∈ N, violates Liouville’s theorem and
we have a contradiction.

Case κ ∈ N: Consider the function v = ηu where η ∈ C∞
0 (B3/4) satisfies 0 ≤ η ≤ 1,

and η = 1 in B1/2. Fix 0 < r < 1
2 , let ρi := 2−i r , i = 0, 1, 2, ..., and define vρi (x, t) =

v(ρi x, ρ2
i t)/ρ

κ
i , then

0∫

−r2

∫

Br

|u|1+qGdxdt

=
∞∑

i=1

−ρ2
i∫

−ρ2
i−1

∫

Br

|v|1+qGdxdt

=
∞∑

i=1

ρ2κ
i

−1∫

−4

∫

B2i

|vρi |1+qGdxdt ≤
∞∑

i=1

ρ2κ
i

−1∫

−4

∫

Rn

|vρi |1+qGdxdt

= 1 + q

2

∞∑

i=1

ρ2κ
i

⎛

⎝W(vρi , 1) −
−1∫

−4

∫

Rn

(
|∇vρi |2 + κ|vρi |2

2t

)
Gdxdt

⎞

⎠

= 1 + q

2

∞∑

i=1

ρ2κ
i

⎛

⎝W(v, ρi ) −
−1∫

−4

∫

Rn

(
|∇(vρi − p)|2 + κ|vρi − p|2

2t

)
Gdxdt

⎞

⎠

≤ 1 + q

2

∞∑

i=1

ρ2κ
i

⎛

⎝W(v, 1) + F(1) +
−1∫

−4

∫

Rn

κ|vρi − p|2
−2t

Gdxdt

⎞

⎠
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≤ Cr2κ

⎛

⎝1 +
0∫

−1

∫

Rn

κ|vr − p|2
−2t

Gdxdt

⎞

⎠ , (3.6)

where we have used Lemma 7.4, F is the function defined in Theorem 2.2 and p ∈ H, the
space of all κ-backward self-similar caloric vector-functions. We now let p = πr , where

πr = argminq∈H

0∫

−1

∫

Rn

|vr − q|2
−t

Gdxdt,

and observe that
0∫

−1

∫

Rn

(vr − πr ) · p
−t

Gdxdt = 0, for every p ∈ H. (3.7)

Now suppose, towards a contradiction, that there is a sequence rk → 0, such that

sup
Q−
r

|u| ≤ krκ , ∀r ≥ rk, sup
Q−
rk

|u| = krκ
k .

Consider the scaling ur (x, t) = u(r x, r2t)/rκ , where the sequence urk satisfies the doubling
condition (3.1) because

‖urk‖L∞(Q−
2 ) = 2κ‖u2rk‖L∞(Q−

1 ) ≤ 2κk = 2κ‖urk‖L∞(Q−
1 ).

Therefore Lemma 3.2 and (3.6) implies that

Mk =
⎛

⎝
0∫

−1

∫

Rn

|vrk − πrk |2
−t

Gdxdt

⎞

⎠

1/2

−→ ∞.

For wk = vrk −πrk
Mk

, we have
0∫

−1

∫

Rn

|wk |2
−t

Gdxdt = 1. (3.8)

Furthermore, we can show that {∇wkG1/2} is bounded in L2(−1, 0; L2(Rn)). In order to
show this, we can write

0∫

−1

∫

Rn

(
|∇wk |2 + κ|wk |2

2t

)
Gdxdt

= 1

M2
k

0∫

−1

∫

Rn

(
|∇vrk |2 + κ|vrk |2

2t

)
Gdxdt

= 1

M2
k

∞∑

i=1

2−2iκ

−1∫

−4

∫

Rn

(

|∇v2−i rk |2 + κ|v2−i rk |2
2t

)

Gdxdt

≤ 1

M2
k

∞∑

i=1

2−2iκ
W(v, 2−i rk) −→ 0, (3.9)

123



Regularity of the free boundary for a parabolic cooperative system Page 13 of 38   124 

which together with (3.8) implies

0∫

−1

∫

Rn

|∇wk |2Gdxdt = O(1). (3.10)

On the other hand, we have

Hwk = 1

Mk
Hvrk = 1

Mk

(
r2k urk�η(rk x) + η(rk x)

1−q f (vrk ) + 2rk∇urk · ∇η(rk x)
)
,

(3.11)
and also,

2

1 + q

0∫

−1

∫

Rn

|vrk |1+qGdxdt

= 2

1 + q

∞∑

i=1

2−2iκ

−1∫

−4

∫

Rn

|v2−i rk |1+qGdxdt

=
∞∑

i=1

2−2iκ

⎛

⎝W(v2−i rk , 1) −
−1∫

−4

∫

Rn

(

|∇v2−i rk |2 + κ|v2−i rk |2
2t

)

Gdxdt

⎞

⎠

≤
∞∑

i=1

2−2iκ

⎛

⎝W(v, 1) + F(1) +
−1∫

−4

∫

Rn

κ|v2−i rk − πrk |2
−2t

Gdxdt

⎞

⎠

= O(1) +
0∫

−1

∫

Rn

κ|vrk − πrk |2
−2t

Gdxdt

= O(1) + M2
k

1 − q
.

Therefore by (3.11), we get for q > 0

0∫

−1

∫

Rn

|Hwk |(1+q)/qGdxdt ≤ 1

M(1+q)/q
k

⎛

⎜
⎝C(η, ‖u‖H1(B1,Rm )) +

0∫

−1

∫

Rn

|vrk |1+qGdxdt

⎞

⎟
⎠

≤ 1

M(1+q)/q
k

(

C(η, ‖u‖H1(B1,Rm ), n, q) + M2
k

1 − q

)

−→ 0,

and ‖Hwk‖∞ → 0 for q = 0. Hence {wk} is bounded in W 1,p(−1, 1
R ;W 2,p(BR)) for all

fixed R > 0 and by diagonalization technique there is a weakly convergent subsequence
with limit w0 in L2(−1, 0;W 2,p

loc (Rn)), satisfying Hw0 = 0. We claim next that the strong
convergence

wk

(−t)1/2
G1/2 → w0

(−t)1/2
G1/2, in L2(−1, 0; L2(Rn)), (3.12)
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holds, which follows if we prove the uniform convergence in k

0∫

−1

∫

Rn\BR

|wk |2
−t

Gdxdt → 0, as R → ∞. (3.13)

This can obviously be obtained by applying Lemma 7.3 and relations (3.8) and (3.10)

R2

−0∫

−1

∫

Rn\BR

|wk |2
−t

Gdxdt ≤
0∫

−1

∫

Rn

|wk |2 |x |2
−t

Gdxdt = O(1).

Therefore we get

0∫

−1

∫

Rn

|w0|2
−t

Gdxdt = 1,

and also by (3.7),
0∫

−1

∫

Rn

w0 · p
−t

Gdxdt = 0, for every p ∈ H. (3.14)

Moreover, from (3.9), (3.12) and weakly lower semicontinuity of norm we obtain for every
R > 0

0∫

−1

∫

BR

(
|∇w0|2 + κ|w0|2

2t

)
Gdxdt ≤ lim

k→∞

0∫

−1

∫

Rn

(
|∇wk |2 + κ|wk |2

2t

)
Gdxdt ≤ 0.

It implies that

0 ≥
0∫

−1

∫

Rn

(
|∇w0|2 + κ|w0|2

2t

)
Gdxdt

=
∞∑

i=1

2−2iκ

−1∫

−4

∫

Rn

(

|∇w0,2−i |2 + κ|w0,2−i |2
2t

)

Gdxdt . (3.15)

If we further have
|∂�
t ∂

μ
x w

j
0 (0, 0)| = 0, for 2� + |μ| ≤ κ − 1, (3.16)

then by Lemma 2.4, each component w j
0 of w0,2−i must satisfy

−1∫

−4

∫

Rn

(

|∇w
j
0 |2 + κ|w j

0 |2
2t

)

Gdxdt ≥ 0.

Summing over j and comparing with (3.15), implies that w
j
0 is a κ-backward self-similar

caloric function. But (3.14) implies that w0 = 0 which contradicts (3.13).
To close the argument, we need to prove (3.16). This can be shown by invoking Lemma

7.5 to obtain uniform estimate ‖wk‖L∞(Q−
r ) = o(rκ−1). To apply Lemma 7.5 it is neces-

sary to show the uniform estimate ‖Hwk‖L∞(Q−
r ) = o(rκ−2−1/2). Since we have assumed
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‖urk‖L∞(Q−
1 ) → ∞ by contradiction, the scaled sequence ũk := urk /‖urk‖L∞(Q−

1 ) satisfies

H ũk = f (ũk)/‖urk‖1−q
L∞(Q−

1 )
→ 0 and converges to a caloric function ũ0 as a subsequence.

Moreover, |ũk(X)| ≤ C0|X | for a constant C0 > 0 and all k. Now apply Lemma 7.5
repeatedly to obtain the uniform estimate |ũk(X)| ≤ Cε |X |κ−ε for a small value ε. So,
|urk (X)| ≤ Cε‖urk‖L∞(Q−

1 )|X |κ−ε and by Lemma 3.2 as well as (3.6)

|Hwk(X)| ≤ 1

Mk
| f (urk (X))| ≤ Cq

ε

Mk
(1 + M2

k )q/(1+q)|X |κ−2−εq ≤ C |X |κ−2−εq . ��
Remark 3.4 Although Theorem 3.3 shows the backward regularity, we can see obviously the
regularity in forward problem. A line of proof can be considered toward a contradiction and
assuming the sequence r j → 0 such that

sup
Q+
r

|u| ≤ jrκ , ∀r ≥ r j , sup
Q+
r j

|u| = jrκ
j .

Then u j (X) = u(r j X)/( jrκ
j ) converges to a caloric function u0 in R

n ×R with polynomial
growth, ‖u0‖L∞(Q+

1 ) = 1 and u0 ≡ 0 for t ≤ 0 (we also apply here Theorem 3.3). This
contradicts the uniqueness of heat equation solution with polynomial growth in forward
problem.

4 Homogeneous global solutions

In this section we perform energy classification of regular free boundary points, that will
be needed in order to establish the Hölder regularity of the time derivative ∂tu in the next
section. Indeed the main goal is to show that half-space solutions are isolated within certain
topology. The proofs for the case q = 0 and q > 0 differs to some extent and hence we
are forced to consider them separately. For the case q = 0 we need to consider two lemmas
(Lemmas 4.1, and 4.2) that will give us the result. The proof for the case q > 0 takes a
different turn, and is shown in the proof of Proposition 4.3.

Lemma 4.1 Let q = 0 and u be a backward self-similar solution to (1.1). If {|u| > 0}∩Q−
1 ⊂

{xn > −δ}, where δ > 0 is small, then u ∈ H.

Proof Let u be a backward self-similar solution, and recall that the condition of homogeneity
(for each component) is

Luk := 2t∂t u
k + x · ∇uk − 2uk = 0. (4.1)

Hence we obtain the following equation for each component

2uk − x · ∇uk

−2t
+ �uk − uk

|u|χ{|u|>0} = 0, (4.2)

and

2t�uk + x · ∇uk − 2t
uk

|u|χ{|u|>0} = 2uk . (4.3)

Denote by L0 := −� + x · ∇ and L := L0 + 1
|u| . Then for t = − 1

2 , any uk is an
eigenfunction of L in {U > 0} corresponding to the eigenvalue λ = 2.
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We want to show that λ = 2 is the first eigenvalue for L, since then uk = ck |u| in each
connected component of {|u| > 0}, and we have a scalar problem for |u| when t = −1/2. It
is sufficient to show that 2 is not larger than the second eigenvalue for L0.

We prove that for some δ > 0, λ2(L, {xn > −δ}) > 2, which implies λ1(L, {xn > −δ}) =
2. Since3 λ2(L0,R

n+) = 3, we have

λ2(L, {xn > −δ}) > λ2(L0, {xn > −δ}) ≥ λ2(L0,R
n+) − ω(δ) = 3 − ω(δ), (4.4)

where ω(δ) is the modulus of continuity of λ2(L0, {xn > −δ}). By choosing δ > 0 small,
we will obtain λ2(L, {xn > −δ}) > 2, implying that λ1(L, {xn > −δ}) = 2. Hence u = c|u|
in each connected component of {|u| > 0}, where c ∈ R

m depends on the component and
|c| = 1 . It remains to observe that for t = −1/2, the function U = |u| is a homogeneous
stationary solution to the equation HU = χ{U>0}, and therefore U is a half-space solution
and u ∈ H. ��
Lemma 4.2 (Closeness to half-space) Let q = 0 and u be a backward self-similar solution
to the system (1.1) with the property

∫∫

Q−
1

|u − h|Gdxdt < ε, (4.5)

where h = (x+
n )2

2 e1. Then

{|u| > 0} ∩ Q−
1/2 ⊂ {(x, t) : xn > −Cεβ}. (4.6)

for C = C(n,m), and β = β(n).

Proof The proof is standard and follows from the nondegeneracy. Let (x0, t0) ∈ {|u| >

0} ∩ Q−
1/2, and x0n = −� < 0, then

∫∫

Q−
�

|u|Gdxdt ≤
∫∫

Q−
1

|u − h|Gdxdt ≤ ε. (4.7)

By the nondegeneracy, there exists X ∈ Q−
� (x0, t0), such that

|u(X)| = sup
Q−

� (x0,t0)

|u| ≥ cn�
2.

Then for a small r > 0,

inf
Q−
r (X)

|u| ≥ cn�
2 − Cnr

2 ≥ C�2,

and

ε ≥
∫∫

Q−
r (X)

|u|Gdxdt ≥ C�n+4. (4.8)

Now (4.6) follows with β = 1
n+4 . ��

The next proposition shows that the half-space solutions in H are isolated in the class of
κ-backward self-similar solutions.

3 This follows from a simple computation for one dimensional case, and the fact that eigenvalues decrease by
symmetrisation, and translation invariance of the set Rn+ in directions orthogonal to en .
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Proposition 4.3 The half-space solutions are isolated (in the topology of L2(−1, 0; H1(B1;
R
m))) within the class of backward self-similar solutions of degree κ .

Proof The proof follows from Lemmas 4.1 and 4.2 for q = 0. When q > 0, we assume
toward a contradiction that there exists a sequence of backward self-similar solutions of
degree κ , say ui , such that

0 < inf
h∈H‖ui − h‖L2(−1,0;H1(B1;Rm )) = ‖ui − ĥ‖L2(−1,0;H1(B1;Rm )) =: δi → 0, as i → ∞,

where ĥ = α(x+
n )κe1. When passing to a subsequence, (ui − ĥ)/δi =: wi⇀w weakly in

L2(−1, 0; H1(B1;Rm)), the limit w is still a backward self-similar function of degree κ .
Furthermore, for φ ∈ C∞

0 (Q−
1 ;Rm) we have

0∫

−1

∫

B1

−∇wi : ∇φ + wi · ∂tφ dxdt = 1

δi

0∫

−1

∫

B1

(
f (ui ) − f (ĥ)

)
· φ dxdt

= 1

δi

0∫

−1

∫

B1

1∫

0

d

dτ
f (ĥ + τ(ui − ĥ)) · φ dτdxdt

=
0∫

−1

∫

B1

1∫

0

fu(ĥ + τδiwi )(wi ) · φ dτdxdt

If suppφ ⊂ B−
1 × (−1, 0), we conclude that

0∫

−1

∫

B−
1

−∇wi : ∇φ + wi · ∂tφ dxdt =
0∫

−1

∫

B−
1

1∫

0

fu(ĥ + τδiwi )(wi ) · φ dτdxdt

=
0∫

−1

∫

B−
1

1∫

0

fu(τδiwi )(wi ) · φ dτdxdt

= 1

q
δ
q−1
i

0∫

−1

∫

B−
1

fu(wi )(wi ) · φ dxdt,

let i → ∞ to obtain

0∫

−1

∫

B−
1

fu(w)(w) · φ dxdt = 0.

Then w ≡ 0 in B−
1 × (−1, 0). Now for every suppφ ⊂ B+

1 × (−1, 0),

0∫

−1

∫

B+
1

−∇w : ∇φ + w · ∂tφ dxdt =
0∫

−1

∫

B+
1

fu(ĥ)(w) · φ dxdt .
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Thus Hw = fu(ĥ)(w) in B+
1 × (−1, 0). Now let w j := w · e j for 1 ≤ j ≤ m, then

Hw j = qκ(κ − 1)(x+
n )−2w j , for j = 1,

and

Hw j = κ(κ − 1)(x+
n )−2w j , for j > 1.

Next extend w j to a backward self-similar function of degree κ in {xn < 0} and define

w̃ j (x ′, xn, t) :=
⎧
⎨

⎩

w j (x ′, xn, t), xn > 0,

−w j (x ′, xn, t), xn < 0,

which is a backward self-similar weak solution of degree κ and satisfies

Hw̃ j =
⎧
⎨

⎩

qκ(κ − 1)|xn |−2w̃ j , for j = 1,

κ(κ − 1)|xn |−2w̃ j , for j > 1.
(4.9)

If we consider anymultiindexμ ∈ Z
n−1+ ×{0} and any nonnegative integer γ ∈ Z+ as well as

the higher order partial derivatives ∂
γ
t ∂

μ
x w̃ j =: ζ then ζ is a backward self-similar function

of order κ − |μ|1 − 2γ and satisfies again in the same equation in Rn × (−∞, 0). From the
integrability and homogeneity we infer that ∂

γ
t ∂

μ
x w̃ j ≡ 0 for κ − |μ|1 − 2γ + 1 ≤ −n/2.

Thus (x ′, t) 
→ w̃ j (x ′, xn, t) is a polynomial and the homogeneity imply the existence of
a polynomial p such that w j (x ′, xn, t) = xκ

nw j ( x ′
xn

, 1, t
x2n

) = xκ
n p(

x ′
xn

, t
x2n

) for xn > 0.

Next choose γ such that ∂
γ
t p = r(x ′) �= 0, then according to the H1-integrability of

∂
γ
t w j = xκ−2γ

n r( x ′
xn

)we know that κ −2γ −deg r > 1
2 . Take the multiindexμ ∈ Z

n−1+ ×{0}
such that |μ|1 = deg r and ∂

μ
x r �= 0, and insert ∂γ

t ∂
μ
x w j = ∂

μ
x r x

κ−2γ−|μ|1
n in equation (4.9),

which implies that

(κ − 2γ − |μ|1)(κ − 2γ − |μ|1 − 1) = qκ(κ − 1), for j = 1,

(κ − 2γ − |μ|1)(κ − 2γ − |μ|1 − 1) = κ(κ − 1), for j > 1,

and hence

2γ + |μ|1 = 1, or 2κ − 2, for j = 1,

2γ + |μ|1 = 0, or 2κ − 1, for j > 1.

The condition κ − 2γ − deg r > 1
2 and κ > 2 yields that the only possible case is γ = 0 and

|μ|1 = 1 for j = 1 and |μ|1 = 0 for j > 1. We obtain that w1(x, t) = xκ
n (d + � · x ′/xn)

and w j (x, t) = � j xκ
n for j > 1. Comparing with the equation (4.9) implies that we must

have d = 0. To sum up, we find that w(x, t) = (xκ−1
n �1 · x ′, �2xκ

n , · · · , �mxκ
n ) for some

�1 ∈ R
n−1 and �2, · · · , �m ∈ R.

Recall that we have chosen ĥ as the best approximation of ui in H. So, it follows that for
hν(x) := αmax(x · ν, 0)κe1,

(wi ,hν − ĥ)L2(−1,0;H1(B1;Rm ))) ≤ 1

2δi
‖hν − ĥ‖2L2(−1,0;H1(B1;Rm ))

. (4.10)
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Now let ν → en , so that
ν−en|ν−en | converges to the vector ξ (where ξ · en = 0), then

o(1) ≥
0∫

−1

∫

B1

(wi · e1)κ(x+
n )κ−1(x · ξ)+

∇(wi · e1) · [
κ(x+

n )κ−1ξ + κ(κ − 1)(x+
n )κ−2(x · ξ)en

]
dxdt .

Choosing ξ = (�1, 0) and passing to the limit in i , we obtain that

0 ≥
0∫

−1

∫

B1

κ(x+
n )2κ−2(x ′ · �1)

2 + κ(x+
n )2κ−2|�1|2

+ κ(κ − 1)2(x+
n )2κ−4(x ′ · �1)

2 dxdt .

Hence, �1 = 0, and then w · e1 = 0.
If we apply once more the relation (4.10) for hθ = α(x+

n )κet istead of hν , where eθ =
(cos θ)e1 ± (sin θ)e j , and let θ → 0. We obtain

(wi ,±α(x+
n )κe j )W 1,2(Q−

1 ;Rm ) ≤ 0.

Therefore,

� j‖(x+
n )κ‖2

W 1,2(Q−
1 ;Rm )

= 0,

and then � j = 0.
So far, we have proved that w ≡ 0. In order to obtain a contradiction to the assumption

‖wi‖L2(−1,0;H1(B1;Rm )) = 1, it is therefore sufficient to show the strong convergence of ∇wi

to ∇w in L2(−1, 0; L2(B1;Rm)) as a subsequence i → ∞. But by compact imbedding on
the boundary

0∫

−1

∫

B1

|∇wi |2 dxdt =
0∫

−1

∫

∂B1

wi · (∇wi · x) dHn−1dt −
0∫

−1

∫

B1

wi · �wi dxdt

=
0∫

−1

∫

∂B1

κ|wi |2 − 2t∂twi · wi dHn−1dt −
0∫

−1

∫

B1

wi · ∂twi dxdt

− 1

δ2i

0∫

−1

∫

B1

(ui − ĥ) · ( f (ui ) − f (ĥ)) dxdt

≤
0∫

−1

∫

∂B1

κ|wi |2 − t∂t |wi |2 dHn−1dt − 1

2

0∫

−1

∫

B1

∂t |wi |2 dxdt

=
0∫

−1

∫

∂B1

(κ + 1)|wi |2 dHn−1dt −
∫

∂B1

|wi (x,−1)|2 dHn−1

+ 1

2

∫

B1

|wi (x,−1)|2 − |wi (x, 0)|2 dx
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≤
0∫

−1

∫

∂B1

(κ + 1)|wi |2 dHn−1dt + 1

2

∫

B1

|wi (x,−1)|2 dx

=
0∫

−1

∫

∂B1

(κ + 1)|wi |2 dHn−1dt

+ 1

n + 2κ + 2

0∫

−1

∫

B1

|wi |2dxdt → 0,

as a subsequence i → ∞. (Note that we have used the homogeneity property of wi in the
last line.) ��
Definition 4.4 (Regular points) We say that a point z = (x, t) ∈ �κ(u) is a regular4 free
boundary point for u if at least one blowup limit of u at z belongs to H. We denote byR the
set of all regular free boundary points in �(u).

Proposition 4.5 If z0 = (x0, t0) ∈ R, then all blowup limits of u at z0 belong to H.

Proof Suppose there are two sequences ri , ρi → 0 such that the scalingu(x0+ri ·, t0+r2i ·)/rκ
i

and u(x0 + ρi ·, t0 + ρ2
i ·)/ρκ

i converges respectively to u0 ∈ H and a ũ0 /∈ H. Furthermore,
we can assume that ri+1 < ρi < ri . By a continuity argument we can find ρi < τi < ri when
i is large enough such that dist

(
u(x0 + τi ·, t0 + τ 2i ·)/τκ

i ,H
) = θdist(ũ0,H) for an arbitrary

θ ∈ (0, 1/2). The boundedness of u(x0 + τi ·, t0 + τ 2i ·)/τκ
i implies that every limit u∗ of that

is a κ-backward self-similar solution such that dist(u∗,H) = θdist(ũ0,H), which for small
θ contradicts the isolation property Proposition 4.3. ��
Remark 4.6 Wewill conclude later the uniqueness of blowups at regular points of free bound-
ary by Theorem 6.4 in Sect. 6.

The following lemma and theorem show that the half-space solutions have the lowest
energy among the global self-similar solutions for the case q = 0.

Lemma 4.7 Let q = 0 andu be a backward self-similar solution to the system (1.1), satisfying
|u| > 0 a.e.. Then

M(u) =
−1∫

−4

∫

Rn

|u|Gdxdt ≥ 15

2
.

Proof Observe that by homogeneity of u we have M(u) = W(u, r), for any r . Integration
by parts, and (again) homogeneity of u implies

M(u) =
−1∫

−4

∫

Rn

(
|∇u|2 + |u|2

t
+ 2|u|

)
Gdxdt =

−1∫

−4

∫

Rn

|u|Gdxdt .

4 They are also called low-energy points.When q = 0, these points have the lowest energy (see Theorem 4.8).
It is not generally true forq > 0 and they have the lowest energywhen the coincidence set has nonempty interior

(see Theorem 4.9). In this case, half-space solutions have the energy M(h) = α1+q

κ(κ−1)
4κ−1√

π
22κ−3�(κ − 1

2 ),

where � is the Gamma function here. The time-dependent global solution θ(x, t) = (−2t
κ )κ/2e has the energy

M(θ) = 2κ−1

κκ (κ−1) (4
κ − 1) which is less than the energy of half-space solutions for κ ≥ 5/2.
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Let U = |u| > 0 a.e., as we observed before, �U − ∂tU ≥ 1. Hence

3 =
−1∫

−4

∫

Rn

Gdxdt ≤
−1∫

−4

∫

Rn

(�U − ∂tU )Gdxdt

=
−1∫

−4

∫

Rn

−U�G +U∂tG − ∂t (UG)dxdt = −
∫

Rn

U (x, t)G(x, t)dx |t=−1
t=−4

= − π− n
2

∫

Rn

U (
√−4t z, t)e−|z|2dz|t=−1

t=−4 = +4π− n
2

∫

Rn

tU (z,−1/4)e−|z|2dz|t=−1
t=−4

=12π− n
2

∫

Rn

U (z,−1/4)e−|z|2dz.

(4.11)
Employing again the homogeneity of U , we obtain

M(u) =
−1∫

−4

∫

Rn

U (x, t)G(x, t)dxdt = − 4π− n
2

−1∫

−4

∫

Rn

tU (z,−1/4)e−|z|2dzdt

=30π− n
2

∫

Rn

U (z,−1/4)e−|z|2dz ≥ 15

2
,

where we used (4.11) in the last step. ��

Theorem 4.8 Let q = 0 and u be a backward self-similar solution to the system (1.1). Then
M(u) ≥ 15

4 and the equality holds if and only if u ∈ H.

Proof Step 1:We show that M(u) = 15
4 if u is a half-space solution. If u ∈ H, then

M(u) =
−1∫

−4

∫

Rn

|u|Gdxdt = 1

2

−1∫

−4

−tdt = 15

4
.

Step 2: IfU = |u| > 0 a.e., thenM(u) ≥ 15
2 by Lemma 4.7. Suppose that |{U = 0}| > 0

and M(u) < 15
4 . By the nondegeneracy and quadratic decay estimates, we imply that the

interior of {u ≡ 0} is nonempty. Then we may choose Q−
r (Y ) ⊂ {u ≡ 0} in such a way that

there exists a point Z ∈ ∂pQ−
r (Y ) ∩ �(u). Moreover, since u is backward self-similar we

can assume that the point Z is very close to the origin and satisfies W(u, 0+; Z) < 15/4,
by the upper semicontinuity of the balanced energy. Hence any blow-up at Z is a half-space
solution by Lemma 4.1 which contradicts the result in Step 1.

Step 3: It remains to show that ifM(u) = 15
4 for a backward self-similar solution u, then u

is a halfspace solution. Let X0 = (x0, t0) ∈ � be as in Step 2, i.e. such that Q−
r0(Y ) ⊂ {u ≡ 0},

for a small r > 0. If X0 = 0, then u ∈ H by Lemma 4.1. Assume that |X0| > 0. Let u0 be a
blow-up of u at X0, then u0 ∈ H. Hence

15

4
= M(u0) = W(u, 0+; X0) ≤ W(u,+∞; X0) = W(u,+∞; 0) = M(u) = 15

4
,

(4.12)
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sinceW(u,+∞, X) does not depend on X ∈ �. Indeed, by homogeneity of u at the origin,

u(r x + x0, r2t + t0)

r2
= u(x + x0

r
, t + t0

r2
) → u(x, t), as r → +∞.

Therefore (4.12) implies that W(u, r; X0) does not depend on r and u is backward self-
similar with centre at X0, hence u(x0 + r x, t0 + r2t) = r2u(x0 + x, t0 + t). On the other
hand, u(x0+r x, t0+r2t) = r2u(x0/r+x, t0/r2+ t), and therefore u(x0/r+x, t0/r2+ t) =
u(x0 + x, t0 + t). Letting r → +∞, we obtain u(x, t) = u(x0 + x, t0 + t), for any (x, t),
hence u satisfies the assumptions in Lemma 4.1, and u ∈ H. ��

The next theorem is a version of Theorem 4.8 for case q > 0 to show that half-space solu-
tions have the lowest energy among the backward self-similar solutions whose coincidence
set has nonempty interior.

Theorem 4.9 Let u be a backward self-similar solution to the system (1.1) satisfying {|u| =
0}◦ �= ∅. Then M(u) ≥ Aq, and equality implies that u is a half-space solution; here
Aq = M(h) for every h ∈ H.

Proof The proof is indirect. Consider the self-similar solution u with M(u) < Aq . Assume
that {|u| = 0} contains the cube Q and X0 = (x0, t0) ∈ ∂Q ∩ ∂{|u| > 0} and t0 < 0. From
here we deduce that all derivatives of u at X0 vanish if they exist. If we start with the initial
regularity and the estimate |u(X)| ≤ C |X − X0|, we are able to apply Lemma 7.5 iteratively
and obtain |u(X)| ≤ Cε |X − X0|κ−ε . This implies that X0 ∈ �κ . Also from self-similarity
of u, we infer that

W(u, 0+; X0) = lim
r→0+ W(u, r; X0) = lim

r→0+ W(u,
r

m
; Xm

0 ) = W(u, 0+; Xm
0 ),

where Xm
0 := ( x0m , t0

m2 ). By the upper semicontinuity of the function X 
→ W(u, 0+; X), we
get

W(u, 0+; X0) = lim sup
m→∞

W(u, 0+; Xm
0 ) ≤ W(u, 0+; 0) ≤ W(u, 1; 0) = M(u) < Aq .

Thus every blow-up limit u0 of u at the point X0 satisfies the inequality M(u0) < Aq . Note
that by the nondegeneracy property u0 �≡ 0. Now the self-similarity of u tells us that u0 must
be time-independent. To see that let ur (x, t) := u(x0 + r x, t0 + r2t)/rκ which converges to
u0 in some sequence. According to the self-similarity of u, we have

∇u(x0 + r x, t0 + r2t) · (x0 + r x) + 2(t0 + r2t)∂tu(x0 + r x, t0 + r2t)

= κu(x0 + r x, t0 + r2t),

so,

r∇ur (x, t) · (x0 + r x) + 2(t0 + r2t)∂tur (x, t) = r2κur (x, t),

and passing to the limit, we obtain t0∂tu0(x, t) = 0. Therefore, u0 is a κ-homogeneous global
solution of�u = f (u) and violates Proposition 4.6 in [9], the elliptic version of this theorem.
To find the elliptic energy of u0, we can write for every κ-homogeneous time-independent
solution v,
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M(v) =1 − q

1 + q

−1∫

−4

∫

Rn

|v(x)|1+qG(x, t)dxdt

=1 − q

1 + q
π− n

2

−1∫

−4

∫

Rn

|v(√−4t z)|1+qe−|z|2dzdt

=1 − q

1 + q

42κ − 4κ

4κ
π− n

2

∫

Rn

|v(z)|1+qe−|z|2dz

=1 − q

1 + q

42κ − 4κ

4κ
π− n

2

∞∫

0

∫

∂B1

|v(ẑ)|1+qrκ(1+q)+n−1e−r2dẑdr

=1 − q

1 + q
cq,n

∫

∂B1

|v(ẑ)|1+qdẑ

=1 − q

1 + q
c̃q,n

∫

B1

|v(z)|1+qdz = c̃q,nM(v),

where M(v) is the adjusted energy for the elliptic case which is used in Proposition 4.6 in
[9]. In particular, for h ∈ H, we find out M(u0) < M(h).

Finally, to prove the second part of the statement we consider the backward self-similar
solution u satisfying M(u) = Aq , Q ⊂ {|u| = 0} and X0 = (x0, t0) ∈ ∂Q ∩ ∂{|u| > 0} for
some t0 < 0. As in the first part of the proof we obtain that every blow-up limit u0 of u at the
point X0 satisfies the inequalityM(u0) ≤ Aq , that u0 is a κ-homogeneous time-independent
solution and {|u0| = 0}◦ �= ∅. Thus according to Proposition 4.6 in [9], u0 must be a half-
space solution. Therefore, every blow-up limit of u at the point Xm

0 = ( x0m , t0
m2 ) must be

a half-space solution. Assuming u /∈ H, we find by a continuity argument for an arbitrary
θ ∈ (0, 1) a sequence ρm → 0 such that

dist(ρ−κ
m u(x0/m + ρm ·, t0/m2 + ρ2

m ·),H) = θdist(u,H) > 0.

It follows that u(x0/m+ρm ·, t0/m2+ρ2
m ·)/ρκ

m converges to a backward self-similar solution
u∗ along a subsequence as m → ∞, because

W(u∗, r; 0) = lim
m→∞W(u, rρm; Xm

0 ) ≥ W(u, 0+, Xm
0 ) = Aq ,

and for every 0 < ρ

W(u∗, r , 0) = lim
m→∞W(u, rρm; Xm

0 ) ≤ lim
m→∞W(u, ρ ; Xm

0 ) = W(u, ρ ; 0).

Then W(u∗, r; 0) = Aq for all r > 0 and u∗ must be a self-similar solution. The conclu-
sion is that dist(u∗,H) = θdist(u,H) which for small θ contradicts the isolation property
Proposition 4.3. ��

Here, we show that the regular points are an open set in �(u) = ∂{|u| > 0}.

Proposition 4.10 The regular set R is open relative to �(u).
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Proof Assume that there is a sequence Xi = (xi , ti ) ∈ �(u) \ R converging to X0 =
(x0, t0) ∈ R. We can find a sequence τi → 0 and a subsequence of Xi such that5

dist
(
u(xi + τi · , ti + τ 2i ·)/τκ

i ,H
) = c

22κ+1 , (4.13)

where c is the constant defined in Proposition 2.5 and the distance is measured in L∞(Q−
1 ).

The uniform boundedness of set H implies the convergence u(xi + τi · , ti + τ 2i ·)/τκ
i in a

subsequence to a global solutionu∗. For convenience assume that ‖uτi ,Xi −h‖L∞(Q−
1 ) ≤ c/4κ

for h(x, t) = α(x1+)κ . Then

|uτi ,Xi (x, t)| ≤ c

4κ
(4.14)

for all (x, t) ∈ Q−
1 where x1 ≤ 0. According to the nondegeneracy property, Proposition 2.5,

we know that supQ−
r (Z) |uτi ,Xi | ≥ crκ for all Z ∈ {|uτi ,Xi | > 0} such that Q−

r (Z) ⊆ Q−
1 .

Comparing with (4.14) for r > 1/4, we deduce that uτi ,Xi ≡ 0 in {(x, t) ∈ Q−
1/2 : x1 ≤

−1/4}. Therefore, the coincidence set {|u∗| = 0} has a nonempty interior and there exists
cube Q ⊆ {|u∗| = 0} and Y0 ∈ ∂Q ∩ ∂{|u∗| > 0}. According to Theorem 4.8 and Theorem
4.9, Y0 is a regular point for u∗ provided its energy is not larger than Aq . To see this, we fix
r ≤ 1 and consider the energy value

W(u∗, 0+; Y0) ≤ W(u∗, r; Y0) = lim
i→∞W(uη, rτi ; Xi + τi Y0)

≤ lim
i→∞W(uη, ρ; Xi + τi Y0) + F(ρ)

= W(uη, ρ; X0) + F(ρ),

where ρ > 0 is an arbitrary constant. Then W(u∗, 0+; Y0) ≤ W(u∗, r; Y0) ≤
W(uη, 0+; X0) = Aq and Y0 is a regular point. So, W(u∗, 0+; Y0) = Aq , and
W(u∗, 0+; Y0) = W(u∗, r; Y0) = Aq for every r ≤ 1. Therefore, u∗ is self-similar in
Q−

1 with respect to the point Y0 = (y0, s0). Now apply again Theorem 4.8 and Theorem 4.9
to find out u∗ is a half-space solution with respect to Y0, say u∗(x, t) = α((x1 − y10 )+)κ for
t ≤ s0. The uniqueness of solution of (1.1) (Lemma 7.1) yields that the equality holds for
t ≤ 0. Notice that |u∗(0, 0)| = 0 since Xi ∈ �(u). Therefore, y10 = 0 andu∗(x, t) = α(x1+)κ ,
which contradicts (4.13). ��

5 Hölder regularity of @tu

Our way of approach, as mentioned in the introduction, is to use elliptic regularity theory
for the free boundary problems. This approach is based on using the epiperimetric inequality
for the elliptic systems as done in [1, 9]. The reduction of parabolic problem to the elliptic
case was successfully used in [12]. The idea is that near regular points of the free boundary,
where the blow-up regime is half-space, the time derivative of the solutions vanishes faster
than the order of scaling which is κ = 2/(1− q). This enables us to apply the epiperimetric
inequality.

Our strategy is to prove that ∂tu is subcaloric and vanishes continuously on the free
boundary (when q = 0). So we can deduce the Hölder regularity for it. This method needs a
modification for q > 0. We start by following lemma which is essential in the case q > 0.

5 The distance ranges between almost zero to infinity, depending on τi .
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Lemma 5.1 Let (x0, t0) ∈ �κ be a regular free boundary point of u. Then for every ε > 0,
there exists r0 > 0 such that

|u|2|∇u|2 ≤ (1 + ε)

∣
∣
∣
∣
∣

m∑

k=1

uk∇uk
∣
∣
∣
∣
∣

2

, in Qr0(x0, t0). (5.1)

Proof By contradiction consider the sequence (x j , t j ) → (x0, t0) at which inequality (5.1)
does not hold. Let d j := sup{r : Q−

r (x j , t j ) ⊂ {|u| > 0}} and (y j , s j ) ∈ ∂pQ
−
d j

(x j , t j ) ∩
�(u). According to the openness of regular points, see Proposition 4.10,we imply that (y j , s j )
are regular points of free boundary. Now, employing the growth estimates of solutions near
�κ , Theorem 3.3 (as well as Remark 3.4), and possibly passing to a subsequence, we may
assume that

u(d j x + x j , d2j t + t j )

dκ
j

:= u j (x, t) → u0(x, t),

and
((y j − x j )/d j , (s j − t j )/d

2
j ) := (ỹ j , s̃ j ) → (ỹ0, s̃0) ∈ ∂pQ

−
1 .

Therefore, inequality (5.1) can not be true for u j at point (0, 0). We will show that u0 is a
half-space solution with respect to (ỹ0, s̃0), i.e.

u0(x, t) = α((x − ỹ0) · ν)κ+e, in R
n × (−∞, s̃0], (5.2)

for some unite vectors ν ∈ R
n , e ∈ R

m . By the uniqueness of forward problem, Lemma
7.1, the representation (5.2) is valid for t ∈ (−∞, 0] and u0 must satisfy the equality

|u0|2|∇u0|2 = ∣∣∑m
k=1 u

k
0∇uk0

∣∣2. The contradiction proves the lemma.
In order to show that u0 is a half-space solution, let � > 0 be a small number, such that

Q�(x0, t0) ∩ � consists only of regular points; see Proposition 4.10. For every r > 0 denote
by

wr (X) := W(uη, r; X).

Then wr is continuous, and has a pointwise limit, as r → 0. Since Q�(x0, t0) ∩ � consists
only of regular points, then

lim
r→0+ wr (x, t) = Aq , for (x, t) ∈ Q�(x0, t0) ∩ �. (5.3)

Furthermore, by monotonicity formula wr (x, t) + F(r) is a nondecreasing function in r ,
hence by Dini’s monotone convergence theorem, the convergence in (5.3) is uniform. Thus

W(u0, r; ỹ0, s̃0) = lim
j→∞W(u jη, r; ỹ j , s̃ j ) = lim

j→∞W(uη, d jr; y j , s j ) = Aq ,

for any r > 0. Hence u0 is backward self-similar with respect to (ỹ0, s̃0). To finish the
argument, note that (ỹ j , s̃ j ) is a regular point of u j and consider the convergence u j → u0
in Q−

2 . Then the interior of {u0 = 0} is not empty and by Theorem 4.9 we infer that u0 must
be a half-space solution with respect to the point (ỹ0, s̃0). ��
Lemma 5.2 Let

g(x, t) := |∂tu(x, t)|2|u(x, t)|−2q ,

(i) If q = 0, then g(x, t) = |∂tu(x, t)|2 is a subcaloric function in the set {|u| > 0}.
(ii) If 0 < q < 1 and (x0, t0) ∈ �κ is a regular free boundary point. Then there exists 0 < r0

and θ ≥ 2 such that gθ is a subcaloric function in the set {|u| > 0} ∩ Qr0(x0, t0).
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Proof (i) By direct calculations;

�|∂tu|2 =
m∑

k=1

�(∂t u
k)2 = 2

m∑

k=1

∂t u
k�∂t u

k + 2
m∑

k=1

|∇∂t u
k |2

and

∂t |∂tu|2 = 2
m∑

k=1

∂t u
k∂2t t u

k .

Hence calculating and using the Cauchy-Schwarz inequality, we obtain

H(|∂tu|2) = 2
m∑

k=1

∂t u
k H(∂t u

k) + 2
m∑

k=1

|∇∂t u
k |2

= 2
m∑

k=1

∂t u
k ∂

∂t

(
uk

|u|1−q

)
+ 2

m∑

k=1

|∇∂t u
k |2

= 2
m∑

k=1

(
(∂t uk)2

|u|1−q
− (1 − q)

uk∂t uk
∑m

j=1 u
j∂t u j

|u|3−q

)

+ 2
m∑

k=1

|∇∂t u
k |2

= 2

|u|3−q

(|u|2|∂tu|2 − (1 − q)(u · ∂tu)2
) + 2

m∑

k=1

|∇∂t u
k |2 ≥ 0.

(i i) Since H(gθ ) = θgθ−2(gHg + (θ − 1)|∇g|2), it is enough to show that

gHg + (θ − 1)|∇g|2 ≥ 0. (5.4)

Note that this relation is valid for θ ≥ 2 in {|u| > 0} regardless of whether ∂tu vanishes or
not. We can write

Hg = |u|−2q H(|∂tu|2) + |∂tu|2H(|u|−2q) + 2∇(|∂tu|2) · ∇(|u|−2q).

From part (i), we know that

H(|∂tu|2) = 2

|u|3−q

(|u|2|∂tu|2 − (1 − q)(u · ∂tu)2
) + 2

m∑

k=1

|∇∂t u
k |2,

and by a direct calculation we obtain,

H(|u|−2q) = −2q|u|−q−1 − 2q|u|−2q−2|∇u|2 + 4q(1 + q)|u|−2q−4

∣∣∣∣∣

m∑

k=1

uk∇uk
∣∣∣∣∣

2

.

Then

1

2
gHg =(1 − q)|∂tu|2|u|−3q−3 (|u|2|∂tu|2 − (u · ∂tu)2

) − q|∂tu|4|u|−4q−2|∇u|2

+ |∂tu|2|u|−4q |∇∂tu|2 + 2q(1 + q)|∂tu|4|u|−4q−4

∣∣∣∣∣

m∑

k=1

uk∇uk
∣∣∣∣∣

2

− 4q|∂tu|2|u|−4q−2

(
m∑

k=1

∂t u
k∇∂t u

k

)

·
(

m∑

k=1

uk∇uk
)

.
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According to Lemma 5.1, we can assume that

|u|2|∇u|2 ≤ (1 + ε)

∣
∣
∣
∣
∣

m∑

k=1

uk∇uk
∣
∣
∣
∣
∣

2

,

in a neighborhood of (x0, t0) for some ε > 0 which is determined later. Therefore, in order
to prove (5.4) in this neighborhood we have

1

2
gHg ≥|u|−4q

∣
∣
∣
∣
∣

m∑

k=1

∂t u
k∇∂t u

k

∣
∣
∣
∣
∣

2

+ q(2q + 1 − ε)|∂tu|4|u|−4q−4

∣
∣
∣
∣
∣

m∑

k=1

uk∇uk
∣
∣
∣
∣
∣

2

− 4q|∂tu|2|u|−4q−2

(
m∑

k=1

∂t u
k∇∂t u

k

)

·
(

m∑

k=1

uk∇uk
)

≥ − 2(θ − 1)

∣
∣
∣
∣
∣
|u|−2q

(
m∑

k=1

∂t u
k∇∂t u

k

)

− q|∂tu|2|u|−2q−2

(
m∑

k=1

uk∇uk
)∣

∣
∣
∣
∣

2

= − 1

2
(θ − 1)|∇g|2

where the last inequality holds when 2θq ≤ (2θ − 1)(1− ε). We can choose suitable ε > 0
provided 2θ > 1

1−q . ��

Now we prove that the time derivative vanishes continuously on the regular part of the
free boundary.

Lemma 5.3 Let g be the function defined in Lemma 5.2 and suppose (x0, t0) ∈ �κ is a regular
free boundary point, then

lim
(x,t)→(x0,t0)

g(x, t) = 0.

Proof Let (x j , t j ) → (x0, t0) be a maximizing sequence in the sense that

lim
j→+∞ g(x j , t j ) = lim sup

(x,t)→(x0,t0)
g(x, t) := m2 > 0.

Let d j := sup{r : Q−
r (x j , t j ) ⊂ {|u| > 0}} and (y j , s j ) ∈ ∂pQ

−
d j

(x j , t j ) ∩ �. Following the
same lines of proof as that of Lemma 5.1, we may assume

u(d j x + x j , d2j t + t j )

dκ
j

:= u j (x, t) → u0(x, t),

((y j − x j )/d j , (s j − t j )/d
2
j ) := (ỹ j , s̃ j ) → (ỹ0, s̃0) ∈ ∂pQ

−
1 ,

and
u0(x, t) = α((x − ỹ0) · ν)κ+e, in R

n × (−∞, 0]. (5.5)

Since Q−
1 ⊂ {|u j | > 0}, then Q−

1 ⊂ {|u0| > 0}, and the convergence is uniform in Q−
1 .

Hence

|∂tu0(0, 0)| |u0(0, 0)|−q = lim
j→∞ |∂tu j (0, 0)| |u j (0, 0)|−q

= lim
j→∞ |∂tu(x j , t j )| |u(x j , t j )|−q = m,
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and for all (x, t) ∈ Q−
1 ,

|∂tu0(x, t)| |u0(x, t)|−q = lim
j→∞ |∂tu j (x, t)| |u j (x, t)|−q

= lim
j→∞ |∂tu(d j x + x j , d

2
j t + t j )| |u(d j x + x j , d

2
j t + t j )|−q ≤ m.

Since |∂tu|2 is subcaloric for q = 0 or gθ for q > 0 (Lemma 5.2), we can apply the
maximum principle to arrive at |∂tu0(x, t)| = m|u0(x, t)|q in the connected component of
Q−

1 , containing the origin, which contradicts (5.5). ��

Now using a standard iterative argument one can prove the Hölder regularity of the time
derivative.

Lemma 5.4 Let g be the function defined in Lemma 5.2 and suppose (x0, t0) ∈ � is a regular
free boundary point. Then g is a Hölder continuous function in a neighbourhood of (x0, t0).

Proof Lemma 5.2 and Lemma 5.3 together imply that g (or gθ for 0 < q < 1) is a continuous
subcaloric function in a neighbourhood of regular points (we extend g to zero in {u = 0}).
Since the coincidence set {u = 0} close to regular points are uniformly large, we may invoke
Lemma A4 in [2], which states that if h ≤ M in Q1 := B1× (0, 1) is a continuous subcaloric
function and |Q1 ∩ {h < M/2}|

|Q1| > λ > 0,

then there exists 0 < γ = γ (λ) < 1 such that

h(0, 1) < γ M .

Since g is continuous subcaloric, we obtain that

sup
Qr/2

g(x, t) ≤ γ sup
Qr

g(x, t).

Fix (x, t) ∈ Qr0/2(x0, t0), then there exists k ≥ 1 such that 2−k−1r0 < |x | ≤ 2−kr0, and

g(x, t) ≤ γ sup
Q2−k+1r0

g(x, t) ≤ γ k sup
Qr0

g(x, t) ≤ 1

γ

( |x |
r0

)− ln γ
ln 2

sup
Qr0

g(x, t).

Hence the function g is Hölder continuous with the exponent β = − ln γ
2 ln 2 . ��

Corollary 5.5 Let u be a solution to (1.1) and suppose that (x0, t0) ∈ �κ(u) is a regular
point, then there exists constants C, 0 < r0 < 1 and 0 < β < 1 such that

sup
Q−
r (x0,t0)

|∂tu| ≤ Crκ−2+β, ∀ 0 < r < r0.
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6 Regularity of the free boundary

We consider the following local (fixed time) version of balanced energy;

Wt0(u, r , x0) := 1

rn+2κ−2

∫

Br (x0)

|∇u(x, t0)|2 + 2

1 + q
|u(x, t0)|1+qdx

− κ

rn+2κ−1

∫

∂Br (x0)

|u(x, t0)|2dHn−1.

Proposition 6.1 Let (x0, t0) ∈ �κ be a regular free boundary point, then there exist constants
C > 0 and 0 < β < 1, such that

∣
∣
∣
∣∣
∣
∣
Wt0(u, r2, x0) − Wt0(u, r1, x0) − 2

r2∫

r1

r
∫

∂B1(0)

∣
∣
∣
∣
d

dr
ur ,t0

∣
∣
∣
∣

2

dHn−1dr

∣
∣
∣
∣∣
∣
∣
≤ C |rβ

2 − rβ
1 |.

Proof Let us denote by ur ,t0 := u(r x+x0,t0)
rκ , then

Wt0(u, r , x0) =
∫

B1(0)

|∇ur ,t0 |2 + 2

1 + q
|ur ,t0 |1+qdx − κ

∫

∂B1(0)

|ur ,t0 |2dHn−1.

Hence

d

dr
Wt0(u, r , x0) = 2

∫

B1(0)

∇ur ,t0∇
d

dr
ur ,t0 + ur ,t0

|ur ,t0 |1−q

d

dr
ur ,t0dx

− 2κ
∫

∂B1(0)

ur ,t0
d

dr
ur ,t0dHn−1

= 2
∫

B1(0)

−∂tu(r x + x0, t0)
d

dr
ur ,t0dx + 2r

∫

∂B1(0)

∣∣∣∣
d

dr
ur ,t0

∣∣∣∣

2

dHn−1.

(6.1)
Letting r2 > r1 > 0 and integrating (6.1) in the interval (r1, r2), we obtain

∣∣∣Wt0(u, r2, x0) − Wt0(u, r1, x0)−2

r2∫

r1

r
∫

∂B1(0)

∣∣∣∣
d

dr
ur ,t0

∣∣∣∣

2

dHn−1dr
∣∣∣

≤2

r2∫

r1

∫

B1(0)

|∂tu(r x + x0, t0)|
∣∣∣∣
d

dr
ur ,t0

∣∣∣∣ dxdr

≤C

r2∫

r1

∫

B1(0)

|∂tu(r x + x0, t0)|
r

dxdr

≤C1

r2∫

r1

rβ−1dr = C1

β
(rβ

2 − rβ
1 ).

��
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The following epiperimetric inequality from [1] and [9] will be used to treat the parabolic
system.

Theorem 6.2 (Epiperimetric inequality) There exists ε ∈ (0, 1) and δ > 0 such that if
c = c(x) is a backward self-similar function of degree κ satisfying

||c − h||W 1,2(B1,Rm ) + ||c − h||L∞(B1,Rm ) ≤ δ, for some h ∈ H,

then there exists v ∈ W 1,2(B1;Rm) such that v = c on ∂B1 and

M(v) − M(h) ≤ (1 − ε) (M(c) − M(h)) ,

where

M(v) :=
∫

B1

(|∇v|2 + 2

1 + q
|v|1+q)dx − κ

∫

∂B1

|v|2dHn−1.

Proposition 6.3 (Energy decay, uniqueness of blow-up limits) Let (x0, t0) ∈ � be a regular
point, and u0 be any blow-up of u at (x0, t0). Suppose that the epiperimetric inequality holds
with 0 < ε < 1 for each

cr (x, t0) := |x |κur ,t0 (x/|x |, t0) = |x |κ
rκ

u (x0 + r x/|x |, t0)

and for all r ≤ r0. Then there exists C > 0 and 0 < γ < 1 such that

∣∣Wt0(u, r , x0) − Wt0(u, 0+, x0)
∣∣ ≤ Crγ , for small r > 0, (6.2)

and ∫

∂B1(0)

∣∣∣∣
u(r x + x0, t0)

rκ
− u0(x)

∣∣∣∣ dHn−1 ≤ Crγ /2, (6.3)

therefore u0 is the unique blow-up limit of u at the point (x0, t0).
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Proof Let e(r) := Wt0(u, r , x0) − Wt0(u, 0+, x0), then

e′(r) = −n + 2κ − 2

rn+2κ−1

∫

Br (x0)

|∇u(x, t0)|2 + 2

1 + q
|u(x, t0)|1+qdx

+ κ(n + 2κ − 1)

rn+2κ

∫

∂Br (x0)

|u(x, t0)|2dHn−1

+ 1

rn+2κ−2

∫

∂Br (x0)

|∇u(x, t0)|2 + 2|u(x, t0)|dHn−1

− κ

rn+2κ−1

⎛

⎜
⎝2

∫

∂Br (x0)

(∇u(x, t0) · ν) · u(x, t0)dHn−1

+n − 1

r

∫

∂Br (x0)

|u(x, t0)|2dHn−1

⎞

⎟
⎠

= −n + 2κ − 2

r

(
e(r) + Wt0(u, 0+, x0)

)

+ 1

r

∫

∂B1(x0)

|∇ur (x, t0)|2 + 2

1 + q
|ur (x, t0)|1+qdHn−1

− 2κ

r

∫

∂B1(x0)

(∇ur (x, t0) · ν) · ur (x, t0)dHn−1

− κ(n − 2)

r

∫

∂B1(x0)

|ur (x, t0)|2dHn−1

≥ −n + 2κ − 2

r

(
e(r) + Wt0(u, 0+)

)

+ 1

r

∫

∂B1(0)

(
|∇θur |2 + 2

1 + q
|ur |1+q − (κ(n − 2) + κ2)|ur |2

)
dHn−1

= −n + 2κ − 2

r

(
e(r) + Wt0(u, 0+)

)

+ 1

r

∫

∂B1(0)

(
|∇θcr |2 + 2

1 + q
|cr |1+q − (κ(n − 2) + κ2)|cr |2

)
dHn−1

= n + 2κ − 2

r

(
M(cr ) − e(r) − Wt0(u, 0+, x0)

)

≥ n + 2κ − 2

r

(
M(v) − Wt0(u, 0+, x0)

1 − ε
− e(r)

)
,

where we employed the epiperimetric inequality in the last step. Now let us observe that ur ,t0
minimises the following energy

J (v) :=
∫

B1(0)

|∇v|2 + 2

1 + q
|v|1+qdx + 2r2−κ

∫

B1(0)

v · ∂tu(x0 + r x, t0)dx,
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where v = ur ,t0 on ∂B1(0). Hence

M(v) =
∫

B1

|∇v|2 + 2

1 + q
|v|1+qdx − κ

∫

∂B1

|v|2dHn−1

=J (v) − 2r2−κ

∫

B1

v · ∂tu(x0 + r x, t0)dx − κ

∫

∂B1

|ur ,t0 |2dHn−1

≥M(ur ,t0) + 2r2−κ

∫

B1

(ur ,t0 − v) · ∂tu(x0 + r x, t0)dx .

Now we may conclude that

e′(r) ≥ n + 2κ − 2

r(1 − ε)

(
M(ur ,t0) − Wt0(u, 0+, x0) + 2r2−κ

×
∫

B1

(ur ,t0 − v) · ∂tu(x0 + r x, t0)dx

⎞

⎟
⎠

− (n + 2κ − 2)e(r)

r
= (n + 2κ − 2)e(r)

r(1 − ε)
− (n + 2κ − 2)e(r)

r

+ 2
(n + 2κ − 2)

(1 − ε)
r1−κ

∫

B1

(ur ,t0 − v) · ∂tu(x0 + r x, t0)dx

≥ ε(n + 2κ − 2)e(r)

r(1 − ε)
− Crβ−1,

by Corollary 5.5. It follows from (6) that

d

dr

(
e(r)r− ε(n+2κ−2)

1−ε

)
≥ −Crβ−1− ε(n+2κ−2)

1−ε .

Integrating the last inequality from r to 1, we obtain

e(1) − e(r)r− ε(n+2κ−2)
1−ε ≥ − C

β − ε(n+2κ−2)
1−ε

(
1 − rβ− ε(n+2κ−2)

1−ε

)
,

and therefore

e(r) ≤ e(1)r
ε(n+2κ−2)

1−ε − C

β − ε(n+2κ−2)
1−ε

(
r

ε(n+2κ−2)
1−ε − rβ

)
≤ C0r

γ ,

where γ := min
(
β,

ε(n+2κ−2)
1−ε

)
, and C0 > 0 depends only on the given parameters. The

proof of (6.2) is now complete, and we proceed to the proof of (6.3).
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Let 2−l < r1 ≤ 2−l+1 ≤ 2−k < r2 < 2−k+1, where k, l ∈ N. It is easy to see that

∫

∂B1(0)

∣
∣
∣
∣
u(x0 + r1x, t0)

rκ
1

− u(x0 + r2x, t0)

rκ
2

∣
∣
∣
∣ dHn−1 ≤

∫

∂B1(0)

r2∫

r1

∣
∣
∣
∣
d

dr
ur ,t0

∣
∣
∣
∣ drdHn−1

≤
k∑

j=l

∫

∂B1(0)

2− j+1∫

2− j

∣∣
∣
∣
d

dr
ur ,t0

∣∣
∣
∣ drdHn−1

≤Cn

k∑

j=l

⎛

⎜
⎝

∫

∂B1(0)

2− j+1∫

2− j

r

∣
∣
∣
∣
d

dr
ur ,t0

∣
∣
∣
∣

2

drdHn−1

⎞

⎟
⎠

1
2

By Proposition 6.1 and relation (6.2), we can estimate

∫

∂B1(0)

2− j+1∫

2− j

r

∣
∣
∣
∣
d

dr
ur ,t0

∣
∣
∣
∣

2

drdHn−1 ≤ C(2(− j+1)γ − 2− jγ ) ≤ C2−γ j .

Hence
∫

∂B1(0)

∣∣∣∣
u(x0 + r1x, t0)

rκ
1

− u(x0 + r2x, t0)

rκ
2

∣∣∣∣ dHn−1 ≤ C
k∑

j=l

2−γ j/2

=C
2−γ l/2 − 2−γ (k+1)/2

1 − 2−γ /2 ≤ C

2γ /2 − 1
(rγ /2

2 − rγ /2
1 ),

and (6.3) follows. ��
The following theorem has been proved as Theorem 4.7 in [9] (for q > 0) and Theorem

4 in [1] (for q = 0).

Theorem 6.4 Let Ch be a compact set of points x0 ∈ �κ
t0 with the following property: at least

one blow-up limit u0 of u(r x + x0, t0)/rκ is a half-space solution, say u0(x) = αmax(x ·
ν(x0, t0), 0)κe(x0, t0) for some ν(x0, t0) ∈ ∂B1 ⊂ R

n and e(x0, t0) ∈ ∂B1 ⊂ R
m. Then

there exist r0 and C < ∞ such that
∫

∂B1

∣∣∣∣
u(r x + x0, t0)

rκ
− αmax(x · ν(x0, t0), 0)

κe(x0, t0)

∣∣∣∣ dHn−1 ≤ Crγ /2,

for every x0 ∈ Ch and every r ≤ r0.

Theorem 6.5 In a neighbourhood of regular points the free boundary is C1,α in space and
C0,1/2 in time.

Proof First, consider the normal vectors ν(x0, t0) and e(x0, t0) defined in Theorem 6.4, we
show that (x0, t0) 
→ ν(x0, t0) and (x0, t0) 
→ e(x0, t0) are Hölder continuous with exponent
β = γ

γ+2κ .

Therefore, it follows that for each time section the free boundary is C1,β , provided the
free boundary point is a regular point. This in turn implies that the free boundary is a graph
in the time direction, close to such points. To see that the free boundary is half-Lipschitz in
time, we may perform a blow-up at free boundaries, along with a contradiction argument.
This is standard and left to the reader. ��
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7 Appendix

Lemma 7.1 (Uniqueness of forward problem) Let u and v be global solutions of (1.1) in
R
n × (−∞, t0] which have polynomial growth. If u(·, s) = v(·, s) for some s < t0, then

u(·, t) = v(·, t) for all s ≤ t ≤ t0.

Proof Multiply H(u − v) = f (u) − f (v) by (u − v)G and integrate

0 ≤
τ∫

s

∫

Rn

( f (u) − f (v)) · (u − v)Gdxdt = −
τ∫

s

∫

Rn

[1
2
∂t |u − v|2 + |∇(u − v)|2

+
(
∇(u − v) · x

2t

)
· (u − v)

]
Gdxdt .

Let w := u − v, then

1

2

∫

Rn

|w(x, τ )|2G(x, τ )dx ≤
τ∫

s

∫

Rn

1

2
|w|2∂t G −

[
|∇w|2 +

(
∇w · x

2t

)
· w

]
Gdxdt

≤
τ∫

s

∫

Rn

[

−|x |2 + 2nt

8t2
|w|2 − |∇w|2 + |∇w| | x

2t
| |w|

]

Gdxdt

≤
τ∫

s

∫

Rn

n

−4t
|w|2Gdxdt =: φ(τ).

Therefore, − 2τ
n φ′(τ ) ≤ φ(τ) and so d

dτ

[
(−τ)n/2φ(τ)

] ≤ 0 for s < τ < 0. From φ(s) = 0,
we conclude that φ(τ) ≡ 0. ��
Lemma 7.2 Let h be a caloric function in R

n × (−4, 0]. Then for s < t ≤ 0 we have the
following estimate

e
|x |2
t+s |h(x, t)|2 ≤

( √
3s

s − t

)n ∫

Rn

|h(y, s)|2G(y, s)dy.

Proof By the representation of the caloric function, we have

h(x, t) =
∫

Rn

h(y, s)G(x − y, s − t)dy.

Then

|h(x, t)|2 ≤
⎛

⎝
∫

Rn

|h(y, s)|2G(y, s)dy

⎞

⎠

⎛

⎝
∫

Rn

(G(x − y, s − t))2

G(y, s)
dy

⎞

⎠ (7.1)

On the other hand, we can write

(G(x − y, s − t))2

G(y, s)
=

( −s

4π(t − s)2

)n/2
exp

(

−|x − y|2
2(t − s)

− |y|2
4s

)

≤
( −s

4π(t − s)2

)n/2
exp

(

− |x |2
2(t − s)

+ x · y
t − s

− (t + s)|y|2
4s(t − s)

)
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≤
( −s

4π(t − s)2

)n/2
exp

((
−1

2
+ ε

) |x |2
t − s

+
(

1

4ε
− t + s

4s

) |y|2
t − s

)

.

For every ε > s
t+s , we obtain that

exp

((
1

2
− ε

) |x |2
t − s

) ∫

Rn

(G(x − y, s − t))2

G(y, s)
dy

≤
( −s

4π(t − s)2

)n/2 ∫

Rn

exp

((
1

4ε
− t + s

4s

) |y|2
t − s

)
dy

=
(

−s

(t − s)
( t+s

s − 1
ε

)

)n/2

.

Now let ε = 3s−t
2(t+s) , so by (7.1) the proof will be done. ��

Lemma 7.3 Assume that w ∈ L2(Q4) has polynomial growth and t < 0 fixed, then

∫

Rn

|w(x, t)|2 |x |2
−t

G(x, t)dx ≤ 4
∫

Rn

(
n|w(x, t)|2 − 4t |∇w(x, t)|2)G(x, t)dx .

Proof Using the relation ∇G(x, t) = x
2t G(x, t) to obtain

∫

Rn

|w(x, t)|2 |x |2
−t

G(x, t)dx = −2
∫

Rn

|w|2(x · ∇G)dx = 2
∫

Rn

div(|w|2x)Gdx

= 2n
∫

Rn

|w|2Gdx + 4
∫

Rn

w · (∇w · x)Gdx

≤ 2n
∫

Rn

|w|2Gdx +
∫

Rn

|w|2 |x |2
−2t

Gdx

+
∫

Rn

(−8t)|∇w|2Gdx .

Now we can easily prove the lemma. ��

Lemma 7.4 Let u be a function defined inRn ×[−R, 0) (for some a, R > 0) with polynomial
growth, and p be a κ-backward self-similar caloric vector-function. Then for −R < t1 <

t2 < 0

t2∫

t1

∫

Rn

(
|∇(p − u)|2 + κ|p − u|2

2t

)
Gdxdt =

t2∫

t1

∫

Rn

(
|∇u|2 + κ|u|2

2t

)
Gdxdt .

Proof Since ∇G(x, t) = x
2t G(x, t), we have

(∇u : ∇v)G = ∇u : ∇(vG) − (∇u · x) · vG
2t

.
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Obviously, |∇(p − u)|2 = |∇u|2 − 2∇p : ∇u + |∇p|2, hence
t2∫

t1

∫

Rn

(
|∇(p − u)|2 + κ|p − u|2

2t

)
Gdxdt

=
t2∫

t1

∫

Rn

(
|∇u|2 + κ|u|2

2t

)
Gdxdt

+
t2∫

t1

∫

Rn

∇p : (∇p − 2∇u)Gdxdt

+
t2∫

t1

∫

Rn

κ
p · (p − 2u)

2t
Gdxdt

=
t2∫

t1

∫

Rn

(
|∇u|2 + κ|u|2

2t

)
Gdxdt

−
t2∫

t1

∫

Rn

(
�p + 1

2t
x · ∇p − κp

2t

)
· (p − 2u)Gdxdt

=
t2∫

t1

∫

Rn

(
|∇u|2 + κ|u|2

2t

)
Gdxdt

where we used integration by parts and that

�p + 1

2t
x · ∇p − κp

2t
= ∂tp + 1

2t
x · ∇p − κ

2

p
t

= 1

2t
Lp = 0. ��

The following lemma is an extension of Lemma 1.1 in [3] to the parabolic case.

Lemma 7.5 Consider β > 0 to be noninteger, and let u(x, t) be a function satisfying

|H(u)(X)| ≤ C∗|X |β .

Then there is a caloric polynomial P of degree at most �β� + 2 such that

‖u − P‖L∞(Q−
r ) ≤ CC∗rβ+2, for r ∈ (0, 1),

where constant C depends only on n, β and ‖u‖L∞(Q−
1 ).

Proof We can assume that ‖u‖L∞(Q−
1 ) ≤ 1 and C∗ ≤ δ, where δ is small enough and

will be determined later. (Replace u by u(R−1x, R−2t) for a large fixed constant R to find
|H(u)| ≤ δ|X |β ) The proof of lemma is based on the following claim.

Claim: There exists 0 < ρ < 1 and a sequence of caloric polynomials Pk such that

‖u − Pk‖L∞(Q−
ρk

) ≤ ρk(β+2),

and

|∂μ
x ∂�

t (Pk − Pk−1)(0, 0)| ≤ C0ρ
(k−1)(β+2−|μ|−2�), if |μ| + 2� < β + 2.
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A straight forward implication of this claim is that the sequence {Pk} converges uniformly
in Q1 to a polynomial P of degree at most �β� + 2 which clearly satisfies

‖u − P‖L∞(Q−
ρk

) ≤‖u − Pk‖L∞(Q−
ρk

) +
∞∑

i=k+1

‖Pi − Pi−1‖L∞(Q−
ρk

)

≤ρk(β+2) +
∞∑

i=k+1

∑

|μ|+2�<β+2

C0ρ
(i−1)(β+2−|μ|−2�)ρk(|μ|+2�)

≤ρk(β+2) +
∑

|μ|+2�<β+2

C0ρ
k(β+2) ≤ Cn,βC0ρ

k(β+2).

Therefore, the lemma will be proved for C := 1
δ
Cn,βC0ρ

−(β+2).
Now we prove the claim. It is obviously true for k = 0 (just take P0 ≡ P−1 ≡ 0). We

now assume that it holds for k and we prove it for k + 1. Define

v(X) := u(ρk x, ρ2k t) − Pk(ρk x, ρ2k t)

ρk(β+2)
.

Then by inductive hypothesis |v| ≤ 1 in Q−
1 . In addition,

|H(v)| =
∣∣∣∣
H(u)(ρk x, ρ2k t)

ρkβ

∣∣∣∣ ≤ C∗ ≤ δ.

If we apply Lemma 6.1 in [7], there exist δ = δ(ε) and function w satisfying

|v − w| ≤ ε, in Q−
1/2,

and
⎧
⎨

⎩

H(w) = 0 in Q−
1/2,

w = v on ∂pQ
−
1/2.

Now consider a polynomial P̂ of degree at most �β� + 2 such that ∂
μ
x ∂�

t P̂(0, 0) =
∂

μ
x ∂�

t w(0, 0) for |μ| + � < β + 2. Since ‖w‖L∞(Q−
1/2)

≤ ‖v‖L∞(Q−
1 ) ≤ 1, by estimates

on derivatives for caloric functions |∂μ
x ∂�

t P̂(0, 0)| ≤ C0 for a universal constant C0. Obvi-
ously, P̂ is caloric and

‖w − P̂‖L∞(Q−
ρ ) ≤ C0ρ

�β�+3.

In particular, if we choose ρ sufficiently small so that C0ρ
�β�+3 ≤ 1

2ρ
β+2 and then choose

ε such that ε ≤ 1
2ρ

β+2, we arrive at

‖v − P̂‖L∞(Q−
ρ ) ≤ ρβ+2,

or equivalently

‖u − Pk+1‖L∞(Q−
ρk+1 ) ≤ ρ(k+1)(β+2), Pk+1(X) := Pk(X) + ρk(β+2) P̂(ρ−k x, ρ−2k t).

We also have

|∂μ
x ∂�

t (Pk+1 − Pk)(0, 0)| ≤ ρk(β+2−|μ|−�)|∂μ
x ∂�

t P̂(0, 0)| ≤ C0ρ
k(β+2−|μ|−�). ��

123



  124 Page 38 of 38 G. Aleksanyan et al.

Acknowledgements H. Shahgholian was partially supported by Swedish Research Council. G. Aleksanyan
thanks KTH for visiting appointment. M. Fotouhi was supported by Iran National Science Foundation (INSF)
under project No. 99031733.

Funding Open access funding provided by Royal Institute of Technology.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Andersson, J., Shahgholian, H., Uraltseva, N., Weiss, G.S.: Equilibrium points of a singular cooperative
system with free boundary. Adv. Math. 280, 743–771 (2015)

2. Caffarelli, L.A.: The regularity of free boundaries in higher dimensions. Acta Math. 139(3–4), 155–184
(1977)

3. Caffarelli, L.A., Friedman, A.: Partial regularity of the zero-set of solutions of linear and superlinear
elliptic equations. J. Differ. Equ. 60(3), 420–433 (1985)

4. Caffarelli, L.A., Petrosyan, A., Shahgholian, H.: Regularity of a free boundary in parabolic potential
theory. J. Amer. Math. Soc. 17(4), 827–869 (2004)

5. Caffarelli, L.A., Shahgholian, H., Yeressian, K.: A minimization problem with free boundary related to
a cooperative system. Duke Math. J. 167, 1825–1882 (2018)

6. Danielli, D., Garofalo, N., Petrosyan,A., To, T.: Optimal Regularity and the FreeBoundaryin the Parabolic
Signorini Problem. volume 249. American Mathematical Society, (2017)

7. Figalli, A., Shahgholian, H.: A general class of free boundary problems for fully nonlinear parabolic
equations. Annali di Matematica 194(4), 1123–1134 (2015)

8. Fotouhi, M., Shahgholian, H.: A semilinear pde with free boundary. Nonlinear Anal. 151, 145–163 (2017)
9. Fotouhi, M., Shahgholian, H., Weiss, G.S.: A free boundary problem for an elliptic system. J. Differ. Equ.

284, 126–155 (2021)
10. Soave, N., Terracini, S.: The nodal set of solutions to some elliptic problems: sublinear equations, and

unstable two-phase membrane problem. Adv. Math. 334, 243–299 (2018)
11. Weiss, G.S.: Self-similar blow-up and hausdorff dimension estimates for a class of parabolic free boundary

problems. SIAM J. Math. Anal. 30(3), 623–644 (1999)
12. Weiss, G.S.: The free boundary of a thermal wave in a strongly absorbing medium. J. Differ. Equ. 160(2),

357–388 (2000)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123

http://creativecommons.org/licenses/by/4.0/

