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In the modern era, using personalization when reaching out to potential or current customers
is essential for businesses to compete in their area of business. With large customer bases, this
personalization becomes more difficult, thus segmenting entire customer bases into smaller groups
helps businesses focus better on personalization and targeted business decisions. These groups can
be straightforward, like segmenting solely based on age, or more complex, like taking into account
geographic, demographic, behavioral, and psychographic differences among the customers. In the
latter case, customer segmentation should be performed with Machine Learning, which can help
find more hidden patterns within the data.

Often, the number of features in the customer data set is so large that some form of dimensionality
reduction is needed. That is also the case with this thesis, which includes 12802 unique article
tags that are desired to be included in the segmentation. A form of dimensionality reduction called
feature hashing is selected for hashing the tags for its ability to be introduced new tags in the
future.

Using hashed features in customer segmentation is a balancing act. With more hashed features,
the evaluation metrics might give better results and the hashed features resemble more closely
the unhashed article tag data, but with less hashed features the clustering process is faster, more
memory-efficient and the resulting clusters are more interpretable to the business. Three clustering
algorithms, K-means, DBSCAN, and BIRCH, are tested with eight feature hashing bin sizes for
each, with promising results for K-means and BIRCH.
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1. Introduction

This thesis focuses on using feature hashed article tags for customer segmentation on
paid online media subscribers. The resulting segmentation of this thesis will be used
for creating knowledge about the customer base and more than likely for personaliza-
tion in the future. Feature hashing is performed on the article tags into 5, 10, 20,
50, 100, 200, and 500 hashed features. Three unsupervised learning algorithms, K-
means [18] as centroid-based clustering, DBSCAN [12, 23] as density-based clustering,
and BIRCH [28] as hierarchical clustering are tested for the segmentation and results
are evaluated with Silhouette coefficient [22], Dunn index [10, 11], and Davies-Bouldin
index [9].

Customer segmentation is used for discovering homogeneous groups from a het-
erogeneous mass of customers. Segmentation can be done with for example using
behavior data like previous purchases or sociodemographic data like age. Uncovering
these segments creates knowledge about the customer base and dividing the customer
base into smaller groups enables more personalized marketing for the customers. Cus-
tomer segments can also be used to analyze profit potentials within each segment and
whether more or less money should be used to maintain or grow said segments.

Customer segmentation can be done with hard clustering or soft clustering, mean-
ing one customer can belong to only one cluster or multiple clusters, respectively. This
thesis uses hard clustering for creating knowledge about the customer base, overlap-
ping segments might bring more confusion since the segments counts would not add up
to the customer base. Soft clustering is beneficial in, for example, online advertising
with thousands of soft clusters, where one might belong to a pet food cluster and a
badminton cluster and get ads based on both.

Chapter 2 covers background and related work. Chapter 3 covers the data avail-
able for segmentation and feature engineering. Chapter 4 introduces the three algo-
rithms tested for the segmentation. Chapter 5 introduces three evaluation metrics used
for testing. Chapter 6 covers the results of the experiments and comparisons between
them. Chapter 7 covers the conclusions of the thesis.
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2. Background

The concept behind modern customer segmentation was introduced in 1956 by Smith as
discovering homogeneous groups from a heterogeneous mass of markets [25]. Although
the original paper was about market segmentation (segmenting the entire available mar-
ket instead of just the customer base), the same basic principles also hold for customer
segmentation. In market segmentation, the business segments the market and decides
to focus on pleasing one or a few segments. Conversely in customer segmentation, the
business segments the customer base and tries to identify segments for personalization
or business strategy reasons.

Customer segments can be identified by examining geographic, demographic,
behavioral, and psychographic differences among the customers as described by
Kotler [16]. Geographic data refers to features such as region, city and climate, and
demographic data means features such as age, gender, family size, and income. Demo-
graphic data can also include problematic features such as race and religion that should
never be included as features in customer segmentation. Behavioral data focuses on the
known behaviors of the customer such as usage activity, pageviews, and email sign-ups.
Psychographic differences are rarely used in customer segmentation solely based on the
difficulty of obtaining such data. Psychographic data includes features much deeper
than demographic data such as interests, values, personalities and lifestyles. Some-
times the difference between behavioral and psychographic data is somewhat vague
as is the case with pageviews. Pageviews are considered behavior data but pageviews
on the same topic of articles can be considered psychographic data as the customer is
interested in that topic.

Segmentation can be done on the current customer base, or on customers that
have been part of the customer base within some time window. Both of these versions
tells a different story to the business and creates knowledge about the selected group
of customers. This thesis focuses on the second option in customers that have been
part of the customer base within a time window from September 2021 to January 2022.
This will hopefully help the business understand its current customer base better while
also understanding which of the segments is "leaking" customers and has the highest
churn rates, which is defined as the percentage of customers lost compared to the size
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4 Chapter 2. Background

of the customer base within a month.

2.1 Feature Hashing

Feature hashing, otherwise known as the "hashing trick", is a low-memory and rapid
way of vectorizing features [26]. Compared to vectorizers that first build a hash table
based on the inputs of the training data, feature hashing applies a hash function directly
to the features to determine the column values. This enables faster and more memory-
efficient hashing with the downside of having no way of knowing the original inputs as
no hash table is saved.

As hash collisions are inevitable when the number of features is much lower than
the original input, a signed hash function is used to downsize the effect of the different
features colliding to the same hashed feature. The sign function assigns each input
string as positive or as negative, but deterministically for the string inputs so each of
the same inputs is always positive or negative. In the case that the sign function is
different between two colliding features, an expected value of zero is produced instead of
two times the value, helping machine learning algorithms handle the collided features.

This thesis uses feature hashing with article tags. There are 12,802 unique tags
in the data set used and some form of dimensionality reduction is required. The most
important reason for using feature hashing with article tags compared to some other
forms of dimensionality reduction is that new article tags can be created after the
initial segmentation. When an article is written about a new topic, a new tag might be
created. This tag can now be feature engineered with the same feature hashing into the
same features. This property to be able to be introduced new tags is a big advantage
when compared to other commonly used dimensionality reduction methods, where such
property does not exist like Uniform Manifold Approximation and Projection (UMAP)
[19] or Principal Component Analysis (PCA) [20].

2.2 Related Work

Chen et al. [7] performed customer segmentation on Recency, Frequency and Mone-
tary values (RFM) using K-means, K-medoids and DBSCAN clustering methods. In
this context, Recency means the time since the last purchase, Frequency means the
frequency of purchases and Monetary value refers to the total spent money. RFM is
closely related to Frequency, Recency and Volume (FRV) which will be discussed in
Section 3.2 and used in this thesis. Chen et al. [7] found out that the best clustering
with regards to evaluation metrics came from using two clusters, but only DBSCAN
was able to find the "Golden class", which is the segment with the highest average
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RFM. With four clusters the evaluation metrics were worse but all the algorithms
found the "Golden class", meaning that using only the evaluation metrics was not the
best solution for business purposes.

Hossain compared customer segmentation using centroid-based and density-based
clustering algorithms [15]. They used K-means as the centroid-based algorithm and
DBSCAN as the density-based algorithm. Although finding the distinct border for
density-based algorithms can be difficult, Hossain was able to generate segments with
both K-means and DBSCAN with their data set and claims density-based algorithms
are worth considering applying.

Senuma experimented with K-means clustering feature hashed documents from
a data set called twenty Newsgroups [24]. They chose six document classes and drew
randomly 100 documents from each class. Senuma implemented feature hashing on
the words of the documents and performed K-means clustering on the hashed features.
Feature hashing proved high memory efficiency with memory usage being only 3.5%
of the original memory while the score calculated from recall and precision was still
good. In some cases, the hashed version performed even better than the original data,
perhaps since the original data might have more local minimas and the hashed features
might be more smooth and a lower minima is found.





3. Data

In this chapter, we cover the data available for the segmentation and describe the
feature engineering performed with the data. The order data consists of 27,809 active
paid subscription-based orders and free trials of a Finnish media brand that have been
active for at least a day between September 2021 and January 2022. This data is
combined with click-data size for the users of the media website from September 2021
to January 2022. The click-data consists of around 14 million clicks for all users in the
orders data.

3.1 Order Details

Each order has basic order details that can be used in the segmentation. These include
for example order length, paid price, number of orders, number of payments and the
order channel. Order details also has some variables that can not be used in segmen-
tation like order number, order type and product type. Order number can not be used
because it is unique for each order, and conversely order type and product type is the
same for each order.

3.2 Frequency, Recency and Volume

Frequency, Recency and Volume (FRV) is a measure of activity for the user on the
website. Frequency measures the number of days the user has logged on the website in
the last 30 days, Recency is the inverse of the number of days since the user has last
logged in and Volume is the square root of the number of clicks the user has performed
on the website in the last 30 days. These three variables multiplied together form a
single FRV value for each registered user that can be used to estimate the activity
of the user on the website. A histogram of the FRV values for the customer base is
visualized in Figure 3.1.

As the website has both free and paid articles, FRV can also be measured for
both independently. Someone might have a high FRV value within free articles and not
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8 Chapter 3. Data

Figure 3.1: Histogram of FRV values for all customers within the order data set.

within paid articles and that might be the reason for churning. This might be due to the
customer not finding enough interesting paid content to justify their subscription price,
since they could consume all free articles without a subscription. In turn, someone with
a fairly high FRV within paid articles but close to zero FRV within free articles might
be less likely to churn, because the content they consume is available only with the
subscription.

FRV is similar to a more well-known measure called RFM that has previously
been used in customer segmentation [5, 7]. FRV is a website usage version of RFM,
which consists of Recency and Frequency but volume is replaced by Monetary value.
In this segmentation, Monetary value is taken into account as a variable called paid
price.

3.3 Website Usage Details

The data includes each click performed on the website. This data can be aggregated to
more meaningful variables for the orders like what page the user usually redirects from,
usage time of day and what type of device the user has. As these categorical variables
only have a few possible values they can be implemented as relative frequencies among
the possible values.
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3.3.1 Primary Categories

Each page on the website has a primary category and possible tags. There are 60 unique
primary categories in the data set. Primary categories are feature engineered as relative
frequencies of each user’s activity and each category’s relative interest making 60 new
columns to the data. More specifically, for each user x and category y pair an interest
value kxy is calculated in Equation 3.1.

kxy = count(x read articles from category y)
maxX(read articles from category y) : count(x read articles)

maxX(read articles) (3.1)

The scaling in the interest value takes into consideration the general interest of
each category and the general activity of each user with smaller categories emphasized
among enthusiastic readers. This feature engineering also alters the data from discrete
variables to continuous variables, simplifying the clustering as the difficulty of a mixed-
data clustering (continuous and discrete variables) is avoided [1].

3.3.2 Article Tags

The article data includes 12,802 unique tags as keywords for the article provided by the
journalist. As the number of unique tags is so large, using manual feature engineering
similarly to primary categories or website usage details is not advisable. Tags are
instead vectorized into features using feature hashing [26] and the resulting features
are used in segmentation. This means losing the interpretability of the tags, however,
such a large number of tags would be hard to interpret in any case. Using feature
hashing enables the introduction of new unique tags never before seen by the feature
hashing without having to hash the entire data again. This is due to the property of
feature hashing being able to be introduced new values without having to do the entire
hashing all over again. Feature hashing the article tag data into matrices of 5, 10, 20,
50, 100, 200 and 500 features is tested Chapter 6.

3.4 Final Data

After removing orders with zero clicks on the website are removed from the data, the
final data includes 23,641 orders. The final data has 176 features from areas described
in this section. The tag data with 23,641 rows and 12,802 columns is feature hashed
into 5, 10, 20, 50, 100, 200 and 500 features and each of these hashed tag data sets is
combined with the other 176 features for the experiments.





4. Algorithms

In this chapter three clustering methods are discussed: K-means [18], DBSCAN [12, 23]
and BIRCH [28]. These three are selected as each represents a different type of clus-
tering in centroid-based, density-based and hierarchical clustering, respectively. Each
method is explained with pseudocode included and related work with regards to cus-
tomer segmentation is discussed.

4.1 K-means

K-means is a clustering algorithm first proposed for signal processing [18]. The algo-
rithm aims to divide N samples of data into K disjoint clusters C, where each cluster
is described by its mean of samples µ, commonly called centroids. K-means algorithm
attempts to choose the centroids to minimize the within-cluster sum of squares. The
number of clusters K has to be determined before starting the clustering, and methods
like the G-means algorithm [13] or Silhouette coefficient [22] can be used to help the
determining process.

Determining the global optimum with K-means is NP-hard [2, 8], but K-means
always converges to a local optimum. Converging, in this case, means that after n loops
of the while loop, the cluster labels remain unchanged compared to the previous loop
and the run is completed. Since the clustering is usually quite quick, the algorithm is
commonly run with multiple initial conditions and the best local optimum among the
results is selected. K-means is deterministic when the initial cluster centroids are the
same, even if data is ordered differently. Pseudocode for the algorithm is provided in
Algorithm 1.

4.1.1 Customer Segmentation

K-means has been widely used in customer segmentation [4, 7, 27]. K-means is one
of the most popular clustering algorithms and in many cases, it is the first algorithm
tested when performing clustering. K-means can give a good overall picture of the
structure of the data with relatively easy implementation.
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12 Chapter 4. Algorithms

Algorithm 1 K-means, algorithm of Lloyd [18]
function K-means(D, K)

Assign initial random values for µ1, µ2, µ3, ... µk.
while Clusters remain unchanged do

for n = 1 to N do di ← argmink||µk − xn||
end for
for k = 1 to K do µk ← MEAN({ xn : zn = k })
end for

end while
end function

4.2 DBSCAN

Density-based spatial clustering of applications with noise (DBSCAN) is a commonly
used density-based clustering algorithm that separates clusters based on density ar-
eas [12, 23]. DBSCAN can produce clusters of any shape unlike mean-based clustering
algorithms, making DBSCAN more viable when dealing with real-world data. DB-
SCAN is also robust to outliers, labeling points with no cluster points within ε range
of it as noise. Compared to K-means requiring the number of clusters as an input,
the two input variables for DBSCAN are minimum number of samples minPts and
the maximum distance between samples ε. Choosing the minPts and ε well is critical
and methods like OPTICS [3] or the K-nearest neighbor method [21] can be used to
determine them. Generally, minPts is chosen as two times the dimensions of the data,
as

minPts = 2 · n, (4.1)

where n is the dimensionality of the data, and ε is chosen from the K-distance graph as
the elbow of the graph as visualized in Figure 6.1. With too small ε, more clusters are
created and likely more noise is generated, but with too large ε, small clusters merge
as larger ones and information is lost.

All the data points in DBSCAN clustering are considered one of three types:
Core point, Border point or Noise point. Core points are points with at least minPts
number of points within its ε neighborhood. This means that each cluster produced
by DBSCAN has at least one core point within it. All the unvisited points within
the neighborhood are also considered part of the same cluster. Unvisited points are
points that the algorithm has not yet processed, as the points are visited in a loop.
If other unvisited core points are within the ε neighborhood of the first core point
considered, also the unvisited points within the ε neighborhood of the second core
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point are considered part of the same cluster. As the visitation order of the points
might affect the computed clusters, DBSCAN is considered nondeterministic if the
data is ordered differently. Points that are not core points, but have at least one
core point within its ε neighborhood are considered border points, and points that are
not core points and have no core points within ε distance are considered noise points.
Pseudocode for DBSCAN is provided in Algorithm 2.

4.2.1 Customer Segmentation

Density-based clustering algorithms like DBSCAN have been found effective for cus-
tomer segmentation when compared to centroid-based algorithms like K-means clus-
tering [5, 15]. Advantages of using DBSCAN for customer segmentation include not
having to determine the number of clusters in advance and robustness to outliers.
Moreover, DBSCAN’s ability to identify clusters of any shape is beneficial when deal-
ing with real-world data. A drawback of using density-based clustering with customer
segmentation is that a density drop is expected to determine the border of the cluster.
With real-world data, such a density drop is not always found and the clusters that
are desired can be of varying density.

4.2.2 OPTICS

Ordering points to identify the clustering structure (OPTICS) [3] is a density-based
clustering algorithm similar to DBSCAN. The biggest upside of using OPTICS is that
there is no need to define the ε value before clustering. The OPTICS algorithm uses
a range of values as ε, although a maximum value for ε can be defined for runtime
efficiency. This means that OPTICS can detect clusters of varying density compared
to DBSCAN. The OPTICS algorithm builds a Reachability graph from which the user
can cluster the points accordingly.

OPTICS algorithm introduces two more terms in addition to minPts and ε in-
troduced in DBSCAN for each point p: Core distance and reachability distance. Core
distance for point p is the minimum radius from p so that at least minPts points are
within the radius. If the radius is greater than the defined maximum ε, the core dis-
tance is undefined. As with DBSCAN, points within a defined core distance are called
core points. Reachability distance is calculated from one point to another. Reachabil-
ity from point q to point p is defined as the maximum of the core distance of p and the
distance between points q and p. Similarly to core distance, reachability distance is not
defined if p is not a core point. Core distance and reachability distance are formally
defined in Equations 4.2 and 4.3, respectively, where Nε(p) is defined as the group of
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Algorithm 2 DBSCAN, algorithm of Ester et al. [12, 23]
function DBSCAN(D, ε, MinPts)

C = 0
for each unvisited point P in the data set D do

mark P as visited
NeighborPts = regionQuery(P, ε)
if sizeof(NeighborPts) < MinPts then

mark P as NOISE
else

C = next cluster
expandCluster(P, NeighborPts, C, ε, MinPts)

end if
end for

end function
function expandCluster(P, NeighborPts, C, ε, MinPts)

add P to cluster C
for each point P’ in NeighborPts do

if P’ is not visited then
mark P’ as visited
NeighborPts’ = regionQuery(P’, ε)
if sizeof(NeighborPts’) >= MinPts then

NeighborPts = NeighborPts joined with NeighborPts’
end if
if P’ is not yet member of any cluster then

add P’ to cluster C
end if

end if
end for

end function
function RegionQuery(P, ε)

return all points within P’s ε-neighborhood (including F)
end function
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points within the ε neighborhood of point p, including itself.

core-distε,MinPts(p) =

UNDEFINED if |Nε(p)| < MinPts

MinPts-th smallest distance in Nε(p) otherwise
(4.2)

reach-distε,MinPts(q, p) =

UNDEFINED if |Nε(p)| < MinPts

max(core-distε,Minpts(p), dist(p, q)) otherwise
(4.3)

4.2.3 HDBSCAN

Hierarchical density-based spatial clustering of applications with noise (HDBSCAN) is
a hierarchical version of DBSCAN [6]. HDBSCAN is a successor to DBSCAN and OP-
TICS. It avoids defining the ε value, or even the maximum ε value defined in OPTICS.
Core distance is defined similarly to OPTICS, but Reachability distance is a symmetric
version of the OPTICS version called Mutual Reachability distance. Mutual Reacha-
bility distance between points q and p is the maximum of the Core distance of p, Core
distance of q and the distance between points p and q.

4.3 BIRCH

Balanced iterative reducing and clustering using hierarchies (BIRCH) is a hierarchical
data clustering method that is especially suited for large data sets [28]. BIRCH clus-
ters data points incrementally and dynamically and can usually produce a reasonably
good clustering with just one scan of the data, while being able to improve with few
additional scans. The main idea behind BIRCH is to first generate a compact sum-
mary of the original large data set while retaining as much information as possible
using the Clustering Feature Tree (CFT). Then as each leaf of the CFT contains a
subcluster, these leaf nodes can be combined with another clustering algorithm more
efficiently. BIRCH utilizes agglomerative hierarchical clustering as the secondary clus-
tering method. Similarly to DBSCAN, BIRCH is also considered nondeterministic if
the data is ordered differently.

4.3.1 Clustering Feature

Clustering Feature (CF) is the core concept behind BIRCH. Clustering Feature is
defined for N data points within a cluster as a triple CF = (N, ~LS, SS), where N is
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the number of data points, ~LS is the linear sum of the N data points and SS is the
square sum of the N data points. Clustering Features offer efficiency by using a small
set of features to represent a larger data set.

4.3.2 Clustering Feature Tree

Clustering Feature Tree (CF Tree) is a height-balanced tree with two parameters:
branching factor B and threshold T . Branching factor B determines the maximum
number of CF subclusters in each node and threshold T is the maximum diameter
requirement that all entries within a leaf must follow. Each non-leaf node consists
of no more than B pairs [CFi, childi] where CFi is the Clustering Feature of the i-th
child node and childi a pointer to it. Each leaf node is represented by at most L
occurrences of triple [CFi, prev, next] where prev and next point to the previous and
next leaf node respectively for a more efficient scan over all the leaf nodes. Compared
to non-leaf nodes, all entries in a leaf node must follow the threshold requirement T .
As a node is required to fit in a single memory page, a leaf’s node size L is determined
by the combination of the available page size P and the Branching factor B determined
by the user.

4.3.3 Customer Segmentation

Research papers for customer segmentation with BIRCH are noticeably rarer compared
to DBSCAN or K-means, but some work with customer segmentation with BIRCH has
been done [14, 17]. The rarity might be explained by BIRCH being best suited for large
data sets without categorical variables and thus is not possibly the first choice to test
clustering customer data, which likely contains many categorical variables and is rarely
in the millions for an average business.
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Algorithm 3 BIRCH, algorithm of Zhang et al. [28]
function CF Tree(D, B, T)

Calculate Clustering Features (CF) for all data points d in D
for each data point d calculated calculated do

Insert d as a CF to the root CF Tree
while current node is not a leaf node do

Merge with the child subcluster with the smallest radius after merging
end while
Find the nearest subcluster within the leaf node
if threshold condition T is not violated then

Add d to the cluster and update CF triplets
else

if there is room to insert d as own cluster then
Insert d as a single cluster and update CF triplets

else
Select two most distant subclusters and divide the subclusters into two

groups based on the distance to the two subclusters
while the parent node has no room to split based on B or

root is reached do
Split parent node in two and go to their parent node

end while
if parent nodes that can be splitted are found then

Split parent nodes in two
end if

end if
end if

end for
end function





5. Evaluation

In this chapter, evaluation metrics used for the experiments are described in detail.
Evaluating results by unsupervised learning, like clustering, is substantially more dif-
ficult compared to supervised learning. In supervised learning, the ground truth is
usually known for at least for the test data and plenty of metrics based on the ground
truth exist like specificity, sensitivity and mean squared error. For clustering, despite
the absence of ground truth, some internal methods for evaluation still exist and a
few of those are highlighted in this chapter. Also, the possible difference between the
mathematically best clusters based on these metrics and the best clusters based on
future business decisions will be discussed.

5.1 Silhouette Coefficient

Mean Silhouette coefficient is an internal evaluation metric for determining the robust-
ness of the clustering [22]. In Silhouette analysis, a Silhouette coefficient is calculated
for each point in the data set based on the distance to its cluster and to its closest
neighboring cluster. The score ranges from -1 to 1, where a low value indicates poor
labeling from the clustering algorithm and a high value indicates good labeling. Values
near 0 indicate that the point is on the border of at least two clusters and could be-
long to either. The Silhouette coefficient can be also used in determining the optimal
number of clusters in the data set if the clustering algorithm in question needs that
information as an input.

5.1.1 Calculating Silhouette Coefficient

Silhouette coefficient calculation starts using a clustered data set that needs evaluation.
For each data point i in the cluster CI , let

a(i) = 1
|CI | − 1

∑
j∈CI ,i 6=j

d(i, j) (5.1)
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be a measure of how well data point i is assigned to its cluster CI , where |C(i)| is the
size of the cluster and d(i, j) the distance between data points i and j. Also, let

b(i) = minI 6=J

 1
|CJ |

∑
j∈CJ

d(i, j)
 (5.2)

be a measure of average dissimilarity between the data point i and all data points in
the closest neighboring cluster J . Now, the Silhouette coefficient s(i) for data point i
is defined as

s(i) = b(i)− a(i)
max{a(i), b(i)} , if |CI | > 1 (5.3)

and

s(i) = 0, if |CI | = 1.

Thus, Silhouette coefficient s(i) ranges between -1 and 1.
As Silhouette coefficient is calculated for each point separately, more calculation is

needed for obtaining a goodness score for the entire clustered data set. Mean Silhouette
coefficient is defined as the mean value over all Silhouette coefficients s(i) for the data
points i in the data set D as

s(D) =
∑
i∈D s(i)
|D|

(5.4)

and approximates how the data is clustered overall.
This thesis uses mean Silhouette score as one of the evaluation metrics. Euclidean

distance is used as the distance metric as it will also be used as the distance metric in
the clustering.

5.2 Dunn Index

Dunn index is an internal evaluation metric for determining the robustness of the
clustering [10, 11]. Dunn index ranges from 0 to infinity and similarly to the Silhouette
coefficient, a larger Dunn index indicates better clustering. Dunn index is defined as
the minimum inter-cluster diameter divided by the maximum intra-cluster diameter.
As Dunn index takes into consideration the maximum diameter of the clusters, the
index might give a worse value for such a clustering where one of the clusters has a
high variance while the other clusters are tight. Considering this fact, while Dunn
index can be used to determine the optimal number of clusters for algorithms requiring
the number of clusters as an input, it should not perhaps be the only indicator.
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5.2.1 Calculating Dunn Index

Calculating Dunn index is not straightforward. The calculation starts with determining
the intra-cluster diameter metric for the index. Let i and j be data points belonging
to the same cluster CI . Intra-cluster diameter metrics are defined as

∆I = maxi,j∈CI
d(i, j) as the maximum distance, (5.5)

∆I = 2
|CI |(|CI | − 1)

∑
i,j∈CI ,i 6=j

d(i, j) as the mean distance and (5.6)

∆I =
∑
i∈CI

d(i, µ)
|CI |

, µ =
∑
i∈CI

i

|CI |
as the mean distance of all points to the centroid.

(5.7)

Similarly, the inter-cluster diameter metric between two different clusters has
multiple possible variations. Let CI and CJ be different clusters. Inter-cluster diameter
metrics between the clusters are defined as

δIJ = mini∈I,j∈Jd(i, j) as the single linkage distance, (5.8)

δIJ = maxi∈I,j∈Jd(i, j) as the complete linkage distance, (5.9)

δIJ =
∑
i∈I,j∈J d(i, j)
|CI ||CJ |

as the average linkage distance and (5.10)

δIJ = d(µI , µJ), µK =
∑
k∈K k

|CK |
as the centroid linkage distance. (5.11)

With the intra-cluster dimater metrics in Equations 5.5, 5.6, and 5.7 and the
inter-cluster diameter metrics in Equations 5.8, 5.9, 5.10, and 5.11 determined, Dunn
index for m clusters is defined as

DIm = min1≤I≤J≤mδIJ
max1≤k≤m∆k

. (5.12)

For this thesis, Dunn index is used with the mean distance of all points to the
centroid in Equation 5.7 as the intra-cluster diameter metric and centroid linkage
distance in Equation 5.11 as the inter-cluster diameter metric. The distance metric is
Euclidean distance as it will be used in the clustering.
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5.3 Davies-Bouldin Index

Davies-Bouldin index is an internal evaluation metric for determining the robustness
of the clustering [9]. Similarly to Dunn index, Davies-Bouldin index ranges from 0
to infinity. Conversely to both Dunn index and Silhouette coefficient, a lower Davies-
Bouldin index value indicates better clusters. The index estimates the average sim-
ilarity between each cluster with its closes neighboring cluster. Compared to Dunn
index, Davies-Bouldin index is not affected as drastically when just one cluster has a
high variance and Davies-Bouldin index is rather an evaluation metric comparing all
clusters with its closest neighboring cluster.

5.3.1 Calculating Davies-Bouldin Index

For calculating the Davies-Boulding index, the same intra-cluster diameter metrics ∆I

and inter-cluster diameter metrics δIJ as for the Dunn index in Section 5.2.1 can be
used. Davies-Boulding index for m clusters is defined as

DB = 1
m

m∑
I=1

maxI 6=J
∆I + ∆J

δIJ
. (5.13)

Similarly to Silhouette coefficient and Dunn index, in this thesis Euclidean dis-
tance is used as the distance metric for Davies-Bouldin index as well. Also similarly
to Dunn index, Davies-Bouldin index is used with the mean distance of all points to
the centroid in Equation 5.7 as the intra-cluster diameter metric and centroid linkage
distance in Equation 5.11 as the inter-cluster diameter metric.

5.4 Interpretability

Interpretability plays a large role in successful customer segmentation. While the
previously introduced evaluation metrics are a great way of evaluation clustering, the
results of a customer segmentation must also have some interpretability for decision-
making. For example, the number of clusters must be manageable for business actions
and the cluster sizes must be large enough for decisions to be based on them that
matter in the big picture. Preferably the cluster differences are such that business
actions can be made based on them, but this should be handled already when choosing
the data that is clustered.

When presenting the customer segments to the business decision-makers, inter-
pretability plays a key role in how the segmentation is perceived. As most decision-
makers might not be experts in the field of machine learning, presenting the segments
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as understandable groups of customers that the decision-makers might already recog-
nize helps to tell the story better. This might make the segmentation more likely to
be used in decision-making in the future.





6. Results

In this chapter, the experiments are carried out, the results of the experiments are
covered and comparisons between the results are discussed. Customer segmentation
is tested with 0, 5, 10, 20, 50, 100, 200 and 500 feature sets from feature hashing the
original 12,802 distinct tags. Three algorithms are tested: K-means, DBSCAN and
BIRCH. Each algorithm is tested with each feature set from feature hashing the tags.
Each algorithm, feature hashing and feature set combination is run 10 times over with
slightly different initial conditions depending on the algorithm to avoid randomness
caused by the initial conditions. For example, with K-means, a feature set of size 200
from feature hashing and k = 4 is run 10 times with different initial centroids. The
best score with the Silhouette coefficient is selected from these 10 runs.

6.1 K-means

As K-means requires the number of clusters as an input, it is tested with the value of
2, 3, 4 and 5 clusters for each of the tag feature sets. Each parameter combination
is run ten times with different initial cluster centroids to reduce the randomness of
the results. From the ten runs, the best clustering based on Silhouette coefficient is
selected.

Results for K-means clustering with increasing k from 2 to 5 clusters are in Tables
6.1, 6.2, 6.3 and 6.4, respectively. With each k, more tag features included result in
a better Silhouette coefficient and Dunn index. The only exception for the highest
Silhouette coefficient is with k = 4, where 200 tag features has a value of 0.147986 and
500 tag features has the second highest score of 0.112559. As this is the only exception,
it might be due to randomness. For Davies-Boudlin index, where a lower score is better
than a higher one, the best score for k = 2 is achieved with 500 tag features. For every
other k, the best Davies-Bouldin index is achieved with 200 tag features.

Without using tag features, the best Silhouette coefficient is achieved with k = 3,
the best Dunn index with k = 2 and the best Davies-Bouldin index with k = 5. In this
respect, there seem to be no distinct clusters in the data as determining the optimal
k is not trivial with these metrics. With tag features included, the best result with
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each metric is achieved with k = 2 and 500 tag features. Controversially, even though
that is the best result out of the three metrics, more than two segments are needed
out of the customer segmentation in a real business case. In all experiments, clustering
performs better regarding all three evaluation metrics with the increasing number of
tag features. Using five to twenty tag features already achieves better results from
the evaluation metrics compared to not using any while retaining more interpretability
with most of the features not coming from hashed variables like with the 200 and 500
feature sets.

Tag features Silhouette Dunn Davies-Bouldin Runtime
0 0.040059 0.012970 5.394044 163s
5 0.046428 0.008635 4.939160 166s
10 0.054590 0.016993 4.342015 167s
20 0.068074 0.020334 3.800444 168s
50 0.129171 0.025999 2.934559 168s
100 0.189285 0.032917 2.563176 195s
200 0.249661 0.048056 2.297429 202s
500 0.307343 0.084165 2.280315 250s

Table 6.1: Experimental results with K-means (k = 2).

Tag features Silhouette Dunn Davies-Bouldin Runtime
0 0.080873 0.003360 4.431149 119s
5 0.088908 0.005446 3.996263 119s
10 0.107413 0.009075 3.461698 121s
20 0.122683 0.008789 3.183790 123s
50 0.094491 0.018664 3.223542 132s
100 0.124532 0.023113 2.925882 132s
200 0.156570 0.037952 2.702455 156s
500 0.190881 0.057037 2.777074 213s

Table 6.2: Experimental results with K-means (k = 3).
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Tag features Silhouette Dunn Davies-Bouldin Runtime
0 0.044132 0.000960 3.950845 86s
5 0.071489 0.007326 3.692432 118s
10 0.065487 0.008870 3.887458 123s
20 0.067505 0.008266 3.588587 125s
50 0.094659 0.018237 3.010459 130s
100 0.111363 0.024832 2.767905 142s
200 0.147986 0.036618 2.739884 166s
500 0.112559 0.047381 3.449514 236s

Table 6.3: Experimental results with K-means (k = 4).

Tag features Silhouette Dunn Davies-Bouldin Runtime
0 0.043133 0.000960 3.282948 120s
5 0.071567 0.007326 3.123208 122s
10 0.053211 0.007266 3.638320 122s
20 0.070667 0.009912 3.420308 128s
50 0.076531 0.016902 3.199783 138s
100 0.067169 0.021568 3.181996 146s
200 0.085420 0.031412 3.037760 183s
500 0.103534 0.047381 3.426314 238s

Table 6.4: Experimental results with K-means (k = 5).

6.2 DBSCAN

DBSCAN requires initial values for ε and minPts. K-nearest neighbor method is used
for determining these values [21]. The data has 176 dimensions without the tags. For
each experiment, the value of minPts with t number of tag features is

minPts = 2 · (176 + t),

as defined in Function 4.1. Value for ε is selected from K-nearest neighbor graph as the
"elbow" of the graph as defined previously in Section 4.2. As an example, this elbow is
visualized for 5 tag features in Figure 6.1 where the optimal value is ε = 16.5. As the
elbow is sharp and located near the maximum value of 23,641 at 23,300, the clustering
will not likely produce distinct clusters, which is also the case here. The graphs for
each of the different tag features are very similar and the results from the method are
displayed in Table 6.5.
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Figure 6.1: K-nearest neighbor method example with 5 tag features and optimal value ε = 16.5.

DBSCAN is run ten times for each number of tag features with slightly different
values for minPts, within a range of 50, and ε, within a range of one, from the optimal
values displayed in Table 6.5. The results for all the tag features are displayed in Table
6.6, where it is fairly obvious that DBSCAN does not work for this experiment, as the
elbow is located in the far bottom right corner. Although the evaluation metrics show
promising results, DBSCAN produces only one cluster with the other cluster being the
"noise" cluster. The data set likely has so much overlap that a density-based algorithm
can not distinguish areas of high density.

As DBSCAN with the optimal minPts and ε did not produce clusters, the algo-
rithm was also tested with many drastically different initial values for minPts and ε.
Despite all these efforts, DBSCAN was unable to produce multiple clusters except for
some clusters of size less than twenty units.
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Tag features minPts ε

0 352 16.4
5 362 16.5
10 372 16.6
20 392 17.2
50 452 18.5
100 552 21.9
200 752 26.9
500 1352 41.1

Table 6.5: Optimal values for minPts and ε from K-nearest neighbor method.

Tag features Silhouette Dunn Davies-Bouldin Runtime
0 0.626655 0.014204 8.657057 247s
5 0.599496 0.014279 8.718333 246s
10 0.572874 0.007064 8.702586 326s
20 0.604694 0.012146 8.657516 324s
50 0.604884 0.018971 7.094666 297s
100 0.599080 0.021351 4.638849 305s
200 0.577713 0.049231 3.032385 351s
500 0.554129 0.085466 2.137706 457s

Table 6.6: Experimental results with DBSCAN.

6.3 BIRCH

As BIRCH requires the number of clusters as an input, the experiments are run with the
same parameters as with the K-means. BIRCH is run ten times with each parameter
combination while shuffling the order of the data points on each run. BIRCH is sensitive
to the order of the data input, thus we generate ten different results from where the
optimal one is selected. Similarly to DBSCAN and K-means, the optimal clustering
based on Silhouette coefficient is selected.

Results for BIRCH clustering with increasing k from 2 to 5 clusters are in Tables
6.7, 6.8, 6.9 and 6.10, respectively. Generally, the more tag features are included,
the better the Silhouette coefficient and Dunn index are. Despite this, the best overall
score for Silhouette coefficient and Davies-Bouldin index is achieved with k = 2 and 200
tag features with the scores of 0.276220 and 2.336433, respectively. With the Dunn
index, the best score is achieved with k = 4 and 500 tag features scoring 0.053714.
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Interestingly, while generally more tag features seem to indicate a better Silhouette
score, with k = 3, the best score is achieved with 20 tags. For the same conditions
also Davies-Bouldin index is fairly good at 3.431294 being the third best score with
the k = 3 test after 500 and 200 tags.

Davies-Bouldin index is interesting with BIRCH. For k = 2 and 3, more tag
features indicate a better score, but for k = 4 and 5, the result is the opposite. For
runtimes, BIRCH is by far the slowest of the three algorithms, although DBSCAN can
not be compared justly. Two clusters with 500 tag features took almost 40 minutes for
ten iterations. The rest of the tests with BIRCH did not outperform the slowest of the
competing algorithms.

When excluding the tags from the clustering, the results are as scattered as with
K-means clustering. The best score for the Silhouette coefficient is achieved when
k = 3, the best score for the Dunn index when k = 2, and the best score for the
Davies-Bouldin index with k = 4.

Tag features Silhouette Dunn Davies-Bouldin Runtime
0 0.019968 0.013278 6.981064 962s
5 0.080078 0.017595 5.877116 948s
10 0.061751 0.015733 5.660380 973s
20 0.074864 0.021151 4.802301 990s
50 0.076732 0.020809 3.977928 1105s
100 0.226333 0.037524 2.581129 1231s
200 0.276220 0.045463 2.336433 1631s
500 0.169205 0.047058 2.714882 2229s

Table 6.7: Experimental results with BIRCH (k = 2).

Tag features Silhouette Dunn Davies-Bouldin Runtime
0 0.082839 0.007794 4.998483 821s
5 0.010847 0.006115 4.926454 821s
10 0.037318 0.006760 4.543373 846s
20 0.131779 0.016468 3.431294 888s
50 0.101156 0.014488 3.657805 967s
100 0.113119 0.020197 3.620746 1082s
200 0.075254 0.022752 3.371427 1388s
500 0.087866 0.026029 3.295253 1810s

Table 6.8: Experimental results with BIRCH (k = 3).
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Tag features Silhouette Dunn Davies-Bouldin Runtime
0 0.014738 0.006479 2.976180 779s
5 0.013576 0.005719 4.427011 817s
10 0.021995 0.006760 4.188930 838s
20 0.045468 0.007766 4.194280 878s
50 0.089739 0.014488 3.625134 962s
100 0.068459 0.020841 3.680564 1082s
200 0.061873 0.023399 3.412109 1377s
500 0.148624 0.053714 4.016621 1815s

Table 6.9: Experimental results with BIRCH (k = 4).

Tag features Silhouette Dunn Davies-Bouldin Runtime
0 0.023738 0.006479 3.142627 820s
5 0.013703 0.006277 3.554501 815s
10 0.022241 0.007303 3.363554 846s
20 0.032783 0.010944 3.734834 871s
50 0.041363 0.013775 3.820094 950s
100 0.071521 0.020841 3.377201 1062s
200 0.099580 0.025743 3.461046 1365s
500 0.112533 0.033803 3.905745 1843s

Table 6.10: Experimental results with BIRCH (k = 5).

6.4 Comparison

As discussed in Section 6.2, DBSCAN does not perform well with this data set. The
data set likely has too much overlap for DBSCAN to produce multiple clusters, which
might not be the case for all future experiments. The overlap hypothesis is supported
by Silhouette scores with all the tests with K-means and BIRCH, where scores are
relatively close to zero indicating overlapping data. As DBSCAN failed to produce
comparable results to K-means and BIRCH, the rest of this section will focus on the
comparison between K-means and BIRCH, with an emphasis on the three and four
cluster experiments.

Comparing the Silhouette coefficient and Dunn index from clustering with K-
means to clustering with BIRCH show that both are usable for the task with three
clusters. These comparisons are best seen in Table 6.11 and Figures 6.2, 6.3, 6.4 and
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6.5, which combine results from Tables 6.2 and 6.8. As seen in Figure 6.2, K-means
is better in terms of Silhouette coefficient with 5, 10, 100, 200, and 500 tags and
BIRCH is better with 0, 20 and 50 tags with the three clusters, meaning that for some
combinations of the number of clusters and the number of tag features one performs
slightly better than the other. Still, K-means seems much more consistent with the
scores while BIRCH has a lot of variation between similar numbers of hashed features.

With Dunn index in Figure 6.3, K-means is better with 10, 50, 100, 200, and
500 features and BIRCH with 0, 5, and 20. It seems that for Dunn index, K-means
starts off worse with 0 clusters, but scales better when the number of hashed features is
increased. For the Davies-Bouldin index in Figure 6.4, K-means performs better in all
the tests with three clusters and overall better in all but a few tests. Also, for runtime
in Figure 6.5, K-means is significantly faster when compared to BIRCH.

Tag Sil K Sil B Dunn K Dunn B DB K DB B R K R B
0 0.080873 0.082839 0.003360 0.007794 4.431149 4.998483 119s 821s
5 0.088908 0.010847 0.005446 0.006115 3.996263 4.926454 119s 821s
10 0.107413 0.037318 0.009075 0.006760 3.461698 4.543373 121s 846s
20 0.122683 0.131779 0.008789 0.016468 3.183790 3.431294 123s 888s
50 0.094491 0.101156 0.018664 0.014488 3.223542 3.657805 132s 967s
100 0.124532 0.113119 0.023113 0.020197 2.925882 3.620746 132s 1082s
200 0.156570 0.075254 0.037952 0.022752 2.702455 3.371427 156s 1388s
500 0.190881 0.087866 0.057037 0.026029 2.777074 3.295253 213s 1810s

Table 6.11: Experimental results with K-means and BIRCH (k = 3). Number of tag features (Tag),
Silhouette coefficient with K-means (Sil K), Silhouette coefficient with BIRCH (Sil B), Dunn index
with K-means (Dunn K), Dunn index with BIRCH (Dunn B), Davies-Bouldin index with K-means
(DB K), Davies-Bouldin index with BIRCH (DB B), runtime with K-means (R K) and runtime with
BIRCH (R B).
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Figure 6.2: Silhouette score comparison between K-means and BIRCH with 3 clusters.

Figure 6.3: Dunn index comparison between K-means and BIRCH with 3 clusters.
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Figure 6.4: Davies-Bouldin index comparison between K-means and BIRCH with 3 clusters.

Figure 6.5: Runtime comparison between K-means and BIRCH with 3 clusters.
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With four clusters in Table 6.12 and in Figures 6.6, 6.7, 6.8, and 6.9, which
combine the previous results from Tables 6.3 and 6.9, K-means outperformed BIRCH
with regards to the Silhouette coefficient and Davies-Bouldin index in all cases but
with 500 tag features. It seems that the run with BIRCH and 500 tag features is
an outlier, especially when looking at the Dunn index in Figure 6.7. The results
from the Dunn index are in line with the results with three clusters, where BIRCH is
initially better with a lower number of tag features but scales worse when increasing
the number of hashed features. The only exception is the run with 500 hashed features
where the Dunn index for BIRCH jumps significantly compared to the run with 200
features. Based on the results from evaluation metrics combined with the result that
BIRCH is 7-10 times slower to run, I would prefer K-means over BIRCH for customer
segmentation with hashed article features.

Tag Sil K Sil B Dunn K Dunn B DB K DB B R K R B
0 0.044132 0.014738 0.000960 0.006479 3.950845 2.976180 86s 779s
5 0.071489 0.013576 0.007326 0.005719 3.692432 4.427011 118s 817s
10 0.065487 0.021995 0.008870 0.006760 3.887458 4.188930 123s 838s
20 0.067505 0.045468 0.008266 0.007766 3.588587 4.194280 125s 878s
50 0.094659 0.089739 0.018237 0.014488 3.010459 3.625134 130s 962s
100 0.111363 0.068459 0.024832 0.020841 2.767905 3.680564 142s 1082s
200 0.147986 0.061873 0.036618 0.023399 2.739884 3.412109 166s 1377s
500 0.112559 0.148624 0.047381 0.053714 3.449514 4.016621 236s 1815s

Table 6.12: Experimental results with K-means and BIRCH (k = 4). Number of tag features (Tag),
Silhouette coefficient with K-means (Sil K), Silhouette coefficient with BIRCH (Sil B), Dunn index
with K-means (Dunn K), Dunn index with BIRCH (Dunn B), Davies-Bouldin index with K-means
(DB K), Davies-Bouldin index with BIRCH (DB B), runtime with K-means (R K) and runtime with
BIRCH (R B).
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Figure 6.6: Silhouette score comparison between K-means and BIRCH with 4 clusters.

Figure 6.7: Dunn index comparison between K-means and BIRCH with 4 clusters.
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Figure 6.8: Davies-Bouldin index comparison between K-means and BIRCH with 4 clusters.

Figure 6.9: Runtime comparison between K-means and BIRCH with 4 clusters.





7. Conclusions

This thesis focused on customer segmentation with hashed features from 12,802 unique
article tags using a method called feature hashing. One centroid-based, one density-
based, and one hierarchical clustering algorithm as K-means, DBSCAN, and BIRCH,
respectively, was used for experimentation with 0, 5, 10, 20, 50, 100, 200, and 500
features from feature hashing the article tags for each. Results were discussed based
on the Silhouette coefficient, Dunn index, Davies-Bouldin index and interpretability.

Using tags as feature hashed features in customer segmentation is found func-
tional with K-means and BIRCH. Experiments with DBSCAN were not performing
as expected, which was possibly due to the data being too overlapping and without
distinct borders. With K-means and BIRCH, reducing 12,802 unique tags into just
five to twenty features is already an improvement compared to not using the tags at
all. Using the tags as 200 or 500 features shows the best results with regards to the
evaluation metrics, but interpreting customer segments with features mostly comprised
of hashed features is more difficult. The evaluation metric results with just the five
to twenty hashed features outperformed compared to when hashed features were not
used. This is the most important result from this experiment as those clusters retain
more interpretability for use in business.

Subjectively speaking, the clusters with five to twenty hashed features are as
interpretable as the clusters without any hashed features and much more interpretable
than the clusters with 500 features. Since the evaluation metrics were mostly in favor
of using five to twenty tag features compared to not using any, hashed tag features are
recommended. Even though each data set is different and the same results do not hold
for every case, using feature hashing with article tags should be considered when such
data is available.
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