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INTRODUCTION 

The technological revolution has provided us an opportunity to study the world 
beyond the limits that were holding us back only a couple of decades ago. One of 
such fields enjoying increasing popularity is the study of the human microbiome. 
Tiny microorganisms making up the microbiome, such as bacteria and viruses 
have been known to intervene with our health for centuries, but the ecosystem of 
the human microbiome and their functionality has turned out to be perhaps more 
complex than previously thought. It is rather clear though that the extent of the 
role of the microbiome to our own functioning and well-being is just starting to 
unravel. Nevertheless, microbiome has already been associated with a large 
variety of intrinsic and extrinsic factors, including various complex diseases. The 
accumulating evidence is leading a slow but steady progress towards clinical 
applications, which again feeds the public interest and popularity of the field with 
never ending gasp for new knowledge.   

This thesis uses the value of the comprehensive phenotyping data from the 
Estonian Biobank and Finnish METSIM (METabolic Syndrome In Men) cohort 
to expand the understanding of the factors influencing our microbiome com-
position and assesses the possibility and challenges in using the microbiome com-
position for clinical applications. In the first part I will take the reader into the 
world of human microbiome by summarizing the key knowledge from the 
scientific literature. I will introduce the elements that give rise to the variability 
of the gut microbiome profile and describe the role of microbiome in human health 
together with a few examples about how microbiome can be used to improve our 
well-being. Additionally, I will introduce some challenges that need to be 
accounted for when studying the human microbiome. In the second part I will 
present the results of the three original publications. I will show that the gut 
microbiome can be used to predict changes in glucose regulation, which is impor-
tant for handling the increasing prevalence of type 2 diabetes. Further, I will 
demonstrate, how population-based biobanks and especially electronic health 
records can expand our knowledge about the gut microbiome.  
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1. REVIEW OF THE LITERATURE 

1.1. Human as a superorganism 

We are not alone. Even without giving context, the statement can be considered 
true, because we are surrounded, inhabited, and vastly outnumbered by micro-
organisms in every way. These microorganisms include predominantly bacteria, 
viruses, fungi, and archaea and are collectively termed “microbiome”, which 
refers to their collective genome. Perhaps the perception about life around us is 
easier to grasp, but surprisingly microbial life analogously dominates our body 
considering the number of cells and genes we carry each day. The most recent 
estimates show that for each human cell, we have about 1.3 microbial cells and 
for each human gene, around 100 microbial genes, which in total make up 
approximately 200 grams of our body weight (Sender et al., 2016; Turnbaugh 
et al., 2007). This is likely a surprise for many, considering that a negative scent 
has often been laid on bacteria and viruses ranging from children’s books to 
advertisements, characterized for example by “Karius and Bactus” by Thorbjörn 
Egner. However, we live in a microbial world, not vice versa.  

It is natural to assume that the microbial genes carry out a function in our body 
similarly to differences in human genome can correspond to differences in eye 
color and height. Thus, a reasonable question follows – does microbiome have a 
part in why we are different and why will one person develop a disease and the 
other does not. This is a natural starting point for human microbiome studies.  

  
 

1.1.1. Landscape of the human microbiome 

Characterization of the microbiome composition is a rather new skill for the 
human. In the early phases of the research, cultivation-based techniques were 
used to isolate and study certain bacteria. However, in 1996, a sequencing-based 
characterization of the fecal microbiota was first performed that revolutionized 
the field (Wilson & Blitchington, 1996). Sequencing allowed to analyze uncul-
tured, anaerobic taxa, which was previously inconceivable. Although today the 
technological advantages do allow the characterization and cultivation of anaerobic 
bacteria (Lagier et al., 2018), the sequencing still forms the backbone of the 
research. Moreover, sequencing widens the scope by allowing to characterize 
viruses and other members of the ecosystem. As a result, the next-generation 
sequencing techniques are widely used and continuously developed. Two 
common strategies for sequencing the microbiome must be highlighted. Firstly, 
amplicon sequencing aims to sequence only a specific region of the microbial 
genome, such as the 16S rRNA gene. In contrary, “shotgun sequencing” aims to 
sequence the whole microbial genome. These two strategies have predominantly 
relied on reading small fragments of the DNA using so called short-read 
sequencing, but the field is already looking towards long-read sequencing (Karst 
et al., 2021; Tedersoo et al., 2021). Thanks to these technological breakthroughs, 
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we have obtained quite some knowledge about the human microbiome, but 
undoubtedly, we are still at the beginning of the journey. Here is what we do know.  

Like distant geographic regions of the world are inhabited by different 
mammalian species, the microbiome composition is different depending on the 
body site we examine. For example, there is a unique composition on the skin, in 
the nasal cavity, in the gut and in the oral cavity (Huttenhower et al., 2012). Thus, 
differences in the availability of resources, such as oxygen, flow of nutritional 
ingredients and other environment properties such as pH and temperature give 
rise to differences in the microbial composition. In an ideal world with limitless 
research interest and funding, the different body sites would be studied in parallel 
to really gasp the idea of human as a “superorganism”, which could be used to 
improve health care and clinical applications. However, with limited resources, 
the focus has so far concentrated primarily on the gut, skin, and oral microbiomes, 
which are the easiest to sample. The body sites can additionally have local sub-
communities. For example, sections of the gut have different properties in terms 
of oxygen content and pH and therefore also different microbial content, with the 
large intestine being the most densely populated part of the colon (Leshem et al., 
2020). As the stool sample largely characterizes the microbiome composition of 
the distal part of the gastrointestinal (GI) tract, it has alternatively referred to as 
“fecal” microbiome to not oversimplify the gut. It is noteworthy that the perfor-
mance of microbiome-based applications might differ depending on the body site 
examined. For example, the gut microbiome has shown to provide better dis-
criminability for pancreatic ductal adenocarcinoma detection when compared to 
saliva samples (Kartal et al., 2022). Therefore, although ideally the human micro-
bial landscape should be studied as a whole, this thesis focuses on the microbiome, 
which is characterized by sampling stool and referred to as “gut microbiome” 
from now on. Nevertheless, it is necessary to emphasize that similar questions 
can be asked about the other body sites. 

Let’s change scales. There can also be remarkable differences in the micro-
biome composition when different human populations are compared. The extremes 
of this phenomena are said to follow western and non-western lifestyles. The 
most well-known example is about the Hadza hunter-gatherers who display a 
remarkably different gut microbiome when compared to western populations 
(Schnorr et al., 2014). It is clear that the Hadza live in a quite a different environ-
ment and follow a different lifestyle than an average westerner does, which is 
also reflected by the microbial composition. Moreover, the Hadza microbiome 
exhibits remarkable seasonal differences due to the availability of food, a pro-
perty less evident for other populations (Smits et al., 2017). Differences in micro-
biome composition have even been shown between agricultural and urban regions 
within populations (Ayeni et al., 2018). Due to the large differences in the micro-
biome of western or “industrialized” populations, concerns have been raised 
about the “lost diversity” and even “rewilding” has been called upon to rediversify 
our microbiomes (Blaser, 2018). However, it is unclear, how these observations 
and suggestions translate to different populations. For example, Estonians have 
been largely dependent on “porridge and potatoes” for centuries and the diet is 
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far from the one of the Hadza. Adding that the horizontal and vertical transfer of 
the microbial strains over generations can yield demographic signatures with 
possibly population-specific health benefits (Suzuki et al., n.d.), population-based 
cohorts become fundamental to expand our knowledge and establish baselines 
and checkpoints for the future.  

The story becomes even more complex. One of the most fascinating properties 
of the human microbiome is that it is not a characteristic we either have or don’t 
have. Our gut microbiome is a complex ecosystem consisting of around 160–400 
species (Lloyd-Price et al., 2016) and the system is in continuous movement. 
Although a topic of active discussion, we are not colonized by microbes before 
birth (de Goffau et al., 2019; Enav et al., 2022). The first microbes we obtain are 
usually from the birth canals and vaginal fluids and thereafter we are continuously 
being colonized by microbes from the environment, diet and social interactions 
(Enav et al., 2022). During the first years of life, the gut microbiome continues 
maturation and at 3–4 years, the microbiome starts to resemble the one of an adult 
(Derrien et al., 2019). But the composition isn’t “ready”, it is still open to develop-
ment and changes. A large number of factors have been shown to be associated 
with the gut microbiome or shape the gut microbiome composition throughout 
life. For example, medication usage (S. K. Forslund et al., 2021; Jackson et al., 
2018; Maier et al., 2018; Zhernakova et al., 2016), physical activity (Dziewiecka 
et al., 2022), host genetics (Kurilshikov et al., 2021), smoking (Gui et al., 2021), 
alcohol consumption (Segovia-Rodríguez et al., 2022) and time of the day (Nobs 
et al., 2019) among many other factors as summarized in Figure 1. Importantly, 
various diseases have been associated with the gut microbiome, which will be 
discussed closely in the following chapters. These results are to some extent 
expected as the human gut microbiome is a dynamic and open ecosystem, which 
needs to adapt to the changing environment. Largely due to this property, the 
human microbiome is highly personalized, and the microbiome composition can 
go through relatively large temporal changes (Olsson et al., 2022; Vandeputte 
et al., 2021). This dynamic nature turns out to be both, a curse, and a blessing for 
microbiome science.  
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Figure 1. Intrinsic and extrinsic factors influencing the microbiome composition and con-
siderations for study design in microbiome studies.  
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(Kostic et al., 2014; Pascal et al., 2017), but also psychiatric disorders like anxiety 
disorder and depression (Simpson et al., 2021). Such diseases are often combined 
under a term “complex diseases” because they are caused by a combination of 
genetic, environmental and lifestyle factors. Likewise, a key conclusion from the 
microbiome studies focusing on the complex diseases is that they don’t have a 
single clear responsible member of the microbiome that is causal for the disease 
but rather there are changes in the whole community or subcommunities that 
contribute to the disease development. To indicate and cover this complexity in 
disease-related microbial signals, the term “microbial dysbiosis” is often being 
used, however argued to be too vague (Shanahan et al., 2021; Shanahan & Hill, 
2019). We don’t yet know, how to define neither a “healthy” nor “unhealthy” 
microbiome – various states can refer to similar outcomes. Therefore, we firstly 
need come up with a baseline to define the dysbiotic state.  

The motivation for further health-focused microbiome studies, however, is not 
based on mere associations and correlations. It is established that the gut micro-
biome carries out fundamental functions for our physiology. The presence of an 
active and diverse ecosystem itself protects us from the colonization of pathogens 
(Belkaid & Hand, 2014). The gut microbiome is responsible for the fermentation 
of non-digestible carbohydrates such as dietary fibers, production of a vast array 
of metabolites such as vitamins and short chain fatty acids (SCFAs) (Krautkramer 
et al., 2021; Morrison & Preston, 2016) and serving as an important mediator for 
our immune system (Belkaid & Hand, 2014). Nevertheless, the understanding 
about the functions gut microbiome carries out is constantly updated (Shine & 
Crawford, 2021). The microbiome holds a great metabolic potential and there is 
active research going on.  

Therefore, our microbial pals are not mere passengers, but we are depending 
on them. Taken together, an intriguing concept forms: we are born as empty 
vessels, and we need to form ourselves a symbiotic microbial community that 
protects us and benefits us. However, if something goes wrong, health compli-
cations may follow. Considering that during the last few generations a lot has 
changed in the society, for example the proportion of vaginally born children is 
decreasing and the consumption of processed foods and drugs is increasing, we 
might run into trouble (Sonnenburg & Sonnenburg, 2019). These are remarkable 
times for microbiome research. We have technology to study the microbiome in 
a rapidly changing world and we are fueled by the already existing knowledge. 
Besides satisfying our desire for knowledge, the microbiome science can provide 
a new perspective for improving our health and clinical practice, which will be 
discussed in the following sections.  
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1.2. Microbiome in real-world applications 

1.2.1. Microbiome for disease diagnostics and prognostics 

Using the microbiome to improve the decision making in clinical applications is 
a natural next step following the accumulation of evidence for its biological 
mechanisms and disease associations.  

Firstly, microbiome can be considered a marker for diagnosing a disease. It is 
especially reasonable to bear in mind the diseases that are difficult to diagnose. 
A notorious and probably most-studied of such diseases is colorectal cancer. The 
routine procedure for diagnosing colorectal cancer consists of detecting blood 
from the feces, which is followed by colonoscopy. The invasiveness of the 
colonoscopy is the logical target for microbiome-based alternatives: can we 
diagnose the disease by analyzing the fecal microbiome instead? It has been 
shown that there is a colorectal cancer specific microbial signal that can improve 
the detection of the disease when compared to traditional colorectal cancer risk 
factors (Wirbel et al., 2019). Similarly, microbiome can be used as a means to 
diagnose Pancreatic cancer (Kartal et al., 2022), and Crohn’s disease and 
ulcerative colitis are also being actively researched in this regard (Kostic et al., 
2014; Pascal et al., 2017). A related aim is to use microbiome for estimating the 
risk of developing a disease. The development of risk models based on micro-
biome data is currently restricted due to the availability of large-scale prospective 
cohorts. As one of the few, Finnish FINRISK cohort contains long follow-up data 
that has been used to identify microbial risk factors for cause-specific mortality, 
liver disease and type 2 diabetes (Y. Liu et al., 2022; Ruuskanen et al., 2022; 
Salosensaari et al., 2021). In other cases, the research is restricted by short follow-
up or limited sample size (Gou et al., 2021; Leung et al., 2022).  

There are several challenges to overcome before putting those models to work 
in clinical practice, some of which will be discussed in the next sections, but a 
principal problem needs to be highlighted. To accompany the development of the 
diagnostic and prognostic models with hope, trust, and cost-effectiveness, we 
need to be sure that the contribution of the microbiome is truly independent of 
the factors that are potentially easier and cheaper to measure. So far, only a few 
cost-effectiveness analyses have been carried out (Bajaj et al., 2020; Padula et al., 
2020). Importantly, for many clinical applications we already have a “baseline” 
which microbiome analysis effectiveness can be compared to. For example, for 
diagnosing colorectal cancer, we are testing for blood in the fecal sample. So, the 
question is not whether the microbiome can be used to diagnose colorectal cancer, 
but whether the microbiome can provide some extra information to the fecal 
occult blood test to increase the sensitivity of the diagnostic test. Similar con-
siderations must accompany all microbiome-based applications. For clinical trials, 
often not placebo is considered as a comparison for a new drug, but an existing 
drug or procedure that is the best performing intervention for the disease at the 
current moment. We should be aware of the simpler alternatives because 
microbiome today is not a simple alternative in those terms, although there are 
obvious benefits and successful use-cases.  
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1.2.2. Microbiome-guided health interventions  

Perhaps the most influential microbiome-guided application for an individual 
today is personalized nutrition (Leshem et al., 2020; Shilo et al., 2022; Zeevi et 
al., 2015). Changing one’s dietary preferences is possibly one of the easiest 
lifestyle interventions, which, turns out, can be individually directed to benefit 
health as needed. Luckily, this field has taken huge leaps in the last few years. 
The microbiome takes part in the degradation of multiple dietary ingredients, 
while being almost solely responsible for the degradation of dietary fiber 
(Cantarel et al., 2012). However, there is large inter-individual variability in the 
degrading capacity of the macro-nutrients, which can even lead to differences in 
energy harvest (Turnbaugh et al., 2006). Therefore, also the capability to produce 
the products of macronutrient degradation such as metabolites trimethylamine  
N-oxide (TMAO) and short-chain fatty acids (SCFAs), is personalized. This is a 
good motivation for the personalized nutrition as the SCFAs and TMAO are 
known to have physiological effects (Krautkramer et al., 2021). Interventional 
studies exposing our microbiomes to different diets have learned that our body 
responds differently to the same foods depending on the baseline microbiome 
composition (Suez et al., 2022; Zeevi et al., 2015). Successful applications have 
been built that leverage this concept to predict the changes in postprandial glucose 
levels, which can help to manage obesity and type 2 diabetes – two major threats 
to public health (Zeevi et al., 2015).  

A rising field that displays similarities with the personalized nutrition approach 
is pharmacomicrobiomics – the study of how drugs work on a subject depending 
on the gut microbiome composition. It has been recognized that the microbiome 
can influence drug pharmacokinetics and pharmacodynamics in various ways 
(Zimmermann et al., 2021). Most alarmingly, microbiome can push a common 
drug to produce toxic metabolic subproducts, which result in adverse drug events 
(Zimmermann et al., 2019a). Similarly, the drug effects can be suppressed or even 
enhanced based on the available composition. For example, the response to statins 
has been shown to be more intense when there is an enrichment of the genus 
Bacteroides (Wilmanski et al., 2022). Remarkably, a systematic approach studying 
common host-targeted drugs showed that up to 65% of the drugs were meta-
bolized by the microbial community (Zimmermann et al., 2019b). Thus, it can be 
expected that the current studies are just the start and future microbiome studies 
can advance the development of novel therapeutics, reduce the variation in drug-
response and explain or even avoid adverse events. It is definitely one of the most 
exciting ways microbiome can be used to give a personal touch, however, the 
field is still in its infancy. 
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1.2.3. Interventions via changing the microbiome  

As previously described, one possibility to take advantage of the gut microbiome 
would be to recognize the immense information and functional potential present 
and come up with applications that can benefit from it. This perspective is shared 
with the human genetics research, but the microbiome has a big advantage – it 
can be rapidly and easily modified. This is the beneficial part of the personalized 
and dynamic nature of the microbiome. Thus, if we would know what is “bad”, 
we would then turn it to “good” and we are done with increased disease risks, we 
can optimize our drug consumption and consume the diet we like with preferrable 
outcomes. This is understandably an appealing perspective.  

First option for the better could be to introduce beneficial microbes into the 
ecosystem or enhance the conditions of the already existent “good bacteria”. Pro-
biotics and prebiotics respectively are perhaps the most well-known 16ight16ent-
tations of the two ideas. Probiotics are by definition live microorganisms that, 
when administered in adequate amounts, confer a health benefit on the host (Hill 
et al., 2014) and prebiotics is a substrate that is selectively utilized by host micro-
organisms conferring a health benefit (Gibson et al., 2017). Although numerous 
products on the market are advertised as probiotics or prebiotics, there are key 
challenges ahead for the field to make the next steps. For example, the major 
criticism is the lack of evidence for their favorable effect on health (Binda et al., 
2020; McCoubrey et al., 2022). Currently, no probiotics have been licensed as 
medicines. Fortunately, the health claims are being addressed through ongoing 
clinical trials that follow the standard drug development pipelines, which are 
undoubtedly vital for the trustworthiness and development of the field in general 
(McCoubrey et al., 2022). Further considerations can be necessary. Conventional 
drugs are normally considered to dispense from the organism after there is no 
further addition of the molecule. However, probiotics can in theory permanently 
colonize and shift the whole composition, which therefore might have long-term 
consequences to the health when compared to standard drugs. Also, as with tradi-
tional drugs, individuals can respond to the probiotics differently. So, a moment 
of consideration – if we know that the human microbiome is highly personalized, 
can we assume that there is a uniform solution to a problem in a form of pro-
biotics, prebiotics or postbiotics? An alternative solution can be to use fecal 
microbiota transplantation (FMT), which in essence aims to replace the whole 
existing community. Successful applications of FMT are already in clinical 
practice, oral FMT therapies are in stage III clinical trials (McCoubrey et al., 
2022) and novel applications proposed. For example, FMT is currently the most 
efficient intervention to treating C. difficile infection (Quraishi et al., 2017).  

Another solution for driving the microbiome towards the desired composition 
would be to eliminate the harmful ones. Antibiotics is the most well-known 
example of such approach. The conscious production and usage of antibiotics in 
medicine started in 1928, which led to the decrease in formerly deadly diseases. 
When earlier communicable infectious diseases were the main concern, non-
communicable diseases became the main problem. Antibiotics have undoubtedly 
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made a revolution in medicine and Fleming truly deserved his Nobel prize. How-
ever, modern times raise modern problems and two major threats related to anti-
biotics usage have been raised. Firstly, there is a significant rise in the antibiotic 
resistance, referred to as the rise of the “super-bugs”, which were associated with 
4.5 million deaths worldwide and the problem is intensifying (Murray et al., 
2022). Secondly, evidence is building that the antibiotics are associated with 
higher risk for complex diseases such as type 1 diabetes and asthma, with micro-
biome being the likely mediator (Blaser, 2016). Thus, the concept and practice of 
using antibiotics might need a reevaluation. One alternative possibility for 
fighting the pathogen would be to “targeted elimination” approach. Analogously, 
if antibiotics usually target a large proportion of the microbiome composition like 
FMT, bacteria-specific antibiotics or phages can be used to eliminate the patho-
gens (Federici et al., 2021), as probiotics are used for adding a few beneficial 
members.  

Despite the many possibilities to nudge the microbiome composition, achieving 
stable changes tends to be difficult. The microbiome composition tends to return 
to its initial state resulting in a need for repeated manipulation. This is at least partly 
common for antibiotics, diet, probiotics and FMT (Leeming et al., 2019; Li et al., 
2016; Palleja et al., 2018; Suez et al., 2019). Interestingly, probiotics may reduce 
the time of recovery after the antibiotic treatment and autologous FMT could be 
a better solution (Suez et al., 2018), further highlighting the complexities of com-
munity manipulation. Although it is agreed that probiotics do not have to colonize 
the gut, changing the “state” of the ecological composition is a whole another field, 
which will likely have a great influence in the upcoming years. Putting the pieces 
together – identification of the microbial signals responsible for the disease 
occurrence, unfavorable reactions after dietary or drug administration and making 
the necessary adjustments for changing the effects are largely unresolved. These 
challenges make the field highly interesting as every piece of new information 
builds the knowledge needed to master the human as a superorganism. We still 
have some work to do.  
 
 

1.3. Challenges in microbiome research  

Although the microbiome science is enjoying a lot of attention and novel findings 
are being reported daily, the field is open to challenges and pitfalls like any other 
field. There are challenges lurking in every step of the research: selection of the 
study design, data collection, sample preprocessing, bioinformatical analysis, 
statistical analysis, and interpretation of the results among many others. However, 
perhaps one of the first, often subconscious decision point in the research is 
whether there is intention to draw biological conclusions or is there some sort of 
application kept in mind, that just takes advantage of the extra information 
available. The choice leads to different paths with partly overlapping, but partly 
distinct challenges as the knowledge searched for is different. For example, we 
can try to understand, which bugs and how influence the progression of colorectal 
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cancer or, we might be interested, whether we can use the microbiome for 
improving the diagnostics of colorectal cancer. For the former, a more detailed 
characterization of the microbiome profile might be needed whereas the diag-
nostic application relies more on the homogeneity and standardization of the data 
collection and modelling process. Then, the correctness of the approach is a 
secondary priority – if it works for diagnosing a disease, the primary aim is 
fulfilled. For example, returning to the discussion about whether the microbiome 
obtained from stool should be called “fecal” or “gut” microbiome, this is again 
relevant for only the one of the frameworks. For applications, using some smart 
capsules to characterize the microbiome of the small intestine is and will likely 
be unfeasible for a while, especially if no gain in performance is obtained.   
Often, however, no distinction is made and admirably the two ideals are simul-
taneously chased. The next sections aim to address some of the common chal-
lenges in microbiome research, with the focus towards prognostic modelling and 
biomarker detection. The aim of the following is to guide the reader into thinking 
about the relative standpoint a researcher takes and recognize the potential pitfalls 
in hope that the future studies can reduce the unknowns and mischiefs.   
 
 

1.3.1. Considerations before the data analysis 

The questions asked in research are largely driven by the study design and data 
availability. For example, even for the same question, the strength and extent of 
the claims made is understandably different for an interventional study and for a 
cross-sectional observational study. Perhaps an ideal study would collect highly 
precise information about one’s health, lifestyle, and the surrounding environment 
in addition to microbiome samples from various body sites and other multiomics-
data throughout the life, each day and minute. This would be done to infinite 
number of subjects who have gone through a myriad of various interventions. 
Unfortunately, it is a dream that will remain a dream. Therefore, it is necessary 
to consider that there are limitations depending on the study design and cohort 
granularity (Figure 1). For example, referring to increased disease risks has more 
firmness, when it is calculated on large number of incident cases when compared 
to a small sample of prevalent cases, where medication usage could shadow the 
disease effects. When weighting evidence, the study design has its part, and it 
must be accounted for. However, there is no rule of thumb for study design as 
they are all shadowed by feasibility and the ideal plan.  

Microbiome studies have additional considerations and decisions that give 
context to the results. Firstly, the choices for sample collection and DNA extraction 
can also have a fingerprint on the results (Fernández-Pato et al., 2022; Shaffer et 
al., 2022). Secondly, the taxonomic or functional resolution for characterizing the 
microbiome composition needs to be chosen (Figure 1). The decision in favor of 
species-level resolution, enterotypes (Arumugam et al., 2011), functional pro-
files, or even strain level resolution and studying structural variation (Zeevi et al., 
2019) in the microbiome can largely direct the next steps that need to be taken. 
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Such selection can be attributable to the aim of the study as mentioned before – 
whether the goal is to build biological knowledge or use it in an application that 
searches for cost-efficiency among other aspects. For example, strains within a 
species can have a varying functional output (Leimbach et al., 2013). Then again, 
it19ightt be more cost-efficient to use 16S rRNA sequencing if this is sufficient 
for the aim of the study. For example, the enterotypes based on genus-level 
taxonomic profile have been evaluated for directing personalized nutrition 
(Christensen et al., 2018). Either way, the decision can lead to the usage of 16S 
rRNA sequencing, shotgun metagenomics or quantitative PCR (qPCR) and the 
downstream analysis depends on the selection.  

A challenge in microbiome studies has been the lack of reproducibility and 
replicability of the reported results. This includes results reporting biomarkers for 
various diseases, results showing how microbiome can improve the prediction of 
a diagnostic or prognostic models etc. For example, going through a database of 
microbe-disease interactions, one can easily stumble upon associations with effects 
in opposite directions for the same outcome. Moreover, every prevalent bacterial 
species and genus seems to be associated with a variety of diseases. The problem 
is complex and multifaceted. Answering the aforementioned challenges ranging 
from study design selection to biostatistics is part of the solution, but the first 
action point is more philosophical. In the era of “low-hanging fruits” and enthu-
siasm in microbiome research, optimistic bias is likely to pop up. Therefore, 
predefining the analysis plan as is done in clinical trials can alleviate the issues 
with repeatability and luckily such studies have become more prevalent (Ecker-
mann et al., 2022; Sowah et al., 2022). The reasons might not be that the researcher 
consciously modified the results to match his/her interests, but it might be a 
subconscious tweak for the better. Thus, paying attention to the study design and 
sticking to the plan can save us. A parallel solution can be the propagation of 
“open science”. However, although ideally the phenotype and microbiome data 
would be publicly available for the common good, the jurisdiction and data 
privacy issues together with the competitive edge will not likely cross the borders 
in near future.   
 
 

1.3.2. Challenges in data analysis 

Reaching from the initial material to sequences is not an easy task, but the story 
continues. Broadly speaking, the sequences need to be given a meaning and the 
variability in the microbiome composition needs to be associated with the pheno-
type or trait of interest.  

The first step involves bioinformatic analysis. Although the world of micro-
biome bioinformatics covers way more than taxonomic assignment, this task will 
be discussed to illustrate the depth of the challenges. There is a rich set of tools and 
software that are up for the task and are advocated for and against by different 
researchers. Many have also aimed to benchmark these common taxonomic pro-
filers such as mOTUs (Milanese et al., 2019), MetaPhLan (Beghini et al., 2021) 
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and Kraken (Wood et al., 2019), but the results have been conflicting (Sczyrba et 
al., 2017; Ye et al., 2019). However, the benchmarks can be misleading because 
the performance is evaluated uniformly for all profilers although the algorithms 
in principle seek to characterize different aspects of the composition (Sun et al., 
2021). Figure 2 summarizes the caveats that have been discussed so far. Even if 
we consider the most prominent bacterial species such as Akkermansia 
muciniphila, Bacteroides uniformis, Faecalibacterium prausnitzii and Prevotella 
copri, we can obtain large differences in relative abundance estimates when 
different sequencing techniques and bioinformatic tools are used. Thus, it is 
crucial to emphasize that the final results are always dependent on the previous 
steps taken. We are essentially building a framework in which we are working in 
and the results can depend on road chosen.  

 
Figure 2. Comparison of the relative abundances of four gut commensals according to 
the sequencing method (DNBSEQ vs Illumina) and bioinformatics method used (Kraken 
vs MetaPhLan). The red line indicates the situation where x = y, the blue line represents 
the relationship in the data. Pearson correlation coefficient is shown. (not published) 
 
Once reaching to the point where microbiome composition is characterized and 
quantified, the inter-individual variation of the composition can be linked to the 
trait of interest.  The traditional strategies can be broadly divided into three 
groups based on the set of microbial features used for the association analysis 
(Bastiaanssen et al., 2022). Firstly, diversity analysis, a concept from general 
ecology, aims to characterize and analyze the whole microbiome composition 
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without paying direct interest on one single element of the composition. Similarly, 
clustering and stratification approaches such as “enterotyping” commonly take 
advantage of the information carried by the whole composition. Normally, the 
diversity analysis is followed by a differential abundance analysis that puts the 
focus on single species, functional pathway, or other univariate element of the 
composition, and associates it to the trait of interest. Thirdly, a subset of microbial 
features from the full set of composition elements can be used to derive more 
complex features. This might include data-driven features such as balances, 
amalgamations and (sub)networks of taxa, but also knowledge-based features 
such as ecological guilds and functional modules (Bastiaanssen et al., 2022). Each 
of these analyses associating microbial features with the trait come with their own 
challenges. For example, it is tricky to estimate microbial alpha-diversity (Willis, 
2019), the beta-diversity analysis and clustering are dependent on the distance 
measure used for calculating the between-sample differences (Koren et al., 2013) 
and the differential abundance methods are showing disturbing inconsistencies 
(Nearing et al., 2022).  

Differential abundance (DA) analysis in particular has become a topic of 
active discussion and development because of its great scientific and practical 
value. However, the DA algorithms come with remarkably different assumptions 
for declaring differential abundance, which are in practice rarely discussed. 
Hence, there is even a call to drop the idea and forget differential abundance 
analysis as it is impossible to test these assumptions (T. P. Quinn et al., 2021). 
Large fraction of the discrepancies can be attributed to the properties of the micro-
biome data. The relative abundance data available is mathematically defined as 
compositional data, which can lead to spurious results when not accounted for 
(Aitchison, 1982; Gloor & Reid, 2016; T. P. Quinn et al., 2019). For example, 
negative correlation bias arises due to the properties of the data, which renders 
the identification of correlations between the microbial abundances using tradi-
tional methods unreliable (Kurtz et al., 2015). Similarly, only some of the DA 
methods account for the compositional nature of the data. Luckily, compensating 
for the compositional nature of the data through log-ratio analysis has become 
more prevalent in the microbiome research. Nevertheless, although the mathe-
matical properties of compositional data and possible pitfalls are thoroughly 
discussed, there are second thoughts about the impact of these problems due to 
the high dimensionality of modern microbiome data (Greenacre et al., 2022). 
Interestingly, there is a conflict between the mathematical excellence and practical 
solutions in several analysis steps, such as rarefaction for compensating for 
differences in sequencing depth (Hong et al., 2022), zero-imputation for log-ratio 
transformations (Baruzzo et al., 2021), and estimating alpha-diversity (Willis, 
2019). Taken together, there are trade-offs during the analysis phase that a 
researcher is facing, and the results, conclusions and claims are dependent on 
those decisions. It is up for the researcher to apply as much rigor as possible and 
to be aware of the possible limitations.  
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Machine learning (ML) lies in between the three realms of microbial feature 
sets, and its impact and popularity makes it a whole another subtopic with tremen-
dous amount of research and effort put into. Using the microbiome composition 
to predict a trait, for example diagnosing subjects with colorectal cancer as de-
scribed in chapter 1.2.1 or predicting changes in glucose measurements are 
common tasks often attributed to the machine learning algorithms. Without a 
doubt, the results leveraging machine learning have been promising. Variety of 
the algorithms can work with the high dimensionality of the microbiome data, 
that is a relative strength as the complexities of interactions in the ecosystem can 
be taken into account by the learning system. There are concerns, however. Most 
importantly, the seeming simplicity of applying machine learning models on 
whatever data has its setbacks. Firstly, returning to the curse of the personaliza-
tion and temporal dynamics of the gut microbiome composition, the huge vari-
ability complicates the construction of models which can generalize within and 
between cohorts (Wirbel et al., 2019). There are additional concerns with model 
evaluation with overpromised performances (T. P. Quinn, 2021), and with the 
lack of transparency and explainability of the models, that can hamper their 
implementation to clinical practice (T. P. Quinn et al., 2022). Also, there is no 
consensus about an algorithm that can provide the best performance (Marcos-
Zambrano et al., 2021). Several steps can be taken to confront the aforementioned 
challenges. Firstly, considering the compositional nature of the microbiome data 
can improve the performance of the prediction models and lead to sparse models. 
For example, log-ratio transformations can improve the performance of common 
machine learning algorithms (Tolosana-Delgado et al., 2019) and significantly 
increase the sparsity (Coenders & Greenacre, 2021; Gordon-Rodriguez et al., 
2021; T. Quinn & Erb, 2019; Rivera-Pinto et al., 2018). Then again, it has been 
shown that even the presence-absence of the taxa can be a viable alternative 
(Giliberti et al., 2022). Secondly, due to the microbiome datasets still being rather 
small, the model evaluation requires the estimation of variability of the perfor-
mance, for example through rigorous testing schemes such as nested-cross-vali-
dation (Vabalas et al., 2019). Thus, balancing performance, robustness and inter-
pretability will need to be resolved for the models to take the step from research 
to practice. Step ahead, the microbiome is prone to changes and so is the micro-
biome in the population-scale, which has been proposed for Western populations 
(Schnorr et al., 2014). This can lead to relatively rapid “distributional shifts” in the 
data, that can hamper the performance of the production-ready microbiome-based 
prediction tools raising the need for constant development and quality assessment 
(T. P. Quinn et al., 2022).  

Finally, several larger-scale studies have revealed an interesting concept, which 
makes up a challenge on its own. Namely, several common diseases seem to show 
similar changes in the microbiome composition when compared to healthy controls 
(Armour et al., 2019; Jackson et al., 2018). A phenomenon often referred to as 
“common dysbiosis” or “shared dysbiosis”. When thinking back about the diag-
nostic and predictive applications we are interested in, identifying disease-specific 
signals becomes important. Thus, the analysis, either univariate or multivariate, 
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should be aware of the common part of the dysbiosis and try to dissect it. It might 
be that some common covariate leads to the common dysbiosis and the con-
founding effect of such confounder should be taken into account.  

 
 

1.4. Perspectives for the human microbiome research  

Despite the many challenges ahead, the next years of microbiome research will 
be undoubtedly interesting. The field will pick up pace with the number of 
sequenced microbiome samples rapidly increasing and private sector being more 
and more curious (Eisenstein, 2020). Here are some perspectives, dreams and 
wishes for the microbiome research for the upcoming years.  

Perhaps the standardization of the microbiome analysis from sample collec-
tion to taxonomic and functional profiles would be a welcomed gift by and to the 
scientific community. This would allow to analyze the data globally with less 
variability attributed to technical errors and batch effects (Y. Wang & LêCao, 
2020). This again can help us in the “replicability” crisis allowing direct com-
parisons of the results and larger sample sizes for the analysis. Also, applications 
such as disease diagnostics and prediction could be finalized into market-ready 
products. This would raise interest and funding, that could exponentially increase 
the pace of obtaining new knowledge.  

The amount of research being published in the microbiome field is doubling 
approximately in every 3 years according to PubMed. Although this promises a 
fertile ground for progress, dissecting the results has become increasingly dif-
ficult. The research includes functional studies in animal models, population-
based observational studies, interventional studies and clinical trials to name a 
few. In the end, all the results aim to conclude something about one system – 
human. Setting aside the challenges in more technical aspects, combining the 
available and upcoming results into that one framework is and will be a challenge. 
In the same line, the quest for causality is and will be an active research question. 
Luckily, there are studies paving the way, which have studied the causal role of 
microbiome through Mendelian randomization analysis (García-Santisteban et 
al., 2020; X. Liu et al., 2022), there are promising randomized double-blinded 
clinical trials ongoing, and we have a framework to modulate Koch’s postulates 
for human microbiome research as described. Then again, the mendelian ran-
domization studies are limited in their applicability due to the shortage of the 
identified human genetics-microbiome interactions, and the clinical trials as a 
gold standard are heavily time-consuming. Therefore, there are high hopes for 
the upcoming years for methodological development that would help to expand 
the causal understanding of the seen associations.  

The thesis has so far been entirely focused on the microbiome and in par-
ticular, gut microbiome. Human, however, is a complex system and microbiome 
is a team player in the game of taking care of the body and mind. Thus, the gut 
microbiome needs to be integrated and analyzed in the context of a multi-site, 
multi-omic, multi-factorial system incorporating human genetics, metabolomics, 
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but also environmental factors. As previously mentioned, this can serve two aims: 
the integration can help to digest the biological mechanisms or help to improve 
the performance and compare cost-efficiency of clinical applications. Luckily 
integrating these layers or viewpoints is ongoing and the stage is set for new 
discoveries with initiations such as the 10k project (Shilo et al., n.d.).  

We are standing in an interesting point in time. On one hand, the scientists are 
aware of the potential microbiome can have for clinical practice and we can 
almost taste the success, but the microbiome just keeps on surprising. These are 
exciting years ahead.   
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2. AIMS OF THE STUDY 

The general aims of this thesis were to study the host factors influencing human 
gut microbiome composition and how could the microbiome data be used to 
address the needs of the clinical applications. The specific aims were following:  
 
• To study the potential for using gut microbiome for predicting changes in 

glucose regulation and to understand the robustness of the prediction models  

• To characterize the lifestyle and health parameters that are associated with the 
gut microbiome composition using the value of the extensive biobank data 
and electronic health records 

• To evaluate the relevance of the enterotypes for disease classification, prog-
nostics, and subtype identification 
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3. RESULTS AND DISCUSSION 

3.1. Using microbiome for predicting changes  
in glycose regulation (Ref. I) 

Type 2 diabetes (T2D) is a great example of a modern lifestyle disease: the 
prevalence of T2D has more than doubled since 1980 and it has a large burden 
on the health care system, which makes it one of the most popular target diseases 
for microbiome studies (Gurung et al., 2020; World Health Organization, 2016). 
The characterizing nature of the disease is the body’s inability to handle glucose, 
which elevates the glucose levels in the system, which in turn can lead to 
decreased quality of life, blindness, amputations, kidney failure etc (World Health 
Organization, 2016). Although seemingly simple, the mechanisms that help to 
control the glucose are rather difficult with multiple pathophysiological pathways 
involved making T2D a heterogenous disease. That said, type 2 diabetes is in a 
sense a “human defined” disease (Gale, 2013). The diagnosis of the type 2 dia-
betes relies, depending on the region, on two or three continuous measurements: 
fasting glucose, 2-hour glucose and glycosylated hemoglobin (HbA1c), which 
are turned into the disease using a human-defined threshold. Thus, case-control 
studies, which consider T2D a binary health state, might not capture the full 
complexity of the disease. Notably, the T2D is preceded by prediabetes, which is 
a condition that is characterized by higher-than-normal glucose levels, which 
haven’t crossed the threshold yet. Importantly, the progress to T2D can be 
reversed during the prediabetic state, which emphasizes the need for detecting 
disease progression in the early phases (Tabák et al., 2012). Analysis of the 
continuous measurements directly can improve the understanding of the role of 
microbiome in T2D, which are the focus of the first manuscript of the thesis 
(Aasmets et al., 2021).  

 

3.1.1. Description of the cohort and methods 

This analysis took advantage of the Metabolic Syndrome In Men (METSIM) study, 
which is a cohort of Finnish men aged 45–73 years, who have been carefully 
phenotyped for metabolic diseases (Laakso et al., 2017). Specifically, a subset of 
the METSIM cohort were analyzed, who took part in the METSIM follow-up 
study and from whom stool samples were collected and sequenced using 16S 
rRNA amplicon sequencing (V4 hypervariable region). The subjects (N = 608) 
gave samples at three different timepoints- at baseline, 18-months after the base-
line and 48-months after the baseline. At each time point, the subjects went 
through a 1-day outpatient visit during which they provided blood samples after 
an overnight fast and performed an oral glucose tolerance test (OGTT), which 
gives an extensive overview of the glucose regulation. The study design and 
modelling procedure is shown in Figure 3. 
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Figure 3. Study design and the modelling procedure. 

 
Random forest models were built to predict the continuous “metabolic outcomes” 
(MO) in the follow-up timepoints using the baseline measures of MOs and 
centered log-ratio (CLR) transformed microbial genera abundances as predictors. 
Genera that appeared in at least 50% of the samples were included in the final 
modeling task, 172 in total. The MOs included parameters measured during the 
OGTT (fasting glucose, 2h glucose, HbA1c, fasting insulin, 2h insulin) and three 
glucose regulation indexes calculated based on the OGTT results (Matsuda 
insulin sensitivity index (Matsuda & DeFronzo, 1999), insulin secretion index 
and disposition index). The models including microbial predictors were com-
pared to the models excluding microbial predictors to assess the added predictive 
value of the gut microbiome. The modelling procedure was repeated 200 times 
with different data splits for model training and evaluation to evaluate the robust-
ness of the approach. Permutational feature importance together with accumulated 
local effect plots were used to identify and characterize the most significant 
microbial predictors for each MO and both follow-up periods.  
 
 

3.1.2. Microbiome composition predicts changes  
in insulin secretion and glycated hemoglobin 

Firstly, we asked whether including the microbiome data could increase the pre-
diction accuracy for predicting changes in glucose regulation. To answer this 
question, we compared the performances measured by root-mean-square-error 
(RMSE) of the random forest models including and excluding microbial pre-
dictors. Results showed that for the 18-month follow-up time point, the micro-
biome can improve the prediction accuracy for predicting 2h insulin levels, insulin 
secretion index and HbA1c. In the 48-month time frame, the microbiome improved 
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the prediction accuracy for insulin secretion, fasting insulin and 2h insulin 
(Table 1). Remarkably, none of the direct glucose measures turned out to benefit 
from the microbial predictors, highlighting that the microbiome is likely involved 
in the insulin regulation process. These results were consistent to the mendelian 
randomization study, which showed a causal effect of short chain fatty acids 
(SFCA) to various insulin measures, primarily insulin secretion (Sanna et al., 
2019). The next question after identifying the outcomes that can take advantage 
of the microbiome was to identify the microbial genera that are responsible for 
the improved accuracy. The most significant microbial predictors for the relevant 
metabolic outcomes according to the permutational variable importance are shown 
in Figure 4. For each MO, several prominent genera could be detected. For 
example, unclassified Rhodospirillales was identified as a predictor for fasting 
insulin and 2h insulin in the 48-month setting. Interestingly, bacteria from the 
Rhodospirillales order can produce acetic acid (Mamlouk & Gullo, 2013), which 
can improve insulin sensitivity (Johnston et al., 2004; Mitrou et al., 2015). Never-
theless, only a few of the identified genera had been previously reported nor did 
the findings include the most frequently reported T2D-associated taxa such as 
Roseburia or Bifidobacterium (Gurung et al., 2020). The inconsistent patterns 
identified can be attributable to study design. Cross-sectional study designs, 
which have been the source for a majority of the findings, can confuse disease-
effects with the effects of other covariates such as medication-effects as has been 
shown for metformin, a common drug for T2D (K. Forslund et al., 2015).  
 
Table 1. Model stability and generalizability.  

 18-month time frame 48-month time frame 

Trait 

Mean (sd) 
difference in 

RMSE 

# models 
including 

microbiome 
performing 

better

Mean (sd) 
difference in 

RMSE 

# models 
including 

microbiome 
performing 

better 
Fasting glucose 0.001 (0.0594) 99 (49.5%) –0.006 (0.0641) 112 (56%) 
2h glucose –0.02 (0.217) 118 (59%) 0.07 (0.332) 73 (36.5%) 
Fasting insulin 0.20 (1.04) 73 (36.5%) –0.29 (1.080) 137 (68.5%) * 
2h insulin –3.23 (10.840) 141 (70.5%) * –1.42 (12.304) 122 (61%) * 
HbA1c –0.005 (0.0305) 129 (64.5%) * –0.002 (0.0360) 111 (55.5%) 
Secretion index –0.36 (4.949) 122 (61%) * –0.77 (3.254) 138 (69%) * 
Matsuda index 0.07 (0.573) 90 (45%) –0.01 (0.569) 103 (51.5%) 
Disposition index 4.42 (26.590) 77 (38.5%) 2.01 (16.251) 86 (43%) 

Mean differences in root-mean-square error (RMSE) between models including microbial pre-
dictors and models excluding microbial predictors. Negative value indicates a model including 
microbial predictors outperforming the model excluding microbial predictors. * shows statistically 
significant results according to the binomial test after Bonferroni correction. 
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Recently, several large-scale prospective studies have published their results, 
which allow a more comprehensive comparison. A prospective study of 2772 
Chinese individuals incorporating similar follow-up period and continuous 
glucose and insulin measures confirmed the predictive properties of Para-
prevotella, [Ruminococcus] torques group and Family XIII AD3011 group 
(H. Wang et al., 2022). Furthermore, analysis of the prospective data of FINRISK 
cohort identified several bacterial species associated with the T2D incidence with 
several species from the family Lachnospiraceae and genus Alistipes confirming 
the results (Ruuskanen et al., 2022). Interestingly, the FINRISK data indicated 
that a short follow-up time might not be sufficient to identify the biomarkers for 
increased disease risk. Our results showed that genus Alistipes and genera from 
the family Lachnospiraceae are predictive of changes in insulin parameters, but 
not for glucose-parameters directly. Thus, it might be that although the signals 
are too weak for predicting the disease as a binary outcome, analyzing the 
continuous glucose regulation markers can identify the first signal of disease 
progression.   
 

Figure 4. Average feature importance scores for top 50 microbial markers. Highlighted 
taxa are considered the most significant biomarkers. (A) Predictors for 18-month follow-
up. (B) Predictors for 48-month follow-up.  
 
  

UC5-1-2E3

Family XIII AD3011 group

Shuttleworthia

Odoribacter

Rhodospirillales/ uncultured

Prevotellaceae/ uncultured

Alistipes

Enterorhabdus

Asteroleplasma

Family XIII AD3011 group

2h insulin Fasting insulin Secretion index

0.3

0.4

0.5

0.5

0.6

0.7

1.2

1.4

1.6

1.8

Av
er

ag
e 

pe
rm

ut
at

io
n 

im
po

rta
nc

e 
sc

or
e

Methanobrevibacter

[Ruminococcus] torques group

UC5-1-2E3

Subdoligranulum

Christensenellaceae R-7 group

Ruminiclostridium 5

Clostridiales vadinBB60 group
uncultured bacterium

Muribaculaceae / metagenome

Paraprevotella

Clostridiales vadinBB60 group
gut metagenome

Papillibacter

Oscillospira

2h insulin HbA1c Secretion index

0.6

0.7

0.8

0.9

0.6

0.7

0.8

0.9

1.0

1.1

0.75

1.00

1.25

1.50

Av
er

ag
e 

pe
rm

ut
at

io
n 

im
po

rta
nc

e 
sc

or
e

A

B
Rhodospirillales / uncultured

A

B



30 

Taking together, these results emphasize the need for detailed phenotyping of 
complex diseases to identify the first signals of disease progression and to under-
stand the potential mechanisms microbiome is involved in. The WHO allows 
T2D to be analyzed using different measurements. Although clinically relevant, 
it might be that scientifically this definition “blurs” the question we are asking 
and the answer depends on the way T2D is truly diagnosed in clinical practice, 
which can be different by countries. This can be one piece of the puzzle for the 
difficulties researchers encounter when replicating the results of previous studies. 
It is possible that we try to compare slightly different phenotypes without 
realizing the “distributional shift” in the data as previously described. Therefore, 
ideally the two virtues of the METSIM and FINRISK studies would be combined 
with a large sample size, long follow-up, and deep phenotyping to take the most 
of the T2D studies.  
 
 

3.1.3. Modelling microbiome data is challenging 

The most significant takeaway from the analysis was the difficulty in obtaining a 
robust model and estimate of the model performance. The root-mean-squared-
error (RMSE) of the model was largely dependent on the initial train-test split. In 
the best-case scenario, for 2h insulin in a 18-month time frame, the model 
including microbial predictors outperformed the model excluding microbial 
predictors in 70.5% of the splits (Table 1). The sample sizes in microbiome field 
today are small, which makes it problematic to evaluate the performance of the 
machine learning models correctly and robustly. In that scenario, without an 
understanding about the variability in the performance of such predictive models, 
we can get lucky in performance estimates just by chance. Such high variability 
arising from data split the had been also shown before (Topçuoğlu et al., 2020). 
The large inconsistencies in model performance estimates can be observed even 
when applying a model developed on one population on the data from another 
population (Wirbel et al., 2019) or even within a population (Ruuskanen et al., 
2022). This is an important problem that requires further investigation, and it 
is likely an underestimated challenge that the microbiome community faces 
(T. P. Quinn et al., 2022). On one hand, the selection and efficacy of the algo-
rithms that could best leverage the information hidden in the sequences can be 
improved. There is no strong consensus on the best-performing approaches, but 
there are several ideas in the air. For example, accounting for the data compositio-
nality by using log-ratio transformations (Tolosana-Delgado et al., 2019) or data 
augmentation (Gordon-Rodriguez et al., 2022) can improve the model perfor-
mance, sparsity and thereby interpretability. On the other hand, the populations 
can have specific demographic-signatures, which can hamper the development of 
universal and global tools (Suzuki et al., n.d.). Thereby, clinical applications 
exploiting the microbiome data might need to be developed for or adapted to each 
population to accompany reliable performance estimates.  
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3.2. Estonian Microbiome cohort gives novel insights  
into the microbiome-associated factors (Ref. II, III) 

During the last decades, population-based biobanks have become important re-
sources for building scientific knowledge, especially for the human genetics field. 
Relatively recently, large-scale collection of samples for microbiome research 
started, with new microbiome-based biobanks initialized and the existing bio-
banks expanding their data collection (Falony et al., 2016; Gacesa et al., 2022; 
Shilo et al., n.d.; Turnbaugh et al., 2007; Zhernakova et al., 2016). The biobanks 
generally contain rich phenotyping and multi-omics data, which allows to identify 
factors associated with the microbiome composition and study host-microbiome 
interactions. Such large-scale cohorts have contributed significantly to the col-
lective knowledge and have been instrumental in generating hypothesis, vali-
dating experimental findings etc. However, as the number of microbiome cohorts 
is increasing, the scale of the cohorts can become limiting for tracking the partici-
pants in time. Most of the cohorts characterize the microbiome and the health 
state in one, cross-sectional manner, which limits the number of questions asked. 
This includes the clinical cohorts, which generally focus on only specific diseases. 
That said, the next section introduces the Estonian Microbiome cohort that takes 
advantage of the availability of electronic health records (EHR). The results of 
two studies will be shown, which highlight the added value of the EHR for micro-
biome studies.   
 
 

3.2.1. Description of the cohort and methods 

As part of the Estonian Biobank (EstBB), the Estonian Microbiome project 
(EstMB) was initiated in 2017, with more than 2500 individuals providing stool 
and oral samples for microbiome studies (1764 females and 745 males, aged  
23–89, samples collected from the whole Estonia). Estonian Biobank is a 
volunteer-based cohort consisting of approximately around 20% of the Estonian 
adult population, that was initiated in 1999 with the objective to investigate the 
genetic, environmental, and behavioral background of common diseases and traits 
(Leitsalu et al., 2015). The biobank takes advantage of the linkage to the elec-
tronic health records (EHR), Human Genes Research Act and a wide array of 
biological samples. This study took advantage of the rich phenotype data to 
improve our knowledge of the microbiome-associated factors.  

The electronic health records are one of the core strengths of the Biobank. 
They allow a detailed characterization of one’s health through time as the diseases, 
drug prescriptions bought out, and medical procedures carried out are registered 
by the medical professionals with great accuracy. Adding the extensive self-
reported questionnaires about the dietary preferences and lifestyle habits, a total 
of 71 diseases, 136 medications, 21 dietary items, 5 medical procedures and 
19 additional lifestyle factors were questioned from the microbiome perspec-
tive – is the microbiome composition associated with these factors? This pheno-
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typic variation was in Ref II associated with the microbial alpha diversity 
(observed richness and Shannon index with Spearman correlation), beta diversity 
(Aitchison distance and PERMANOVA) and with the abundance of each species 
separately (ALDEx2). Additionally, machine learning models (elastic net regres-
sion) were built using different predictor sets to characterize the potential of using 
microbiome data for disease classification and diagnostics. The shotgun meta-
genomic paired-end sequencing was performed by Novogene Bioinformatics 
Technology Co., Ltd. using the Illumina NovaSeq6000 platform, resulting in 
4.62 ± 0.44 Gb of data per sample. As shotgun metagenomics data is available, 
the analysis was carried out for the taxonomic profile and for the functional 
profile characterized by the Kyoto Encyclopedia of Genes and Genomes (KEGG).  

Ref III categorized the samples into distinct clusters based on their taxonomic 
profile using the Dirichlet-Multinomial Mixture model (DMM) (Holmes et al., 
2012). A 5-cluster “community type” model (CT) and a 3-cluster “enterotype” 
model (ET) were considered for downstream analysis based on the Laplace 
approximation. The clusters were associated with the phenotype data using gene-
ralized linear models and chi-squared tests. Furthermore, incident diseases were 
analyzed with the Cox proportional hazards models to understand, whether the 
CT or ET models could be used to assess the risk for disease progression.  

 
 

3.2.2. Microbiome composition reflects our lifestyle and health 

The initial aim when analyzing the EstMB dataset was to get an understanding of 
the factors associated with the gut microbiome composition. Analysis identified 
a large number of phenotypic factors associated with either taxonomic and 
functional-level alpha-diversity, beta-diversity or with certain species or KEGG 
orthologs. In total, 136 out of 252 dietary-, disease-, medications usage- and other 
lifestyle factors were associated with the microbiome composition in some way. 
These factors together explained around 10.14% of the interindividual variation 
in the gut microbiota compositions. Firstly, the results of the community-scale 
analysis allow to make several observations (Figure 5). For example, the stool 
characteristics are the major drivers of the microbiome variation dominating the 
host-intrinsic factors including BMI and disease states. Secondly, factors gene-
rally associated with an unhealthy lifestyle: smoking, no physical exercise, high 
BMI, high consumption of soft drinks and processed meat products with low 
consumption of vegetables and berries, are associated with lower alpha-diversity. 
Same can be said about the prevalence of nearly all common diseases which, 
importantly, describe more variance in the microbiome composition when com-
pared to the medications. These results have helped to expand the set of micro-
biome-associated factors by medical procedures such as removal of the cecum 
and medications such as glucocorticoids. Regardless, many of these results are 
not necessarily novel to the scientific community. For example, the phenotypic 
factors with the largest impact on the microbial variation including gut emptying 
frequency, stool consistency, BMI and gender have been previously observed in 
several population-based cohorts (Falony et al., 2016; Zhernakova et al., 2016).  
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 Figure 5. Statistically significant associations with species-level microbiome alpha and 
beta diversity. The bar plot indicates the explained variance in the interindividual variation 
of the microbial composition (based on the Euclidean distance on the centered log-ratio-
transformed data). The heatmap shows the Spearman correlation coefficients of each factor 
with the Shannon’s index of diversity and the observed species richness. Blue indicates a 
negative correlation, and red indicates a positive correlation. *FDR < 0.05. 
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The overarching virtue of the Estonian Microbiome cohort data relies on the pos-
sibility to use the electronic health records (EHR). As previously noted for T2D, 
the more detailed information we can analyze, the better. Most importantly, the 
EHR allow to pinpoint the drug usage and disease occurrences with great accuracy 
both prospectively and retrospectively, which gives rise to a range of questions. 
Our study took advantage of the EHR by studying the accumulative effects of 
drug usage. It turned out that the history of antibiotics usage characterized by the 
number of prescriptions over the last 10 years before the sample collection had a 
significant effect on microbiome composition, independent of the recent usage 
(Figure 6). The number of antibiotics prescriptions was significantly associated 
with the first principal components of the species-level microbiome composition 
and remarkably, this effect was already evident in subjects having used antibiotics 
at least 3 times in the previous 10 years. Similar observation with antibiotics was 
recently made by others (S. K. Forslund et al., 2021), but we were able to extend 
this idea to show also a weak accumulative effect of antidepressant usage.    

Figure 6. Associations with antibiotics usage history and the observed number of species 
(the y-axis represents the number of species), Shannon diversity (the y-axis represents the 
Shannon’s diversity index), or the first two principal components (PCs) of the species-
level microbial composition. Asterisks indicate statistically significant differences 
between the drug usage history groups using Wilcoxon test (FDR < 0.05*, FDR < 0.01**, 
FDR < 0.001***, FDR < 0.0001****), and ns notes statistically nonsignificant results. 
Color key indicates the five distinct classes of medication users, the non-users and four 
additional classes based on the quartiles of the number of prescriptions filled over the  
10-year period. The sample size for antibiotics were the following: nonusers n = 243; 
[1,2] n = 549; [3,4] n = 440; [5,7] n = 395; [8,42] n = 400. 
 
This long-term effect of antibiotics was perhaps anticipated, but the extent and 
scope of the association turned out to be a surprise. Usage of antibiotics is a 
significant perturbation that asks for the community to rebuild itself and our 
results show that this restoration might not end in returning to the baseline state 
as thought (Palleja et al., 2018). We clearly saw that if more antibiotics were used 
in the past, the microbiome composition was more likely to be dominated by the 
genus Bacteroides. This finding has strong implication for the future studies. 
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Firstly, the history of antibiotics usage should be accounted for in microbiome 
studies. For example, adjusting for the usage of antibiotics in the differential abun-
dance analysis can help to identify disease-specific microbial markers as shown 
in Figure 7. Remarkably, the number of univariate associations is significantly 
lower after the adjustment and the decrease in the number of associations is 
dependent on the disease. Secondly, the history of antibiotics usage should be 
considered in clinical applications. Asking about the number of prescriptions for 
antibiotics can be a simple solution to account for the microbiome component 
without the extra cost of sample collection and sequencing. Thus, the efficacy of 
a diagnostic test, which is based on characterizing microbiome composition should 
supersede the test that is based on the data about antibiotics consumption. Further-
more, following up on the “common dysbiosis” idea (Jackson et al., 2018; Xu et 
al., 2020), the long-term antibiotic usage can be a partial reason behind why we 
see such results (Figure 7). This question should be further investigated, and 
luckily the Estonian Microbiome cohort provides a great resource for answering 
questions alike. 

Figure 7. Effect of adjusting for antibiotic usage on the number of overlapping associations 
between various diseases. a – Heatmap of overlapping associations between various 
complex diseases before adjusting for antibiotic usage. b – Heatmap of overlapping 
associations between various complex diseases after taking long-term antibiotic usage 
into account. 
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3.2.3. The clinical relevance of enterotyping remains fragile 

Human gut microbiome is an extremely difficult “organ” to analyze because of 
the large variability of the microbiome composition within and between indi-
viduals. When we look at two people, their microbiome compositions are pro-
foundly different and when looking at the microbiome of one individual in time, 
we encounter significant fluctuations in the composition. Thus, instead of focusing 
on a set of species, strains or other taxonomic units, a clustering approach has 
been proposed, which divides the subjects into a small number of distinct clusters 
based on their microbiome composition. Often referred to as “enterotyping” 
(Arumugam et al., 2011), the clustering approach has been rigorously applied in 
the microbiome field (Christensen et al., 2018; Costea et al., 2017; Vandeputte 
et al., 2016). Nevertheless, the clinical relevance of such clustering has remained 
questionable, which this part of the thesis aimed to share a light on (Aasmets, 
Krigul, & Org, 2022). The microbiome genus-level composition was used to 
cluster the EstMB subjects into two competing set of clusters using the Dirichlet-
Multinomial Mixture model (Holmes et al., 2012). An “enterotype” model (ET) 
consisting of 3 clusters and “community type” (CT) model consisting of 5 clusters 
were considered. Firstly, several associations between the identified clusters and 
phenotypic factors were identified (Figure 8).   

From the clinical perspective, numerous diseases were found to be associated 
with the cluster composition giving hope for potential applications. Firstly, the 
enterotype composition could be considered for disease diagnostics. However, as 
the cluster composition is also associated with common confounders and risk 
factors such as age, gender and BMI, the diagnostic properties of the clustering 
should exceed the discriminability of the covariates only. After adjusting for age, 
gender, and BMI, several of the associations between diseases and microbial 
clusters were not statistically significant. Only associations with gout, disorders 
of lipoprotein metabolism, essential hypertension and chronic tubulo-interstitial 
nephritis for enterotype-model and gout and anxiety disorders for community 
type model remained statistically significant. Also, as we and others have shown 
that drug usage can confound the microbiome-disease interactions, we further 
adjusted the models for drug usage. After adjusting for drug usage, associations 
with anxiety disorder and tubulo-interstitial nephritis were not detected. Although 
the enterotype composition remained associated with different diseases, the entero-
typing alone might not be sufficient for diagnostic purposes because different 
diseases are overrepresented in the same enterotypes. Next, we took advantage of 
the electronic health records and analyzed incident diseases to see whether the 
clustering approach would allow to estimate the risk of developing a condition. 
However, the survival analysis diseases didn’t identify any significant results, only 
suggestive evidence for higher risk of migraine in the community type (CT) 3 
cluster. As the median follow-up time of the cohort was 3.1 years, it is possible that 
the follow-up is too short to characterize the predictive ability of the enterotype 
composition. For example, it has been shown for type 2 diabetes that the dif-
ferences in disease incidence among the relative abundance quartiles of the 
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identified biomarkers appears only after 5 years (Ruuskanen et al., 2022). Also, 
the enterotype of the human gut microbiome has been considered a relatively 
stable characteristic for an individual, but a recent study suggest that we can 
change our enterotypes more often than previously thought (Olsson et al., 2022). 
Therefore, although the enterotyping can paint a nice picture about the lifestyle 
and physical health of the subject, the evidence for the clinical relevance remains 
fragile.  
 

Figure 8. Associations with the enterotype (ET) model and community type (CT) model. 
Colored cells represent factor associated with CT and ET models respectively (FDR  
<= 0.1), white cells indicate no statistically significant association (FDR > 0.1). Blue 
colors indicate lower mean values or proportions for the cluster and orange color indicate 
higher values. Mean values or proportions (indicated by %) per cluster are shown. 
Asterix (*) in the names of the factors indicate that a subpopulation consisting of women 
was used for calculating the displayed value. 
 
 

3.2.4. We are still in the exploratory phase  
with microbiome studies 

We are aware of numerous phenotypic factors that are associated with the micro-
biome composition, but it seems we are still missing a lot. For example, the well-
characterized population-based cohorts have been able to characterize around 
10% to 19% of the variation in the taxonomic composition (Aasmets, Krigul, Lüll, 
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the microbial community, such as interactions between the community members, 
growth rates and immigration can have a larger effect (Vandeputte et al., 2021). 
For example, the intra-individual variance was estimated to be 23% in a Swedish 
cohort (Olsson et al., 2022).However, we now know that the drugs can have an 
“accumulative” effect on the gut microbiome composition, which is a totally new 
player. This knowledge can help to further pinpoint disease-specific signals, raise 
new hypothesis, and direct the microbiome-targeted applications. In this study we 
showed that in addition to antibiotics, the host-targeted drugs such as 
antidepressants can have similar effects. This is remarkable as nearly 24% of 
common host-targeted have shown an effect on the microbiome in vitro (Maier 
et al., 2018) raising the possibility that such accumulation effects are prevalent 
for various other drug classes. It is tempting to say that we are far from being 
finished with the exploratory studies. It also shows that information about the 
current state of the microbiome composition can be replaced by asking a simple 
question from the participant such as “how many antibiotics have you consumed 
in the last 2 years?”. Therefore, some applications that take advantage of the 
microbiome composition could potentially be replaced by a more cost-efficient 
questionnaire. 

The accumulation of antibiotics and perhaps other host-targeted drugs in the 
human gut microbiome raises another possibility. As the antibiotic usage rates 
(drug usage in general) and distributions of consumed drug subclasses differ by 
populations, we might end up with a large-scale in natura experiment. It might 
be that this can create population-specific “dysbiotic” signatures that make it dif-
ficult to obtain similar signals in seemingly similar studies, hence another piece 
of puzzle to the replicability issue. The idea could be expanded by considering 
the horizontal or vertical transfer of microbes, which plays a role in diversifying 
our microbiomes. If we now live in a population with altered microbiome pool, 
it can become problematic – we have less to share, and the wheel keeps on 
spinning...  
  

et al., 2022; Zhernakova et al., 2016). It has been suggested that the properties of 
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CONCLUSIONS 

The evidence piled up by the literature leaves no doubt for the author of this thesis 
that human microbiome science is and will stay a rapidly advancing field in the 
coming years. Beyond the knowledge about the dynamics and host-targeted 
functions of the ecosystem itself, we will develop novel diagnostic measures and 
microbiome-based therapies that will improve the public health in a convenient 
and cost-efficient manner. Nevertheless, there is a lot of work to do and several 
challenges ahead that need to be resolved.  

This thesis aimed to expand the knowledge about the factors influencing the 
gut microbiome composition and evaluate several ways gut microbiome data 
could be used for future applications. Several key findings from this thesis can 
show a way forward. Firstly, a detailed phenotypic characterization in micro-
biome studies is highly desirable. This thesis took advantage of two well-charac-
terized cohorts by highlighting the part of glucose regulation, that microbiome is 
likely involved in and showing an accumulative effect of the history of antibiotics 
usage on the gut microbiome composition. The identified accumulative effect of 
long-term antibiotics usage highlights the need for further exploratory studies to 
identify the factors associated with the gut microbiome composition. Secondly, 
using microbiome data in data-driven applications will need to balance between 
the explainability, performance and robustness of the approach. Trying to 
generalize the microbiome variability by a clustering approach has its advantages 
for implementation, but the evidence of diagnostic or prognostic performance is 
weak. Using a more complex approach such as machine learning can potentially 
improve the performance but needs to be thoroughly evaluated to ascertain 
reliability and usefulness. Either way, the microbiome-based clinical applications 
should be tested against a simple alternative which doesn’t include microbiome 
sampling. Nevertheless, these are not challenges that can’t be overcome.  

An interim conclusion about the microbiome field would be that we are 
currently simultaneously enjoying the virtues of new knowledge and opening 
potential for improving our everyday life. The challenges ahead do not over-
shadow the enthusiasm.  
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SUMMARY IN ESTONIAN 

Mikrobioomi väärtus terviseuuringutes 

Tehnoloogia meeletu areng on andnud inimesele võimaluse uurida ümbritsevat 
maailma nurkade alt, mille jaoks veel mõned kümnendid tagasi võimalused 
puudusid. Üks selliseid teadusvaldkondi on inimese mikrobioomi ehk meie kehal 
ja kehas elavate mikroorganismide nagu näiteks bakterite ja viiruste uurimine. 
On märkimisväärne, et mikroorganisme inimese kehas on rohkem kui inimesel 
enda rakke ning mikrobioom koondab endas kordades rohkem geene kui on 
inimesel vastu panna. Selline meeletu mikroobide mitmekesisus, millest enamus 
pesitseb inimese soolestikus, omab inimese tervisele ning edukale toimimisele 
olulist rolli. Näiteks lagundatakse mikrobioobide poolt toodetud ensüümide abil 
kiudained, mida inimene ise ei suuda seedida ning millest sünteesitakse inimese 
ainevahetusele vajalikke ühendeid nagu näiteks vitamiine ja lühikese ahelaga 
rasvhappeid. Mikrobioomil on oluline roll organismi immuunsüsteemi arengus 
ning funktsioneerimisel, mis on meie tervise oluline alustala.  

Mikrobioomi kooslust omakorda mõjutab suurel määral meie elustiil, toitumis-
harjumused, ümbritsev keskkond ning tervislik seisund. Suurimad mikrobioomi 
koosluse mõjutajad on inimese kehakaal, väljaheite konsistents, sugu, suitse-
tamine ning ka mitmete komplekshaiguste esinemine ja ravimite tarbimine. On 
näidatud, et tervetel inimestel on mikrobioomi kooslus erinev kui inimestel, kellel 
esineb haigusi nagu teist tüüpi diabeet, depressioon, soolehaigused või isegi vähk. 
Just seosed haigustega on tekitanud huvi mikrobioomi kasutamiseks meditsiinis, 
milleks on mitu võimalust. Esiteks, inimese mikrobioomi on võimalik üsna liht-
sasti muuta, mistõttu saaks potentsiaalselt ka läbi koosluse muutmise tervist 
parandada. Näiteks võiks saada inimesele kasulike bakterite ehk probiootikumide 
või bakteritele sobivate toitainete ehk prebiootikumidega suunata mikrobioomi 
kooslust sobivasse seisu. Teiseks saab inimese mikrobioomi kooslust kasutada 
selleks, et diagnoosida haigusi, prognoosida haiguste riski või ennustada, milline 
dieet või ravim inimesele sobib. Doktoritöö uuribki, mis mõjutab meie soolestiku 
mikrobioomi kooslust ning kuidas on seda võimalik kasutada meditsiinilistes 
rakendustes.   

Väitekirja esimene pool annab teaduskirjandusele toetudes ülevaate inimese 
mikrobioomist, valdkonna põhilistest uurimissuundadest ning kirjeldab välja-
kutseid, millega tuleb mikrobioomi uurimisel arvestada. Põhjalikumalt käsitletakse 
soolestiku mikrobioomi kooslust mõjutavaid tegureid ning andmeanalüüsiga 
seonduvaid väljakutseid. Töö praktiline osa kirjeldab kolme doktoritöö osaks 
oleva teadusartikli tulemusi.   

Esimene artikkel uurib teist tüüpi diabeeti, mis on krooniline haigus, mida ise-
loomustab normist kõrgem veresuhkru tase. Teist tüüpi diabeeti (T2D) haiges-
tumus on nii Eestis kui ülemaailmselt tõusutrendis ning samuti on diabeedi ravile 
kuluv ressurss ja koormus meditsiinisüsteemile kasvamas. Haigusele eelneb eel-
diabeedi seisund, kus glükoositase veres on kõrgenenud, kuid ei saavuta veel dia-
beeti defineerivat taset. Märkimisväärne on, et eeldiabeedi seisundis on võimalik 
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haiguse progresseerumist tagasi pöörata. See aitaks oluliselt parandada rahva 
tervist ning vähendada koormust meditsiinisüsteemile, mistõttu on tähtis 
tuvastada haiguse progresseerumine võimalikult varajases staadiumis. Eelnevalt 
on teada, et soolestiku mikrobioomi kooslus on T2D põdevatel inimestel erinev 
kui tervetel, kuid vajalike andmete puudumise tõttu on jäänud selgusetuks, kas 
muutused mikrobioomis toimuvad juba enne haiguse avaldumist. Doktoritöös 
analüüsiti Soome METSIM kohorti, mis hõlmab endas andmeid tervete meeste 
kohta, kellel on detailselt mõõdetud T2D-ga seotud veremarkerid kolmes aja-
punktis nelja aasta jooksul. Uuringu tulemused näitasid, et mikrobioomi aitab 
täpsemalt ennustada muutusi mitmetes parameetrites, milleks olid eelkõige insu-
liini eritamisega seotud näitajaid nagu insuliini väärtus paastuveres ning insuliini 
sekretsiooni indeks. Töös kirjeldati ka bakteriperekondi, kelle arvukusel on suurim 
roll mudeli ennustustäpsuse parandamisel. Töö tulemused viitavad selgelt mikro-
bioomi rollile veresuhkru regulatsioonis ning rõhutavad mitmeid tähelepanu-
punkte keeruka füsioloogiaga haiguste nagu T2D uurimisel ja analüüsimisel.   

Teadustöö järgmises kahes artiklis uuriti soolestiku mikrobioomi mõjutavaid 
tegureid Eesti Geenivaramu (Estonian Biobank, EstBB) osana loodud Eesti 
Mikrobioomi kohordi (EstMB) näitel. Eesti Mikrobioomi kohort on populat-
sioonipõhine kohort geenidoonoritest, kes on andnud väljaheiteproovi soolestiku 
mikrobioomi analüüsimiseks. Tänu osalusele Eesti Geenivaramus on võimalik 
iga uuritava kohta lisaks põhjalikele elustiiliküsimustikele kasutada ka elekt-
roonilise registrite andmeid, mis võimaldavad detailselt jälgida inimese tervist ja 
ravimite tarbimist ning nende seoseid mikrobioomiga analüüsida. Rikkalik 
terviseandmestik on tugevaks eeliseks võrreldes seniste suuremate mikrobioomi 
uuringutega, mis võimaldavad analüüsida vaid küsimustikel põhinevaid andmeid. 
Kasutades EstMB põhjalikku andmestikku, leiti 136 mikrobioomi kooslusega 
seotud tunnust, sealjuures mitmeid seni rapoteerimata seoseid. Analüüsitavad 
tunnused hõlmasid inimese elustiili kirjeldavaid tunnuseid nagu suitsetamine 
ning alkoholitarbimine, haiguste esinemine, tarvitatavad ravimid, toidueelistused 
ning muid inimest kirjeldavaid tunnuseid nagu sugu, vanus ning kehamassi-
indeks. Suurimad mikrobioomi varieeruvust kirjeldavad tunnused Eesti Mikro-
bioomi kohordis olid sarnaselt mitmetele eelnevalt publitseeritud töödele soole 
tühjendamise sagedus, kehamassiindeks, suitsetamine ning inimese sugu. Kõige 
märkimisväärsem leid oli antibiootikumide pikaajalise kasutamise akkumuleeruv 
mõju mikrobioomi kooslusele. Selgus, et korduv antibiootikumide tarvitamine 
viimase 10 aasta jooksul mõjutab olulisel määral soolestiku mikrobioomi olene-
mata sellest, kas antibiootikume on kasutatud hiljuti (viimase kuue kuu jooksul). 
Analüüsides pikaajalise antibiootikumide mõju arvesse võtmine võimaldab oma-
korda täpsustada haigusspetsiifilisi muutusi mikrobioomis. Lisaks uuriti, kas 
inimeste grupeerimine soolestiku mikroobide esinemissageduste põhjal kolmeks 
või viieks grupiks võimaldaks kasutust kliinilistes rakendustes. Eelnevalt on 
näidatud, et selline grupeerimine võib aidata suurt inimestevahelist varieeruvust 
mikrobioomi kooslustes arvesse võtta ning sellisel kujutamisel oleksid ka sobivad 
omadused tulemuste interpreteerimiseks. Meie uuringu tulemused näitasid, et 
selliselt mikrobioomi kooslust lihtsustades on võimalik küll anda hinnang inimese 
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üldisele elustiilile (nt toitumine), kuid tõendid gruppide kasutamiseks haiguste 
diagnoosimisel või haiguse riski hindamiseks on nõrgad.  

Töö tulemused andsid suuna edasisteks uuringuteks. Esiteks, võimalikult täpse 
kliinilise informatsiooni kasutamine aitab mõista mikrobioomi olulisust ning 
kasutamisvõimalusi meditsiinis. Doktoritöös analüüsiti kahe andmerikka kohordi 
andmeid, millest selgus, et mikrobioom aitab prognoosida muutusi glükoosi 
regulatsioonis väga kindlate markerite järgi ning pikaaegne antibiootikumide 
kasutamine kajastub soolestiku mikrobioomi koosluses. Teiseks, mikrobioomi 
kasutamine andmetel põhinevates rakendustes nõuab valiku tegemist metoodika 
läbipaistvuse, efektiivsuse ning robustsuse vahel. Mikrobioomi varieeruvuse 
üldistamine üksikutesse klastritesse omab eeliseid kliinilistes rakendustes, aga 
tõendusmaterjal sellise lähenemise rakendamiseks haiguste diagnoosimiseks või 
haigusriskide hindamiseks on vähene. Keerukamad lähenemised nagu masinõppe 
kasutamine võib aidata rakenduste efektiivsust tõsta, aga vajavad põhjalikku 
hindamist, et tagada usaldusväärsus ning kasutatavus.   

Tõendite hulk, mis mikrobioomi inimese tervisega seostab, ei jäta töö autorile 
kahtlustki, et inimese mikrobioomi valdkond on ja jääb järgnevatel aastatel kiirelt 
arenevaks teadusvaldkonnaks. Lisaks mikrobioomi kui ökosüsteemi dünaamika 
tundma õppimisele on järgnevatel aastatel oodata mikrobioomil põhinevate diag-
nostiliste meetmete ning testide ja mikrobioomil põhinevate teraapiate kasutusele-
võtt, mis võimaldaks senisest efektiivsemalt ning kuluefektiivsemalt rahvatervist 
parandada. Sellegipoolest on sellel teekonnal mitmeid väljakutseid, mis vajavad 
eelnevalt uurimist ning lahendamist.   
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