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Abstract

Correct classification of breast cancer subtypes is of high importance as it directly affects the therapeutic options. We

focus on triple-negative breast cancer which has the worst prognosis among breast cancer types. Using cutting edge

methods from the field of robust statistics, we analyze Breast Invasive Carcinoma transcriptomic data publicly available

from The Cancer Genome Atlas data portal. Our analysis identifies statistical outliers that may correspond to

misdiagnosed patients. Furthermore, it is illustrated that classical statistical methods may fail to identify outliers due

to their heavy influence, prompting the need for robust statistics. Using robust sparse logistic regression we obtain 36

relevant genes, of which ca. 60% have been previously reported as biologically relevant to triple-negative breast cancer,

reinforcing the validity of the method. The remaining 14 genes identified are new potential biomarkers for triple-negative

breast cancer. Out of these, JAM3, SFT2D2, and PAPSS1 were previously associated to breast tumors or other types

of cancer. The relevance of these genes is confirmed by the new DetectDeviatingCells outlier detection technique.

A comparison of gene networks on the selected genes showed significant differences between triple-negative breast

cancer and non-triple-negative breast cancer data. The individual role of FOXA1 in triple-negative breast cancer and non-

triple-negative breast cancer, and the strong FOXA1-AGR2 connection in triple-negative breast cancer stand out. The goal

of our paper is to contribute to the breast cancer/triple-negative breast cancer understanding and management. At the

same time it demonstrates that robust regression and outlier detection constitute key strategies to cope with high-

dimensional clinical data such as omics data.

Keywords

Logistic regression, sparsity, cellwise outliers, gene networks

1 Introduction

Triple-negative breast cancer (TNBC) represents 10% to 17% of all diagnosed breast tumors,1 and has the worst
prognosis amongst the different subtypes of breast cancer (BC).2 TNBC is characterized by the lack of expression
of targetable proteins like estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth
factor receptor 2 (HER2).3 Based on this, the current standard of care treatment protocols for TNBC are
limited to surgery, radiotherapy, and chemotherapy.4 Since the BC subtype directly influences the therapeutic
options, there is a high demand for the development of methods that not only accurately classify BC patients into
BC subtypes but also identify relevant (target) genes that discriminate between TNBC patients and patients with
other types of BC. The identification of genes that are either down- or up-regulated in TNBC is expected to play an
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important role in precision medicine, by providing a more in-depth knowledge on the cancer biology, but also
yielding diagnostic, prognostic, and therapeutic markers that will ultimately improve patient outcomes.5

The classification of BC into TNBC and non-TNBC is dependent on the absence/presence of ER and PR
expression, and HER2 amplification. The ER, PR, and HER2 status is evaluated by immunohistochemistry (IHC),
either in core biopsies and/or surgical resection specimens. Tumors are classified as either ‘‘positive’’ or ‘‘negative’’
based on the results obtained. However, preanalytic variables, thresholds for positivity, and interpretation criteria
may generate inaccurate results. For example, it has been reported that up to 20% of ER and PR test results are
false negative or false positive.6 This is probably mostly related with the difficulty to apply the thresholds for
positivity. Guidelines from the European Society of Medical Oncology and the American Society of Clinical
Oncology/College of American Pathologists recommend the cut-off to define ER or PR-positive cases as �1%
ER or PR-positive tumour cells, respectively.6,7 Tumours exhibiting <1% of tumour cells positive for ER or PR
should be considered negative.6

Oncogenic ERBB2 is overexpressed in 15–20% of primary breast cancers.8 Determination of positivity for
HER2 overexpression by IHC is dependent on the assessment of the intensity of the reaction product, the
completeness of membrane staining, and the percentage of positive cells.8,9 An IHC score of 3þ is categorized
as HER2 positive and is defined as strong complete reactivity seen in >10% of tumor cells. An IHC score of 2þ is
classified as borderline reactivity (equivocal) and defined as weak to moderate complete membranous reactivity in
>10% of tumor cells. IHC scores 0 and 1þ are considered HER2 negative. IHC 1þ is defined as faint, barely
perceptible membranous reactivity in >10% of tumor cells. IHC 0 is defined as no reactivity or membranous
reactivity in <10% of tumor cells. All equivocal cases, IHC 2þ, must be evaluated by fluorescence in situ
hybridization (FISH) or chromogenic in situ hybridization (CISH), where also a threshold for positivity is
implied, based on average copy number/cell.

The clinical consequences of receptor status are extremely important. A patient given a wrong BC subtype
classification will undergo inappropriate cancer treatment, either hormonal based or not, with severe consequences
for cancer progression and survival. False negatives for ER and PR could benefit from endocrine therapy, and for false
positives the hormonal therapy will fail. On the other hand, while a false positive HER2 assessment leads to the
administration of potentially toxic, costly, and ineffective HER2-targeted therapy, a false negative HER2 assessment
results in denial of anti-HER2 targeted therapy for a patient who could benefit from it.8

In this context, statistical analysis of gene expression data for known BC cases may provide valuable insights.
However, real data often contain one or more observations deviating from the main pattern of the data.10,11 For
example, when considering gene expressions from TNBC data, inaccuracies may be due to variations in ER, PR,
and HER2 testing, as mentioned above. Wrong TNBC class labels may result from inconsistencies between the
IHC and FISH testing technologies. Unfortunately, classical results are highly influenced by these suspicious
observations. The effect of outliers may be such that classical statistical techniques no longer detect them. This
phenomenon is known as masking in statistics literature.12 Moreover, outlying observations may even influence
classical statistics so much that regular observations are flagged as outliers, a phenomenon known as swamping.13

In regression models, these observations may compromise the predictive performance. Due to the high
dimensional nature of the data, typical regression techniques are no longer valid. For example, the classical
least squares fit cannot be computed when there are fewer observations than variables. Therefore, one uses
sparsity-inducing methods to select relevant subsets of the original variables. However, these sparse methods
might also be impacted by outliers, leading to relevant variables being neglected and irrelevant variables being
selected.14 Moreover, detecting interesting anomalous cases (e.g. a normal patient with deviating expressions of
specific genes) may be of particular interest.

The importance of detecting outlying patients is therefore twofold. Outliers corresponding to errors in the labeling
must be detected and treated accordingly in order to achieve accurate model predictions. Correctly diagnosing
patients is of utmost interest as wrongly diagnosed patients may receive ineffective, expensive, and potentially
harmful treatment. Secondly, outliers which are not errors reveal hidden information on the covariates that might
play a role in the definition of new therapies based on target genes revealed by outlier analysis.

The remainder of the paper is structured as follows. In the next section, we discuss TNBC data construction
from RNA-Seq and clinical data from Breast Invasive Carcinoma (BRCA). We then discuss logistic regression as a
tool to decide BC class membership. Due to the high dimensionality of the data and the concern for outliers, we
then turn to robust sparse logistic regression which selects relevant variables and flags outlying cases. Also the
DetectDeviatingCells (DDC) method15 is applied, and its results are linked to those of the robust logistic
regression which brings new insights. The paper concludes with a discussion of results and model diagnostics
along with the biological interpretation of the selected gene set.
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2 Data description

The BRCA data set is publicly available from The Cancer Genome Atlas (TCGA) Data Portal16 and contains
genomic and clinical data from BC patients. The RNA-Seq Fragments Per Kilo base per Million (FPKM) data
were imported using the ‘‘brca.data’’ R package.17 The BRCA gene expression data is composed of 57,251
variables for a total of 1222 samples from 1097 individuals. From those samples, 1102 correspond to primary
solid tumor, 7 to metastases, and 113 to normal breast tissue. Only samples from primary solid tumor were
considered for analysis.

The TNBC gene expression data set was built based on the BRCA RNA-Seq data set available from TCGA.
A subset of 19,688 variables, including the three TNBC-associated genes ESR1 (ENSG00000091831), PGR
(ENSG00000082175), and ERBB2 (ENSG00000141736), hereafter designated as ER, PR and HER2, was
considered, corresponding to the protein coding genes reported from the Ensemble genome browser18 and the
Consensus CDS19 project. The response variable Y, corresponding to the clinical type, is a binary vector coded
with ‘‘1’’ for TNBC individuals and ‘‘0’’ for non-TNBC. This vector was built based on the BRCA clinical data
available from TCGA, regarding the individuals’ label for ER, PR, and HER2 (either ‘‘positive’’, ‘‘negative’’, or
‘‘indeterminate’’). When a ‘‘negative’’ label is recorded for all three genes the response is set to ‘‘1’’ (TNBC),
whereas in all other cases the status is ‘‘0’’ (non-TNBC). However, for assessing the HER2 label, three variables
are available from the clinical data: two from the IHC analysis, the HER2 level and status, and another
corresponding to the HER2 status obtained by FISH. The IHC status was considered, since it was measured
for a larger number of individuals. Whenever both IHC status and FISH status were available for a given patient,
the FISH status was considered instead, as FISH is a more accurate test for classifying individuals into HER2
‘‘positive’’ or ‘‘negative’’. Having the final status of samples for ER, PR, and HER2 expression, the Y response
vector was then built as explained above. Samples showing at least one ‘‘negative’’ label for any of the three genes
and the remaining genes’ labels set to ‘‘indeterminate’’ were excluded from the dataset, yielding a total of 1019
samples (160 TNBC and 859 non-TNBC) accounted for further data analysis.

A total number of 28 individuals were marked as suspect when no concordance existed between the HER2 IHC
level and status, and between the HER2 IHC status and FISH status. Special attention will be given to individuals
for whom non-concordance between lab testing exists and the choice of one or another determines the final label
(TNBC vs. non-TNBC). These suspect individuals are potentially mislabeled and are therefore potentially outliers.
We will verify whether they belong to the list of outlying individuals detected in this study. The age and race of the
variables were also included as explanatory variables, since they were statistically significant in separate univariate
logistic regressions to predict the individuals’ status. The final dataset consisted of 924 samples (153 TNBC and
771 non-TNBC), after excluding samples with no age and/or race records. This data set will be referred to as the
training data with the remaining 95 samples being the test set.

3 Methods

Let X 2 R
n�p denote the matrix of the predictors and Y 2 R

n�1 the response vector. The logistic model assumes
that the univariate response Yi only takes the values 0 or 1, with

P½Yi ¼ 1� ¼ �ðxiÞ and P½Yi ¼ 0� ¼ 1� �ðxiÞ

where xi
t ¼ ðxi1; . . . ; xipÞ is the i-th row of X, and �ðxiÞ is given by

�ðxiÞ ¼
exp xi

tbð Þ

1þ exp xitbð Þ

in which b ¼ ð�1; . . . ; �pÞ
t is the column vector containing the p regression coefficients.

Typically, the regression coefficients b are estimated using the maximum likelihood estimator which minimizes
the negative log-likelihood function

bbML ¼ argmin
b

Xn
i¼1

dðxi
t; yi; bÞ

where the deviance is dðxi
t; yi; bÞ ¼ log 1þ exp xtib

� �� �
� yix

t
ib.
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However, when the number of variables p is large, standard maximum likelihood estimators can be very difficult
to interpret. Also the predictive power of a model may be impacted when including too many variables.20,21

Moreover, when p> n the maximum likelihood estimator cannot even be computed because there are more
unknowns �1, . . . ,�p than the number of terms n in the objective function

Pn
i¼1 dðxi

t; yi; bÞ, which makes the
solution underdetermined. A possible solution to this problem is to consider the so-called shrinkage estimators (for
a review, see e.g. Tibshirani22). For these estimators, a penalty on the regression coefficients is included in the
objective function. The penalty adds another p terms to the objective function which then contains more terms
than unknowns. In the next section, we will discuss several shrinkage estimators.

3.1 Sparse logistic regression

One of the first shrinkage estimators in the literature is ridge regression.23,24 The estimator for b then becomes the
vector bbridge minimizing Xn

i¼1

d ðxti , yi; bÞ þ �jjv � bjj22 ¼
Xn
i¼1

d ðxti , yi; bÞ þ n�
Xp
j¼1

vj�j
� �2

Here � stands for the elementwise product. The tuning parameter �4 0 controls the severity of the penalty and
thus the level of shrinkage. A higher value of � will lead to a higher importance of the penalty and thus a higher
percentage of coefficients pulled towards zero. The vector v contains the penalty factors that control how much of
the penalty � affects each coefficient. If the jth component of v is zero, the coefficient �j is not penalized. On the
other hand if vj¼ 1, the full penalty � is applied to �j.

A downside of ridge regression is that it cannot shrink coefficients exactly to zero, thus all variables will be
retained in the selected model.20,21,25 The LASSO estimator,21 which employs an l1 penalty instead of the l2, may
be used to solve this problem. It performs variable shrinkage and variable selection at the same time. The LASSO
estimate of b is the vector bbLASSO minimizing

Xn
i¼1

d ðxti , yi; bÞ þ �jjv � bjj1 ¼
Xn
i¼1

d ðxti , yi; bÞ þ �
Xp
j¼1

jvj�j j

Again the tuning parameter �4 0 controls the sparsity of the resulting coefficients. A downside of the LASSO
estimator is that it tends to randomly select only one variable in a group of highly correlated variables while
discarding the other variables.26

The elastic net procedure proposed by Zou and Hastie26 tries to overcome the downsides of both ridge
regression and the LASSO. It shrinks the variables and performs variable selection while being able to select
groups of correlated variables. The sparse estimate for b then becomes the vector bbenet minimizingXn

i¼1

d ðxti , yi; bÞ þ n� ð1� �Þ
jjv � bjj22

2
þ �jjv � bjj1

� �

The parameter � controls the mixing between the ridge and LASSO penalty and should be chosen in the interval
½0, 1�. Clearly, when �¼ 0 the ridge estimator is obtained, whereas for �¼ 1 the LASSO estimate is recovered. The
optimal values for � and � may be obtained using k-fold cross-validation techniques. Software implementations of
the elastic net method can be found in the free R software27 package glmnet.28

In the next subsection, we discuss how the elastic net procedure may be modified to make it robust to outliers.
We will first discuss a robustification of the non-sparse maximum likelihood technique before turning our
attention to a robust sparse procedure.

3.2 Robust sparse logistic regression

The maximum likelihood estimator is highly susceptible to outliers because both outliers in the predictor space and
outliers in the response variable may have an unbounded effect on the log-likelihood. As a possible alternative,
more robust procedures have been proposed. For an outlier-contaminated data set they provide a solution that is
close to the one that would be obtained on an outlier-free data set using classical methods. One of the ways to
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achieve robustness is to use a trimmed log-likelihood function. For linear regression the resulting estimator is
called the Least Trimmed Squares (LTS) estimator.29,30

For logistic regression the LTS estimator is defined by

bbLTS ¼ argmin
b

Xh
i¼1

d ðxti , yi; bÞi:n

where the subscript i : n indicates the ith smallest deviance, i.e. the n deviances are first sorted from smallest to
largest. The LTS thus minimizes the trimmed deviance, for a subset of h data points out of the full sample of size n.
The number h is typically chosen between ðnþ pþ 1Þ=2

� 	
and n. The choice of h determines the robustness of the

LTS estimator. In practice one frequently uses a conservative value of h as an initial choice. To improve efficiency
one may then increase h to a higher value, while ensuring that h stays below the number of non-outliers found in
the data.

The ideas of LTS regression were adapted for sparse robust logistic regression by Kurnaz et al.31 and were
implemented in the R27 software package enetLTS.32 They defined the enetLTS logistic estimator which combines
the sparsity of the elastic net procedure with the robustness of LTS regression. In that sense their work is an
extension of sparse LTS linear regression14 that combines the LTS estimator for linear regression with the LASSO
penalty. The enetLTS estimator is defined by

bbenetLTS ¼ argmin
b

Xh
i¼1

d ðxti , yi; bÞi:n þ h� ð1� �Þ
jjv � bjj22

2
þ �jjv � bjj1

� � !

where � 2 ½0, 1� as described for the glmnet penalty.
To increase efficiency, LTS regression usually includes a reweighting step.10 Generally speaking, the reweighting

step identifies outliers according to the above fitted robust LTS model. These are then downweighted before fitting
a classical model using these weights. Consider the Pearson residuals

rsi ¼
yi � �iðxÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�iðxÞð1� �iðxÞÞ
p

Under the logistic model these are known to be approximately normally distributed. Each observation i then
receives a weight wi of 1 when jrsi j5 c and 0 otherwise. The cutoff value c is determined as the 97.5 quantile of a
standard Gaussian distribution, so that 95% of the distribution lies between –1.96 and 1.96. The reweighted
enetLTS estimator is then defined as

argmin
b

Xn
i¼1

wid ðx
t
i , yi; bÞ þ nw� ð1� �Þ

jjv � bjj22
2
þ �jjv � bjj1

� � !

where nw ¼
P

wi is the number of observations receiving weight one.

3.3 Detecting deviating data cells

Let X 2 R
n�p now denote a data matrix of sample size n and dimension p. In statistics, an outlier typically refers to

a row (case) that deviates from the bulk of the data. However, it frequently occurs that such a row is only
suspicious for q out of the p variables, with q� p .33–37 Flagging the entire row as an outlier would thus be
too conservative as the remaining p�q measurements of that row still contain valuable information. To work in
this paradigm, we no longer see the data as n rows of p variables, but rather as a data matrix of n� p cells. Cells
with possibly deviating behavior are then referred to as cellwise outliers.

Figure 1 illustrates these two different paradigms. The left panel indicates three rowwise outliers in the data. The
right panel identifies several contaminated cells in the data matrix. Even though many rows have one or more
outlying cells, they still contain valuable information in their remaining cells.

After applying robust sparse logistic regression, we analyze the selected genes (variables) using the DDC
method recently proposed by Rousseeuw and Van den Bossche15 as a second step. This will provide us with
additional insight in the role of the selected genes and the nature of flagged outliers.
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The DDC procedure uses bivariate correlations between the different variables. It then computes a predicted
value for each cell, based on the values of other cells in the same row. Next, it compares the predicted and observed
value of each cell. When this robustly standardized difference exceeds a certain cutoff, the cell is flagged. Cells for
which the observed value is much lower than the imputed value are colored blue. When the observed value is much
higher than the imputed value, the cell is colored red.

4 Results and discussion

We analyzed the TNBC data set using both the sparse logistic and the robust sparse logistic procedures discussed
above. In both instances, the parameters � and � were selected using fivefold cross-validation evaluating the mean
of the deviances in the fold. To eliminate randomness in the selection of the folds, the cross-validation was
averaged over 10 runs. For the robust sparse logistic regression method, the parameter h was selected as 0:85n.
This parameter was found to be a safe level guarding against outliers after an initial run with h ¼ 0:5n. The
advantage of choosing a higher h4 0:5n is an increase in efficiency (accuracy), but at the same time one has to
make sure that h remains below n minus the number of flagged outliers. The penalty factor v was chosen to be a
unity vector penalizing all coefficients equally, except for the coefficients of ER, PR, and HER2 for which vj ¼ 0:5
as these are of special interest in the TNBC context.

Table 1 summarizes the sparse fits. For both procedures, we list the selected � and � parameters in the glmnet
procedure and the resulting number of non-zero coefficients. We also provide the number of observations that are
flagged as outliers with respect to the fitted model. The criterion used to flag outliers in the classical sparse logistic

n
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d1
Variables Variables

O
bj

ec
ts

Rowwise

n

1

d1

O
bj
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ts

Cellwise

Figure 1. Illustration of the cellwise outlier paradigm versus the typical outlier paradigm.

Table 1. Summary of the fitted models for the robust and non-robust sparse logistic regression

methods.

Sparse

logistic regression

Robust sparse

logistic regression

� 1.00 0.81

� 0.005 0.057

# of non-zero coefficients 136 36

Potential outliers 0 43
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model corresponds to the procedure described in the reweighting step of the robust sparse logistic regression
method.

The results in Table 1 show that the cross-validation leads to different parameter choices for � and � between
the robust and non-robust sparse logistic regression method. The classical method selects roughly four times as
many coefficients (genes) as the robust method. Moreover, only three of the 136 genes selected by the classical
method are also selected by the robust method, namely ER,HER2, and PPP1R14C. While the non-robust method
fails to identify outlying observations, due to the masking effect described in the Introduction, the robust
procedure indicates 43 observations as potential outliers, 12 in common with the set of 24 outliers identified by
ensemble outlier detection technique in the study of Lopes et al.38 It is important to note that all 43 outliers flagged
by the robust method are marked as non-TNBC patients in the data, but are predicted to be TNBC according to
the fitted model. If indeed true, these patients would receive ineffective, costly, and potentially toxic therapies. It is
therefore important to detect all such cases.

The observed differences between the classical sparse logistic regression and its robust counterpart are in
concordance with the simulation study performed by Kurnaz et al.31 They compared the performance of both
estimators using clean and contaminated simulated data by several performance measures including the false
positive rate (or the proportion of non-informative variables that are incorrectly included in the model) and the
false negative rate (or the proportion of informative variables that are incorrectly excluded from the model). Their
results indicate that for contaminated data classical sparse logistic regression suffers from a high false negative rate
up to almost a 90%. This means that most of the informative variables are excluded from the selection. The
number of potential outliers found by the robust procedure provides a strong indication that we are in such a
contaminated data case. This explains why there is only a small overlap between the selected genes by the two
methods. To compensate for leaving out these informative genes, a larger set of less informative genes is picked up
by the classical method. For a more detailed discussion, see Kurnaz et al.31

As neither model selects the variables age and race, the 95 observations that were initially left out of the analysis
due to missing values for either of these variables may be used for out-of-sample testing. The prediction of TNBC
occurrence does not match with the data in 4 out of 95 cases for the classical method and in 6 of the 95 cases for the
robust method. These observations may be considered to be discordant cases for which two are predicted
differently from the observed response by both the classical and robust procedure. Correspondingly, from the
four discordant cases by the classical method, two are only discordant for the classical method, whilst for the
robust procedure four out of six cases are only discordant for the robust procedure. Both methods find two
additional outliers in the test set corresponding to patients who were attributed a non-TNBC status in the
data. From the six cases who did not match according to the robust method, two were borderline cases with a
predicted TNBC probability of 0.53 and 0.57, respectively. Even though the robust model selects only a handful of
genes compared to the classical method, its out of sample performance is comparable to traditional methods.

4.1 Detailed discussion of identified outliers

We now turn our attention to the observations flagged as potential outliers by the robust method and investigate
how these observations differ from the others. The expression of ER, PR, and HER2 for the flagged outliers, along
with their clinical label (TNBC vs. non-TNBC), can be found in Table 2.

All observations flagged as outliers are originally labeled as non-TNBC individuals, based on ER and/or PR
expression, and/or HER2 amplification. From the list of 43 outliers detected, 7 belonged to the group of 28
observations that were previously identified as suspect, i.e. individuals for whom there is no concordance
between lab methods for the HER2 determination (see section 2). This is particularly critical for individuals
ER and PR ‘‘negative’’ and for which the HER2 label determines the final TNBC vs. non-TNBC label, like for
example individuals 12, 34, and 40.

Several inconsistencies between clinical labeling and gene expression can be also observed for ER and PR. An
ER expression value of 0.03, for example, has corresponding positive label for individual 8, while an ER value of
0.63 is translated into a negative label for individual 11. Regarding PR labeling, the same PR expression value of
0.03 corresponds to a negative label for individual 8 and to a positive label for individual 10. Similarly, individual 2
with a PR expression value of 0.25 has a positive PR label, while individual 36 with a PR expression value of 0.26
has a negative PR label. This can be justified by the fact that the clinical threshold for ER and PR positivity is
>1% of positive cells within the tumor. Not only IHC scoring has inherent subjectivity, but also receptors
positivity can be achieved at very different levels of gene expression. The same happens for HER2. Individual 5
was labeled negative with an HER2 expression value of 15.1, and for the same expression value individual 12 was
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Table 2. Summary of the 43 individuals identified as outliers by robust sparse logistic regression regarding ER, PR, and HER2 gene

expression and corresponding clinical label (within parentheses).

Genes

ER PR
HER2

FPKM

(clinical)

FPKM

(clinical) FPKM

(clinical)

Individual

level

IHC

status

IHC

status

FISH Clinical type

1 TCGA-AR-A1AO 1.47(þ) 1.13(�) 14.89 (�) (�) non-TNBC

2 TCGA-BH-A6R9 0.59(�) 0.25(þ) 8.18 (�) non-TNBC

3 TCGA-AC-A62X 0.19(þ) 0.02(�) 28.53 non-TNBC

4 TCGA-A2-A0YJ 0.09(þ) 0.03(�) 240.24 (�) (�) non-TNBC

5 TCGA-LL-A5YP 0.16(þ) 0.05(�) 15.10 (�) (�) (þ) non-TNBC

6 TCGA-A7-A13D 0.52(�) 0.81(þ) 42.28 (Ind) (Equiv) (�) non-TNBC

7 TCGA-E2-A1II 0.14(�) 0.19(þ) 10.73 (�) (�) non-TNBC

8 TCGA-AR-A1AH 0.03(þ) 0.03(�) 34.12 (�) non-TNBC

9 TCGA-BH-A0DL 6.99(þ) 0.04(�) 9.92 (�) non-TNBC

10 TCGA-E2-A14Y 0.67(þ) 0.03(þ) 487.90 (Ind) (Equiv) (þ) non-TNBC

11 TCGA-AO-A0JL 0.63(�) 0.08(�) 63.60 (�) (�) (þ) non-TNBC

12 TCGA-AN-A0FL 0.09(�) 1.07(�) 15.07 (�) (þ) non-TNBC

13 TCGA-AO-A1KO 10.78(þ) 9.12(þ) 14.91 (�) (�) non-TNBC

14 TCGA-AN-A0FX 1.13(�) 0.64(�) 24.02 (�) (þ) non-TNBC

15 TCGA-A1-A0SB 3.16(þ) 0.03(�) 32.35 (�) non-TNBC

16 TCGA-D8-A1JM 5.01(þ) 0.01(�) 21.85 (�) (�) non-TNBC

17 TCGA-E9-A1NC 0.11(�) 0.08(þ) 15.91 (þ) non-TNBC

18 TCGA-A2-A25F 0.62(�) 0.23(þ) 5.19 (�) non-TNBC

19 TCGA-A2-A1G1 0.53(�) 0.17(�) 819.76 (Ind) (Equiv) (þ) non-TNBC

20 TCGA-LL-A6FR 0.33(�) 0.04(þ) 32.13 (Ind) (Equiv) (þ) non-TNBC

21 TCGA-A2-A3Y0 2.18(þ) 0.03(�) 11.34 (�) (�) non-TNBC

22 TCGA-B6-A0IJ 1.18(þ) 0.46(þ) 11.12 non-TNBC

23 TCGA-AR-A0TP 0.04(þ) 0.03(�) 13.39 (�) non-TNBC

24 TCGA-S3-AA0Z 16.67(þ) 0.07(þ) 33.07 (�) (Equiv) (�) non-TNBC

25 TCGA-A2-A4S1 0.29(þ) 0.01(�) 0.61 (�) non-TNBC

26 TCGA-A7-A13E 0.82(þ) 0.06(�) 46.08 (Ind) (Equiv) (�) non-TNBC

27 TCGA-D8-A1JK 0.40(�) 0.72(þ) 22.19 (�) (�) non-TNBC

28 TCGA-E9-A1ND 1.44(�) 0.05(�) 13.05 (þ) non-TNBC

29 TCGA-JL-A3YW 0.35(þ) 0.09(þ) 31.47 (�) (þ) non-TNBC

30 TCGA-AN-A0FJ 0.08(þ) 0.04(�) 14.28 (�) (þ) non-TNBC

31 TCGA-D8-A1XW 0.32(�) 0.11(þ) 21.03 (�) (�) non-TNBC

32 TCGA-UU-A93S 0.30(�) 0.12(�) 1668.35 (þ) (þ) non-TNBC

33 TCGA-OL-A5S0 0.09(þ) 0.06(�) 31.92 (þ) non-TNBC

34 TCGA-E9-A22G 0.44(�) 0.02(�) 15.32 (þ) non-TNBC

35 TCGA-AR-A24Q 1.00(þ) 0.36(�) 20.67 (�) non-TNBC

36 TCGA-E2-A1B0 0.14(�) 0.26(�) 563.81 (þ) (þ) non-TNBC

37 TCGA-AR-A251 1.57(þ) 0.10(�) 14.02 (Ind) (Equiv) (�) non-TNBC

38 TCGA-A2-A4RX 0.68(þ) 0.93(þ) 26.64 (�) (�) non-TNBC

39 TCGA-AR-A1AJ 1.47(þ) 0.07(�) 9.74 (�) non-TNBC

40 TCGA-A2-A04U 0.02(�) 0.02(�) 9.64 (�) (�) (þ) non-TNBC

41 TCGA-BH-A5IZ 5.12(þ) 0.03(�) 28.08 (�) (�) non-TNBC

42 TCGA-D8-A13Y 15.48(þ) 4.17(þ) 4.83 (�) (�) non-TNBC

43 TCGA-LL-A8F5 1.08(þ) 0.04(�) 11.86 (�) (�) non-TNBC

Note: Individuals highlighted in bold correspond to individuals previously identified as suspicious as described in the Data description section.

FPKM: fragments per kilobase million; Ind: indeterminate; Equiv: equivocal; ER: estrogen receptor; PR: progesterone receptor; HER2: human

epidermal growth factor receptor 2.
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labeled as HER2 positive. Wrong labeling in one or more variables clearly impacts final labeling of individuals into
TNBC and non-TNBC, with serious consequences in clinical decision and prognosis.

For other individuals, however, the outlyingness cannot be explained by mislabeling of the three
TNBC-associated gene expressions, as they seem to have concordant gene expression and label (see e.g.
individuals 32, 36, and 42). This suggests that these individuals are correctly classified but might exhibit
abnormal expression values for some of the measured genes.

4.2 Discussion of selected genes with relation to outlier identification

To gain more insight, we ran the DDC algorithm on the 36 selected genes only, without telling DDC anything
about the clinical response variable or which rows were flagged as outliers. The result is a cell map with over 1000
rows, which is hard to visualize. Therefore, Figure 2 instead shows (from top to bottom) the first 30 non-TNBC
patients, 30 TNBC patients, and the 43 outliers found by the robust logistic fit. The indices of the outliers
correspond to the row numbers in Table 2. A blue cell in Figure 2 indicates an unexpectedly low gene
expression value whereas a red cell indicates an unexpectedly high value, relative to the other cells in its row
and using the correlations between the columns. We see that the overall pattern detected by the DDC algorithm
for the patients flagged as potential outliers (all originally labeled as non-TNBC) matches the pattern observed for
the TNBC patients. This is a very strong indication that indeed these patients have an erroneous label in the data.

Genes for which most of the cells of the TNBC patients are colored are of particular interest. Additional
evidence for their role in classifying TNBC patients is provided by the sign and size of their coefficients in the
robust sparse logistic model. Figure 3 depicts the coefficient in the robust sparse logistic model for each of the
genes, using the same color coding as in the DDC map. The coefficients of the ER, PR, and HER2 genes have been
colored black. We indeed see that the genes standing out in the DDC map are mostly those genes with higher
coefficients, in absolute value, in the model. The red-colored genes turn out to get positive coefficients, the blue
genes get negative coefficients, and the yellow ones get coefficients closer to zero. The selected genes may thus be of
particular biological and medical interest for the understanding and diagnosis of TNBC.

Table 3 lists the genes selected by the robust sparse logistic method. It also includes the corresponding
coefficients estimated by the robust sparse logistic method, rounded to three digits. The color coding as
determined by the DDC map is also noted and corresponds to the color coding in Figure 3.

4.3 Biological interpretation of selected genes and correlation structures

Among the 36 genes listed in Figure 3, 13 (36.1%) were down-regulated in TNBC and 23 (63.9%) were up-regulated.
The majority of genes found to be down-regulated in TNBC (11/13) were previously reported to be down-regulated
in this particular subtype of BC or overexpressed in ERþ/HER2þ breast tumors. These include ESR1, PGR, and
HER2, but also AGR2,39 CA12,40 FOXA1,41 GATA3,42,43 MLPH,44,45 SPDEF,46 SPARCL1,47 and TGFB3.48 Also
11 of the 23 genes up-regulated in TNBC were previously described as such, namely ART3,49 B3GNT5,50 EN1,51,52

FOXC1,53 FZD9,54 HORMAD1,55 POU5F1,56 ROPN1,57 TMSB15A,58 UGT8,59 and VGLL160.
Our analysis has led to the identification of 14 genes that were not previously reported as specifically involved in

TNBC or (breast) cancer overall, therefore contributing to the search for new interest biomarkers to further
validate and functionally study. These include JAM3 and PODN, down-regulated in TNBC; and SFT2D2,
CDCA2, CHODL, CT83, FANCE, NKX1-2, PPP1R14C, SRSF12, TBC1D22B, TMCC2, TTLL4, and
PAPSS1, up-regulated in TNBC. JAM3 has been previously identified as a biomarker for cervical cancer61 and
was found to be up-regulated and associated with higher cancer risk in the offspring from mice with high-fat diet
intake during pregnancy.62 Amongst the up-regulated genes, SFT2D2 was previously described as down-regulated
in a bone (specific) metastasis-related gene set.63 PAPSS1, involved in estrogen metabolism, was not directly
implicated in TNBC before but found to be overexpressed in breast tumor tissues in comparison to adjacent
normal tissue, independently of ER status.64

Finally, we consider a graphical representation of the correlation-based network structure between the selected
genes depicted in Figure 4. For clarity, only correlations above 0.6 in absolute value are shown. The thickness of the
connecting lines represents the strength of the correlation, whereas green represents a positive correlation and
red signals a negative correlation. Figure 4(a) shows the correlation plot for the non-TNBC individuals, whereas
Figure 4(b) is the plot for TNBC individuals. The patterns in the left and right panels are strikingly different.

The proto-oncogene AGR2 (anterior gradient homology 2) is among the down-regulated genes in TNBC, and a
strong correlation between AGR2 and FOXA1 was found in TNBC. Moreover, AGR2 was correlated with other
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genes, suggesting a particular relevance for this gene. AGR2 is a known biomarker of poor prognosis in ERþ
BC.65 Accordingly, different studies have reported that expression of the proto-oncogene AGR2 is induced by
estrogen and tamoxifen in BC cells,66 and that AGR2 is required for the growth and migration of ERþ cells. The
transcription factor FOXA1 is implicated in the regulation of many ER�-target genes, including AGR2. This
justifies the multiple correlations we found between FOXA1 and other genes in non-TNBC. However, in
tamoxifen-resistant cells, the expression of AGR2 occurs in a constitutive manner, requiring FOXA1, but loses
its dependence on ER, suggesting a mechanism where changes in FOXA1 activity obviate the need for ER in the
regulation of this gene.67 It is hypothesized that AGR2 may be involved in the folding of the extracellular domains
of proteins that influence cell growth and survival, and that AGR2 may represent an important biomarker and
therapeutic target in BC.68 It thus appears that the FOXA1–AGR2 link in TNBC may be of particular relevance
and deserves further study.
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Figure 2. Cellwise outlier map. The columns correspond to the genes selected by the robust sparse logistic model. The rows

correspond to 30 non-TNBC patients (label nT), 30 TNBC patients (label T), and the 43 outliers found by the robust fit.
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Figure 3. Interpretation of genes selected in the robust sparse logistic model. The color coding corresponds to the color

determined by the DDC map.

Table 3. Genes selected by the robust sparse logistic method, corresponding coefficients (rounded to 3 digits) and their color

coding.

Gene Coef Color Gene Coef Color

0 Intercept 0.225 None 19 TMCC2 0.024 Red

1 CT83 0.368 Yellow 20 PAPSS1 0.021 Yellow

2 FZD9 0.314 Red 21 FANCE 0.020 Yellow

3 SRSF12 0.297 Red 22 TBC1D22B 0.018 Yellow

4 ROPN1 0.260 Red 23 SFT2D2 0.008 Yellow

5 HORMAD1 0.252 Red 24 GATA3 �0.021 Blue

6 CHODL 0.215 Red 25 SPARCL1 �0.030 yellow

7 POU5F1 0.134 Yellow 26 PODN �0.044 Yellow

8 VGLL1 0.125 Red 27 TGFB3 �0.050 Yellow

9 EN1 0.094 Red 28 CA12 �0.051 Blue

10 UGT8 0.088 Red 29 PGR �0.053 Yellow

11 ART3 0.083 Red 30 AGR2 �0.072 Blue

12 TMSB15A 0.077 Red 31 JAM3 �0.080 Yellow

13 B3GNT5 0.061 Red 32 MLPH �0.097 Blue

14 PPP1R14C 0.048 Yellow 33 HER2 �0.246 Yellow

15 TTLL4 0.041 Yellow 34 SPDEF �0.338 Blue

16 FOXC1 0.034 Red 35 FOXA1 �0.441 Blue

17 CDCA2 0.031 Yellow 36 ESR1 �0.551 Yellow

18 NKX1-2 0.025 Yellow

Note: The genes are sorted by their coefficient.
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The fact that the biological role in TNBC of approximately 60% of the selected genes has been previously
reported strengthens our analysis and fosters investigation on the potential role of the remaining selected genes in
BC and in particular TNBC.

5 Conclusion

This work shows that robust sparse logistic regression can be a powerful tool in precision medicine. It enables
accurate prediction of the BC subtype, irrespective of the possible presence of outliers situated in either the clinical
label or in the gene expression data. In contrast, classical sparse logistic regression methods are severely affected by
the outliers in the data. At the same time, robust methodology allows to inspect the detected outliers which may
lead to the correct status of the patient and the prescription of the appropriate treatment. Due to the sparse nature
of this robust regression, genes included in the model may be highly relevant to the understanding of TNBC. While
60% of the selected genes were previously reported to be related to TNBC or BC, the remaining identified genes
deserve further attention as potential biomarkers for the disease. Among the selected genes, biologically relevant
gene networks could be identified both for TNBC and non-TNBC patient data, particularly the strong FOXA1–
AGR2 link in TNBC. These results are intended to contribute to BC/TNBC understanding, the definition of new
therapies and ultimately more effective TNBC management.
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