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1 | INTRODUCTION

Abstract

Background: Previous studies in animal models evidenced that genetic mutations
of KATNAL1, resulting in dysfunction of its encoded protein, lead to male infertility
through disruption of microtubule remodelling and premature germ cell exfoliation.
Subsequent studies in humans also suggested a possible role of KATNAL1 single-
nucleotide polymorphisms in the development of male infertility as a consequence of
severe spermatogenic failure.

Objectives: The main objective of the present study is to evaluate the effect of the
common genetic variation of KATNAL1 in a large and phenotypically well-characterised
cohort of infertile men because of severe spermatogenic failure.

Materials and methods: A total of 715 infertile men because of severe spermato-
genic failure, including 210 severe oligospermia and 505 non-obstructive azoospermia
patients, as well as 1058 unaffected controls were genotyped for three KATNAL1
single-nucleotide polymorphism taggers (rs2077011, rs7338931 and rs2149971).
Case-control association analyses by logistic regression assuming different models
and in silico functional characterisation of risk variants were conducted.

Results: Genetic associations were observed between the three analysed taggers and
different severe spermatogenic failure groups. However, in all cases, the haplotype
model (rs2077011*C | rs7338931*T | rs2149971*A) better explained the observed
associations than the three risk alleles independently. This haplotype was associated
with non-obstructive azoospermia (adjusted p = 4.96E-02, odds ratio = 2.97), Sertoli-
cell only syndrome (adjusted p = 2.83E-02, odds ratio = 5.16) and testicular sperm
extraction unsuccessful outcomes (adjusted p = 8.99E-04, odds ratio = 6.13). The in
silico analyses indicated that the effect on severe spermatogenic failure predisposition
could be because of an alteration of the KATNAL1 splicing pattern.

Conclusions: Specific allelic combinations of KATNAL1 genetic polymorphisms may
confer a risk of developing severe male infertility phenotypes by favouring the
overrepresentation of a short non-functional transcript isoform in the testis.

KEYWORDS
KATNAL1, male infertility, SNP, spermatogenesis, splicing

energy of nucleotide hydrolysis through the catalytic p60 subunit and

the centrosome-targeting regulatory p80 subunit.*-®

Spermatogenesis is a multistep process that relies on both the phys-
ical and metabolic support provided by Sertoli cells.»? It has been
estimated that over 2000 genes are involved in the regulation of
spermatogenesis, and it is plausible to consider that any disruption
of their function may ultimately lead to a large variety of fertility
issues.® One of the key members of such a regulatory network is the
human katanin p60 subunit A-like 1 (KATNAL1) gene, located in human
chromosome 13, a member of the Katanin family, which belongs to the
AAA ATPase superfamily. The main function of the proteins encoded

by these genes is to split and disassemble microtubules using the

Microtubules are major components of the cytoskeleton, which
provides structural stability in every cell type. Regarding the sper-
matogenesis process, microtubules play an essential role in both the
establishment of Sertoli cell/germ cell interactions and the maturation
of male gametes by supporting cell division and by taking part in sperm
head remodelling and sperm tail formation.” Interestingly, reports in
mutant mice have shown that a loss-of-function mutation in Katnal1,
which is expressed in both Sertoli cells and the germ line, may lead
to male infertility through disruption of microtubule remodelling and
premature germ cell exfoliation from the seminiferous epithelium.®
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Subsequent studies in bovine models also associated this abnormal
phenotype with the presence of a splice variant of the gene that pro-
duces a loss of the microtubule interacting and trafficking domain
resulting in KATNAL1 dysfunction.”

Although the human KATNAL1 protein has a considerably high
sequence identity with its bovine and murine orthologues (99% and
93%, respectively), no association of KATNAL1 genetic variants with
human male infertility was observed in a case-control study performed
by Fedick et al.l° However, some of the single-nucleotide polymor-
phisms (SNP) located in the 3'UTR of KATNAL1 were posited to predict
male infertility based on a borderline statistical significance of the
association, and the authors eventually speculated that these may have
been because of limited statistical power, as only 105 non-obstructive
azoospermia (NOA) cases and 242 normozoospermic controls were
analysed.1©

Interestingly, genetic variants of the KATNAL2 and KATNB1 genes,
which encode two additional members of the katanin family that
interact with KATNAL1 to maintain the integrity of Sertoli cells and
to allow the production of male germ cells,! have been associated
with the development of male subfertility because of oligo-astheno-
teratozoospermia, a condition characterised by low sperm counts,
teratozoospermia (abnormal sperm shape) and asthenozoospermia
(poor sperm movement).12

Two of the most extreme forms of male infertility caused by severe
spermatogenic failure (SpF) are severe oligozoospermia (SO), charac-
terised by very low sperm counts in the ejaculate (<5 million sperma-
tozoa/ml), and NOA, defined by a complete absence of spermatozoa
in the ejaculate without any obstruction of the post-testicular genital
tract.’® Although there are some known genetic causes of SpF, includ-
ing Y chromosome microdeletions, karyotype abnormalities, deficits
in gonadotropin and/or sex steroid hormones, and high-penetrance
monogenic mutations, the aetiology of SpF in most patients remains
unknown. Increasing evidence clearly suggests that the idiopathic
form of male infertility represents a complex trait, in which common
variation of the human genome, such as the SNPs, may be involved in
its predisposition and development.'® Indeed, genome-wide associa-
tion studies have identified different SNPs associated with SpF risk,
which are located in non-coding regions that regulate the expression
of nearby genes.’®

Taking all the above into account, we decided to investigate the
possible influence of genetic variation in the 5’ and 3’ regions of KAT-
NAL1 on the genetic susceptibility for SpF. To address this question, we
designed a genetic variant panel including three tagger SNPs that cov-
ered most of the common variation in the region. Then, we analysed the
genetic association of this locus with specific subtypes of severe SpF in

a large cohort of Iberian men.

2 | MATERIALS AND METHODS
2.1 | Study design and sample collection

Following the STrengthening the REporting of Genetic Association
Studies (STREGA) reporting guidelines,’® we designed a candidate
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gene study to evaluate the possible association of the genetic variation

in KATNAL1 with idiopathic SpF risk in a large Iberian population
of European descent. The case-control cohort comprised a total
of 715 infertile men because of severe SpF (including 505 NOA
patients and 210 SO patients) and 1058 unaffected male controls
matched by age, ethnicity and geographical origin, as previously
described.17:18

Our study complied with the ethical guidelines and was conducted
in accordance with the Declaration of Helsinki. The study protocol and
the informed written consent, which was signed by all participants, was
approved by the Ethics Committee ‘CEIM/CEI Provincial de Granada’
(Andalusia, Spain) at the session held on January 26, 2021 (approval
number: 1/21). In addition, each participating centre received prior
ethical approval in compliance with the requirements of their local
regulatory authorities.

The control group was composed of 700 population-representative
men (with a self-reported fatherhood) and 358 samples from
men with normal semen analyses (sperm number and motil-
ity), all of them matching the geographical origin and ethnicity of
cases.

SpF cases were recruited in different private fertility clinics as well
as in public health centres and hospitals from Spain and Portugal.
Patient recruitment relied on exhaustive medical examination and
clinical tests by experts in this clinical field. Two high-speed centrifu-
gation processes in two different semen samples were performed
to establish the diagnosis, according to the guidelines of the World
Health Organization.’? NOA was defined as a total absence of sperm
cells in the ejaculate, while SO was diagnosed whenever a sperm con-
centration below 5 million/ml was observed. In order to select patients
with SpF of idiopathic origin, each medical file was scrutinised in order
to extract all the available information regarding eventual karyotype
analysis, Y chromosome microdeletion screening, physical examina-
tion and endocrine analysis of luteinising hormone, follicle stimulating
hormone and testosterone. Only infertile men with a normal history
of testicular development, normal karyotype and the absence of
Yq AZF deletions were selected. A testicular biopsy was obtained
from 277 NOA patients (which represents 54.85% of the total NOA
group) to assess their specific histological phenotype and to perform
testicular sperm extraction (TESE) techniques for subsequent in vitro
fertilisation reproductive treatment as previously described.}”:18
Thus, NOA patients were classified further into the following major
subgroups according to the histological analysis: (1) Sertoli-cell only
syndrome group (SCO, if a total absence of germ cells was observed),
(2) maturation arrest of germ cells group (MA, patients with > 90%
of maturation arrest of the germ line either at the spermatogonia or
primary spermatocyte stages) and (3) hypospermatogenesis group
(HS, including patients with extremely low cellularity but with all cell
types of the germ line present in few testicular locations). Additionally,
we also established two additional subgroups based on the TESE
outcome of NOA patients, that is, TESEneg (if no viable sperm cell was
retrieved from the biopsy) and TESEpos (including NOA patients with
a successful sperm retrieval), as detailed elsewhere.2° All the available
information regarding the main clinical features of our study cohort is

shown in Table S1.
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FIGURE 1 Genetic architecture of the KATNAL1 gene and the
position of each analysed tagger. (A) Recombination rate across the
gene. (B) Linkage disequilibrium pattern of the region according to the
D’ statistic (D’ = 1, bright red; D’ < 1, shades of red) in the European
(EUR) population of the 1000 Genomes Project. The promoter
location is represented with ared line

2.2 | Candidate gene and SNP selection

We performed a thorough search in the available literature to identify
candidate genes potentially involved in male infertility issues. The
KATNAL1 gene was selected because of its function in microtubule
split and disassembling, which is essential for proper cell division and
sperm remodelling and formation.” Moreover, a potential implication
of KATNAL1 in the development of male infertility both in humans and
in animal models has also been previously reported.6-1° Considering
the most likely complex aetiology of idiopathic SpF,'®> our hypothesis
was that deregulation of the expression levels of KATNAL1 may impact
the correct formation of microtubules, thus triggering male fertility
problems.

With that aim, we downloaded the genotype information of the
European cohort of the 1000 Genome Project Phase 1l (1KGPh3).2!
Then, we followed a SNP tagging strategy as implemented in Haploview
V.4.222 to identify taggers (SNPs representative of haplotype blocks)
covering all the common genetic variation (2 > 0.8) within the main
regulatory regions of the gene (including the promoter and both the
5’ and 3'UTR regions). Three KATNAL1 taggers were selected using
this method: rs2077011, rs7338931 and rs2149971. Figure S1 shows
the linkage disequilibrium (LD) pattern between such taggers. Further-
more, the haplotype architecture of KATNAL1 and the specific location
of the analysed genetic variants are summarised in Figures 1,52 and S3.

2.3 | Genotyping

Genomic DNA was extracted from peripheral white blood cells of all
participants using the QlAamp DNA Blood Midi/Maxi kit (Qiagen,
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Hilden, Germany), the Wizard Genomic DNA Purification Kit Protocol
(Promega, Madison, WI, USA) or the MagNA Pure LC-DNA LV Isolation
kit | (Roche, Basel, Switzerland), following the manufacturer’s recom-
mendations. Genotyping was performed with TagMan SNP genotyping
technology (Applied Biosystems, Foster City, CA, USA) using spe-
cific predesigned TagMan probes (assay IDs: C__1409936_10,
C_62793736_10and C__15864138_10) and a 7900HT Fast Real-Time
PCR System (Applied Biosystems), as previously described.'8

2.4 | Statistical analysis
The statistical power of our study was estimated using the CaTS Power
Calculator for Genetic Studies.2® The estimated power values of our
study, accordingly with different expected ORs, are shown in Table S2.
The software Plink v1.92* and R were used to perform all the statistical
analyses. First, we evaluated the possible deviance from Hardy-
Weinberg equilibrium (HWE) of both the case and control cohorts at
a 5% significance level. To test for association, we conducted case-
control comparisons of the allele and genotype frequencies between all
case groups (SpF,NOA, SO, MA, HS and TESEneg) and the control group
assuming additive, dominant, recessive and two degrees of freedom
(genotypic) models. In addition, cases showing a specific clinical phe-
notype/TESE outcome were also compared against those not showing
it, in order to eliminate infertility as a possible confounding variable. p-
Values, odds ratios (ORs) and 95% confidence intervals were calculated
by means of logistic regression on the genotypes and using geograph-
ical origin (Spain or Portugal) as a covariate. Possible multiple testing
effects were controlled for by using the Benjamini and Hochberg
step-up false discovery rate (FDR-BH) correction.?> p-Values <0.05
after FDR-BH correction were considered statistically significant.
Haplotype-based logistic regression tests were also performed to
analyse putative combined effects of the KATNAL1 selected taggers
(assuming any potential allele combination with a frequency higher
than 1% in the control population). In this case, multiple testing cor-
rection was performed by permutation tests (10,000 permutations)
to estimate empirical p-values as implemented in Plink. To evalu-
ate whether the haplotype model would better explain the observed
associations than the model considering individual SNP effects, we
compared the goodness of fit of both models using Plink. In short, to
assess whether a significantimprovement occurred in fit when the hap-
lotype effect was considered, we calculated the deviance (defined as
-2 x the log likelihood), and if statistically significant differences were
observed, we assumed that the haplotype model was more informative

in explaining the association.

2.5 | Insilico characterisation of associated
variants

We decided to evaluate any functional implications of the observed
associations by using different bioinformatics tools and by exploring

publicly available annotation data of the human genome. First, we
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identified all proxies of the analysed taggers (D’ > 0.8) in the European
population of the 1KGPh3 using LDLink.2® Subsequently, a priori-
tisation of proxies was also conducted, as previously described,’
in an attempt to understand the potential causal molecular and
cellular mechanisms that could explain the observed associations
using tools and resources such as the portals of GTEx,2” Single Cell
Expression Atlas,2®6 ENCODE,2? Haploreg v.4.1,3° SNPnexus®! and
RegulomeDB.32 The relevance of the functional scores used in the
prioritisation analysis is described in Tables S3 and S4.

3 | RESULTS

The genotyping success rate reached >99% for the three analysed
SNPs, and no significant deviation from the HWE (p < 0.05) was
observed either in cases or controls. Moreover, the minor allele fre-
guencies of both control groups were concordant with those described
for the Iberian subpopulation and the European super population
(EUR) of the 1KGPh3?2! (consequently, no significant difference in
either the allele or genotype frequencies were observed between
them).

3.1 | Genetic association analysis for
spermatogenic failure overall

In the first step, we evaluated whether the taggers’ allele and genotype
frequencies of the SpF group differed from those of the unaffected con-
trol population. No statistically significant differences were detected
when the additive or recessive effects of the minor alleles were con-
sidered (Table 1). However, significant p-values were observed under
the dominant and genotypic models for the rs2077011 KATNAL1
variant (ppom = 1.55E-02, OR = 0.78; pgeno = 3.07E-02), with the first
remaining significant following FDR correction (ppom-rpr = 4.66E-02).

3.2 | Susceptibility to male infertility phenotypes
defined by semen analysis

Subsequently, we compared the NOA and SO groups against the
control cohort (Table 1). A trend towards an association between
rs2077011 and NOA was evident under the additive model
(bapp = 5.90E-02, OR = 0.85). Such a suggestive association
reached statistical significance when the dominant and genotypic
models were assumed (ppom = 8.74E-03, OR = 0.75; pgeno = 1.67E-
02), even after multiple testing correction (ppom-rpr = 2.62E-02;
PGeNo-FDR = 5.00E-02).

On the other hand, the minor allele (T) of the rs7338931 KATNAL1
variant showed a protective effect against SO development in both
the dominant and genotypic models (ppom = 2.47E-02, OR = 0.66;
Pceno = 4.91E-02). However, the p-values lost their statistical signifi-

cance when multiple testing correction was applied (Table 1).
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In order to further analyse the suggestive association between
rs7338931 and SO, we carried out another association test consider-
ing the SO group as cases and the NOA group as controls, consequently
removing the confounding factor of having SpF. This comparison
yielded statistically significant differences in the allele/genotype
frequencies of the tested groups under the additive, dominant and
genotypic models (papp = 2.76E-02, OR = 0.76; ppom = 1.36E-02,
OR = 0.63; pgeno = 4.58E-02). Nonetheless, only the FDR-adjusted
p-value of the dominant model was significant (ppom = 4.07E-02)
(Table S5).

No additional evidence of a possible association between the three
analysed taggers and SO or NOA was observed in any of the different
models tested (Tables 1 and S5).

3.3 | Susceptibility to non-obstructive azoospermia
histological subphenotypes and unsuccessful
testicular sperm extraction

Our results suggested a subphenotype-specific genetic association
between the KATNAL1 3’ variant rs2149971 and SCO when this
subgroup was compared against the control group in the additive, dom-
inant and genotypic tests (papp = 1.76E-02, OR = 1.69; ppom = 1.32E-
02, OR = 1.82; pgeno = 4.52E-02) (Table 1). The associations under
the additive and dominant tests were also significant when adjusted
by multiple testing (papp-ror = 4.98E-02; ppom-ror = 3.96E-02). The
comparison between the SCO group against the non-SCO NOA group
(i.e., including MA and HS) showed similar effect sizes toward risk for
rs2149971*A assuming additive (OR = 1.44) and dominant (OR = 1.50)
models. However, such tests did not produce significant p-values (Table
S5), likely because of the considerably lower statistical power of this
analysis in comparison with the SCO versus fertile control model.

On the other hand, significant p-values were also obtained in the
comparison between the MA group and the non-MA group (i.e., that
comprising SCO and HS) for rs7338931 under the dominant and geno-
typic models (ppom = 3.89E-02, OR = 0.48; pgeno = 4.53E-02), but
the statistical significance in both cases was lost after FDR correction
(Table S5).

Finally, the group including the NOA patients with a negative TESE
outcome (TESEneg) was compared against the unaffected control pop-
ulation. This comparison revealed a potential trend of an association
between rs7338931 and TESEneg under the additive and genotypic
models (papp = 5.58E-02, OR = 1.28; pgeno = 5.06E-02) and a sta-
tistically significant association when the recessive model for the
minor allele was assumed (prec = 1.47E-02, OR = 1.61), even after
FDR correction (prec.ppr = 4.40E-02) (Table 1). Similar results for
rs7338931 were obtained when the TESEneg group was tested against
the TESEpos group of NOA patients (papp = 5.87E-02, OR = 1.45;
prec = 4.50E-03, OR = 2.64; pgeno = 1.27E-02). In this case, the
p-value of both the recessive and the genotypic models remained sig-
nificant when multiple testing was considered (prec.ppr = 1.35E-02;
PGENO-FDR = 3.81E-02) (Table S5).
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TABLE 2 Case-control analysis of the haplotype containing the combination of the risk alleles of the three KATNAL1 taggers (rs2077011*C |

rs7338931*T | rs2149971*A) according to different clinical features of male infertility

Haplotype frequency
Clinical feature (cases/controls)
SpF 0.019/0.011
NOA 0.023/0.011
SO 0.012/0.011
HS 0.025/0.011
MA 0.034/0.011
SCO 0.031/0.011
TESEneg 0.034/0.011

Note: Significant p-values are highlighted in bold.

p-Value PperM” OR[CI 95%]
0.0345 0.1970 2.33[1.06-5.10]
0.0082 0.0496 2.97[1.33-6.66]
0.9330 1.0000 0.94[0.22-4.00]
0.1670 0.6253 3.33[0.60-18.34]
0.0244 0.1351 5.00[1.23-20.32]
0.0040 0.0283 5.16[1.69-15.79]
0.0002 0.0009 6.13[2.34-16.07]

Abbreviations: Cl, confidence interval; HS, hypospermatogenesis; MA, maturation arrest; NOA, non-obstructive azoospermia; OR, odds ratio; SCO, Sertoli
cell only; SO, severe oligospermia; SpF, spermatogenic failure; TESEneg, unsuccessful testicular sperm extraction.

2Permutation test p-value for 10,000 permutations.

The 3’ KATNAL1 tagger, rs2149971, was also significantly asso-
ciated with TESE outcome when the TESEneg group was com-
pared against the fertile control group under additive, dominant and
genotypic models (papp = 1.30E-02, OR = 1.62; ppom = 1.30E-02,
OR = 1.70; pgeno = 4.40E-02) (Table 1), with the two first maintain-
ing statistical significance after FDR adjustment (papp-rpr = 3.89E-
02; ppom-Fpr = 3.91E-02). Although the comparison between the
TESEneg and TESEpos groups did not yield significant p-values, the
ORs observed for such models (OR = 1.68 assuming an additive effect
and OR = 1.62 under a dominant effect of the minor allele) were con-
sistent with those obtained from the more powered TESEneg versus
fertile control analysis (Tables 1 and S5).

No additional associations were observed in the subtype analyses
(Tables 1 and S5).

3.4 | Haplotype analysis

To investigate whether the allelic combinations of SNPs located in the
different loci resulted in an increased risk of disease susceptibility or
a high probability of unsuccessful TESE, a haplotype analysis includ-
ing all combinations of the three KATNAL1 taggers was performed. The
haplotype containing the risk alleles of the three SNPs (rs2077011*C
| rs7338931*T | rs2149971*A) was significantly associated with SpF
(b = 3.45E-02, OR = 2.33), NOA (p = 8.22E-03, OR = 2.97), MA
(b = 2.44E-02, OR = 5.00), SCO (p = 4.03E-03, OR = 5.16) and
TESEneg (p = 2.22E-04, OR = 6.13) (Tables 2 and S6). The haplotype
associations with NOA, SCO and TESEneg remained significant after

multiple testing correction (Table 2). In all cases, a statistically sig-
nificant improvement in the goodness of fit was observed when the
haplotype model was compared against the independent SNP models
(Tables 2 and S7).

3.5 | |Insilico characterisation

According to the Human Protein Atlas database,®® the testis repre-
sents the organ with the highest expression of KATNAL1 (Figure S4).
First, in order to determine the specific cell types of the human testis
in which this gene is expressed, we queried the Single Cell Expression

Atlas portal,28

which showed that KATNAL1 transcripts were mostly
present in spermatocytes and early spermatids at puberty®* (Figure
S4).

Subsequently, considering that our genetic study was performed
following a tagging strategy (meaning that the analysed SNPs were
not selected based on their possible functional evidence but on their
representativeness of haplotype blocks), we decided to identify all of
their proxies (D’ > 0.8) in the European population of the 1KGPh3.2!
A prioritisation analysis of the taggers and proxies was then con-
ducted to elucidate the putative causal variants of the observed
KATNAL1 associations with male infertility features. All identified prox-
ies were located in non-coding regions, namely, in introns and the
5’ upstream region of KATNAL1 (Figures S2 and S3 and Table S8).

According to the GTEx project,?”

a large number of the proxies of
the 5’ tagger rs2077011 are expression quantitative trait loci (€QTLs)
of KATNAL1 in different tissues but not in the testis, in which an
eQTL effect of such proxies was observed for other genes such as
HMGB1, MEDAG and RP11-374F3.5 (Table S8). Both these genes and
KATNAL1 are targets of the same enhancer elements according to
ENCODE.??

Regarding the rs2149971 tagger (which covers the 3’ region
of KATNAL1), three of its proxies, that is, rs202093, rs617899 and
rs846483 are testis-specific eQTLs for KATNAL1 (Table S8), suggest-
ing that genetic variation of the 3’ region may influence the gene
expression levels. Indeed, 14 proxies of rs2149971 are annotated

as testis-specific splicing quantitative trait loci (sQTL) for KATNAL1
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FIGURE 2

Isoform expression of KATNAL1. (A) Isoform representation in the different tissues included in the GTEXx project. (B) Gene model

and transcripts per million (TPM) reads in testis. Source: GTEx Analysis Release V8 (dbGaP Accession phs000424.v8.p2)

(Table S9). In this regard, the data extracted from the GTEx and
Ensembl portals indicated an alternative splicing of KATNAL1 mRNA,
leading to five different mRNA isoforms: (1) a 7618 bp transcript
with 11 exons (ENSTO0000380615.7) that encodes a 490 amino
acid protein, which represents the primary transcript in the major-
ity of analysed tissues; (2) another isoform of 1634 bp with 11
exons (ENSTO0000380617.7) that encodes a similar 490 amino
acid protein and that constitutes the most abundant KATNAL1 tran-
script in the testis of healthy subjects; (3) two shorter isoforms
of 797 and 566 bp with four exons each (ENST0O0000441394.1
and ENST00000414289.5, respectively) encoding two small pep-
tides of 150 and 153 amino acids; and (4) one retained intron of
only 363 bp containing two exons of the 3’ region of the gene
(ENSTO0000480854.1), which does not produce a functional protein.
The highest expression levels of the latter non-coding isoform among
all analysed tissues are detected in the testis (Figure 2).

Notably, the minor alleles of the abovementioned sQTLs, which
correlate with the rs2149971*Arisk allele for SCO and TESEneg (Table
S9), are associated with an overrepresentation of the last exon of the
largest isoforms, which corresponds to the first exon of the small non-
coding isoform, in comparison with the protective alleles (Figure S5). A
comprehensive analysis of the alternative exon expression patterns in
KATNAL1 highlighted that there are only 18 SNPs with a sQTL effect on
this gene. Seventeen out of these 18 sQTLs act in the testis and increase
the expression of the previously mentioned exon. Moreover, 14 of them
are linked to the identified SpF risk variants. Therefore, we hypothesise
that this effect might be very specific to the testicular tissue, likely
related to an increased abundance of the short non-coding isoform
(ENST00000480854.1) and controlled by the identified SpF risk
haplotype.

Other testis-specific functional annotations overlapping the prox-
ies of the KATNAL1 taggers, including transcription factor-binding
sites, DNAse hypersensitivity, and chromatin epigenetic marks, among

others, are shown in Table S8.

4 | DISCUSSION

We designed a candidate gene study to evaluate the putative impli-
cation of KATNAL1 polymorphic positions in human male infertility.
Our results showed that common genetic variants of the non-coding
regions of this gene confer the risk of developing extreme phenotypes
of SpF and may be informative of the TESE outcome.

As previously mentioned, several studies point to KATNAL1 as a cru-
cial gene for the spermatogenic process.? In the genetic association
study performed by Fedick et al., 1% the KATNAL1 SNPs that showed the
most promising trends towards association were rs17074420 (uncor-
rected p = 0.004, OR = 2.55) and rs17074416 (uncorrected p = 0.025,
OR = 1.39), both of which are located in the 3’ end of the gene (specifi-
callyrs17074420 in the 3’'UTR and rs17074416 at 3.5 kb downstream
of KATNAL1). Interestingly, these SNPs are in LD (D’ > 0.8) with
rs2149971, the tagger in the 3’ region of the gene that was analysed in
ourstudy (rs2149971-rs17074416 D’ =0.85,rs2149971-rs17074420
D’ =1.00, in the EUR population of the 1IKGPh3).

Moreover, the effect size observed for the minor allele of rs2149971
(A) is consistent with those reported by Fedick et al.2° for the linked
minor alleles of rs17074416 (G) and rs17074420 (T), with all asso-
ciated with an increased risk of developing severe male infertility
phenotypes under the additive model (Table $10). Fedick et al.2° did
not conduct the analyses according to specific NOA subtypes, as per-
formed now in our study. This could be a possible explanation for the
lack of association that they observed between NOA and the KATNAL1
variantsrs17074416 and rs17074420 after adjusting for multiple test-
ing. Indeed, a non-significant p-value was obtained for rs2149971
when the NOA phenotype was considered in our study (despite observ-
ing an OR = 1.20). Our data clearly suggest that this KATNAL1 variant
is specifically associated with SCO and TESEneg with effect sizes of
OR = 1.69 and 1.62, respectively. It would be interesting to evaluate
such associations in the case-control cohort included in the study by
Fedick et al.1®
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In this sense, SCO and TESEneg represent the most extreme NOA

features. The latter is composed mainly of SCO and MA patients, and
therefore, it is not surprising that rs2149971 was associated with both
SCO and TESEneg. It is likely that the lack of association between this
KATNAL1 SNP and MA could be because of the considerably reduced
power of this analysis, as the MA subgroup only included 52 patients.
The fact that MA is a less homogeneous phenotype than SCO or HS (as
it considers arrests at different differentiation steps) could also be a
confounding factor, masking a putative association.

Regarding the two remaining taggers analysed, rs7338931 and
rs2077011, our study also showed evidence of a potential associ-
ation with different SpF phenotypes, which suggests a most likely
involvement of genetic variation of KATNAL1 in the deregulation of
the spermatogenic process that may lead to male infertility. Hence, the
haplotype analysis revealed that a combined effect of allelic variants
was more informative for explaining the associations observed than
the model of independent SNP effects. This is consistent with the hap-
lotype structure of KATNAL1, which shows extensive LD across most
of the gene except for a recombination hotspot within the promoter
(Figure 1). Two of the analysed taggers, rs2149971 and rs7338931,
located downstream of this recombination hotspot, were associated
with the most severe SpF expression, defined by TESEneg (particularly
rs2149971, the tagger at the 3’ end of the gene also associated with
SCO). Hence, the risk variants rs2149971*A and rs7338931*T (as well
as the linked alleles of their proxies) may have a key role in the devel-
opment of the most extreme phenotypes of NOA. The SNPs located
upstream of the recombination hotspot of the promoter (tagged by
rs2077011) seem to contribute to such phenotypes to a lesser extent,
emphasising our suspicion that the causal variants are mostly located
within the 3'UTR, as proposed by Fedick et al.1?

With regard to the functional implication of the possible causal
SNPs tagged by the 3’ tagger rs2149971, it should be noted that
14 of its proxies were annotated as sQTLs of KATNAL1 in the testis.
The minor alleles of the SNPs comprising this haplotype block, which
correlate with the risk rs2149971*A allele for SCO and TESEneg,
are associated with an increased expression of a small isoform
(ENST0O0000480854.1), composed only of the last two exons of the
gene, that does not produce a functional KATNAL1 protein. Accord-
ing to GTEx project data,?” this short isoform is normally expressed
at low levels in healthy human testes. Therefore, the presence of the
risk alleles of the SCO-associated 3’ haplotype block may unbalance
the KATNAL1 isoform ratio, likely by overrepresenting the truncated
ENSTO0000480854.1 variant in the transcript pool of the cell and thus
reducing the relative counts of the functional full-length isoforms.2” It
would be interesting to evaluate the KATNAL1 isoform ratio in our NOA
cohort (or, at least, in any of the patients carrying the risk variants).
However, no testicular tissue was available for mMRNA expression anal-
yses during the development of this study, which represents an evident
limitation.

On the other hand, different proxies of the 5’ tagger rs2077011,
located upstream of the recombination hotspot of the promoter
(Figure 1), seem to modulate the expression levels of KATNAL1 in dif-

ferent tissues.2” However, the GTEx data for the testis did not show
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a statistically significant eQTL effect of this block on KATNAL1 but
for other nearby genes, such as HMGBJ1. The protein encoded by this
gene belongs to the non-histone chromosomal high mobility group
protein family, which plays a major role in the establishment of chro-
matin interactions by promoting DNA architectural changes.®> HMGB1
is implicated in many biological processes, including female fertility, in
which the follicular fluid levels of its encoded protein have been cor-
related with the outcome of in vitro fertilisation with intracytoplasmic
sperm injection.3¢ Moreover, its paralog HMGB2 has been associated
with male infertility because of spermatogenic anomalies in murine
models.3”

Interestingly, an alteration of the normal expression of KATNAL1
transcripts by specific genotypes of promoter SNPs has been associ-
ated with sperm deformities in Chinese Holstein bulls (9). Hence, it
could be possible that the genetic effect on SpF of the KATNAL1 vari-
ants located in the 5’ end of the promoter (tagged by rs2077011) was
independent from that of the 3’ haplotype block (tagged by rs2149971)
and may influence the expression pattern of either KATNAL1 or other
nearby upstream genes, such as HMGB1.

Overall, this study provides additional insight regarding the role of
KATNAL1 in the different differentiation stages that take place dur-
ing spermatogenesis, most likely by facilitating the interaction between
Sertoli cells and germ cells through the regulation of microtubular
dynamics.238 Indeed, some compounds that inhibit KATNAL1 function,
such as calotropin, have been proposed as a non-hormonal male-
specific contraceptives,3? emphasising the high relevance of this gene
in the field of male infertility.

In conclusion, our results point to a relevant role of the KATNAL1
gene in the development of SpF. The insight provided by this study
may help to develop more efficient diagnostic and prognostic tools that
could anticipate both the diagnosis and TESE outcome prior to con-
sidering a testis biopsy, thus preventing NOA patients with extreme
phenotypes from undergoing unnecessary surgeries.
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