
Master’s thesis

Master’s Programme in Computer Science

Internal software startup within a university
– producing industry-ready graduates

Saara Satokangas

May 9, 2022

Faculty of Science
University of Helsinki



Contact information

P. O. Box 68 (Pietari Kalmin katu 5)
00014 University of Helsinki,Finland

Email address: info@cs.helsinki.fi
URL: http://www.cs.helsinki.fi/



Faculty of Science Master’s Programme in Computer Science

Saara Satokangas

Internal software startup within a university – producing industry-ready graduates

Prof. T. Männistö, Ph.D. M. Luukkainen

Master’s thesis May 9, 2022 58 pages, 8 appendix pages

software engineering, capstone projects, teaching, students, internal startup

Helsinki University Library

Software study track

Tertiary education aims to prepare computer science students for the working life. While much
of the technical principles are covered in lower-level courses, team-based capstone projects are
a common way to provide students hands-on experience and teach soft skills. Although such
courses help students to gain some of the relevant skills, it is difficult to simulate in a course
context what work in a professional software engineering team really is about.

Our goal is to understand ways tertiary education institutions prepare students for the working
life in software engineering. Firstly, we do this by focusing on the mechanisms that software
engineering capstones use to simulate work-life. A literature review of 85 primary studies was
conducted for this overview. Secondly, we present a more novel way of teaching industry-
relevant skills in an university-lead internal software startup. A case study of such a startup,
Software Development Academy (SDA), is presented, along with the experiences of both stu-
dents and faculty involved in it. Finally, we look into how these approaches might differ.

Results indicate that capstone courses differ greatly in ways they are organized. Most often
students are divided in teams of 4–6 and get assigned with software projects that the teams
then develop from an idea to a robust proof-of-concept. In contrast, students employed in the
SDA develop production-level software in exchange for a salary for university clients. Students
regarded SDA as a highly relevant and fairly irreplaceable educational experience. Working
with production-quality software and having a wide range of responsibilities was perceived
integral in giving a thorough skill set for the future.

In conclusion, capstones and the internal startup both aim to prepare students for the work-life
in software engineering. Capstones do it by simulating professional software engineering in a
one-semester experience in a course environment. The internal startup adds a touch of realism
to this by being actual work in a relatively safe university context.

ACM Computing Classification System (CCS)
Social and professional topics → Professional topics → Computing education

HELSINGIN YLIOPISTO – HELSINGFORS UNIVERSITET – UNIVERSITY OF HELSINKI
Tiedekunta — Fakultet — Faculty Koulutusohjelma — Utbildningsprogram — Study programme

Tekijä — Författare — Author

Työn nimi — Arbetets titel — Title

Ohjaajat — Handledare — Supervisors

Työn laji — Arbetets art — Level Aika — Datum — Month and year Sivumäärä — Sidoantal — Number of pages

Tiivistelmä — Referat — Abstract

Avainsanat — Nyckelord — Keywords

Säilytyspaikka — Förvaringsställe — Where deposited

Muita tietoja — övriga uppgifter — Additional information





Contents

1 Introduction 1

2 Background 3
2.1 Gaps in industry-relevant skills . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Capstone project courses . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.3 Software Development Academy . . . . . . . . . . . . . . . . . . . . . . . . 5

3 Research approach 6
3.1 Research questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.2 Part I: Semi-systematic literature review . . . . . . . . . . . . . . . . . . . 9

3.2.1 Constructing the search strings . . . . . . . . . . . . . . . . . . . . 9
3.2.2 Inclusion and exlusion criteria . . . . . . . . . . . . . . . . . . . . . 10
3.2.3 Data extraction and analysis . . . . . . . . . . . . . . . . . . . . . . 15

3.3 Part II - Case Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.3.1 Case selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.3.2 Case introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.3.3 Qualitative data from student interviews . . . . . . . . . . . . . . . 19
3.3.4 Characteristics of the interviewees . . . . . . . . . . . . . . . . . . . 20
3.3.5 Qualitative data from the faculty member interview . . . . . . . . . 21
3.3.6 Data analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4 Semi-systematic literature review 23
4.1 Duration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.2 Clients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.3 Projects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.4 Technologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.5 Team sizes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.6 Mentoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33



5 Case Study 35
5.1 Educational mechanisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5.1.1 Production-quality software . . . . . . . . . . . . . . . . . . . . . . 36
5.1.2 Wide responsibilities and autonomy . . . . . . . . . . . . . . . . . . 36
5.1.3 Employee status and salary . . . . . . . . . . . . . . . . . . . . . . 38
5.1.4 Strong community and networking possibilities . . . . . . . . . . . . 39
5.1.5 Easy integration with studies . . . . . . . . . . . . . . . . . . . . . 39
5.1.6 Selectiveness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
5.1.7 One-year duration . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
5.1.8 Working with external stakeholders . . . . . . . . . . . . . . . . . . 41
5.1.9 Challenges and further improvement . . . . . . . . . . . . . . . . . 41

5.2 Could courses replace the SDA? . . . . . . . . . . . . . . . . . . . . . . . . 44
5.2.1 Experience compared to capstone courses . . . . . . . . . . . . . . . 44
5.2.2 Replaceability with other studies . . . . . . . . . . . . . . . . . . . 45

5.3 Summary and comparison of the results . . . . . . . . . . . . . . . . . . . . 47

6 Discussion 48
6.1 Answering the research questions . . . . . . . . . . . . . . . . . . . . . . . 48
6.2 Validity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
6.3 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

7 Conclusions 54

Bibliography 56

A Interview questions - student perspective i

B Interview questions - faculty perspective i

C Sources in semi-systematic literature review i



1 Introduction

Universities and other tertiary education institutions should provide their computer sci-
ence students with sufficient skills and abilities before the students enter working life. In
software engineering related programs, this entails having an understanding of the com-
mon principles and theory in computer science (ACM/IEEE, 2013; ACM/IEEE, 2014)
and technical competencies and knowledge demanded by the industry (Radermacher et
al., 2014; Garousi et al., 2019). Any recent graduate should also have the ability to apply
this technical knowledge in practice (ACM/IEEE, 2013).

While much of the technical knowledge and theories are covered in lower-level courses,
many institutions hold team-based capstone project courses to ensure students are ready
to apply the knowledge in a workplace. The main goal of a capstone project is to pro-
vide hands-on experience in applying the tools, techniques, principles and best practices
that are taught more theoretically in previous courses (Ziv and Patil, 2010; Majanoja and
Vasankari, 2018; Panicker et al., 2020). Capstone projects are also regarded as crucial
in teaching students the necessary soft skills such as teamwork (Keogh et al., 2007; Ven-
son et al., 2016), verbal and written communication (Watkins and Barnes, 2010), time
management (Dupuis et al., 2010), problem solving (Majanoja and Vasankari, 2018) and
project management (Haddad, 2013). For students, a capstone project typically repre-
sents a culmination of their studies and is one of the last milestones before graduation
(ACM/IEEE, 2013).

In software engineering related programs, the projects typically last one or two semesters
(Ikonen and Kurhila, 2009; Adams and Kleiner, 2016; Schneider et al., 2020) and are
sometimes organized with industry clients (Fornaro et al., 2007; Isomöttönen and Kärkkäi-
nen, 2008; Majanoja and Vasankari, 2018; Spichkova, 2019). Although such courses help
students to gain relevant skills and provide an important sneak peek into the work-life in
software engineering, the essence of what work in a professional software team is all about,
is hard to capture. Moreover, previous research has demonstrated that preparing students
for the life in software engineering is not a trivial task. There are still clear gaps between
what students have done in their software engineering projects at the university level and
what they are expected to do in the industry (Begel and Simon, 2008; Radermacher and
Walia, 2013; Radermacher et al., 2014; Garousi et al., 2019).



2 CHAPTER 1. INTRODUCTION

To gain a thorough understanding of the mechanisms universities use to prepare their
students for the software engineering industry, we firstly present an literature review done
on software engineering capstone courses. It gives an outlook of the organizatorial aspects
of these courses and their reported outcomes. Any areas where capstone courses might fall
short of a realistic industry-experience are also look into. Additionally, as a solution to
these shortcomings, this research describes our experiences of running an internal software
startup in the University of Helsinki, called Software Development Academy (SDA). SDA
was founded in 2017 and is a team made of computer science students and lead by faculty.
SDA both develops and maintains educational administrative software used within the
University of Helsinki. It combines the best parts of capstone projects, external experiences
like internships and creating software for the purposes of an academic institution. This
research presents the framework for SDA and explains how it has helped us to bridge the
gap between industry expectations and traditional software engineering education. We
also present the ways it differs from capstone courses.

The thesis is organized as follows. The next chapter presents relevant concepts for under-
standing the context of this research. Chapter 3 describes the goal of this research along
with the research questions formulated to reach that goal. The two-part approach used to
conduct the research is also described and a framework for an internal software startup
in the university context, Software Development Academy (SDA), presented. Chapter 4
outlines the results of the semi-systematic literature review and how the academic insti-
tutions traditionally conduct their software engineering capstones. Chapter 5 describes
the experiences of students and faculty involved in the SDA. The differences to traditional
capstone courses are also discussed. The results, their validity and related work are dis-
cussed in Chapter 6. Finally, Chapter 7 concludes the research and makes proposals for
future work.



2 Background

This research focuses on describing the ways tertiary education institutions prepare their
students for the working life in the software engineering (SE) industry. This chapter
presents a brief overview of the central concepts and ideas related to the research area.
Firstly, Section 2.1 explains what gaps earlier literature has identified between the skills of
recent graduates and the industry expectations. Section 2.2 then describes a common way
universities aim to ensure that their students have the necessary skills: capstone project
courses. Finally, Section 2.3 gives a short overview of an internal software startup in a
university context, Software Development Academy.

2.1 Gaps in industry-relevant skills

Increasingly employers and society are requiring universities to produce graduates with ap-
propriate “employability skills“ such as communication and self-management (Johns-Boast
and Flint, 2013). The emphasis of each programme is unique, but some of the commonly
mentioned soft skills that students should possess after completing their studies are team-
work (Keogh et al., 2007; Ziv and Patil, 2010; Delgado et al., 2017; Marques et al., 2017;
Iacob and Faily, 2019), client negotiation skills (Keogh et al., 2007), project management
(Haddad, 2013) and a general ability to function in the software engineering industry
(Ziv and Patil, 2010; Mahnic, 2011). These skills are especially in the center of capstone
courses‘ learning goals (ACM/IEEE, 2013; ACM/IEEE, 2014). Despite the perceived high
importance and focus, these learning goals are still not fully met. In a systematic literature
review on the skill gaps of computer science and software engineering graduates, written
communication tied with oral communication as the most commonly identified knowledge
deficiency (Radermacher and Walia, 2013). In the same review, project management came
in third (Radermacher and Walia, 2013). Another systematic literature review on the gap
between SE education and industry expectations found that professional practice, con-
taining professionalism, group dynamics and communication skills, is perceived as highly
important in the industry (Garousi et al., 2019). Yet it still presents a high knowledge
deficiency and therefore is something that the educators should pay close attention to
(Garousi et al., 2019).



4 CHAPTER 2. BACKGROUND

What it comes to technical skills, the knowledge deficiences do not seem to be as imminent
or all-encompassing since the top three positions in the systematic literature review go to
soft skills (Radermacher and Walia, 2013). Similar notions have been made elsewhere
(Begel and Simon, 2008; Stevens and Norman, 2016). The technical foundation has been
found to be sufficient and many industry representatives acknowledge the need to extend
the specific technological skills of graduates themselves (Stevens and Norman, 2016). The
technical skills that industry representatives most report graduates not having, relate
to software development tools and configuration management (Begel and Simon, 2008;
Radermacher and Walia, 2013; Radermacher et al., 2014; Garousi et al., 2019). In a study
of recent graduates’ skills, industry managers indicated that their new employees had
not been exposed to configuration management tools before (Radermacher et al., 2014).
Several managers also stated that their recent hires likely had not used software tools
in a production environment before and might have lacked an inherent understanding of
why a production environment should be used (Radermacher et al., 2014). Configuration
management has been identified as being of high importance in the industry while being
the topic with the highest gap between industry expectations and software engineering
education (Garousi et al., 2019).

In light of all this, there clearly are areas in which the current education on software
engineering has room for improvement. Project management, communication skills and
how to use software development tools in a production-environment are issues that should
be better tackled in education.

2.2 Capstone project courses

While much of the technical and theoretical background is being covered in basic-level
software engineering courses, a large portion of the necessary soft skills are being taught in
project-based courses, such as software engineering capstones. A “capstone course“ usually
means a course that finishes an academic degree (Ikonen and Kurhila, 2009). In computer
science (CS) and software engineering (SE) programmes, capstone courses generally last
one or two semesters and they include assigning students into teams and having them work
on various kinds of software engineering projects (Ikonen and Kurhila, 2009; Bowring and
Burke, 2016; Paasivaara et al., 2019). In these projects they are expected to experience
stages of the software development lifecycle from requirements solicitation to software
maintenance (Buffardi et al., 2017).



2.3. SOFTWARE DEVELOPMENT ACADEMY 5

ACM/IEEE Curriculum Guidelines for SE programs (ACM/IEEE, 2014) regard the cap-
stone project as an essential element of a SE degree program. According to the guidelines,
capstones are integral in ensuring that the curriculum has a significant real-world basis.
To make the projects as realistic as possible, capstones should be held with clients that are
external to the course staff (ACM/IEEE, 2014). The ACM/IEEE Curriculum Guidelines
for CS programs (ACM/IEEE, 2013) align with these views and state that all graduates of
CS programs should have been involved in at least one substantial project. Such projects
should challenge students by being integrative, requiring evaluation of potential solutions
and work on a larger scale than typical course projects. Students should also have op-
portunities to develop their interpersonal communication skills as part of their project
experience (ACM/IEEE, 2013). The University of Helsinki also provides a mandatory
capstone project course, called Software Engineering Project, for the students in Com-
puter Science Bachelor Program. Students are expected to take the course after they
have passed most of the Bachelor-level courses, typically, in their third year. The course
lasts for 14 weeks, and students are assigned into teams of 4–6 students, based on their
self-assessed skills and preferences regarding project topics. The clients for the projects
comprise of local businesses as well as research groups and various departments of the
University of Helsinki. All clients are external, and none of the teaching staff of the course
act as clients. The manager and founder of the Software Development Academy, has also
been the responsible teacher for the course since 2009.

2.3 Software Development Academy

Software Development Academy (SDA) is an internal non-profit software startup com-
prised of computer science students and lead by faculty within the University of Helsinki.
SDA develops and maintains several educational administrative applications for the use
of the entire university. Selected students work in the SDA for one year, consisting of
part-time work during the academic term and full-time work during the summer. During
the year, each student has a wide range of responsibilities in software development and
maintenance. The team is managed and lead by a senior lecturer of computer science.
Since its founding in 2017, the SDA has employed 29 students and successfully created
and maintained 9 applications. A more thorough description of the SDA is given in Section
3.3.



3 Research approach

This chapter defines the research methodology used in this thesis. Firstly, Section 3.1
describes the goal of this research and the research questions derived from it. These are
followed by a graph visualising the study design (Figure 3.1). Section 3.2 further discusses
the process of conducting the semi-systematic literature review and how its results were
analysed. Section 3.3 presents the methdology and the case used in the case study part of
this research.

3.1 Research questions

The main goal of this research is to understand how universities and other tertiary educa-
tion institutions prepare their students for the working life in software engineering. This
goal is approached from two separate viewpoints. Firstly, we aim to describe how industry-
relevant skills are generally being taught in software engineering capstones. Secondly, we
investigate a more novel way of teaching these skills in a university-lead internal startup.
Finally, we try to identify how these two approaches might differ and what common traits
they share. To reach this goal, the following research questions were formulated:

RQ1: What mechanisms traditional capstone courses use to prepare students for the
software engineering industry?

RQ2: What mechanisms does a university-lead internal software startup use to prepare
students for the software engineering industry?

RQ3: How do traditional capstone courses and a university-lead internal software startup
differ?

To answer RQ1, we aim to create an overview of how tertiary education institutions use
capstone project courses to prepare their students for the working life in software engineer-
ing. As described in Section 2.2, capstone courses are the de facto method for teaching
industry-relevant skills and giving students realistic software engineering experience. This
overview is gained by conducting a semi-systematic literature review on the subject. Semi-
systematic reviews are good for topics where the research questions are fairly broad and
analysis and evaluation can also be qualitative (Snyder, 2019). This is in contrast to sys-



3.1. RESEARCH QUESTIONS 7

tematic literature reviews, where the research questions are expected to be specific and
followed by a quantitative evaluation of the results (Snyder, 2019). A semi-systematic
literature review can be especially useful for detecting themes or for synthesizing the state
of knowledge for a certain research field (Snyder, 2019), which is why it suits the purposes
of this research well. As the focus is on universities, any internships and co-ops, where
the organizing party is not a tertiary education institution, are out of the scope of this
research.

In order to answer RQ2, a case study of an internal startup in the university context,
Software Development Academy (SDA) is investigated. By describing the framework, and
finding out the experiences of both students and faculty, we hope to shed light on how the
startup affects students’ skills and knowledge. Finally, for RQ3, the study combines the
knowledge gained from answering RQ1 and RQ2 and provides a comparison of the two
approaches.



8 CHAPTER 3. RESEARCH APPROACH

Part II 
Case Study

RQ1 
What mechanisms traditional capstone  

courses use to prepare students  
for the software engineering industry?

Part I 
Literature Review

Find relevant sources using Scopus 

First search string, include sources since 2007 
(266 hits)

Second search string, sources since 2007  
(109 hits)

Combine lists
(375 potential sources)

Apply inclusion and exclusion criteria 
(85 sources remained)

Extract: source title, course setup and course outcomes 

RQ2 
What mechanisms does a university-lead internal

software startup use to prepare students  
for the software engineering industry?

Case selection

Form interview questions and contact all 17 SDA alumni

Conduct 15 alumni interviews

Transcribe recordings

Identify mechanisms from student interviews and group
data by them

Identify mechanisms and group sources by them RQ3 
How do traditional capstone courses and a university-lead

internal software startup differ?

Compare results gained from the two parts and include
manager/teacher perspective

Presented at the
end of Part II

Form interview questions and contact SDA manager /
capstone course teacher

Conduct manager interview

Transcribe the recording

Figure 3.1: Research approach



3.2. PART I: SEMI-SYSTEMATIC LITERATURE REVIEW 9

3.2 Part I: Semi-systematic literature review

In order to get a comprehensive representation of how project-based capstone courses are
traditionally organized, relevant literature and experience reports were searched. This
sections describes that process. It is also summarized on the left side of Figure 3.1.

3.2.1 Constructing the search strings

The data collection was done by finding relevant sources from the abstract and citation
database Scopus in March 2022. The search was limited to sources in their final stage
(final) and within the Computer Science -subject area (COMP). The search included only
articles (ar) and conference proceedings (cp). In order to have a complete picture of the
project course landscape in software engineering, a second search was performed using the
second search string presented. As not all relevant sources had the word “capstone“ in
their title, abstract or keywords, this second search was deemed necessary.

First search string - Capstone projects

(

TITLE-ABS-KEY ( software AND engineering AND "capstone" )

AND ( LIMIT-TO ( PUBSTAGE , "final" ) )

AND ( LIMIT-TO ( SUBJAREA , "COMP" ) )

AND ( LIMIT-TO ( DOCTYPE , "cp" )

OR LIMIT-TO ( DOCTYPE , "ar" ) )

)

Second search string - Project courses

(

TITLE-ABS-KEY (

software AND engineering AND "project course" AND NOT "capstone"

)

AND ( LIMIT-TO ( PUBSTAGE , "final" ) )

AND ( LIMIT-TO ( SUBJAREA , "COMP" ) )

AND ( LIMIT-TO ( DOCTYPE , "cp" ) )

OR LIMIT-TO ( DOCTYPE , "ar" ) )

)



10 CHAPTER 3. RESEARCH APPROACH

3.2.2 Inclusion and exlusion criteria

The titles and abstracts of the initial sources were read and evaluated agains the inclusion
and exclusion criteria. In few unclear cases, the introduction and conclusions presented
in the study were read to make a justified decision. After selection, 85 studies remained.
These were ought to give a reasonably comprehensive view on how the capstone courses
are organized. These final sources are listed in Table 3.1, and with full publication details
in Appendix C.

The source should meet all of the following inclusion criteria:

• The title or abstract strongly hints that the study presents frameworks or case studies
of software engineering capstones or other large project-based courses in software
engineering

• The study experiments with a method of teaching software engineering in project-
based capstone courses

• The title or abstract indicates that the study assesses the outcomes of the course

• The study is not older than 15 years

The source should not meet any of the following exclusion criteria:

• The study focuses on describing an assessment tool for such project courses as the
focus of this research was on course outcomes, rather than tool generation

• The study focuses on describing tools for forming student teams in such courses, as
the focus of this research was on course outcomes, rather than tool generation

• The study contains only workshop proceedings

• The study is a work in progress

• The study does not have full text available



3.2. PART I: SEMI-SYSTEMATIC LITERATURE REVIEW 11

Table 3.1: Included sources for data extraction

SID Title Year, Publication venue
S1 A global and competition-based model for fostering

technical and soft skills in software engineering educa-
tion

2009, 22nd Conference on Software Engineer-
ing Education and Training

S2 A holistic capstone experience: Beyond technical abil-
ity

2017, 18th Annual Conference on Information
Technology Education

S3 A look at software engineering risks in a team project
course

2013, 26th International Conference on Soft-
ware Engineering Education and Training
(CSEE T)

S4 A Scalable and Portable Structure for Conducting
Successful Year-long Undergraduate Software Team
Projects

2007, Journal of Information Technology Edu-
cation: Research 6(1)

S5 A scalable approach to graduate student projects:
hundreds with industry every year

2009, 22nd Conference on Software Engineer-
ing Education and Training

S6 A scalable model of community-based experiential
learning through courses and international projects

2018, World Engineering Education Forum -
Global Engineering Deans Council (WEEF-
GEDC)

S7 A software engineering senior design project inher-
ited from a partially implemented software engineering
class project

2007, 37th Annual Frontiers In Educa-
tion Conference-Global Engineering: Knowl-
edge Without Borders, Opportunities Without
Passports

S8 Academia-academia-industry collaborations on soft-
ware engineering projects using local-remote teams

2009, 40th ACM technical symposium on
Computer science education

S9 Academic education of software engineering practices:
Towards planning and improving capstone courses
based upon intensive coaching and team routines

2013, 26th International Conference on Soft-
ware Engineering Education and Training
(CSEE T)

S10 Academy-industry collaboration and the effects of the
involvement of undergraduate students in real world
activities

2016, IEEE Frontiers in Education Conference
(FIE)

S11 Accommodating Shortened Term Lengths in a Cap-
stone Course using Minimally Viable Prototypes

2020, IEEE Frontiers in Education Conference
(FIE)

S12 Adopting industry agile practices in large-scale cap-
stone education

2020, 42nd International Conference on Soft-
ware Engineering: Software Engineering Edu-
cation and Training (ICSE-SEET)

S13 Advantages of agile methodologies for software and
product development in a capstone design project

2014, IEEE Frontiers in Education Conference
(FIE)

S14 An academia-industry collaborative teaching and
learning model for software engineering education

2009, 21st International Conference on Soft-
ware Engineering and Knowledge Engineering

S15 An Agile embedded systems capstone course:
Overview, experiences, and lessons learned

2013, IEEE Frontiers in Education Conference
(FIE)

S16 An exploration of knowledge and skills transfer from a
formal software engineering curriculum to a capstone
practicum project

2011, 24th IEEE-CS Conference on Software
Engineering Education and Training (CSEE
T)

S17 An industry-academia team-teaching case study for
software engineering capstone courses

2008, 38th Annual Frontiers in Education Con-
ference

S18 An innovative approach to Software Engineering term
projects, coordinating student efforts between multiple
teams over multiple semesters

2014, IEEE Frontiers in Education Conference
(FIE)

S19 Assessing the capability and maturity of capstone soft-
ware engineering projects

2008, Conferences in Research and Practice in
Information Technology Series

S20 Capstone project: From software engineering to “In-
formatics“

2010, 23rd IEEE Conference on Software En-
gineering Education and Training



12 CHAPTER 3. RESEARCH APPROACH

SID Title Year, Publication venue
S21 Capstone courses under the PBL methodology ap-

proach, for engineering
2019, IEEE World Engineering Education
Conference: Modern Educational Paradigms
for Computer and Engineering Career

S22 Collaborating with industrial customers in a capstone
project course: The customers’ perspective

2019, 41st International Conference on Soft-
ware Engineering: Software Engineering Edu-
cation and Training (ICSE-SEET)

S23 Collaboration support in an international computer
science capstone course

2016, Lecture Notes in Computer Science (in-
cluding subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformat-
ics)

S24 Collaborative security risk estimation in agile software
development

2019, Information & Computer Security 26(4)

S25 Competitive and agile software engineering education 2010 IEEE SoutheastCon (SoutheastCon)
S26 Deployment of Capstone Projects in Software Engi-

neering Education at Duy Tan University as Part of a
University-Wide Project-Based Learning Effort

2013, Learning and Teaching in Computing
and Engineering, LaTiCE

S27 Designing a multi-disciplinary software engineering
project

2009, 22nd Conference on Software Engineer-
ing Education and Training

S28 Discovering high-impact success factors in capstone
software projects

2009, 10th ACM conference on SIG-
information technology education

S29 Evaluating capstone project through flexible and col-
laborative use of Scrum framework

2015, IEEE Frontiers in Education Conference
(FIE)

S30 Evaluating test-driven development in an industry-
sponsored capstone project

2009, Sixth International Conference on Infor-
mation Technology: New Generations

S31 Evolving a Project-Based Software Engineering
Course: A Case Study

2017, 30th Conference on Software Engineer-
ing Education and Training (CSEE T)

S32 Experience report: A sustainable serious educational
game capstone project

2013, CGAMES’2013 USA

S33 Experiments with adding to the experience that can
be acquired from software courses

2010, Seventh International Conference on the
Quality of Information and Communications
Technology

S34 Exploiting multiplicity to teach reliability and main-
tainability in a capstone project

2007, 20th Conference on Software Engineer-
ing Education Training (CSEET’07)

S35 Exploring the gap between the student expectations
and the reality of teamwork in undergraduate software
engineering group projects

2019, Journal of Systems and Software 157

S36 Exposing Students to a State-of-the-art Problem
through a Capstone Project

2020, IEEE Frontiers in Education Conference
(FIE)

S37 Facilitating entrepreneurial experiences through a
software engineering project course

2019, 41st International Conference on Soft-
ware Engineering: Software Engineering Edu-
cation and Training (ICSE-SEET)

S38 Global vs. local - Experiences from a distributed soft-
ware project course using agile methodologies

2015, IEEE Frontiers in Education Conference
(FIE)

S39 How does participating in a capstone project with in-
dustrial customers affect student attitudes?

2018, 40th International Conference on Soft-
ware Engineering: Software Engineering Edu-
cation and Training (ICSE-SEET)

S40 Impact of software development processes on the out-
comes of student computing projects: A tale of two
universities

2022, Information and Software Technology
144

S41 Improving Software Engineering education through an
empirical approach: Lessons learned from capstone
teaching experiences

2014, 45th ACM technical symposium on
Computer science education

S42 Improving the capstone project experience: A case
study in software engineering

2008, 46th Annual Southeast Regional Confer-
ence on XX



3.2. PART I: SEMI-SYSTEMATIC LITERATURE REVIEW 13

SID Title Year, Publication venue
S43 Industry agile practices in large-scale capstone

projects
2020, 42nd International Conference on Soft-
ware Engineering: Companion Proceedings

S44 Industry-emulated projects in the classroom 2015, 16th Annual Conference on Information
Technology Education

S45 Industry-oriented project-based learning of software
engineering

2019, 24th International Conference on En-
gineering of Complex Computer Systems
(ICECCS)

S46 Infusing Design Thinking into a Software Engineering
Capstone Course

2017, 30th Conference on Software Engineer-
ing Education and Training (CSEE T)

S47 Integrating fundamental and advanced concepts in a
rounded capstone design experience in computer engi-
neering

2007, 37th Annual Frontiers In Education
Conference - Global Engineering: Knowl-
edge Without Borders, Opportunities Without
Passports

S48 Integrating international students’ contests with com-
puter sciecnce capstone: Lessons learned and best
practices

2012, IEEE Frontiers in Education Conference

S49 Introducing good design principles in an early system
engineering course

2009, Information Systems Education Confer-
ence, ISECON 26

S50 Introduction of continuous delivery in multi-customer
project courses

2014, Companion Proceedings of the 36th In-
ternational Conference on Software Engineer-
ing

S51 Investigating Students’ Metacognitive Skills while
Working on Information Systems Development
Projects

2017, 7th World Engineering Education Forum
(WEEF)

S52 Lessons learned managing distributed software engi-
neering courses

2014, Companion Proceedings of the 36th In-
ternational Conference on Software Engineer-
ing

S53 One-semester CS capstone: A 40-60 teaching approach 2013, 10th International Conference on Infor-
mation Technology: New Generations

S54 Overcoming limited resources: An academia-
government partnership on Software Engineering and
capstone projects

2007, 37th Annual Frontiers In Education
Conference - Global Engineering: Knowl-
edge Without Borders, Opportunities Without
Passports

S55 Practical Software Engineering Capstone Course –
Framework for Large, Open-Ended Projects to Grad-
uate Student Teams

2019, Communications in Computer and Infor-
mation Science 1022

S56 Preparing software engineering graduates for an indus-
try career

2007, 20th Conference on Software Engineer-
ing Education Training (CSEET’07)

S57 Reflections of nine years of interdisciplinary capstone
courses

2010, IEEE Frontiers in Education Conference
(FIE)

S58 Reflections on 10 years of sponsored senior design
projects: Students win-clients win!

2007, Journal of Systems and Software 80(8)

S59 Reflections on teaching software engineering capstone
course

2018, 10th International Conference on Com-
puter Supported Education

S60 Relating student, teacher and third-party assessments
in a bachelor capstone project

2017, Communications in Computer and Infor-
mation Science 770

S61 Retrospectives in a software engineering project
course: Getting students to get the most from a
project experience

2011, 24th IEEE-CS Conference on Software
Engineering Education and Training (CSEE
T)

S62 Scrumming with educators: Cross-departmental col-
laboration for a summer software engineering capstone

2015, International Conference on Learning
and Teaching in Computing and Engineering



14 CHAPTER 3. RESEARCH APPROACH

SID Title Year, Publication venue
S63 Simulating industry: An innovative software engineer-

ing capstone design course
2013, IEEE Frontiers in Education Conference
(FIE)

S64 Skills Development Through Agile Capstone Projects 2021, Communications in Computer and Infor-
mation Science 1523 CCIS

S65 SLPC++: Teaching software engineering project
courses in industrial application landscapes - A tu-
torial

2011, 24th IEEE-CS Conference on Software
Engineering Education and Training, CSEE
and T

S66 Software creationworkshop: A capstone course for
business-oriented software engineering teaching

2018, ACM International Conference Proceed-
ing Series

S67 Software engineering education: A study on conduct-
ing collaborative senior project development

2011, Journal of Systems and Software 84(3)

S68 Software engineering practicum course experience 2010, 23rd IEEE Conference on Software En-
gineering Education and Training

S69 Software engineering problems and their relationship
to perceived learning and customer satisfaction on a
software capstone project

2018, Journal of Systems and Software 137

S70 Software engineering project courses with industrial
clients

2015, ACM Transactions on Computing Edu-
cation 15(4)

S71 Software engineering senior design course: Experi-
ences with agile game development in a capstone
project

2011, International Conference on Software
Engineering

S72 Splat! er, shmup? A postmortem on a capstone pro-
duction experience

2016, IEEE Frontiers in Education Conference
(FIE)

S73 Students’ perceptions of scrum practices 2012, 35th International Convention MIPRO
S74 Teaching advanced software design in team-based

project course
2013, 26th International Conference on Soft-
ware Engineering Education and Training
(CSEE T)

S75 Teaching code review management using branch based
workflows

2016, 38th International Conference on Soft-
ware Engineering Companion

S76 Teaching students global software engineering skills
using distributed Scrum

2013, 35th International Conference on Soft-
ware Engineering (ICSE)

S77 Ten years of capstone projects at Okanagan College:
A retrospective analysis

2016,21st Western Canadian Conference on
Computing Education

S78 The Effect of Real-World Capstone Project in an Ac-
quisition of Soft Skills among Software Engineering
Students

2020, 21st Western Canadian Conference on
Computing Education

S79 The impact of undergraduate mentorship on student
satisfaction and engagement, teamwork performance,
and team dysfunction in a software engineering group
project

2020, 51st ACM Technical Symposium on
Computer Science Education

S80 The real world web: How institutional IT affects the
delivery of a capstone web development course

2014, Western Canadian Conference on Com-
puting Education

S81 The value of a real customer in a capstone project 2008, 21st Conference on Software Engineering
Education and Training

S82 Towards an ideal software engineering project course 2015, 15th Koli Calling Conference on Com-
puting Education Research

S83 Use of agile methods in software engineering education 2009, Agile Conference
S84 Use of role-play and gamification in a software project

course
2017, IEEE Frontiers in Education Conference
(FIE)

S85 What can students get from a software engineering
capstone course?

2017, 39th International Conference on Soft-
ware Engineering: Software Engineering Edu-
cation and Training Track (ICSE-SEET)



3.3. PART II - CASE STUDY 15

3.2.3 Data extraction and analysis

We developed a classification scheme for the sources based on the RQ1. These were
important in mapping the mechanisms used in the capstone courses and therefore providing
answers to RQ1. Therefore, after applying the inclusion/exclusion criteria, the following
properties were extracted from the remaining 85 studies.

• The title of the study

• Publication venue and year

• Short description of the perceived outcomes of the course, focusing on the learning
outcomes

• Key aspects of the course setup: duration and workload, types of projects used,
phases of the software cycle gone through in the course, perceived quality of the
produced software, clients for the projects, technologies used and the project team
composition.

The data was extracted to a common datasheet by the above mentioned aspects. Short
descriptions of the perceived course outcomes were also included in the datasheet. Chapter
4 summarizes the results of this mapping and discusses how the mechanisms presented have
affected the course outcomes.

3.3 Part II - Case Study

3.3.1 Case selection

The case presented here was selected by convience and personal interest. At the time
of writing this research, the author had been working as a software developer at the
Software Development Academy for 1.5 years. Therefore describing the basic function of
the team, in terms of the number of students, software being developed, technologies used
and organization of work could be done without any external sources. The manager and
one colleague working at the SDA had also previously indicated interest in refleting the
role of the SDA in a university context. As this aligned with interests of the author, the
case was selected.



16 CHAPTER 3. RESEARCH APPROACH

3.3.2 Case introduction

The SDA (toska.dev) was found in 2017 and over these last five years, has undergone
various changes to suit the needs of the team and its stakeholders. The framework given
here represents SDA as it is in spring 2022 and has been generalized as much as possible.
For some aspects of the SDA which are essential to report, but not inherently visible to the
author, the managing and founding member of the SDA was interviewed. This includes
things such as the recruitment process, client acquisition and funding. These parts have
been clearly indicated in the text to separate them from pre-existing knowledge of the
author.

Staff

The team size of the SDA is not fixed and varies between 4–10 students depending on
the need. By default, each student is given a one-year contract. Rapid circulation of
staff ensures that no software is left as a responsibility of a single employee for too long.
Knowing that the time at the SDA is limited, forces the students to demonstrate their
work more often and pass any relevant information to the remaining team. It also aims
to motivate the students to continue their studies to gain further employment after their
time at the SDA. Student staff members are all given the same salary at the corresponding
experience level.

There is no specific year or phase of studies, which qualifies a student to be hired, instead
the competencies of the student are in the center. Few have had pre-existing degrees and
several years of work experience behind them, whereas for some, the SDA is their first
real job. Some have only recently started their studies, some are in the final steps of their
Master’s degree. Through their wide responsibilities as a teacher in the Computer Science
Department, the manager responsible for the recruitment has a very good overview of the
entire student population in the CS programs. They are the responsible teacher for several
compulsory and elective courses on software engineering and related technologies. This
overview gives the manager a general idea of who might be a potential recruit for the SDA.
In addition, the students working in the SDA can propose or second any selection based
on their experiences with their fellow students. The recruitment process therefore has
remained a fairly straight-forward one. Generally one interview with a potential recruit
has been sufficient to determine whether that person gets hired.

During the academic year, all students work at the SDA half-time and are expected to

https://toska.dev


3.3. PART II - CASE STUDY 17

continue their studies while working. The SDA differs from traditional summer internships
in the sense that students are hired throughout the year and normally only one new team
member starts at a time. In practice, many times when one student member leaves, a
replacement for them is hired. A sufficient overlapping period is also reserved, where the
leaving staff member hands over the responsibilities and software they have been working
on to the new staff member. This procedure also ensures that the existing staff members
are not overwhelmed by the need to guide and mentor a lot of new team members at once
during summertime, which is a risk with hiring plenty of summer interns. The spread of
starting dates also balances out the proportion of more and less experiences developers in
the team at any given moment.

SDA is managed by a single faculty member who simultaenously is a lecturer at the
University of Helsinki. Approximately 30% of their monthly work time is allocated to
SDA-related issues. Their main responsibilities are supervising the team of students,
participating in client meetings, negotiating for the funding and start of any new projects,
keeping updated on the status of each project and recruiting new students. The manager
is very involved in the daily life of the SDA. In addition to the manager, the SDA also
has one faculty member, working partly as a software developer and providing technical
continuity for the team. But their main duties are in teaching, which reduces the amount
of time that can be allocated to helping the students in the SDA.

Developed software and clients

All projects that the SDA has undertaken are web applications uniquely specific to the
University of Helsinki. The size of the user base for the software varies from few dozen
faculty members to the entire student and teacher body of the university. Largest software,
in terms of its user-base, is a course feedback system used by every teacher and student
at the University of Helsinki. Other software include a self-assessment form provided for
the studyprograms in the university, an analytics tool for investigating the statistics and
demographics of studyprograms and courses, and a tool automizing course completion
registrations. All the aforementioned software have gained dedicated users especially from
the administrative and planning staff.

The software includes few projects that were handed over for maintenance to the SDA
by other teams or faculty members, and several projects which were originally developed
at the SDA. The manager actively promotes the team within the university and finds
suitable projects for the team to work on. At the moment of writing this, there are three



18 CHAPTER 3. RESEARCH APPROACH

client organizations with software under development and maintenance. All three are
organizations within the University of Helsinki and for two of these, the SDA manages
several software.

The number of software has grewn over the years as earlier launches have been successful,
and at the moment totals at 9. Out of these, a little over half have been in active develop-
ment within the past year, meaning that they have had large new features implemented.
The remaining four are smaller software in fairly low-key maintenance mode and rarely
require attention from the staff. All the software developed in the SDA is open source.
Having the source code open to public, gives the student members also possibility to use
it as a reference point when applying for jobs after their time at the SDA.

Organization of work

The SDA is divided into several subteams of approximately 2–5 students. Each subteam
is responsible for one software in active development phase. There are no working times
set in stone for any of the subteams, and they are very self-organized what it comes to the
ways of working. Since the working hours are not fixed, the students are able to make their
own schedules so that they can attend to any lectures, group tasks or practice sessions
they might have in their studies. The entire staff shares one weekly meeting at the end of
the week to sum up the past week and also to free-formly share ideas and thoughts.

Currently, the team works both locally in the office located on campus and remotely
from home. Each student is free to choose where they wish to work. Instant messaging
platforms are in very active use at the SDA for both off- and on-topic conversations. It is
worth mentioning that the global COVID-19 pandemic affected significantly the location
of work in the SDA. Between spring 2020 and fall 2021, the entire team was forced to work
remotely, whereas before the pandemic students worked mostly on campus.

The SDA has no separate account managers to conduct the communication with the
clients. While the manager maintains the big picture of the developed software, each
staff member is also responsible for communicating with the client on the software they
are developing. This includes the whole process of finding out the requirements of the
client and creating and presenting a solution. Each project has weekly meetings where
the Product Owner from the client-side, the developers of the software and the SDA
manager are present. The meetings entail going through the future tasks as well as lately
implemented fixes and features.



3.3. PART II - CASE STUDY 19

Technologies

The technology stack used at the SDA has been consolidated over the years. React is
used in the frontend and Node.js in the backend. The logic for these choices goes back to
the initiation of the SDA in 2017. According to the manager, the combination of React
and Node.js was seemingly becoming the “go-to stack“ in the web development industry.
According to the manager, it seemed like “the world had selected this stack“, which made
it a natural selection to be the building blocks of the SDA software.

All software is containerized and runs on virtual machines located on servers, which are
maintained by the university. Each software uses the same version control system, have
similarly configured CI pipelines and employ end-to-end testing. The consolidated stack
helps the team in many ways. Firstly, staff members can fairly easily fluctuate between
different projects or get a grasp of multiple software at once. Different subteams working
on different software can easily share best practices with each other. It also allows the staff
to gain knowledge of one commonly used stack fairly deeply, rather than scratching the
surface of multiple technologies. The manager also states that at this level of experience,
the continuity in the technologies used from project to project is integral. The breadth of
skills for junior developers is not wide enough for them to be able to jump from a project
to another within one year, if each project is made with different technologies.

3.3.3 Qualitative data from student interviews

In order to gain the student perspective of the SDA, semi-structured theme interviews
were conducted. Summarization of the interview process can also be found in Figure 3.1.
Students who have previously worked at the SDA had first-hand knowledge of what skills
they have gained during their time at the SDA as well as how the SDA has affected their
future employment. Thus they were the only ones who could reliably give an assessment
of how the SDA has prepared them for the life in software engineering. Interviews were
conducted between May 2021 and March 2022. In March 2022, there was a total of 17
alumni student members who all were contacted and out of whom 15 participated in the
interviews. The author of this research conducted 8 interviews and a another staff member
working at the SDA the remaining 7. Students currently working at the SDA were not
considered as interviewees, as they had not yet experienced their full year at the SDA and
were not yet recruited elsewhere. Therefore most of the questions reflecting their time at
the SDA or how it possibly affected their employment could not have been answered.



20 CHAPTER 3. RESEARCH APPROACH

The setting of the SDA is quite unique in the sense that it does not fully correspond to
any capstone project and neither to any common industry internship. For this reason no
readymade questionnaires for conducting the interviews could be found and the question-
naires were designed specifically for the purposes of this research. The questions were
purposefully open-ended and wide-scoped to get a general idea of what purposes the SDA
serves and how it might differ from what the university has to offer. Third parties from
the university and the manager of the SDA were involved in designing the questionnaire.
The interviews were conducted in Finnish and lasted between 30 minutes and 2 hours.
All the interviews were recorded and transcribed in order to ease up the analysis process.
The translated questionnaire can be found in Appendix A.

The interview questions were roughly divided into three parts. The first part covered the
background of the interviewees before their time at the SDA. The idea was to gain an idea
of the level of their skills and understanding of the industry prior to working at the SDA.

The second part consisted of questions relating to the time at the SDA. The questions
covered the responsibilities that the students had at the SDA as well as their perception
of the SDA. The second part also included questions in which the interviewees were asked
to compare the SDA to project courses. These questions were asked in order to find out
not only if there exists any differences between regular project courses and the SDA but
also whether the SDA could be replaced by or expanded into a course.

The final part was focused on the time after working at the SDA. The questions inquired
about the potential differences between SDA and the interviewees’ current place of em-
ployment. There were also questions regarding the industry-relevant skills the interviewees
had learned both at the SDA and elsewhere at the university.

3.3.4 Characteristics of the interviewees

Table 3.2 summarizes the characteristics of the interviewees. A few of the interviewees
had completed studies or degrees in other disciplines prior to starting in the CS program.
However, for the purposes of this research, no comparison to studies outside of CS programs
was done. In order to keep interviewees’ individual answers anonymous, the backgrounds
of the interviewees are categorized and presented only as aggregate numbers. For the
same reason, any quotations taken from the interviews are not relatable to any specific
interviewee or their background.



3.3. PART II - CASE STUDY 21

Table 3.2: Characteristics of the interviewed SDA alumni

Number of interviewees
Professional software engineering experience in years before the SDA
None 6
< 1/2 year 4
1/2 year - 2 years 3
> 2 years 2
Phase of studies when starting at the SDA
2nd year Bachelor student 5
3rd year Bachelor student 4
1st year Master’s student 4
2nd year Master’s student 1
Software engineering capstone project done before the SDA
Yes 9
No 6
Worked partly or entirely remotely at the SDA, due to the pandemic
Yes 5
No 10
Had found employment in the industry after the SDA
Yes 14
No 1*

*One interviewee was not employed at the time of the interview due to their own choice. At
the time of writing this thesis, they too were employed in the software engineering industry.

3.3.5 Qualitative data from the faculty member interview

The interview of the faculty member and manager of the SDA was conducted by the author
in March 2022. Lower right corner of Figure 3.1 summarizes this interview process and
how the manager perspective was included in the study design. As with the questionnaire
for the student members, the questions for the faculty member interview were designed
specifically for the purposes of this research and were fairly open-ended.

The questionnaire for the faculty member consisted of four parts. The first part had fairly
general questions about the technology, recruitment process and client-base of the SDA.
The questions were formulated to clarify some aspects of the SDA and how it is run,
which were not visible to the author as a regular student member. Second part included
questions about the Software Engineering Project Course. The manager of the SDA has



22 CHAPTER 3. RESEARCH APPROACH

also been the responsible teacher in the said course since 2009, so they were able to provide
an unique perspective into the course objectives, its outcomes and its comparability to the
SDA. Third set of questions aimed to shed to light on the process of course selection and
development at the Computer Science department as well as how the SDA might have
affected it. And the final part consisted of questions about the future of the SDA.

3.3.6 Data analysis

Firstly thematic analysis was applied to interviews of student members to gain the key
concepts that are evident in the data. Thematic analysis was chosen as it is a commonly
used method for describing, analyzing and reporting themes and patterns in data (Al-
hojailan, 2012). It also provides a systematic element to data analysis and allows the
researcher to associate a frequency of a theme recurring in the data (Alhojailan, 2012).
Each interview was read, after which each answer was extracted to a common data sheet
and organized by question. On the data sheet, the essential sections of each answer were
coded, and the main themes were obtained. These themes were viewed as essential in
describing the educational aspects of the SDA and its relation to capstone courses. In
addition, relevant quotations from the interviews were chosen and translated into English
to illustrate the main findings.

The analysis of the faculty member interview was done next. As there was only one inter-
view the process was considerably more light-weighted than that of the student interviews.
Firstly, the missing details for the case presentation were extracted. Secondly, the faculty
member’s perceptions of the differences and similarities of capstone courses and the SDA
were extracted along with descriptive quotations.



4 Semi-systematic literature review

This chapter presents the results of the semi-systematic literature review. All sources
selected for the review describe ways capstone courses have been organized in their re-
spective institutions. As educators often like to modify their courses over time to find the
best ways of teaching, sources here too reflect on the changes done to the courses. To
generalize and clarify the results, only the principal aspects of the final course iteration
are presented and generalized in Table 4.1.

Some authors have also written multiple articles based on the same capstone course.
All these duplicate articles provide important complementary information of the courses.
However, in order to keep the statistics clean, each separate capstone course has been
categorized only once in Table 4.1. In such cases the most recent article was chosen. The
sources left out in this procedure S17, S39, S43, S46, S54, S59, S69 and S75. This leaves
a total of 77 sources to be presented in Table 4.1. We will now go through each of these
mechanisms presented.



24 CHAPTER 4. SEMI-SYSTEMATIC LITERATURE REVIEW

Table 4.1: Aspects of software engineering capstones

Number % Sources by SID

Duration

Less than one semester 7 9% S9, S11, S15, S50, S62, S64, S76

One semester 48 62% S1, S3, S6, S7, S8, S14, S16, S18, S21, S22, S23,
S24, S25, S27, S28, S31, S32, S33, S36, S37, S38,
S40, S41, S42, S45, S46, S47, S48, S49, S51, S52,
S53, S57, S58, S60, S65, S66, S68, S70, S71, S72,
S73, S78, S80, S81, S82, S83, S84, S85

Two semesters 21 27% S2, S4, S5, S10, S12, S13, S19, S20, S26, S30,
S34, S35, S44, S55, S56, S59, S61, S63, S67, S74,
S77, S79

More than two semesters 1 1% S29

Clients

External clients 45 58% S1, S3, S4, S5, S6, S7, S8, S10, S11, S12, S13,
S16, S19, S20, S22, S24, S25, S26, S28, S29, S30,
S33, S34, S37, S41, S45, S50, S53, S55, S56, S57,
S58, S61, S62, S63, S65, S67, S68, S70, S76, S77,
S78, S81, S82, S85

Course staff acts as clients 6 8% S2, S31, S47, S64, S73, S83

No mention of clients 26 34% S9, S14, S15, S18, S21, S23, S27, S32, S35, S36,
S38, S40, S42, S44, S48, S49, S51, S52, S60, S66,
S71, S72, S74, S79, S80, S84

Projects

Teams work on the same project idea 20 26% S1, S7, S14, S21, S27, S32, S36, S37, S40, S44,
S49, S51, S60, S64, S65, S72, S73, S74, S76, S83

Teams work on separate project ideas 57 74% S2, S3, S4, S5, S6, S8, S9, S10, S11, S12, S13,
S15, S16, S18, S19, S20, S22, S23, S24, S25, S26,
S28, S29, S30, S31, S33, S34, S35, S38, S41, S42,
S45, S47, S48, S50, S52, S53, S55, S56, S57, S58,
S61, S62, S63, S66, S67, S68, S70, S71, S77, S78,
S79, S80, S81, S82, S84, S85

Main way of sourcing projects

Industry or university proposed
projects based on a real need

46 60% S1, S3, S4, S5, S6, S7, S8, S10, S12, S13, S16, S19,
S20, S22, S24, S25, S26, S28, S29, S30, S33, S34,
S37, S41, S44, S45, S48, S50, S53, S55, S56, S57,
S58, S61, S62, S63, S65, S67, S68, S70, S76, S77,
S78, S81, S82, S85

Course staff provides project specifica-
tions

22 29% S2, S9, S11, S14, S18, S21,
S27, S32, S36, S38, S40, S49, S51, S52 (OSS),
S60, S64, S72, S73, S74, S80, S83, S84

Student’s generate their own project
proposals

9 12% S15, S23, S31, S35, S42, S47, S66, S71,
S79



25

Number % Sources by SID

Main way for technology selection

Teams use same technology stack, set
by the course staff

19 25% S1, S7, S25, S27, S31, S32, S36, S37, S40, S44,
S49, S60, S64, S65, S72, S73, S74, S76, S80

Technology selections done in teams 46 60% S2, S3, S4, S6, S11, S12, S15, S16, S18, S20, S22,
S23, S24, S26, S28, S29, S30, S31, S33, S35, S38,
S41, S45, S46, S47, S48, S50, S52, S53, S55, S56,
S57, S58, S61, S62, S66, S70, S71, S77, S78, S79,
S81, S82, S83, S84, S85

Not described 11 14% S5, S8, S9, S10, S13, S14, S19, S21, S34, S42, S51,
S67, S68

Assigned mentoring positions*

Industry experts 7 9% S14, S38, S44, S52, S63, S72, S84

Faculty or course staff 58 75% S1, S2, S4, S5, S6, S7, S8, S9, S10, S11, S12, S13,
S16, S19, S21, S22, S23, S24, S25, S26, S28, S29,
S30, S31, S32, S33, S34, S37, S38, S40, S41, S45,
S47, S48, S49, S50, S51, S53, S55, S56, S57, S58,
S61, S62, S63, S64, S67, S68, S70, S72, S73, S74,
S76, S77, S78, S82, S83, S85

More experienced students 14 18% S1, S4, S12, S22, S33, S40, S50, S63, S70, S76,
S79, S80, S81, S85

Not described 12 16% S3, S15, S18, S20, S27, S35, S36, S42, S60, S65,
S66, S71

Team sizes*

1 1 1% S5

2 5 6% S2, S49, S60, S66, S77

3 16 21% S6, S7, S8, S10, S14, S16, S18, S19, S26, S33, S58,
S64, S66, S67, S68, S77

4 33 43% S1, S6, S7, S8, S10, S13, S14, S16, S18, S19, S23,
S26, S27, S28, S30, S33, S38, S40, S42, S45, S52,
S53, S55, S58, S64, S66, S67, S68, S73, S77, S78,
S81, S85

5 33 43% S1, S9, S10, S15, S16, S18, S24, S25, S26, S27,
S28, S30, S31, S35, S37, S38, S40, S42, S45, S51,
S52, S53, S55, S62, S63, S65, S66, S77, S78, S82,
S83, S84, S85

6 25 32% S1, S3, S15, S24, S25, S28, S29, S35, S36, S37,
S40, S45, S51, S52, S55, S63, S65, S66, S74, S77,
S78, S79, S82, S84, S85

7 16 21% S15, S22, S24, S25, S29, S32, S37, S50, S52, S55,
S65, S76, S77, S79, S82, S85

8 10 13% S22, S24, S41, S50, S52, S55, S65, S70, S76, S77

9 3 4% S22, S41, S70

10 3 4% S12, S41, S70

11 or more 3 4% S12, S56, S72

Not described 13 17% S4, S11, S20, S21, S34, S44, S47, S48, S57, S61,
S67, S71, S80

*For categories that are not mutually exclusive, the percentages do not add up to 100%.



26 CHAPTER 4. SEMI-SYSTEMATIC LITERATURE REVIEW

4.1 Duration

The duration of the courses varies between one period and one year. Few sources have
given the duration of their course in months or weeks. These durations have been rounded
to the nearest amount of semesters in Table 4.1. Courses lasting less than 4 months are
in the category “less than one semester“, 4–6 months in the category “one semester“ and
anything between 6–10 months in the category “two semesters“.

Clear majority of institutions conduct capstone courses that last one semester. Inter-
estingly, this is in conflict with the ACM/IEEE Curriculum Guidelines for Software En-
gineering (SE), which state that the capstone project should span a full academic year
(ACM/IEEE, 2014). The ACM/IEEE Curriculum Guidelines for Computer Science (CS)
do not specify the duration in a similar manner, but emphasize that the project needs
to be substantial and in a larger-scale than other projects during studies (ACM/IEEE,
2013). However, the unfortunate reality is that not all curricula can absorb a full-year
implementation (S78). The capstone courses often are also very labour-intensive for the
teaching staff, with many teams to manage and evaluate throughout the projects (S70).
Students might have full- or part-time work which makes the longer courses harder to
arrange (S45). Students also perceive two-semester capstone courses laborous (S45, S74),
some even the one-semester ones (S26). In order to provide an intensive and realistic
experience, many of these courses take up at least half a work-week (S19, S26, S74, S85).
This again, might make other courses taken simultaneously suffer (S26), which limits the
possibilities for an intensive, year-long capstone.

However, educators who have experiences with both, shorter and longer duration, have
shifted to the longer duration since they felt it is not possible to reach the wanted depth
in just a few months. S2 describes how they switched to a two-semester capstone as
they found the one-semester projects inadequate in skill coverage and depth. S20 have
had experiences with one period and three period courses and state that the change to
longer version received overwhelmingly positive feedback from all the participating par-
ties. Students were able to gain more hands-on experience in applying new and familiar
tools and project management. Additionally, they learned to act when faced with unantic-
ipated events as the teams experienced surpises – regarding both technologies and people
– multiple times during the year. Industrial clients received more ambitious and polished
products as a result of the course, and the course staff felt that the learning objectives for
the course were finally truly met.



4.2. CLIENTS 27

4.2 Clients

Almost half of the institutions choose to conduct their capstone courses without clients
that are external to the course (see Table 4.1). In these courses, the course staff may act
as clients or Product Owners for the projects or alternatively, the student teams work on
their own and only report progress regularly to the course staff. S2 explains that they
have the instructors playing clients due to the difficulty of finding suitable clients. Being a
small program in a rural institution makes the businesses and organizations suited for such
collaboration far and scarce. Also the institution’s wish to own the intellectual property
rights for the developed products puts off potential clients. For institutions, that would
have suitable clients available, there is always the upfront investment in time and effort
that the course staff has to make to contacting said clients, guiding them through creating
project proposals and assigning the students to these projects (S4, S79). S27 aimed to
create a course with students from five different technical and non-technical disciplines,
such as computer science and business informatics. S27 mentions that they need to be
careful in how they organize the course, so that it would suit the needs of all disciplines.
Bringing an external client to the mix might not fulfill the learning goals for all students.
Some educators also explain how the outcomes of the course are less predictable with
multiple external clients. S77 have experienced several cases when the project sponsors
did not show up for the bi-weekly meetings with the students. Such client behaviour caused
very low motivation in the student teams and some capstone projects projects failed due to
client unavailability. S82 made similar observations and stresses the importance of finding
committing clients to ensure a good experience for the students.

However, whenever possible, ACM/IEEE Curriculum Guidelines for SE programs rec-
ommend having real, external clients other than the course supervisor for the projects
(ACM/IEEE, 2014). These clients can be from other units within the university (S3, S33,
S62, S68), local businesses (S3, S13, S63, S68, S70, S82) or various non-profit organiza-
tions (S3, S6, S7, S9, S33). Graduates of the program who already work in the industry
are also a convenient way for finding clients (S22, S68). To mitigate the risks related to
unexpected client behavior, S70 proposes first trying out with one reliable customer and
deriving several project ideas from them and only then pursuing multicustomer model
with differing project ideas.

Working closely with real-world clients has often received overwhelmingly positive feedback
from students (S4, S39, S45, S78) and organizing staff alike (S4, S39, S50, S53, S70, S78).



28 CHAPTER 4. SEMI-SYSTEMATIC LITERATURE REVIEW

It has been found to increase the motivation and commitment of students, when there is an
actual client with a real need behind the project (S4, S45, S53). It has helped to keep the
experience more realistic and credible in the students’ eyes (S12, S50). Having industry
clients improves the students’ technical and nontechnical skills and better prepares them
for the challenges they will face in the work-life (S70). In a survey conducted by S4, 19
out of 20 students answered “yes“ to the statement “It has been great dealing with a real
client“. S39 conducted a study on students’ attitudes before and after the capstone course.
According to S39, it was evident that the students saw first-hand how software engineering
is much more than just coding and clearly better understood the importance of teamwork,
quality assurance, version control and customer collaboration.

The collaboration has several benefits for the client too. S22 conducted a study to find out
reasons for why clients participate in such project courses. The reasons included getting
a tailored software product, to research new technologies and, as a clear number one,
recruitment. Recruiting students could happen directly from the team or more indirectly
by adding visibility among the students as a potential employer. Others have noticed this
benefit too, it is not uncommon for students to get hired by the industry partner who
sponsored their capstone project (S8, S19, S45, S53, S77). S45 report having at least 60
out of few hundred students gaining full- or part-time job offers based on the capstone
project outcomes, in mere few years. Keeping the experience positive also for the clients,
might make them come back with further project ideas (S4, S22). This helps to reduce
the client acquistion overhead for years to come. Some organizing institutions have even
managed to attract more external clients than there are student teams, which has enabled
them to collect a small fee from the ones participating in the course (S22, S81).

4.3 Projects

Three main ways for project sourcing were identified based on the literature. As the ma-
jority of courses have multiple external clients, the project ideas in these courses mainly
are derived from the needs of the customer. In these cases, the organizing staff often
performs some pre-screening and scoping in collaboration with the clients, to ensure that
the expectations for the projects are realistic and that the project scopes suit the intended
learning outcomes (S4, S6, S22, S55, S62, S81). Externally sourced projects should gen-
erally not be on the critical path of any external organization, as the course is intended
to remain a safe learning place for the students (S4). Some educators also emphasize that



4.3. PROJECTS 29

students are not working for these clients, but are in collaboration with them (S55, S81).
Thus the projects need to remain such that the students can have a say in the ways the
project will be developed.

Out of the sources, 12% mentioned that the students themselves are the main source for
project ideas. These educators have realised that students are more motivated if they get
to choose the project idea rather than have teachers assigning the projects (S22, S23, S31).
According to S31, if the team selects and defines the projects, their level of commitment
and excitement to the project rises as the software system grows. At the end of the
semester the students have a strong sense of ownership towards the project, rather than
feeling that they have just done one additional assignment (S23, S31). However, there are
some potential pitfalls with this approach that educators should be aware of. S77 states,
that students should not be allowed to bring project ideas from the companies they work
at or from their own businesses. S77 have found that it causes a conflict of interests for
the student with the proposal and creates an unfair situation for the rest of the team. S23
lets students to form their own teams and generate their own project ideas, but states
this might not accurately reflect the situation in the students’ future professional lives. If
the project idea comes from the team itself, all complexities associated with requirements
elicitation and analysis are eliminated (S45) making the experience less realistic. Real-life
projects come with challenges relating to contradicting expectations coming from various
external and internal stakeholders (S45).

For 29% of the courses, the course staff provides the project spefications. Some educators
have assigned the same project idea to all the student teams (S44), or even in some cases all
the students work on the exact same project in one team (S72). Having the same project
has the benefit of giving the course staff a consistent basis for grading and teaching (S44)
and providing technical assistance to the students (S31). In such cases, all teams will need
to deal with the same complexities, project management issues and technology demands
as in a typically constructed course, which makes the experience more predictable (S44).
Having one project idea also opens up the possibility for competition amongst the teams,
e.g., which team will create the best design and implementation (S1, S25, S44, S72). It
also possibly allows the course to focus more on the quality of the developed software (S1).
S1 has experimented with both approaches, having multiple project ideas and having only
one project. They have found it more productive and rewarding to focus on doing one
project really well rather than juggling multiple projects and obtaining partial results.

Thus letting the students freely choose differing project topics increases motivation and



30 CHAPTER 4. SEMI-SYSTEMATIC LITERATURE REVIEW

ownership of the project, but decreases the realism in regards to what students will face in
the work-life. A successful way to combat this tradeoff has been combining a multicustomer
and multitopic course with students’ project preferences (S26). Students for instance list
the available topics in order of preference and the teacher assigns students into groups
based on their skills and stated preferences (S26, S53, S59). Tools can also be created to
manage the increasing workload that comes with diverse projects and teams (S70, S79).
These include tools for assessing the knowledge and preferences of students and tools for
assigning them to teams (S79). Also semiautomated workflows for the provisioning the
course infrastructure have been created (S79).

Projects from all three sourcing categories generally proceed from an idea to a proof-of-
concept or a product with few core requirements implemented, but which will not see real
production-use during the time of the course (S2, S4, S15, S27, S37, S46, S47, S55, S62,
S64, S68, S72). There are some cases where some of the projects have been production-
ready at the end of the course, but these too were then handed over to the customer
(S1, S6, S28, S39). This practice leaves students without the experience of working with
existing products in the maintenance phase of the software lifecycle (S52). Students are
also less motivated to work on the project if they know it will never see actual use and the
project assignment is artificial (S52). Assigning students to contribute to Free and Open
Source Software (FOSS) projects is an emerging approach to remedy these shortcomings.
The idea is to allow students to deal with existing codebases, often large and complex,
such as the one they will face when working in the industry (S52). S52 have built a large
program where 30 Canadian schools provide suitable open source projects for the students
to work on. However, they do mention that there are some restrictions on this model.
Only selected students, who can demonstrate high motivation, get to work with these
projects. As the projects are located scattered around the country, there are travelling
costs involved, if the students wish to meet the project mentors.

4.4 Technologies

Not all sources describe the technology choices made in the course, or who gets to make
the choice (see Table 4.1). In multicustomer courses, or in other courses with very differing
project ideas, the technology choices are made based on the project (S55) and possibly
based also on the client’s infrastructure (S22). In these cases the course staff does not
impose an entirely common technology stack for all the projects. Then again, having



4.5. TEAM SIZES 31

common technologies for all projects is fairly common in cases, where the teachers provide
students with the project requirements (S27, S36). In some cases, the evaluation methods
focus heavily on the technical implementation and the course graders might for example
have sets of tests they like to run on each project to determine the quality (S74). Some
educators have the students compete on the same project proposal which makes choosing
a common stack justifiable (S25).

On the other hand, having the teams decide on the tools and technologies makes the
students explore available options and justify their selections (S53). This not only gives
them autonomy but also makes them responsible for their own successes and failures. S53
has witnessed how students take pride in their work when they exceed expectations in
the technology selections. For courses that have have differing technologies, this often
entails students learning also new ones. In some cases students themselves have said that
they have chosen a particular project so that they had the opportunity to learn some
skills that otherwise they wouldn’t have covered in their degree (S4). There is a value in
exposing students to situations where they need to self-learn new skills beyond a structured
teaching environment (S4). Students will face situations in their work-life where they
need to learn new technologies and students should be encourage to continue professional
development even after they graduate (ACM/IEEE, 2014). Even though the majority of
technologies would be selected based on the project and client, some sources recommend
having some shared infrastructural tools and technologies (S31, S70, S71). Version-control
(S71), project management tools (S31) and tools for continuous integration and delivery
are examples of these (S70). It has been found to make the evaluation and distribution of
projects easier (S70).

4.5 Team sizes

The team sizes vary a great deal, ranging from 1 to 15. Educators have found that in
very small groups, e.g., 2–3 students, the teams are unlikely to generate the dynamics and
issues that are common in collaborative software development (S23, S31, S33). Such small
team size does not present enough of a challenge (S23). Smaller groups are also unable
to complete substantial projects in the typical one semester timeframe (S31). Slightly
larger teams of 5–6 students have been found to be more successful in this regard (S28).
Having very small teams might also be unmaintable in large programs of hundreds or even
a thousand students due to the extra organizatorial overhead each team causes (S20).



32 CHAPTER 4. SEMI-SYSTEMATIC LITERATURE REVIEW

Going to the other extreme, larger groups with 7 or more students have often found
to be facing other kinds of problems, such as, inability to meet all together and other
management and coordination issues (S23, S31). “Free-rider“ problem is also repordely
common in larger teams, where it is possible for few students take the bigger responsibility
for ensuring the overall success, and the small contribution of others might go unnoticed
(S33, S35, S55). S35 studied the gap between student expectations and reality of teamwork
in group projects. They found that even in teams of 4 to 5 students limited contributions
at the last minute, sporadic attendance in group meetings, or submitting unnecessary or
poor quality work by some team members caused major stress and frustration in the team
(S35). This has gone to the extent that some students have made pre-emptive plans for
future project courses on how they can complete the work alone if necessary (S35). This
unlikely is what the course staff intended. The risk for such behavior grows, if the group
is large (S33, S59). In larger teams ensuring an equal balance of work and responsibilities
requires more attention from the course staff (S55, S59).

The course conducted in S72 presents an outlier case what it comes to team sizes. The
course had 15 students working the same game project in one team. The idea was to
simulate what large-scale game development in a diverse team feels like and what it takes
to create production-quality games. The authors share that their approach was not really
successful. In the aftermath of the course, it came up that some students wanted explicit
direction while others felt that they wanted more autonomy and control. According to
the authors, for the latter group of students, it was clear that they were uncomfortable
following the leadership of the vision team and would have preferred to work on project
of their own design. However, the authors also mention that getting to work with your
own project vision is a very unlikely case for any recent graduate, which is why they did
try to come up with such a real-world teamwork scenario.

Majority of educators do seem to opt for the middle ground of team sizes, and have 4 to
6 people working in any single team. This size is perceived as the sweet spot, cancelling
out the negatives of the two extremes (S23, S31, S33). Additional measures for combating
any non-productive and opportunistic group behavior such as social loafing and free riding
has also been proposed. Conducting peer reviews has been proven to mitigate the risk
for such behavior (S35, S44, S63). Some periodic monitoring should also be done by the
course staff to ensure working team dynamics (S35).



4.6. MENTORING 33

4.6 Mentoring

Many sources specifically mention that the teams should not be left entirely on their own
to complete the course project (S2, S4, S6, S31, S44, S70). Just as there are students
who are self-motivated and conscientious, there are also students, who without mentoring,
lack the skills or motivation they need to succeed in the course (S2). Also to provide
consistency across the experiences, some form of supervision and mentoring is crucial
(S4). Rows describing assigned mentoring positions in Table 4.1 reflect this. Sources
where there are no mention of the teacher, or anyone else, having an active role in how
the teams work during the course, fall into the category “Not described“. If course staff
only passively receives reports of the students progress and evaluates the course outcomes
after its completion, these are not the active mentoring we were looking for. Some courses
have several types of mentoring present, in which case the source has been listed under
each corresponding category in Table 4.1.

The most popular way of mentoring is to have the course staff acting as mentors. The
intensity of mentoring between these courses, or even within these courses, vary a great
deal. Sometimes course staff provides oversight in a more supervisory role and intervenes
the team’s work if any conflicts arise or team includes clearly non-contributing students
(S2, S4). At the other end, some instructors have weekly meetings with the students
where the teachers actively propose solutions and guide the teams with technical and non-
techical issues and team dynamics (S2, S4, S56). Some teachers prefer even to practically
manage the team (S4). S31 explain that the most successful changes made on the course
were those that allowed the course staff to take a more active role in each team. The
grades of students improved and the teams were able to complete more functionality to
the software products.

Another, often complementary, way of mentoring is to have industry experts occasionally
participating in the course. This can be seen as an especially relevant way of mentoring
when the course projects are focused around a common theme, for instance the gaming
industry (S72). However, finding the correct balance in this type of mentoring, without a
client relationship, has sometimes proven to be tricky. The authors of S72 had industry
experts from the gaming and software industries participating as advisors on their course.
The advisors’ feedback on the students game product was mainly positive and encouraging.
While the staff took their remarks to mean that the game concept and development for
the moment was commendable, the students took the feedback to mean that the prototype



34 CHAPTER 4. SEMI-SYSTEMATIC LITERATURE REVIEW

was, as presented, worthy of praise. This presented a dichotomy that never really resolved:
students felt that the project was near-complete, whereas the instructors felt that the
project was, at best, a rough sketch.

Many sources have noticed the updsides of having more experienced students, outside of
the course staff, mentoring the students in the course. These can be for instance students
who have completed the project course themselves in the past year (S4, S82). This has
been found to benefit both the project implementation and group dynamics: an active
coach can for example help students ask clarifying questions of the customer, overcoming
a fear of these being stupid and saving days or weeks (S82). Student mentors can also act as
external process auditors and document reviewers, ensuring that students are performing
as expected on the course (S4). These peer audits have proven to be productive and
positive experiences for the reviewer and the team being reviewed (S4).

Forming a team of the final year students with similar skill levels is in accordance with the
ACM/IEEE Curriculum Guidelines for SE programs (ACM/IEEE, 2014), but leaves out
an integral part of the software developer team experience: junior and senior positions.
This discrepancy has been noticed by some educators (S4, S12, S33, S63), who have
gone beyond having senior students just as mentors. In their capstones less-experienced
students work as junior developers and more-experienced students as senior developers or
team leaders. S12 organized their capstone course in a way that students are required
to work two course units on the same project, one unit as a junior member and one
unit as a senior member. Each unit lasts one period, but the periods do not have to be
consecutive to allow some flexibility for students in organizing their studies. In order for
such arrangement to work, the projects in the course are large, long-term products, which
undergo enhancements over a number of semesters. S12 found that for junior students,
this setup allowed a smooth transition to the project, up-skilling on relevant skills and
acquiring the necessary orientation from senior students. Senior students, on the other
hand, were enthusiastic about mentoring junior students and finding answers to their
questions ranging from project requirements to the technology stack. S63 have similarly
split their capstone project into two parts with junior and senior positions. They also
had faculty mentors with industrial experience mentoring the student teams working with
external clients. According to S63, having this course design enabled them to create an
effective industrial simulation. S63 reports that students used tools and practices prevalent
in industry but frequently not taught in university and were able to develop professional
and team working skills more intensively.



5 Case Study

This chapter presents the results of the interviews of student and faculty members involved
in the Software Development Academy (SDA). Section 5.1 is based on the student inter-
views and describes the perceived educational aspects and challenges of the SDA. Section
5.2 is based on the student and faculty interviews and presents the experienced differences
between the SDA and the capstone course in the University of Helsinki. Finally, Section
5.3 provides a summary and comparison of the results from the literature review and the
case study.

5.1 Educational mechanisms

As the student interviews were semi-structured and many of the questions were somewhat
overlapping and open-ended, no single question provided a full description of the educa-
tional mechanisms of the SDA. Instead the topics summarized in Table 5.1 were found
as a synthesis of all the interview questions. These topics present the aspects with most
mentions by the 15 interviewees. Some of these emerged when asked about the pros and
cons of the SDA on its own, and others when the SDA was compared to capstone projects.
We will go through these topics in the next sections.

Table 5.1: Identified educational mechanisms and challenges in the SDA

Interviews
Educational mechanisms
Production-quality software 15
Wide responsibilities and autonomy 15
Employee status and salary 14
Strong community and networking possibilities 13
Easy integration with studies 11
Selectiveness of team members 11
One-year duration 10
Working with external stakeholders 6
Perceived challenges
Lack of clear seniority 9
Asynchronized working schedules 6



36 CHAPTER 5. CASE STUDY

5.1.1 Production-quality software

The most commonly mentioned positive aspect of the SDA is that the software developed
goes to production and actual use by end-users. All 15 interviewees made a note of this,
especially compared to software projects they had worked on during their studies. Project-
based courses commonly include developing software from an idea to a robust prototype,
and do not include work in a production environment (see Section 4.3).

According to the interviewees, actual usage of the software brings out many important
things. Firstly, it forces students to focus on the quality of their work. Even though the
developed software might not have millions of users, it is never-the-less expected to be up
and running without interruptions. Thus any changes introduced to the software should
not leave it in a broken state. Secondly, it teaches students how to handle and maintain
development pipelines and infrastructure resources, keeping in mind that the software is
in production use at all times. Thirdly, several interviewees indicated that developing
software, which actually benefits the users, gives the students motivation to work on it.
Finally, it gives students the ability to say in a job interview, that they have worked on a
production-level software for a year.

“(Developed features) to production as fast as possible. That is something that
you don’t necessarily get to experience in other environments. And you don’t
understand the value of that until you witness it first-hand. The long-term
nature of the development is important. It is not enough, that the application
works for six weeks and then explodes on the eight (week). It adds seriousness
to the process.“

“The sense of meaning in the work and releases in the SDA is high. There are
actual users who are happy with the updates made in the software.“

5.1.2 Wide responsibilities and autonomy

Another thing that all the interviewees mentioned as a positive, is that the students are
given wide responsibilities in contrast to narrow and simple tasks. This made students
feel that they better understood software development as a whole. In practice, most of the
interviewees describe how they started at the SDA by working on simple front-end issues,
such as minor bugs or feature requests. From there on they progressed deeper into the



5.1. EDUCATIONAL MECHANISMS 37

backend of the software, and built larger and more comprehensive features. Building new
features often included also refactoring older parts of the codebase and making changes to
existing databases. Most interviewees also ended up taking some responsibilities related
to the infrastructure that the software runs on. This meant working on the deployment
pipelines or setting up software on new virtual machines. Some spent a lot of time inte-
grating the developed software to the systems used in the university. By the end of their
year, an average student had had a lead role at least in one software, and also acted as
a mentor to new-comers. The wide variety of tasks and areas enabled students to gain
highly valuable skills for their future work life.

“You get a really vast experience from different areas of software development
really fast. You get to do everything. And you get to do it almost immediately.“

“It is not that I didn’t learn any new skills at the SDA. It is that there are so
many skills, I think it is worthless to start listing all of them.“

“Coding. Infrastructure. Designing software architectures. Testing. People
skills. Working with colleagues. Trunk-based development. That’s about it.
All sorts of coding. Infrastrtucture, databases, message systems, end-to-end
testing. A really vast set of skills and knowledge.“

Those interviewees who currently work in the industry mentioned that taking up on such
a high responsibility and a variety of tasks is usually not possible within the timeframe of
one year. This is especially true when considering larger companies, teams or software, in
which the responsibilities tend to be much more refined and focused. Some interviewees
also explained that this kind of variety of tasks, gives the student a possibility to test
various things in a working context and only then decide which direction they want to
specialize in the future.

“I could not perform in my current job as a software developer if I hadn’t been
to the SDA first. I would not survive my tasks. Entering working life right
after the Software Engineering Project would have made me cry.“

Along with wide responsibilities, a few interviewees specifically mentioned high autonomy
regarding software development choices and practices as a positive thing. Being able, and
also having the responsibility, to choose the way some feature is implemented gave many



38 CHAPTER 5. CASE STUDY

interviewees the feeling of satisfaction and they regarded it as an important motivational
aspect. However, it is worth mentioning that the high level of autonomy was not perceived
entirely as a positive thing. Some interviewees noted that while having freedom in your
work is a nice thing to have, autonomy combined with relatively inexperienced developers
might lead to some poor choices or less optimal ways of implementing a feature, tool or
configuration.

“Even though there are some guidelines and rules on how people do things in
the SDA, there are so so so much fewer of those things than in some companies.
That might show in the way people sometimes make insane choices what it
comes to development. For instance, someone might code something that has
no use. Or focus on something funny. Which of course is nice and fun, but
might not give so much to the product being developed.“

5.1.3 Employee status and salary

Naturally, one of the major differences between project courses and the SDA is the salary.
Even though the salary is not high, the interviewees report it being one of the main
motivators to join the SDA in the first place. With salary, comes also the job contract,
which ties the student members to the team on a whole different level than in traditional
capstone projects.

“It is a good aspect of the SDA that you work there and you get money. If the
SDA was a course worth of 25 credits without any money, I think the outcome
would be very different.“

Some find already intrinsic value in the university employee status and reflect on how they
tought it was interesting to be on the “inner circle“ at the university. They got the official
status saying they are working as a developer, got to network and had an office space
available at the university. Most mention that they have found the extrinsic value of the
employee status, when applying for employment after their time in the SDA. Year worth
of industry-relevant work experience using modern technologies gave them a head-start in
the job search.



5.1. EDUCATIONAL MECHANISMS 39

5.1.4 Strong community and networking possibilities

Almost all of the interviewees brought up the community, which has formed at the SDA
over the years, as a positive factor. Some explain how they have created real friendships
with their collegaues and others how they have enjoyed having like-minded people in the
work environment. This not only has made their time at the SDA more enjoyable, but
also affected their future employment. In the interviews, 3 out of 15 mention finding
employment directly due to the relationships they built at the SDA. Few others have been
in job interviews arranged by people at the SDA, even though they did not end up in those
positions. One interviewee mentioned that it is nice to know people who are working in
the same industry, but not in the same company as they currently are. This gives them a
possibility to gain perspective on how others do things in the industry.

“Sense of community and team spirit is unusually strong at the SDA. It has
shown also after I left the SDA. The SDA has a strong community and people
care about each other and take care of each other.“

5.1.5 Easy integration with studies

One recurring topic in the interviews was the convenience and flexibility of working at the
SDA. The location of the office at the campus, right alongside auditoriums and classrooms
where the CS courses are held, was perceived very handy. Some interviewees mentioned
that it was possible to work a few a hours in between lectures. Not having to work strictly
from nine to five was convenient for many. The general atmosphere also encouraged to
study, and few found their Master’s thesis subject within the SDA.

“The SDA fits into the studies really well. Studies and the SDA are really easy
to integrate into one another. While I was doing the SDA-things, I was also
doing the school things. For instance project work could be of both. In that
sense, it was really efficient use of my time. I also gained a subject for my
thesis from the SDA and peer support for doing it. That is something that
was really not available elsewhere.“

However, despite the convenience, the SDA being part-time work naturally takes time out
of one’s weekly schedule. When asked about the progress of their studies during their
time at the SDA, 5 out of the 15 said that the work at the SDA was so preoccupying that



40 CHAPTER 5. CASE STUDY

their pace of progress slowed down. Two interviewees mention that it is hard to estimate
the effect, since they had other factors slowing down their studies, such as the COVID-19
pandemic. Six felt that they progressed as planned. Some of these six were finishing
their studies, and felt that the SDA did not have any effect in one way or another. Two
mentioned that their time at the SDA boosted their pace in studies as the environment
was encouraging.

The ones who progressed as planned, or better, mentioned flexibility with the working
hours, the general attitude towards importance of studies in the team, and the close
relation to the university community as things that helped them to maintain their pace of
progress.

5.1.6 Selectiveness

When asked of negative aspects of the SDA, few raised up exclusivity as an issue. Some
felt that it is an unfair advantage that few selected members of the student body are given,
and not everyone gets to have such an experience during their studies. Others however
raised exclusivity up but in a positive light. Since the students are specifically hired to
the SDA, there is a good chance that they are motivated and fit into the environment
well. This not only makes the team more productive but also the working experience
more enjoyable. With capstone projects, many interviewees felt that since the course is a
compulsory one, the groups are often random collections of students which has a negative
effect on the overall performance of the team. With the selective recruitment process
comes also the risk. As with any company hiring, recruitment to the SDA contains the
risk of the wrong person getting hired. That is something some interviewees perceived as
a challenge at the SDA.

5.1.7 One-year duration

Capstones and other project-based courses tend to last only one semester, which does
not necessarily give students sufficiently deep experience into software engineering (see
Section 4.1). This opinion was also shared by many interviewees regarding the Software
Engineering Project at the University of Helsinki. The SDA however, lasts for a year,
including full-time work in the summer. This provides a more ample ground for students
to build their skills.



5.1. EDUCATIONAL MECHANISMS 41

“In the SDA you have a lot more time, and it gives you the possibility to dive
deeper into the projects. Even though the Software Engineering Project is 200
hours, it still is a scratch on the surface what it comes to software development.
After all, you are suppose to fit the whole software lifecycle in that 200 hours.“

Some raised up the one year duration as a negative aspect, or a thing that they might want
to change about the SDA. But in the sense, that it is too short of a time to experience
everything you want.

“I, of course, understand why students get to spend only one year in the SDA.
But still, I feel that the first year in a new job is usually some sort of an
orientation period. ... That is how long it takes to make yourself comfortable
and acquinted in any team, no matter how good the team is and how well you
yourself might fit into it. ... I still think that the second year is a lot more
productive for most“

5.1.8 Working with external stakeholders

Especially out of those students, who had previously not done project-work with clients or
end-users, many felt that their project management, client negotiation and communica-
tion skills grew at the SDA. Some of these interviewees also felt that they would not have
gotten the same experience what it comes to clients as juniors in the software engineer-
ing industry. In such environments there might have been project managers or account
managers handling the communication and planning.

“I learned a lot about project management. I learned how to evaluate people
and tasks and how to fit those two together. I learned to appreciate the
expertise that other people have. I gained a lot of experience in working with
people. I learned how communicate and conduct myself with clients.“

5.1.9 Challenges and further improvement

When analyzing the interview data, it became clear that working at the SDA is regarded
as a highly positive experience. Most of the interviewees struggled with finding any clear
negative aspects of the SDA, apart from the relatively small salary compared to industry
averages.



42 CHAPTER 5. CASE STUDY

“I can’t come up with anything really negative.“

“I really can not think of any bad aspects“

“This is again hard when I should come up with something negative. Let’s
see. I can not think of anything negative compared to project courses when I
think about it.“

And moreover, some aspect which one interviewee would change, might have been the
best thing about the SDA to another. High autonomy was the aspect that most clearly
divided opinions.

On Q13: How would you change the SDA?
“Of course, if I were given the chance to dictatorially decide how we are gonna
do things at the SDA, I would start using TDD and pair programming. ...
Everything would go through pull requests and code reviews as well. I mean,
if I got the choice, I would enforce these quite strict quality control measures.“

On Q5: What positive aspects do you think the SDA has?
“It is really free. You get to fly solo. You have some guidelines within you are
free to go solo. You get to choose which technology or library to use for the
feature and how to implement it. Not a lot of strict practices.“

Even though no common and strictly negative aspects can be found based on the intervie-
wees, there are few challenges and areas at the SDA that could be further improved. The
most commonly mentioned challenge relates to the experience levels in the group. SDA is
comprised of students with generally little work experience in software development. On
one hand, this was regarded as a highly positive thing, it meant finding friendships within
the work community was easier, when the other workers felt more like peers. Having
co-workers of the same age group with same areas of interest also enhanced the feeling of
relatedness and created a distinct culture to the workplace. But on the other hand, similar
backgrounds causes a certain lack of clear seniority in the group, especially compared to
other work environments. In a more typical work environment, there would be senior staff
who might have already been in the industry for several years, who then could mentor the
junior developers what it comes to work practices, tool selection and even coding patterns.



5.1. EDUCATIONAL MECHANISMS 43

“The good thing about the SDA is that you have a lot of responsibility and
you need to do actual things. The thing you don’t get that much, which you
might get in other jobs, is that there is someone truly experienced and skilled
senior developer guiding you. That experience can be really educational. So
even though you have those “senior“ coders in the SDA-model, it is not the
same as you have someone who has worked in the industry for 15 years. So
you are missing that kind of an experience in the SDA.“

According to the interviewees, this lack of mentorship in some cases meant that one could
carry on doing a bad practice for a long time, without anyone necessarily noticing. Not
having assigned mentors and processes in place for mentoring, also leaves more respon-
sibility of the progress to the hands of the worker themselves. The interviewees mention
that one could always easily ask for help from the more senior members of the team.
But especially when working remotely, the threshold for asking help is always higher than
threshold for accepting mentoring, when a skilled senior offers it.

Some suggestions were made on how to tackle this issue, first one being pro-longing the
contracts to last more than one year. Another possible solution to this would be having
more processes or structure within the ways of working, for instance, starting code reviews.
Some interviewees mention that restricting the autonomy and freedom of a single student,
might increase the way students learn from each other in the team.

Other negative aspects mentioned by the interviewees are more clearly related to the global
COVID-19 pandemic. Many negative aspects can quite clearly seen to be caused or at
least amplified due to being forced to work fully remotely. One interviewee explained how
their time before the pandemic was great, but after moving to full remote work, they felt
that the peer support and joy of working in a team decreased. Similarly, another one
mentions that the communication and brain-storming within the team was lacking, but a
big part of it can be pinned on “the times we are living in“.

Those, whose SDA-year was in its entirety done at the office, mention teamwork being as
one of the key things they learned from the experience. They also see it is a thing that
worked well at the SDA. But the ones who worked only remotely, did not see teamwork
in such a positive light. Or if not negative, it at least was missing from the list of “on top
of your head“ skills that they learned. Despite the fact, that these students felt that the
community, friendships and networks they have gained through working in the SDA were
extremely valuable and positive, they still were left with the feeling that something was
missing when working only remotely.



44 CHAPTER 5. CASE STUDY

“The fact that you get to work whenever you want is easier and more flexible,
but on the other hand you don’t get the benefits of real teamwork. In my
current job, I talk and work with people on a daily basis. But since so many
at the SDA has the 50% job contract, the work gets pretty async at times.
Someone does something, and then you get a message from them, and then
you reply when you work and so on. And then we have some weekly meeting.
So that is different compared to my current job.“

5.2 Could courses replace the SDA?

This section discusses whether the model could be replaceable by an university-level course
or courses. The evaluation is done based on both, the student interviews and manager
interview.

5.2.1 Experience compared to capstone courses

Most of the interviewees had completed the Software Engineering Project (SEP) capstone
course during their studies in the CS Bachelor Program (see Table 3.2). From the students’
perspective, the similarity of the capstone and SDA experiences vary a lot. The ones who
have had an external client from another department in the university perceived the work
as being fairly similar. In their capstone projects they too got work for a real client from
the university and develop software for the university. Some even worked with the same
technologies and in the same office space during their capstone as they did at the SDA.
For these students the transition from project-work to the SDA was fairly small.

Many however consider the difference between the capstone project and the SDA as night
and day. The considerably longer time they spent working at the SDA allowed them to
fully delve into the project topics and work on implementing fairly large systems. They
also felt a lot more responsible for their work in the SDA, due to the products being in
actual production use by end-users. They refer capstone projects rarely making it beyond
the proof-of-concept phase and rarely getting integrated into the clients’ systems. Many
of these interviewees make a clear distinction between the other one being a school project
and the other one being real work, and add that there is a certain level of professionalism
at the SDA that they did not experience while completing the capstone project course.



5.2. COULD COURSES REPLACE THE SDA? 45

“Projects are just projects. I never regarded the SDA as a (school) project,
since the SDA is a place of work, and those two are hard to compare. Projects
give you experience, but I wouln’t put any of my school projects into my CV.
I can, however, put the SDA into the CV, since at the SDA people develop
software with a much wider scope and they do it for actual users and clients.“

“The SDA is the only place in the university where you get to work with such
projects, that match working in the industry“

Out of the interviewees, a group of their own are the six who have been credited the cap-
stone course due to their participation in the SDA. Interestingly, those students generally
place a much higher value on the project course, than those who had completed it. Those
who had not completed it themselves, speculated that it might have been a comparable
experience to the SDA in terms of realism, client experience and skills it teaches. Those
who had completed both the capstone course and the SDA, regarded the SDA a more
valuable experience, that could not be replaced in its entirety by the capstone course.

In the faculty’s eyes, the two are also entirely different experiences. The manager states
that the SEP almost “runs on its own“, now that the upfront investments in time and
effort have been made. The manager has coded tools which help to automate the process
of team formulation in the course. The course has skilled senior students as mentors for
the projects, who have the responsibility then again to propose skilled students to be the
mentors for the next year’s projects. The role of a responsible teacher is mainly managerial
at this point. According to the manager, managing the SDA is much more work-intensive.
The manager is much more hands-on in everything that happens at the SDA from coding
to pitching new software products in university meetings. The recruitment also takes up
a considerably bigger chunk of time, as the manager is very invested in every recruitment
decision.

Q10. What differences do you think leading the SDA and the software engi-
neering project course has?
“It is really different. There really are no true similarities.“

5.2.2 Replaceability with other studies

To Question 11: What kind of a course could provide what the SDA provides? 9 out of
15 interviewees stated that they cannot see a course could offer the same experience that



46 CHAPTER 5. CASE STUDY

the SDA does. The long duration and the skills and dedication it takes to work at the
SDA, were seen as some of the most severe hindrances for replacing the SDA with a course.
Students’ commitment has a key role in the success of the SDA and the commitment would
be hard to replicate in a course environment. The interviewees mentioned that the course
would have to last at least a year, including summer, which is hard to achieve without
paying the students. Four interviewees hesitated, but ended up saying that there might be
a chance to build something similar, if not quite like it. Those four mainly focused on the
skills that the SDA provides, and on how they could be taught via project-based courses.

When asked about how many credits do they perceive that their year at the SDA is worth,
the interviewees’ answers ranged from 15-120, averaging around 53 credits. For reference,
in the European Credit Transfer System, 1 ECTS credit amounts to approximately 27.5
hours of studying, and a full year is 60 ECTS credits. And even still, many interviewees
felt, that the salary from the SDA was so important, that it cannot be replaced with
course credits.

Another major difference, which is not easily replicable, is the employee status and real
work experience that the students gain when starting to work at the SDA. The student
interviewees also noted that finding skilled and motivated managers who can guide the
students, amidst all their own teaching and researching responsibilities, would became an
obstacle for creating such a course.

“It requires quite a lot of skills from the responsible teacher. The one who
coaches and guides the developer team. They ought to be really good.“

“Compulsory internship where you go to a real firm. It should be a real work
environment to get the same that the SDA provides. Even though the software
engineering project course tries to mimic it in some ways, people just aren’t as
invested in those projects like you should be in work life. People come and go
as they please and it is really different in my experience.“

The manager strongly aligned with these views and according to them, there is no course
that could offer the same as the SDA. The manager states that the selective recruitment
process, and the fact that students do real work in exchange for a salary creates a com-
munity and an experience that are not possible to recreate in a compulsory course.



5.3. SUMMARY AND COMPARISON OF THE RESULTS 47

5.3 Summary and comparison of the results

This section provides a summary of the results and compares the mechanisms used in
capstone projects to the ones found in an university-lead internal software startup. The
summary presented in Table 5.2 does not attempt to find an exhaustive mapping between
the two, but rather seeks to find the most relevant mechanisms that were discussed and
then present what the literature review and case study revealed about the matter.

Table 5.2: Main aspects of capstone projects and a university-lead internal software startup (SDA)

Feature Traditional capstone Internal startup (SDA)

Duration Few months to one year 1-2 years

Intensity Few hours to 40 hours 8 months half-time, 4 months full-time

Salary No Yes

Employee status No Yes

Clients Little over half of the courses have ex-
ternal clients from the industry or from
other units in the university

External clients from other units in the
university

Project sourcing Industry-proposed, teacher-generated
or student-proposed

Manager finds suitable projects that are
based on a real need

Software phases Mostly greenfield coding: from idea to
a robust proof-of-concept

Existing projects in production use

Team size Varies from 1–15 students per team,
generally 4–6 students

4–10 students and one manager

Team composition One team of students working on one
project, generally no interaction with
other teams

Several, partially overlapping subteams
for different projects

Mentoring available Available mostly from faculty, some-
times from industry or more experi-
enced students.

Available from faculty and more expe-
rienced students

Student selection Generally students with certain pre-
requisite courses completed or of cer-
tain class in their studies

Selective recruitment process

Technologies used Varies a lot, some have common stack,
some don’t

Common stack across projects



6 Discussion

In this thesis, the main objective was to understand how universities and other tertiary
education institutions prepare their students for the life in software engineering. Section
6.1 will briefly describe the findings for each of the three research questions while discussing
on the answers found. Section 6.2 discusses the threats to validity in this research and
how they have been mitigated. Related work is presented in Section 6.3, with examples
of software development teams with similar organization or results as the presented case
study of an internal software startup in a university-context.

6.1 Answering the research questions

Three research questions were formulated that guided this research. We will next go
through these questions and discuss the answers found for each one.

RQ1: What mechanisms traditional capstone courses use to prepare students
for the software engineering industry?

The first research question was approached by going through conference proceedings and
journal articles regarding software engineering capstone courses. Based on the literature
review, seven different aspects were identified and all the courses were categorized along
these aspects. These aspects represent the mechanisms that educators use in their capstone
courses to simulate work-life in the software engineering industry.

In more than half of the capstone courses, students produce software systems for external
clients from local businesses, non-profit organizations or from other units in the university.
In these courses, the project ideas are also produced by the client themselves and further
refined in collaboration with the teachers. Some educators choose to conduct the courses
without external clients. In those cases students work either from project ideas crafted
by the course staff or students themselves generate the project proposals. Even though
students might be highly motivated to work on their own ideas, or having a common
project outlined might be convenient and consistent for the course staff, using external
clients was generally perceived as the best practice. Completing a software project based
on the real needs of someone else gives the students a chance to practice their project



6.1. ANSWERING THE RESEARCH QUESTIONS 49

management and communication skills with external stakeholders. Students will likely
face ambiguous problems of non-technical people in their worklife, which makes these
capstone experiences more closely resemble real life.

In software engineering related programs capstone courses should span the whole academic
year (ACM/IEEE, 2014) or otherwise be substantially larger than what the students
have experienced during their earlier studies (ACM/IEEE, 2013). However, we discovered
that the average duration for capstone courses is one semester. Real-world constraints
of cramped curriculas, finite teaching resources and students’ commitments to work and
other studies were found to be the major reasons for this. Those institutions who had
implemented a two-semester course found it highly beneficial for the students. It enabled
students to dive much deeper into the projects and new technologies and learn about the
long-term nature of software development.

Mentoring and coaching students especially related to work practices and project manage-
ment related issues are generally applied to these projects. In most cases, the course staff
are the ones doing the mentoring, while some utilize industry mentors or more experienced
students. Student team sizes vary from single person endeavours to the whole course of
up to 15 students participating in a common project. Most educators had found that the
sweet spot lies between 4–6 students. Such team size enables students to resolve commu-
nication issues as they would in real life teams but the risk for free-riding on others’ work
diminishes.

As capstones are simulations by nature, students rarely get to work with large software in
production-use, which again is a likely situation in the software engineering industry. The
projects typically progress from an idea to a robust proof-of-concept. Assigning students
to work with large and complex Free Open Source Software (FOSS) was proposed as a
potential remedy for this discrepancy. However, only one source within the literature
review was found using this methodology (Holmes et al., 2014), which would indicate that
using FOSS projects is not common in the software engineering education.

RQ2: What mechanisms does a university-lead internal software startup use
to prepare students for the software engineering industry?

Along with the second research question, this research proposed a novel framework of a
university-lead internal software startup. The framework was presented through a case
study, Software Development Academy (SDA). SDA is a team of students, lead by faculty
that develops and maintains administrative educational software for the use of the entire
University of Helsinki. We also gathered the experiences of SDA alumni currently working



50 CHAPTER 6. DISCUSSION

in the software engineering industry to answer the presented research question. We quickly
saw that the students found the experience highly relevant and it prepared them for
the life in software engineering well. Students got to spend an entire year developing
production-quality software, which was regarded as a truly educational experience. Having
wide responsibilities ranging from user interface fine-tuning all the way to leading a small
software project team gave them a much wider skillset for worklife that they could have
gotten from elsewhere in the university. The strong community and networking possibilites
provided by the SDA had enabled some of them use it as a stepping stone for finding their
current jobs. While no clear negative aspects of the SDA were identified, the lack of clear
developer seniority and sometimes asynchronous communication resulting from remote
work, had created some challenges for the work at the SDA.

RQ3: How do traditional capstone courses and a university-lead internal soft-
ware startup differ?

With the third research question we aimed to see, if there are any relevant differences
between the more traditional capstone courses and the novel framework of an internal
software startup. It was clear that both approaches benefit the students and have their
place in the university context. Capstone courses are often mandatory experiences, and all
students in a certain phase of their studies complete such projects. Therefore they serve the
whole student body of the program. The SDA has a selective requirement process which
aims to ensure that the incoming students are motivated and their technical competencies
fit the work environment well. Due to its restrictive nature, only some students get to
experience working at the SDA. This is were some of the biggest differences between the
two approaches lie. At the SDA, a handful of students develop production-quality software
with an employee status in exchange for a salary, whereas in capstones, the entire class
goes through a simulation of what developing software in a professional team is. Due to
these differences, both students and faculty at the SDA concurred that no course can,
or should, replace the SDA, and that the SDA is a valuable experience on its own. The
aspects that separate the SDA of the project-based courses most, ironically, are also the
hardest to replicate in a course environment.

6.2 Validity

The fact that the interviewers were working at the SDA during the time of the interviews,
and had also worked as colleagues for some of the interviewees, may have had an impact



6.2. VALIDITY 51

on how the interviewees responded to the interview questions. For instance, when asking
about the negative aspects of the SDA, they may have replied less harshly than if the
interviewer was an unknown third party. This bias has been somewhat diminished by the
fact, that third parties were involved in generating the interview questions for the student
interview. In addition, negative aspects of the SDA were specifically asked on several
occassions to get a full view of the matter. The relatively large collection of 15 interviews
also decreases the risk of answers being one-sided. Thus it is reasonable to believe that
the negative aspects of the SDA were also at least somewhat captured.

Faculty perspective was gained by interviewing the manager, who at the time of writing the
research was also the author’s immediate superior. As there are no other managers within
the Software Development Academy, the faculty member is also more identifiable and
true anonymity of the answers is not possible achieve. The manager has a known vested
interest in the SDA. Similarly as with the student members, these conditions might lead
to overly positive answers. To somewhat diminish the risk of biased results, the manager
was asked fairly neutral questions relating to the past of the SDA and its management.
There were less questions reflecting on the experiences and opinions of the manager.

Due to her employment at the Software Development Academy, the author also has an
acknowledged personal bias towards thinking that participating in the SDA gives a relevant
experience to any student member and that the SDA in general is a good place to work at.
This is to certain extent mitigated by the fact, that 16 other people were interviewed for
the purposes of this research. And as stated above, negative aspects were asked on multiple
occasions. Additionally, studies where educators themselves report their experiences and
findings on the education they provide, are common practice in the field of computer
science. This is indicated for instance in the 85 case studies the author found in the
literature review part of the research. In this research the objectivity is somewhat increased
by the fact that it is not the founder of the SDA, neither the author, themselves reporting
their experiences. Working at the SDA also gives the author great perspective for assessing
the interview data and describing the framework.

The sources selected for the semi-systematic literature review do not provide an exhaustive
outlook on the industry-relevant education in computer science. They only describe the
ways capstone courses are provided in different tertiary education institutions and only
represent the capstone courses that have some aspects or outcomes worthy of a publication.
The inclusion and exclusion criteria for sources were generated to give a wide enough
perspective but also keep the workload manageable. The capstone courses are presented



52 CHAPTER 6. DISCUSSION

to discuss the ways that the Software Development Academy differs from the general way
of preparing students for the sofware engineering industry.

6.3 Related work

The author could find very little evidence that student-based internal software startups are
a common occurence in the university context. Never-the-less, there are cases with some
organisatorial aspects or project results comparable to those of the Software Development
Academy. This section presents those cases to provide context on how similar work has
been done elsewhere.

Ding et al. (2017) present a software engineering capstone project, where students worked
on a large university-owned project, a Class Attendance Tracking System (CATS). As the
name suggess, the software was designed to help track the class attendance of university
students. The project resembles those of the SDA in the sense, that it is developed and
maintained over a long period of time, instead of being a single-shot proof-of-concept by
one capstone team. The product owner of CATS is similarly another organization in the
same institution: the staff from academic enrichment department. Ding et al. state that
the product owners were eager to participate in the process of developing the software
as it was designed specifically for their needs. Similarly to the projects of the Software
Development Academy’s projects, CATS is a successful example of a software with product
owners coming from the university and which ended up being released to more than ten
thousand students. The authors also mention that a real and big project such as CATS is
very attractive to students. Students in their team found it helpful to be able to put such
skills and work in their resumes, and ended up finding similar job positions in the industry.
Ding et al. thus were also able to witness how using industry-preferred technology in a real
university-lead project had highly positive effects on the employability of the students.

Buffardi et al. (2017) have also implemented tech startups into their programme with
the aim of providing realistic experience in software development and to cultivate devel-
opment of real software products. They combined the efforts of Computer Science and
Entrepreneurship programs to give the students more realistic setting for software de-
velopment. In their model, the entrepreneuship students acted as business clients and
the computer science students were responsible for the agile development of the software
product. The authors collected the experiences of the computer science students work-
ing in this manner (Industry) and compared them with the experiences of students who



6.3. RELATED WORK 53

completed the course without having business students as external clients (Software Engi-
neering -only). Their initial findings are somewhat contradictory to the general perception
of how external clients affect student motivation, in that in the Software Engineering -only
projects the students worked more hours per week on the project than those on Indus-
try projects. However, they anecdotally observed that students without external clients
for their projects, demonstrated a weaker sense of direction and accountability. More-
over, those students did not benefit from the opportunities to professionally network and
develop their soft skills through interacting with clients.

Williams et al. (2021) report having a very similar software development team as the SDA,
at Berea College, KY, US. The idea for founding Student Software Development Team
(SSDT) rose from the wish to have software matching their needs, without running into
the prohibitive costs that acquiring and maintaining custom-made software from external
software houses would have. They also realized that their version of the SDA would
provide valuable skill-building experience for students, making them more employable by
the software industry. By the time of their report, SSDT had run for six years and created
nine software systems for the purposes of their institution, which marks up to similar kind
of progress done by the SDA. In SSDT the work is organized similarly as is done at the
SDA, in that during summers students work full-time and during the academic terms only
part-time. However, in their model, summers are reserved for larger changes and features in
the software and the academic terms are used solely for maintenance, bug fixes and fulfilling
small feature requests. In the SDA, the nature of work stays the same throughout the
year, only the velocity of development goes down during the academic term. Similarly to
experience gained from the SDA, Williams et al. also report the maintenance phase being
extremely beneficial for students. They emphasize that maintenance of production-quality
software after deployment is a skill rarely taught in software engineering courses. In their
experiences capstone projects and similar are “completed“ and delivered to customers,
with no students involvement in the maintenance. Their report has been written very
recently, in 2021. They also mention finding no other institutions hiring students to develop
custom software solutions, including maintaining the software throughout its lifetime. This
enabled them to claim their framework to be a novel one.



7 Conclusions

This chapter concludes the research and summarizes the findings done on empirical in-
terview data as well as experiences of other academic institutions. This research aimed
to understand how tertiary education prepares computer science students for the work-
life in the software engineering industry. Firstly, we looked into how traditional capstone
project courses do this based on 85 primary sources. The main findings indicated that
the duration of capstones ranges from one period to one year, average duration being one
semester. Projects for the courses can be based on students’ own ideas, specifications
set by the course staff or come from external clients represented by businesses and other
organizations. Teams can be formed in various ways but typically include 4–6 students
of the same year level while course staff act as mentors for the teams. Projects generally
progress from an idea to a proof-of-concept or a prototype.

Secondly we looked into a more novel way of preparing students for the software engineering
industry: a university-lead internal software startup. This approach was presented via a
case study, Software Development Academy (SDA), run in the University of Helsinki. SDA
is a software development team comprised of students and lead by faculty that develops
and maintains educational administrative applications used in the University of Helsinki.
A framework for this approach was presented along with the experiences of students and
faculty involved in it. The startup approach was generally perceived as highly beneficial
by the 15 alumni interviewed. They perceived working with production-quality software,
with actual users and clients and having wide responsibilities in the team integral in giving
them a wide skill set for their future worklife. There were no clear negative sides identified
in the SDA but few challenges remained.

Finally, the findings of the approaches were compared. The main factors separating the
two were the longer duration of the SDA experience, the selectiveness regarding team
members, the quality of the software produced and employee status gained in the SDA.
The interviews revealed that students generally regarded the SDA being much closer to
the work-life in the industry than the capstone course. Students generally could not see
how the experience could be replaced by a university course. Also the faculty perspective
was gained on the matter by interviewing the SDA manager and teacher of the capstone
course. They felt that both approaches are important, but shared the idea that no course



55

could or should replace the SDA.

What is missing from this report, is the client’s perspective. Any future research could
report on the client’s perspective, especially on how they perceive ordering software from
a student-based startup and what potential benefits and pitfalls exist in the process. From
their own experiences, the author also knows that the SDA has had a notable impact on
the course selection in CS programs at the University of Helsinki. This was not included
in the faculty perspective in this research, as we focused more on the differences between
traditional capstone courses and the SDA. Any further reseach could therefore deepen the
faculty view on the matter and also further explain the role of the SDA in the curriculum
development process.

The performance of the graduates who have gone through the SDA could be measured. It
would be also interesting to see, how this framework could be either replicated or scaled.
For instance how it could cover a larger portion of each class of the Computer Science and
Software Engineering programs or possibly even extending it to other disciplines. In its
current form, only a handful of students each year get to enjoy the SDA experience and
it clearly could benefit many more.



Bibliography

ACM/IEEE (2013). ACM/IEEE Joint Task Force on Computing Curricula: Computer
Science Curricula 2013: Curriculum Guidelines for Undergraduate Degree Programs
in Computer Science. url: https : / / www . acm . org / binaries / content / assets /

education/cs2013_web_final.pdf%20(visited%20on%204/20/2022).
– (2014). ACM/IEEE Joint Task Force on Computing Curricula: Software Engineering

2014: Curriculum Guidelines for Undergraduate Degree Programs in Software Engineer-
ing. url: https://ieeecs-media.computer.org/assets/pdf/se2014.pdf (visited
on 04/20/2022).

Adams, R. and Kleiner, C. (2016). “Collaboration Support in an International Computer
Science Capstone Course”. In: International Conference on Social Computing and Social
Media. Springer, pp. 313–323.

Alhojailan, M. I. (2012). “Thematic analysis: A critical review of its process and evalua-
tion”. In: West east journal of social sciences 1.1, pp. 39–47.

Begel, A. and Simon, B. (2008). “Novice software developers, all over again”. In: Pro-
ceedings of the fourth international workshop on computing education research, pp. 3–
14.

Bowring, J. and Burke, Q. (2016). “Shaping software engineering curricula using open
source communities”. In: Journal of Interactive Learning Research 27.1, pp. 5–26.

Buffardi, K., Robb, C., and Rahn, D. (2017). “Tech startups: realistic software engineering
projects with interdisciplinary collaboration”. In: Journal of Computing Sciences in
Colleges 32.4, pp. 93–98.

Delgado, D., Velasco, A., Aponte, J., and Marcus, A. (2017). “Evolving a project-based
software engineering course: A case study”. In: 2017 IEEE 30th Conference on Software
Engineering Education and Training (CSEE&T). IEEE, pp. 77–86.

Dupuis, R., Champagne, R., April, A., and Séguin, N. (2010). “Experiments with adding
to the experience that can be acquired from software courses”. In: 2010 Seventh In-
ternational Conference on the Quality of Information and Communications Technology.
IEEE, pp. 1–6.

Fornaro, R. J., Heil, M. R., and Tharp, A. L. (2007). “Reflections on 10 years of sponsored
senior design projects: Students win–clients win!” In: Journal of Systems and Software
80.8, pp. 1209–1216.

https://www.acm.org/binaries/content/assets/education/cs2013_web_final.pdf%20(visited%20on%204/20/2022)
https://www.acm.org/binaries/content/assets/education/cs2013_web_final.pdf%20(visited%20on%204/20/2022)
https://ieeecs-media.computer.org/assets/pdf/se2014.pdf


57

Garousi, V., Giray, G., Tuzun, E., Catal, C., and Felderer, M. (2019). “Closing the gap
between software engineering education and industrial needs”. In: IEEE Software 37.2,
pp. 68–77.

Haddad, H. M. (2013). “One-Semester CS Capstone: A 40-60 Teaching Approach”. In: 2013
10th International Conference on Information Technology: New Generations. IEEE,
pp. 97–102.

Holmes, R., Craig, M., Reid, K., and Stroulia, E. (2014). “Lessons learned managing
distributed software engineering courses”. In: Companion Proceedings of the 36th Inter-
national Conference on Software Engineering, pp. 321–324.

Iacob, C. and Faily, S. (2019). “Exploring the gap between the student expectations and the
reality of teamwork in undergraduate software engineering group projects”. In: Journal
of systems and software 157, p. 110393.

Ikonen, M. and Kurhila, J. (2009). “Discovering high-impact success factors in capstone
software projects”. In: Proceedings of the 10th ACM conference on SIG-information
technology education, pp. 235–244.

Isomöttönen, V. and Kärkkäinen, T. (2008). “The value of a real customer in a capstone
project”. In: 2008 21st Conference on Software Engineering Education and Training.
IEEE, pp. 85–92.

Johns-Boast, L. and Flint, S. (2013). “Simulating industry: An innovative software en-
gineering capstone design course”. In: 2013 IEEE Frontiers in Education Conference
(FIE). IEEE, pp. 1782–1788.

Keogh, K., Sterling, L., and Venables, A. T. (2007). “A scalable and portable structure or
conducting successful year-long undergraduate software team projects”. In: Journal of
Information Technology Education: Research 6.1, pp. 515–540.

Mahnic, V. (2011). “A capstone course on agile software development using scrum”. In:
IEEE Transactions on Education 55.1, pp. 99–106.

Majanoja, A.-M. and Vasankari, T. (2018). “Reflections on Teaching Software Engineering
Capstone Course.” In: CSEDU (2), pp. 68–77.

Marques, M., Ochoa, S. F., Bastarrica, M. C., and Gutierrez, F. J. (2017). “Enhancing the
student learning experience in software engineering project courses”. In: IEEE Trans-
actions on Education 61.1, pp. 63–73.

Paasivaara, M., Vanhanen, J., and Lassenius, C. (2019). “Collaborating with industrial cus-
tomers in a capstone project course: the customers’ perspective”. In: 2019 IEEE/ACM
41st International Conference on Software Engineering: Software Engineering Education
and Training (ICSE-SEET). IEEE, pp. 12–22.



58 CHAPTER 7. CONCLUSIONS

Panicker, R. C., Sasidhar, S., Jien, S. Y., and Tan, C. K.-Y. (2020). “Exposing Students
to a State-of-the-art Problem Through a Capstone Project”. In: 2020 IEEE Frontiers
in Education Conference (FIE). IEEE, pp. 1–8.

Radermacher, A. and Walia, G. (2013). “Gaps between industry expectations and the abil-
ities of graduates”. In: Proceeding of the 44th ACM technical symposium on Computer
science education, pp. 525–530.

Radermacher, A., Walia, G., and Knudson, D. (2014). “Investigating the skill gap between
graduating students and industry expectations”. In: Companion Proceedings of the 36th
international conference on software engineering, pp. 291–300.

Schneider, J.-G., Eklund, P. W., Lee, K., Chen, F., Cain, A., and Abdelrazek, M. (2020).
“Adopting industry agile practices in large-scale capstone education”. In: 2020 IEEE/ACM
42nd International Conference on Software Engineering: Software Engineering Educa-
tion and Training (ICSE-SEET). IEEE, pp. 119–129.

Snyder, H. (2019). “Literature review as a research methodology: An overview and guide-
lines”. In: Journal of business research 104, pp. 333–339.

Spichkova, M. (2019). “Industry-oriented project-based learning of software engineering”.
In: 2019 24th International Conference on Engineering of Complex Computer Systems
(ICECCS). IEEE, pp. 51–60.

Stevens, M. and Norman, R. (2016). “Industry expectations of soft skills in IT gradu-
ates: a regional survey”. In: Proceedings of the Australasian Computer Science Week
Multiconference, pp. 1–9.

Venson, E., Figueiredo, R., Silva, W., and Ribeiro, L. C. (2016). “Academy-industry col-
laboration and the effects of the involvement of undergraduate students in real world
activities”. In: 2016 IEEE Frontiers in Education Conference (FIE). IEEE, pp. 1–8.

Watkins, K. Z. and Barnes, T. (2010). “Competitive and agile software engineering educa-
tion”. In: Proceedings of the IEEE SoutheastCon 2010 (SoutheastCon). IEEE, pp. 111–
114.

Ziv, H. and Patil, S. (2010). “Capstone Project: From Software Engineering to “Informat-
ics””. In: 2010 23rd IEEE Conference on Software Engineering Education and Training.
IEEE, pp. 185–188.



Appendix A Interview questions - student perspective

1. How did you end up working in the SDA?

2. How did your studies proceed before your time in the SDA?

3. How did your studies proceed during your time in the SDA?

4. How many years of software engineering experience did you have before starting at
the SDA?

5. What positive aspects do you think the SDA has?

5.1. What about negative aspects?

6. What kinds of tasks did you have while working in the SDA?

7. How many credits do you think your time at the SDA was worth? ie. What would
be an approriate amount of credits to cover the SDA experience?

Let’s compare the SDA to project-based courses or those courses that attempt to
simulate working life, for instance the Software Engineering Project course.

8. How was your experience of the SDA in comparison to your experience of project-
based courses?

9. What positive and negative aspects do you think the SDA has, compared to project-
based courses?

10. How much responsibility do you think working in the SDA has, compared to working
in project-based courses?

11. What kind of a project course could offer the same as the SDA?

12. What other differences do you feel that the SDA has, compared to project-based
courses?

13. How would you change the SDA?

14. What useful skills did you learn while working at the SDA?



ii Appendix A

15. What skills did you learn during project courses, which have been proven to be useful
in your work-life?

16. What skills did you learn during project courses, which have been proven to be useful
in your work-life?

16.1 Which skills were such, that you could not have gotten them from elsewhere in
the university?

17. How did the SDA affect your employment?

18. How does your current work-life differ from your work-life in the SDA?

19. How did the traditional project-based courses affect your employment?

19.1 What other useful courses can you think of, which have taught you skills bene-
ficial in your work-life? what skills did you learn through them?

20. How did the nature of work change during your year in the SDA?

21. Who could answer questions about you in the work-life?

22. Can we connect your answers to the data of your course completions?



Appendix B Interview questions - faculty perspective

1. How have the technologies used in the SDA been selected?

2. Which organizations have officially been clients of the SDA?

3. Which aspects affect the recruitment decision of someone?

4. How long have you been the responsible teacher of the Software Engineering Project
course?

5. How many assistants does the Software Engineering Project course have per year?

6. What are the main learning objectives in the Software Engineering Project course?

7. What kind of a percentage out of the projects in the course goes into production
and is used by end-users?

8. What kind of percentage out of the projects in the course is developed for several
academic terms and by several teams?

9. Has the Software Engineering Project course undergone any changes since 2017? (ie.
during the time the SDA has existed)

10. What differences do you think leading the SDA and the Software Engineering Project
course has?

11. How do you perceive the work load caused by the Software Engineering Project
course compared to the workload caused by the SDA?

12. What have you learned due to your work at the SDA?

13. What things affect the decision of what courses you teach and their content?

14. Has the SDA affected the course selection? Or the content of any courses? If yes,
how?

15. What kind of a project course could offer the same as the SDA?

16. Do you feel that the SDA could be scaled up so that it could involve more students?
If yes, how?

17. How do you see the future of the SDA?



Appendix C Sources in semi-systematic literature review

Table C.1: Included sources for data extraction

SID Publication details
S1 Gotel, Olly, et al. "A global and competition-based model for fostering technical and soft skills in software

engineering education." 2009 22nd Conference on Software Engineering Education and Training. IEEE,
2009.

S2 Scott, Andrew, et al. "A Holistic Capstone Experience: Beyond Technical Ability." Proceedings of the 18th
Annual Conference on Information Technology Education. 2017.

S3 Koolmanojwong, Supannika, and Barry Boehm. "A look at software engineering risks in a team project
course." 2013 26th International Conference on Software Engineering Education and Training (CSEE&T).
IEEE, 2013.

S4 Keogh, Kathleen, Leon Sterling, and Anne Therese Venables. "A scalable and portable structure or con-
ducting successful year-long undergraduate software team projects." Journal of Information Technology
Education: Research 6.1 (2007): 515-540.

S5 Thompson, J. Barrie, and Helen M. Edwards. "A scalable approach to graduate student projects: Hundreds
with industry every year." 2009 22nd Conference on Software Engineering Education and Training. IEEE,
2009.

S6 Mertz, Joseph, and Jeria Quesenberry. "A scalable model of community-based experiential learning through
courses and international projects." 2018 World Engineering Education Forum-Global Engineering Deans
Council (WEEF-GEDC). IEEE, 2018.

S7 Brazier, Pearl, Alejandro Garcia, and Abel Vaca. "A software engineering senior design project inherited
from a partially implemented software engineering class project." 2007 37th Annual Frontiers In Education
Conference-Global Engineering: Knowledge Without Borders, Opportunities Without Passports. IEEE,
2007.

S8 Rusu, Adrian, et al. "Academia-academia-industry collaborations on software engineering projects using
local-remote teams." Proceedings of the 40th ACM technical symposium on Computer science education.
2009.

S9 Stettina, Christoph Johann, et al. "Academic education of software engineering practices: towards planning
and improving capstone courses based upon intensive coaching and team routines." 2013 26th International
Conference on Software Engineering Education and Training (CSEE&T). IEEE, 2013.

S10 Venson, Elaine, et al. "Academy-industry collaboration and the effects of the involvement of undergraduate
students in real world activities." 2016 IEEE Frontiers in Education Conference (FIE). IEEE, 2016.

S11 Eloe, Nathan, and Charles Hoot. "Accommodating Shortened Term Lengths in a Capstone Course using
Minimally Viable Prototypes." 2020 IEEE Frontiers in Education Conference (FIE). IEEE, 2020.

S12 Schneider, Jean-Guy, et al. "Adopting industry agile practices in large-scale capstone education." 2020
IEEE/ACM 42nd International Conference on Software Engineering: Software Engineering Education and
Training (ICSE-SEET). IEEE, 2020.

S13 Rover, Diane, et al. "Advantages of agile methodologies for software and product development in a capstone
design project." 2014 IEEE Frontiers in Education Conference (FIE) Proceedings. IEEE, 2014.

S14 Ye, Huilin. "An Academia-Industry Collaborative Teaching and Learning Model for Software Engineering
Education." SEKE. 2009.



ii Appendix C

SID Publication details
S15 Mondragon-Torres, Antonio F. "An agile embedded systems capstone course." 2013 IEEE Frontiers in Edu-

cation Conference (FIE). IEEE, 2013.
S16 Bareiss, Ray, and Edward Katz. "An exploration of knowledge and skills transfer from a formal software

engineering curriculum to a capstone practicum project." 2011 24th IEEE-CS Conference on Software Engi-
neering Education and Training (CSEE &T). IEEE, 2011.

S17 Rusu, Amalia, and Mike Swenson. "An industry-academia team-teaching case study for software engineering
capstone courses." 2008 38th Annual Frontiers in Education Conference. IEEE, 2008.

S18 Bell, John T., and Anushri Prabhu. "An innovative approach to Software Engineering term projects, coor-
dinating student efforts between multiple teams over multiple semesters." 2014 IEEE Frontiers in Education
Conference (FIE) Proceedings. IEEE, 2014.

S19 Von Konsky, Brian R., and Jim Ivins. "Assessing the capability and maturity of capstone software engineering
projects." Proceedings of the tenth conference on Australasian computing education-Volume 78. 2008.

S20 Ziv, Hadar, and Sameer Patil. "Capstone Project: From Software Engineering to “Informatics”." 2010 23rd
IEEE Conference on Software Engineering Education and Training. IEEE, 2010.

S21 Cornejo-Aparicio, Victor, et al. "Capstone courses under the PBL methodology approach, for engineering."
2019 IEEE World Conference on Engineering Education (EDUNINE). IEEE, 2019.

S22 Paasivaara, Maria, Jari Vanhanen, and Casper Lassenius. "Collaborating with industrial customers in a
capstone project course: the customers’ perspective." 2019 IEEE/ACM 41st International Conference on
Software Engineering: Software Engineering Education and Training (ICSE-SEET). IEEE, 2019.

S23 Adams, Robert, and Carsten Kleiner. "Collaboration Support in an International Computer Science Cap-
stone Course." International Conference on Social Computing and Social Media. Springer, Cham, 2016.

S24 Tøndel, Inger Anne, et al. "Collaborative security risk estimation in agile software development." Information
& Computer Security (2019).

S25 Watkins, Kera Z., and Tiffany Barnes. "Competitive and agile software engineering education." Proceedings
of the IEEE SoutheastCon 2010 (SoutheastCon). IEEE, 2010.

S26 Nguyen, Duc Man, Tien Vu Truong, and Nguyen Bao Le. "Deployment of capstone projects in software
engineering education at duy tan university as part of a university-wide project-based learning effort." 2013
Learning and Teaching in Computing and Engineering. IEEE, 2013.

S27 Lago, Patricia, Joost Schalken, and Hans van Vliet. "Designing a multi-disciplinary software engineering
project." 2009 22nd Conference on Software Engineering Education and Training. IEEE, 2009.

S28 Ikonen, Marko, and Jaakko Kurhila. "Discovering high-impact success factors in capstone software projects."
Proceedings of the 10th ACM conference on SIG-information technology education. 2009.

S29 de Souza, Rafael Tome, Sergio D. Zorzo, and Daniele Aparecida da Silva. "Evaluating capstone project
through flexible and collaborative use of Scrum framework." 2015 IEEE Frontiers in Education Conference
(FIE). IEEE, 2015.

S30 Vu, John Huan, et al. "Evaluating test-driven development in an industry-sponsored capstone project." 2009
Sixth International Conference on Information Technology: New Generations. IEEE, 2009.

S31 Delgado, David, et al. "Evolving a project-based software engineering course: A case study." 2017 IEEE
30th Conference on Software Engineering Education and Training (CSEE&T). IEEE, 2017.

S32 Longstreet, C. Shaun, and Kendra Cooper. "Experience report: A sustainable serious educational game
capstone project." Proceedings of CGAMES’2013 USA. IEEE, 2013.

S33 Dupuis, Robert, et al. "Experiments with adding to the experience that can be acquired from software
courses." 2010 Seventh International Conference on the Quality of Information and Communications Tech-
nology. IEEE, 2010.

S34 Burge, Janet. "Exploiting multiplicity to teach reliability and maintainability in a capstone project." 20th
Conference on Software Engineering Education & Training (CSEET’07). IEEE, 2007.

S35 Iacob, Claudia, and Shamal Faily. "Exploring the gap between the student expectations and the reality
of teamwork in undergraduate software engineering group projects." Journal of systems and software 157
(2019): 110393.

S36 Panicker, Rajesh C., et al. "Exposing Students to a State-of-the-art Problem Through a Capstone Project."
2020 IEEE Frontiers in Education Conference (FIE). IEEE, 2020.



Appendix C iii

SID Publication details
S37 Burden, Håkan, Jan-Philipp Steghöfer, and Oskar Hagvall Svensson. "Facilitating entrepreneurial experi-

ences through a software engineering project course." 2019 IEEE/ACM 41st International Conference on
Software Engineering: Software Engineering Education and Training (ICSE-SEET). IEEE, 2019.

S38 Sievi-Korte, Outi, Kari Systä, and Rune Hjelsvold. "Global vs. local—Experiences from a distributed
software project course using agile methodologies." 2015 IEEE Frontiers in Education Conference (FIE).
IEEE, 2015.

S39 Paasivaara, Maria, et al. "How does participating in a capstone project with industrial customers affect
student attitudes?." 2018 IEEE/ACM 40th International Conference on Software Engineering: Software
Engineering Education and Training (ICSE-SEET). IEEE, 2018.

S40 Włodarski, Rafal, Aneta Poniszewska-Marańda, and Jean-Remy Falleri. "Impact of software development
processes on the outcomes of student computing projects: A tale of two universities." Information and
Software Technology 144 (2022): 106787.

S41 Neyem, Andres, Jose I. Benedetto, and Andres F. Chacon. "Improving software engineering education
through an empirical approach: lessons learned from capstone teaching experiences." Proceedings of the
45th ACM technical symposium on Computer science education. 2014.

S42 Flowers, John G. "Improving the capstone project experience: A case study in software engineering." Pro-
ceedings of the 46th Annual Southeast Regional Conference on XX. 2008.

S43 Schneider, Jean-Guy, et al. "Industry Agile practices in large-scale capstone projects." Proceedings of the
ACM/IEEE 42nd International Conference on Software Engineering: Companion Proceedings. 2020.

S44 Zilora, Stephen J. "Industry-Emulated Projects in the Classroom." Proceedings of the 16th Annual Confer-
ence on Information Technology Education. 2015.

S45 Spichkova, Maria. "Industry-oriented project-based learning of software engineering." 2019 24th International
Conference on Engineering of Complex Computer Systems (ICECCS). IEEE, 2019.

S46 Palacin-Silva, Maria, et al. "Infusing design thinking into a software engineering capstone course." 2017
IEEE 30th Conference on Software Engineering Education and Training (CSEE&T). IEEE, 2017.

S47 Jiménez, Manuel, et al. "Integrating fundamental and advanced concepts in a rounded capstone design expe-
rience in computer engineering." 2007 37th Annual Frontiers In Education Conference-Global Engineering:
Knowledge Without Borders, Opportunities Without Passports. IEEE, 2007.

S48 Zeid, Amir. "Integrating international students’ contests with computer sciecnce capstone: Lessons learned
and best practices." 2012 Frontiers in Education Conference Proceedings. IEEE, 2012.

S49 Pereira, Claudia, et al. "Introducing Good Design Principles in an early System Engineering Course." 2009
Information Systems Education Conference, ISECON 26, 2009.

S50 Krusche, Stephan, and Lukas Alperowitz. "Introduction of continuous delivery in multi-customer project
courses." Companion Proceedings of the 36th International Conference on Software Engineering. 2014.

S51 Santoso, Harry Budi, et al. "Investigating Students’ Metacognitive Skills while Working on Information
Systems Development Projects." 2017 7th World Engineering Education Forum (WEEF). IEEE, 2017.

S52 Holmes, Reid, et al. "Lessons learned managing distributed software engineering courses." Companion
Proceedings of the 36th International Conference on Software Engineering. 2014.

S53 Haddad, Hisham M. "One-Semester CS Capstone: A 40-60 Teaching Approach." 2013 10th International
Conference on Information Technology: New Generations. IEEE, 2013.

S54 Rusu, Adrian, et al. "Overcoming limited resources: An academia-government partnership on Software En-
gineering and Capstone Projects." 2007 37th Annual Frontiers In Education Conference-Global Engineering:
Knowledge Without Borders, Opportunities Without Passports. IEEE, 2007.

S55 Vasankari, Timo, and Anne-Maarit Majanoja. "Practical Software Engineering Capstone Course–Framework
for Large, Open-Ended Projects to Graduate Student Teams." International Conference on Computer Sup-
ported Education. Springer, Cham, 2018.

S56 Karunasekera, Shanika, and Kunal Bedse. "Preparing software engineering graduates for an industry career."
20th Conference on Software Engineering Education & Training (CSEET’07). IEEE, 2007.

S57 Feldgen, Maria, and Osvaldo Clua. "Reflections of nine years of interdisciplinary capstone courses." 2010
IEEE Frontiers in Education Conference (FIE). IEEE, 2010.

S58 Fornaro, Robert J., Margaret R. Heil, and Alan L. Tharp. "Reflections on 10 years of sponsored senior
design projects: Students win–clients win!." Journal of Systems and Software 80.8 (2007): 1209-1216.



iv Appendix C

SID Publication details
S59 Majanoja, Anne-Maarit, and Timo Vasankari. "Reflections on Teaching Software Engineering Capstone

Course." CSEDU (2). 2018.
S60 Ribaud, Vincent, and Vincent Leilde. "Relating Student, Teacher and Third-Party Assessments in a Bachelor

Capstone Project." International Conference on Software Process Improvement and Capability Determina-
tion. Springer, Cham, 2017.

S61 Roach, Steve. "Retrospectives in a software engineering project course: Getting students to get the most
from a project experience." 2011 24th IEEE-CS Conference on Software Engineering Education and Training
(CSEE&T). IEEE, 2011.

S62 Yuen, Timothy T. "Scrumming with educators: Cross-departmental collaboration for a summer software
engineering capstone." 2015 International Conference on Learning and Teaching in Computing and Engi-
neering. IEEE, 2015.

S63 Johns-Boast, Lynette, and Shayne Flint. "Simulating industry: An innovative software engineering capstone
design course." 2013 IEEE Frontiers in Education Conference (FIE). IEEE, 2013.

S64 Boti, Evangeli, Vyron Damasiotis, and Panos Fitsilis. "Skills Development Through Agile Capstone
Projects." International Conference on Frontiers in Software Engineering. Springer, Cham, 2021.

S65 Bruegge, Bernd, Helmut Naughton, and Michaela Gluchow. "SLPC++: Teaching software engineering
project courses in industrial application landscapes—A tutorial." 2011 24th IEEE-CS Conference on Software
Engineering Education and Training (CSEE&T). IEEE, 2011.

S66 Paiva, Sofia Costa, and Dárlinton Barbosa Feres Carvalho. "Software CREATION WORKSHOP: A capstone
course for business-oriented software engineering teaching." Proceedings of the XXXII Brazilian Symposium
on Software Engineering. 2018.

S67 Chen, Chung-Yang, and P. Pete Chong. "Software engineering education: A study on conducting collabo-
rative senior project development." Journal of systems and Software 84.3 (2011): 479-491.

S68 Katz, Edward P. "Software engineering practicum course experience." 2010 23rd IEEE Conference on Soft-
ware Engineering Education and Training. IEEE, 2010.

S69 Vanhanen, Jari, Timo OA Lehtinen, and Casper Lassenius. "Software engineering problems and their rela-
tionship to perceived learning and customer satisfaction on a software capstone project." Journal of Systems
and Software 137 (2018): 50-66.

S70 Bruegge, Bernd, Stephan Krusche, and Lukas Alperowitz. "Software engineering project courses with indus-
trial clients." ACM Transactions on Computing Education (TOCE) 15.4 (2015): 1-31.

S71 Smith, Tucker, Kendra ML Cooper, and C. Shaun Longstreet. "Software engineering senior design course:
experiences with agile game development in a capstone project." Proceedings of the 1st International Work-
shop on Games and Software Engineering. 2011.

S72 Decker, Adrienne, Christopher A. Egert, and Andew Phelps. "Splat! er, shmup? A postmortem on a
capstone production experience." 2016 IEEE Frontiers in Education Conference (FIE). IEEE, 2016.

S73 Mahnic, Viljan, and Igor Rozanc. "Students’ perceptions of Scrum practices." 2012 Proceedings of the 35th
International Convention MIPRO. IEEE, 2012.

S74 Jarzabek, Stan. "Teaching advanced software design in team-based project course." 2013 26th International
Conference on Software Engineering Education and Training (CSEE&T). IEEE, 2013.

S75 Krusche, Stephan, Mjellma Berisha, and Bernd Bruegge. "Teaching code review management using branch
based workflows." Proceedings of the 38th International Conference on Software Engineering Companion.
2016.

S76 Paasivaara, Maria, et al. "Teaching students global software engineering skills using distributed scrum."
2013 35th International Conference on Software Engineering (ICSE). IEEE, 2013.

S77 Khmelevsky, Youry. "Ten Years of Capstone Projects at Okanagan College: A Retrospective Analysis."
Proceedings of the 21st Western Canadian Conference on Computing Education. 2016.

S78 Khakurel, Jayden, and Jari Porras. "The effect of real-world capstone project in an acquisition of soft skills
among software engineering students." 2020 IEEE 32nd Conference on Software Engineering Education and
Training (CSEE&T). IEEE, 2020.

S79 Iacob, Claudia, and Shamal Faily. "The impact of undergraduate mentorship on student satisfaction and
engagement, teamwork performance, and team dysfunction in a software engineering group project." Pro-
ceedings of the 51st ACM Technical Symposium on Computer Science Education. 2020.



Appendix C v

SID Publication details
S80 Hoar, Ricardo. "The Real World Web: How Institutional IT Affects The Delivery Of A Capstone Web

Development Course." Proceedings of the Western Canadian Conference on Computing Education. 2014.
S81 Isomöttönen, Ville, and Tommi Kärkkäinen. "The value of a real customer in a capstone project." 2008 21st

Conference on Software Engineering Education and Training. IEEE, 2008.
S82 Ahtee, Tero, and Mikko Tiusanen. "Towards an ideal software engineering project course." Proceedings of

the 15th Koli Calling Conference on Computing Education Research. 2015.
S83 Rico, David F., and Hasan H. Sayani. "Use of agile methods in software engineering education." 2009 Agile

conference. IEEE, 2009.
S84 Maxim, Bruce R., Stein Brunvand, and Adrienne Decker. "Use of role-play and gamification in a software

project course." 2017 IEEE frontiers in education conference (FIE). IEEE, 2017.
S85 Bastarrica, María Cecilia, Daniel Perovich, and Maira Marques Samary. "What can students get from a

software engineering capstone course?." 2017 IEEE/ACM 39th International Conference on Software Engi-
neering: Software Engineering Education and Training Track (ICSE-SEET). IEEE, 2017.


	Introduction
	Background
	Gaps in industry-relevant skills
	Capstone project courses
	Software Development Academy

	Research approach
	Research questions
	Part I: Semi-systematic literature review
	Constructing the search strings
	Inclusion and exlusion criteria
	Data extraction and analysis

	Part II - Case Study
	Case selection
	Case introduction
	Qualitative data from student interviews
	Characteristics of the interviewees
	Qualitative data from the faculty member interview
	Data analysis


	Semi-systematic literature review
	Duration
	Clients
	Projects
	Technologies
	Team sizes
	Mentoring

	Case Study
	Educational mechanisms
	Production-quality software
	Wide responsibilities and autonomy
	Employee status and salary
	Strong community and networking possibilities
	Easy integration with studies
	Selectiveness
	One-year duration
	Working with external stakeholders
	Challenges and further improvement

	Could courses replace the SDA?
	Experience compared to capstone courses
	Replaceability with other studies

	Summary and comparison of the results

	Discussion
	Answering the research questions
	Validity
	Related work

	Conclusions
	Bibliography
	Interview questions - student perspective 
	Interview questions - faculty perspective
	Sources in semi-systematic literature review

