Workshop Physiology of motor systems and exercise

Cardiovascular responses during rest-exercise and exercise-exercise transients

<u>Paolo Bruseghini</u>, A. Taboni, G. Vinetti, S. Camelio, M. D'Elia, N. Fagoni, G. Ferretti Dept of Molecular and Translational Medicine, Univ. of Brescia, Brescia, Italy

If indeed vagal withdrawal determines the rapid response to exercise (phase I), the a large reduction, if not complete suppression, of phase I should be found, when an exercise transient starts from a previous lower steady state exercise rather than from rest. On 15 healthy young subjects we measured beat-by-beat cardiac output (Q, Modelflow from Portapres data) and heart rate ($f_{\rm H}$, ECG) during these cycle ergometer exercise transients: 0–50 W (transient from rest, RT) and 50-100W (transient from exercise, ET). A double exponential was used to compute amplitudes and time constants of phase I and II (A₁ and A₂; T₁ and T₂). At steady state, $f_{\rm H}$ was 87.5±10.4, 109.3±12.0, and 139.6±17.1bpm, and Q was 7.3±1.5, 12.6±1.6, and 16,1±1,9L/min, at rest, 50W and 100W, respectively. In RT, A_1 and A_2 for f_H were 11.7±8.6 and 11.3 \pm 4.7bpm; the corresponding T₁ and T₂ were 1.6 \pm 1.9 and 14.4 \pm 21.3s. For Q, we had: $A_1 = 4.0 \pm 1.8$ L/min, $A_2 = 1.5 \pm 1.4$ L/min, $T_1 = 3.2 \pm 1.8$ s, $T_2 = 11.3 \pm 12.2$ s. In ET, the double exponential model provided preposterous A₁ and T₁ values and extremely high T₂ values (>100s). Subsequent use of a mono exponential model provided, for $f_{\rm H}$, A=29.7±8.9bpm and T=7.7±4.9s, and for Q, A=3.5±8.6L/min, and T=7.0±5.7s. The A and T in ET did not differ from the A_2 and T_2 of RT. We conclude that a single exponential model is more adequate to describe ET and this single exponential corresponds to the second exponential of RT. Our results are compatible with the vagal withdrawal hypothesis.