
Secure postal voting

Henri Devillez

UCLouvain, Crypto Group, Belgium

Abstract. There has been several recent attempts to enhance postal
voting systems with the technologies of end-to-end voting systems to
obtain the best of both worlds. Our contribution is two fold. We �rst
propose a postal voting protocol that uses ballots interpretable by the
voters, and then we give a security model in a simpler variant of the
universally composable model (SUC) for which our protocol is provably
secure.

1 Motivation and limitations

At the present time, the most common form of remote voting used in practice
is postal voting. Despite its extreme simplicity, this naive system guarantees the
remote elector that their vote is cast as intended through an human-readable
format of the ballot and does not give any evidence of their choice after the
ballot has been posted. However, the voter has no way to verify that their ballot
has reached an election o�ce and has been correctly counted in the tally. On the
other end, there has been a lot of e�orts to design veri�able electronic election
systems with the use of cryptography.

Recently, there have been attempts to bring together these two approaches
and keep the best of both worlds [1]. In this draft, we provide a protocol achieving
these goals and an intuitive functionality in the universally composable model
[2] capturing the desired privacy and veri�ablity properties of vote-by-mail, for
which our protocol is provably secure. We restrict ourselves to a strict setting in
which ballots are downloaded and printed by the voter (hence preventing the use
of special types of papers) and ballots cast by the voters are human-readable.

2 High level view of the protocol

We consider a protocol for remote elections in a vote-by-mail setting with approval
voting ballots. By approval voting, we mean that given a list of candidates, a
voter can choose to approve any subset of these candidates.

The election is overseen by a party called the election authorities (EA). This
party sets the parameters of the election p, which consists in the list of valid
voters, the list of candidates for which one can vote, the numbers of talliers.

Ballots are generated by an independent server, the ballots issuer (BI). When
a voter asks the server for a ballot, the voter authenticates to the server (with an
electronic ID for example) and receives a blank ballot. This blank ballot contains

2 Henri Devillez

a sheet with an unpredictable voting token and a list of candidate that the voter
has to �ll. The voter will then send this ballot to the election o�ce (EO). The
ballot also contains a sheet of codes and a note sheet. For each choice, the voter
copies the code corresponding to their choices on the note sheet, then destroys
the codes sheet. All the codes are also encrypted by the ballots issuer using a
public key of a threshold encryption scheme run by the talliers. The encryptions
of each of those codes are sent to the talliers, each time with the corresponding
choice and an hash of the voting token associated to the voter and the choice.

Selection sheet

A65GFH82

1 Alice

2 Bob

3 Carol

Code sheet

C0C539AE

1 Alice G6 45

2 Bob H3 2Z

3 Carol K5 3B

Note sheet

A65GFH82

1

2

3

Fig. 1. example of ballot

During the tallying phase, the election o�ce interacts with the talliers to
compute the result of the election that can be published once every ballot has
been counted. To do so, the election o�ce sends to each tallier a hash of the
voting token and the choices written on the ballot. The talliers recovers the
corresponding choices and encryptions received from the ballot issuer. Hence
each tallier can independently compute the tally of the election and if they all
agree on the result, they decrypt together the codes matching each selected
choice. These codes are then sent to a veri�cation server (VS). Voters can later
connect to this server to receive the decrypted codes and compare them with
the codes they saved when they voted. As long as it is di�cult to guess the
code of the other choices, the voter has a guarantee that their choices have been
correctly recorded and counted if they see the right codes when they interact
with the veri�cation server.

3 Security

We introduce a simulation-based security de�nition in a simpler variant of the
universally composable model (SUC)[2] for the security of postal voting protocols.
As usual in this framework, we de�ne a trusted third party which would give
natural security guarantees if it happened to exist. A protocol is secure if for

Secure postal voting 3

any adversary A against the protocol, there exists an adversary S (also called
the simulator) such that a real execution of the protocol with the adversary A is
indistinguishable from an ideal execution of the protocol with the trusted third
party with S.

In the ideal world, we de�ne the ideal postal voting functionality as follows.
Voters send their votes to this functionality instead of the election o�ce and
receive from it the output of the veri�cation procedure at the end of the election.

Secure Postal Voting functionality
Setup Phase

When receiving a command setup(p) from EA, forwards the election
parameters p to every voter and the simulator. In particular, p contains a
probability p_limit which is an upper bound on the probability of success
of adversary changing the vote of a voter without him noticing anything.
Then, assign to each voter a random distinct string handle. For each handle,
keep in memory ballotscasthandle = {} and ballotscountedhandle = {}. Also, send to the
simulator the mapping between the corrupted voters and their handle.

If the simulator replies with a command abort, send abort to EA. Otherwise
if the simulator replies with a command continue, enter the Voting phase.

Voting phase

� When receiving a vote(id, v) command from the voter with identity id,
append v to ballotscasthandle and ballotscountedhandle where handle is linked to id.

� When receiving a vote(id, v) command from the simulator, append v to
ballotscountedhandle where handle is associated to id.

� If the postal channel is corrupted, the functionality has two additional
commands. When receiving a command get_vote(id, i) from the simulator,
send to the simulator the i-th vote v in the list ballotscountedhandle . When
receiving a command modify_vote(id, i, newv), modify the i-th vote in
the list ballotscountedhandle into new_v. If new_v = ⊥, drop the ballot instead.

� When receiving a stop_vote, enter in the Tallying phase.

Tallying phase

� When entering the tallying phase, send to the simulator a list of pairs
of handle and the corresponding votecountedhandle .

� When receiving a command modify_ballot(handle, i, new_v) from the
simulator, update the i-th vote of votecountedhandle into new_v. If new_v = ⊥,
drop the ballot instead.

� When receiving a command abort from the simulator, send a message
abort to EA.

� When receiving a command publish from the simulator, send to the
dummy EA and to every voter the result of the election. The result r
of the election is computed as follows:
1. Set r = {}

4 Henri Devillez

2. For each handle, append ⊥ to r if |ballotscountedhandle | 6= 1. Otherwise
append v to r where v is the unique vote of ballotscountedhandle .

Then enter in the Veri�cation phase.

Veri�cation phase
For every voter, send a command verify(id) to the simulator. The simulator

sends one of the following command in return:

� When receiving a command verification_fail from the simulator, send
cheat to the voter with identity id.

� When receiving a command verification_success(p_success) from the
simulator, ignore the command if p_success > p_limit. Otherwise, send
honest to the voter with identity id with probability p_success or cheat
with probability 1− p_success

� When receiving a command ballot_based from the simulator, send to
the voter with identity id either:
• cheat if the votes computed with ballotscasthandle and ballotscountedhandle are
not the same

• nothing_received if ballotscast = ballotscounted = {}
• honest otherwise

Intuitively, every voter has an handle hiding their identity. The functionality
will later know the vote of each handle but the mapping between the handles
and the voters' id will remain secret, hence preserving the privacy (except for
the corrupted voters or the leak caused by the postal channel corruption).

Regarding the individual veri�ability of the election, the variables ballotscasthandle

and ballotscountedhandle respectively represent the voter's ballots that are cast by the
voter and counted in the tallying procedure. These might be di�erent because of
the adversarial behavior, but in that case the voter will receive a cheat message
with a probability at least p_limit.

Given this functionality, we can prove that the protocol sketched in Section 2
satis�es the following property:

De�nition 1 (Secure postal voting). A PVP V is secure if for any adversary

A, there exists an ideal adversary S such that for any environment E, the

probability that the environment distinguishes between the execution of the real

protocol and an interaction with the ideal postal voting functionality is negligible.

In this game, at most one of these sets of o�cial parties is corrupted: {EO and all

but one tallier}, {BI} and {VS}. Any number of voters and the postal channel can

be corrupted.

References

1. Benaloh, J.: Strobe-voting: Send two, receive one ballot encoding. In: International
Joint Conference on Electronic Voting. pp. 33�46. Springer (2021)

2. Canetti, R., Cohen, A., Lindell, Y.: A simpler variant of universally composable
security for standard multiparty computation. In: Annual Cryptology Conference.
pp. 3�22. Springer (2015)

