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Abstract. Ranked voting systems, such as instant-runoff voting (IRV)
and single transferable vote (STV), are used in many places around the
world. They are more complex than plurality and scoring rules, pre-
senting a challenge for auditing their outcomes: there is no known risk-
limiting audit (RLA) method for STV other than a full hand count.
We present a new approach to auditing ranked systems that uses a sta-
tistical model, a Dirichlet-tree, that can cope with high-dimensional pa-
rameters in a computationally efficient manner. We demonstrate this ap-
proach with a ballot-polling Bayesian audit for IRV elections. Although
the technique is not known to be risk-limiting, we suggest some strategies
that might allow it to be calibrated to limit risk.

In ranked voting, voters rank candidates in order of preference; some elections
require a complete ranking, others allow partial rankings. Counting the votes
can be complex, e.g. involving potentially long sequences of eliminations of can-
didates (for IRV), and transfers of weighted votes between candidates (for STV).

Complexity arises in two ways: (i) a very large number of ways to fill out a
ballot (k! ways to rank k candidates); (ii) the social choice functions are sensi-
tive, small changes can sometimes drastically alter the outcome. This poses a
challenge for auditing: we require statistical inference in a very high-dimensional
parameter space, for a function prone to erratic behaviour.

RLAs have been developed for some ranked voting systems: (i) IRV elections
[1]; (ii) 2-seat STV elections [2]. Both RLAs project into lower dimensions, where
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statistical testing is tractable. However, their projections typically capture only
a subset of elimination sequences that lead to the winner. If the true sequence is
not one of those, but leads to the same winner, then the audits will usually (and
unnecessarily) escalate to a full count despite the reported winner being correct.

Thus, there is scope for further development for ranked systems. For IRV we
seek a method that can work with a more complete set of elimination sequences,
and for STV we want to be able to audit elections with more than 2 winners.8

We tackle the problem directly as a Bayesian audit [6]. This is challenging
in high-dimensions; a previous attempt [3] gave up on fitting a full model and
instead used a bootstrap approach (equivalent to a degenerate Bayesian model).

Our contribution is a new specification of the statistical model that works
efficiently in high-dimensions, making Bayesian audits possible for ranked voting
elections. We demonstrate this with examples of auditing IRV elections.

1 Dirichlet-tree model for ranked voting

An audit involves calculating the evidence in favour of the reported outcome
using a sample of ballots and a statistical model. For ranked voting, the natural
model is multinomial: each ballot type (ranking of the candidates) occurs with
some (fixed but unknown) frequency across all ballots.

A Bayesian audit can work with this model directly, by specifying a prior
distribution on the ballot probabilities. Given a sample of ballots, we obtain a
posterior distribution for these probabilities, which induces a posterior distribu-
tion on the winner(s). If the reported outcome exceeds some desired posterior
probability threshold, we stop the audit, otherwise we sample more ballots.

For a multinomial model, a typical choice of prior is a Dirichlet distribution.
This is conjugate, allowing convenient and efficient implementation. It is defined
by concentration parameters, ai > 0, for each ballot type i ∈ {1, 2, . . . ,K}. The
posterior is Dirichlet (by conjugacy) with concentration parameters ai +ni after
observing ni ballots of type i. To make the prior candidate-agnostic: ∀i, ai = a0
for some a0. Setting a0 = 1 gives a uniform density on the space of probabilities.

This model behaves poorly as K grows very large. If we set a0 = 1, the
prior becomes very informative: it will swamp the data, making the posterior
converge very slowly. If we set a0 much smaller, for example a0 ≈ 1/K, then the
posterior will strongly concentrate on the ballot types observed in the sample,
approximating a ‘bootstrap’ method. This will likely understate the uncertainty.
It will also be challenging to implement, with values of 1/K being smaller than
typical machine precision once there are about 30 candidates.

To overcome these issues, we propose using a Dirichlet-tree prior distribu-
tion (e.g. [5]).9 This is a set of nested Dirichlet distributions with the nesting
described by a tree structure. It generalises the Dirichlet while retaining conju-
gacy with the multinomial. The nesting divides up the space, allowing efficient
inference in high dimensions.

8 E.g., Australian Senate elections use STV to elect up to 12 candidates for each state.
9 Our implementation is available at: https://github.com/fleverest/elections.dtree

https://github.com/fleverest/elections.dtree


The tree structure we propose follows the preference ordering: the first split
in the tree has a branch for each possible first preference (one branch per candi-
date), the next split has a branch for each possible second preference (amongst re-
maining candidates), etc. Partial ballots are modelled by ‘termination’ branches.
To initialise the prior, we set the concentration parameter for each branch to be
equal to a0; see Figure 1 for an example with no partial ballots.
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Fig. 1. Dirichlet-tree prior for ranked voting ballots with 3 candidates.

2 Ballot-polling Bayesian audits of IRV elections

We demonstrate our model using data from two elections of different sizes:
(i) Seat of Albury, NSW 2015 lower house elections, Australia [5 candidates;
46,357 ballots]; (ii) San Francisco Mayoral election 2007 [18 candidates; 149,465
ballots].10 The latter has more than 18! ≈ 6.4× 1015 possible ballot types.

We used a Dirichlet-tree prior that allows partial ballots and had a0 =
0, 1, 10, 100. We also used a Dirichlet prior with a0 set such that its prior variance,
for an arbitrary complete ballot, matched that of the corresponding Dirichlet-
tree prior. Setting a0 = 0 for either prior gives a ‘bootstrap’ audit [3].

For each election, we simulated 100 audits by randomly permuting the bal-
lots (without introducing any errors). We took samples of up to 200 ballots for
Albury and up to 50 for San Francisco, which was sufficient to illustrate the dif-
fering behaviour of the priors. At each point in the audit, we estimated posterior
probabilities by taking the mean of 100 draws from the posterior.

Figure 2 shows how the posterior probability for the true winner evolved as
the samples increased. The Dirichlet-tree model worked for both elections and
responded to a0 as expected: increasing it made the prior more informative and
hence respond more slowly to data. The Dirichlet model behaved similarly when
we had only a few candidates (Albury) but unstable when we had many (San
Francisco), with all choices except the bootstrap (a0 = 0) being too informative.

The bootstrap was erratic at the start (a wide range of posterior values) and
stabilised once the sample was big enough. In practice, the poor regularisation
at the start would lead to increased risk. Whether this can be curbed by simply
specifying a minimum sample size is worth investigating in general.

10 Data source: https://github.com/michelleblom/margin-irv

https://github.com/michelleblom/margin-irv
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Fig. 2. Distribution of the posterior probability for the winner, vs sample size. The
lines show the median across 100 simulated audits, the corresponding bands shade the
values between the 5% and 95% quantiles. The dashed line shows a posterior probability
of 0.95, for reference. The a0 values refer to the Dirichlet-tree prior; for the Dirichlet a
‘corresponding’ value was chosen (see main text).

3 Discussion

We have demonstrated a statistical model that allows efficient ballot-polling
Bayesian audits of ranked voting elections. While our example was specifically
for IRV, the model can be applied to any ranked voting election by simply chang-
ing the social choice function in the calculation of the posterior distribution.
Furthermore, the tree structure can be adapted to better suit specific features
of particular elections, which should improve efficiency.

A current limitation of our approach is that it cannot be used to run an
RLA. This requires an easy way to compute or impose a risk limit. We propose
two ways to overcome this: (i) determine the maximum possible risk by deriving
the worst-case configuration of true ballots, such as was done for 2-candidate
elections [4]; (ii) use a prior-posterior ratio (PPR) martingale [7] to make an
RLA using the Dirichlet-tree model. Another limitation is that our approach
currently only supports ballot-polling audits. Adapting it to allow other types of
audits, such as comparison audits, is another important avenue for future work.
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