
Journal of Biomedical Informatics 134 (2022) 104172

A
1
n

Contents lists available at ScienceDirect

Journal of Biomedical Informatics

journal homepage: www.elsevier.com/locate/yjbin

Original Research

Learning prognostic models using a mixture of biclustering and triclustering:
Predicting the need for non-invasive ventilation in Amyotrophic Lateral
Sclerosis
Diogo F. Soares a,∗, Rui Henriques b, Marta Gromicho c, Mamede de Carvalho c, Sara C. Madeira a,∗

a LASIGE, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
b INESC-ID and Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
c Instituto de Medicina Molecular, Instituto de Fisiologia, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal

A R T I C L E I N F O

Keywords:
Biclustering
Triclustering
Three-way data
Prognostic
Disease progression patterns
Amyotrophic Lateral Sclerosis

A B S T R A C T

Longitudinal cohort studies to study disease progression generally combine temporal features produced under
periodic assessments (clinical follow-up) with static features associated with single-time assessments, genetic,
psychophysiological, and demographic profiles. Subspace clustering, including biclustering and triclustering
stances, enables the discovery of local and discriminative patterns from such multidimensional cohort data.
These patterns, highly interpretable, are relevant to identifying groups of patients with similar traits or
progression patterns. Despite their potential, their use for improving predictive tasks in clinical domains
remains unexplored.

In this work, we propose to learn predictive models from static and temporal data using discriminative
patterns, obtained via biclustering and triclustering, as features within a state-of-the-art classifier, thus
enhancing model interpretation. triCluster is extended to find time-contiguous triclusters in temporal data
(temporal patterns) and a biclustering algorithm to discover coherent patterns in static data. The transformed
data space, composed of bicluster and tricluster features, capture local and cross-variable associations with
discriminative power, yielding unique statistical properties of interest.

As a case study, we applied our methodology to follow-up data from Portuguese patients with Amyotrophic
Lateral Sclerosis (ALS) to predict the need for non-invasive ventilation (NIV) since the last appointment.
The results showed that, in general, our methodology outperformed baseline results using the original
features. Furthermore, the bicluster/tricluster-based patterns used by the classifier can be used by clinicians
to understand the models by highlighting relevant prognostic patterns.
1. Introduction

Subspace clustering aims to find clusters within different subspaces
(a selection of one or more features) in multivariate data spaces. Its
main advantage is the possibility of finding coherent clusters defined
in only a subset of all features. Given these clusters, discriminate
patterns can be extracted along their specific data subspaces [1]. In
this context, biclustering performs simultaneous grouping of objects
and features when analysing two-way data [2]. Triclustering extends
biclustering to find groups of objects, features and contexts by enabling
the simultaneous clustering of three-way data, where contexts generally
refer to the temporal dimension [3].

When learning from high dimensional data spaces, feature selection,
sparse priors, and data space transformations [4] are generally used to
improve performance and avoid the curse of dimensionality. However,
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feature selection can prevent relevant features from being used if their
relevance is only observed in a subgroup of observations or when
analysed with other features (a subgroup of features). In addition,
data transformations for dimensionality reduction generally hamper the
interpretability of the learned models [5]. In this context, subspace
clustering can be applied to find subsets of features corresponding to
a subspace where a subgroup of observations show coherent values,
overcoming the limitations of feature selection while improving pre-
dictive performance and promoting model interpretability pushed by
the actionable self-explanatory nature of the found subspaces. In par-
ticular, in clinical domains, biclustering and triclustering are promising
approaches that have been largely used separately to identify groups of
patients with correlated clinical features along time [3,6], that could be
used as discriminative patterns [6].
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In this scenario, we propose BicTric, a classification approach to
learn predictive models using a mixture of biclustering and tricluster-
ing, that takes advantage of two types of data usually available in clini-
cal contexts: static data, which does not change with time, and dynamic
(temporal) data, collected over time. In longitudinal cohort studies,
static data generally correspond to single-time exams, germline muta-
tions, psychophysiological traits and demographic profiles. In contrast,
temporal data generally correspond to periodic or irregular assessments
associated with the clinical follow-up of individuals partaking in the
cohort.

To this end, BicTric first searches for discriminative patterns re-
sulting from biclustering static data and triclustering temporal data
and then uses them as features within (interpretative) state-of-the-art
classifiers.

Given the irregularity of follow-up assessments in longitudinal,
our methodology further extends the principles proposed by Carreiro
et al. [7] to compute learning examples from patient assessments of
varying number and misalignment degrees.

Although the extent of contributions on feature extraction from
complex clinical data domains [3,8,9], our study is the first bridging
biclustering and triclustering stances for predictive tasks. BicTric can be
positioned as a transformation from structured data spaces described by
static and temporal variables into new pattern-centric data spaces able
to model local cross-variable associations with unique discriminative
properties of interest.

In this work, we performed a case study in patients suffering from
Amyotrophic Lateral Sclerosis (ALS), a neurodegenerative disorder
causing progressive loss of muscle control, with the aim of learning
prognostic models to predict the need for non-invasive ventilation
in a clinically relevant time window (90 days). Effective predictive
models would allow anticipating respiratory insufficiency, a common
symptom developed by ALS patients, in whom the rapid interven-
tion/administration of non-invasive ventilation has shown to be effec-
tive in prolonging life and improving quality of life [10,11]. Data were
gathered from a large cohort of Portuguese patients, where biclusters
together with triclusters learnt from patients’ follow-up data can be
interpreted as disease progression patterns.

The major contributions are thus the following:

• a new classification approach, BicTric, to learn predictive models
using a mixture of Biclustering and Triclustering;

• a new approach to create dynamic learning examples from vary-
ing number of misaligned temporal observations using windowing
and sampling principles;

• a case study in ALS patients, where we learn prognostic models
using BicTric able to predict the need for non-invasive ventilation
using a set of clinical appointments (patients’ follow-up), together
with their static data;

• comprehensive assessment of BicTric predictive properties, re-
vealing state-of-the-art performance and interpretive power, over-
coming competitive baselines and unravelling disease progression
patterns.

The remainder of the paper is organized as follows: Section 2
discusses related work, Section 3 formalize the subspace clustering
problem stating the variables needed to understand the methodology,
Section 4 describes the proposed BicTric methods, Section 5 concretize
the study in ALS, Section 6 presents the BicTric results in ALS prog-
nostic prediction, Section 7 discuss the results, and finally Section 8
concludes the paper.

2. Related work

The Revised ALS Functional Rating Scale (ALSFRS-R) is broadly
used in clinical practice to evaluate disease progression in ALS pa-
tients [10]. However, disease heterogeneity challenges prognosis, pin-
pointing the need for advanced machine learning approaches to learn-
ing explainable disease progression models that clinicians can effec-
tively use to aid prognostic prediction, increase survival, and promote
2

patient care. These models should be able to learn from heterogeneous
temporal data and benefit from patient stratification models whenever
possible.

In this context, recent years have witnessed an increasing awareness
of the potentialities of machine learning amongst ALS researchers,
leading to several applications over ALS cohort data studies [7,12–
15]. The great potential of learning stratification models has also
shown opportunities for future clinical trials, besides promoting more
accurate and trustable predictions by learning group-specific prognostic
models [12,16,17].

Carreiro et al. [7] was a pioneer in proposing prognostic models
to predict the need for NIV in ALS based on clinically defined time
windows. More recently, Pires et al. [16] stratified patients according to
their state of disease progression achieving three groups of progressors
(slow, neutral and fast) and proposed specialized learning models ac-
cording to these groups. They further used patient and clinical profiles
with promising results [17]. Recently, Martins et al. [18] proposed
to combine itemset mining with sequential pattern mining to unravel
disease presentation and disease progression patterns and use these
patterns to predict the need for NIV in ALS patients. Despite their
relevant results, the success depends on proper data discretization.
Also, it does not consider the contiguity constraint imposed by the
temporality nature of the patient’s follow-up data.

Matos et al. [19] proposed a biclustering-based classifier. Biclus-
tering was used to find groups of patients with coherent values in
subsets of clinical features (biclusters), then used as features together
with static data. Besides promising, none of these approaches took
into account the temporal dependence between the features. Soares
et al. [20] proposed a triclustering-based classification approach to
analyse ALS temporal data with promising results. Recently, Henriques
and Madeira [6] assessed the impact of discriminative patterns with
varying coherence and quality on associative classification.

In contrast with the large extent of contributions towards feature
extraction from temporal data domains [8,21], the use of biclustering
and triclustering stances to aid predictive tasks is recent and still
scarce [3], mainly being represented by the studies mentioned above. In
addition, and to our knowledge, no other study integrates biclustering
and triclustering tasks for predictive ends.

3. Problem formulation

Definition 1 (Three-way Dataset). A three-way dataset, 𝐷, is defined by
objects 𝑋 = {𝑥1,… , 𝑥𝑁}, 𝑀 features 𝑌 = {𝑦1,… , 𝑦𝑀}, and 𝑝 contexts
= {𝑧1,… , 𝑧𝑂}, where the elements 𝑎𝑖𝑗𝑘 relate object 𝑥𝑖, feature 𝑦𝑗 ,

nd context 𝑧𝑘.

In the context of our work, we consider heterogeneous data is
haracterized by the presence of 𝑁 individuals described by a set of
tatic variables 𝑌𝑠𝑡𝑎𝑡𝑖𝑐 , associated with a two-way or multivariate dataset
where elements 𝑎𝑖𝑗 relate individual 𝑥𝑖 and feature 𝑦𝑗 ∈ 𝑌𝑠𝑡𝑎𝑡𝑖𝑐); and
emporal variables 𝑌𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙, associated with a three-way dataset (where
lements 𝑎𝑖𝑗𝑘 relate individual 𝑥𝑖, variable 𝑦𝑗 ∈ 𝑌𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙, and time
eference 𝑧𝑘).

efinition 2 (Bicluster). Given a two-way data space, a bicluster 𝐵 =
𝐼, 𝐽 ) is a subspace given by a subset of objects, 𝐼 ⊆ 𝑋, and a subset of
eatures, 𝐽 ⊆ 𝑌 .

efinition 3 (Tricluster). Given a three-way data space, a tricluster
= (𝐼, 𝐽 ,𝑍), is a subspace defined by 𝐼 ⊆ 𝑋 objects, 𝐽 ⊆ 𝑌

eatures and 𝐾 ⊆ 𝑍 contexts, where 𝑎𝑖𝑗𝑘 denotes the elements of  . A
ricluster  can be alternatively represented as a set of |𝐾| biclusters,
= {𝐵1, 𝐵2,… , 𝐵

|𝐾|

}, where 𝐵𝑖 = (𝐼, 𝐽 , 𝑧𝑖),

1 =
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Definition 4 (Subspace Clustering). Given a dataset, subspace clustering
aims at identifying all relevant subspaces, whether given by biclusters
in multivariate data or triclusters in three-way data, satisfying specific
criteria of homogeneity and statistical significance.

Homogeneity criteria are commonly guaranteed through the use of
a merit function, such as the variance of the values in the subspace
or correlation across objects [2,3]. Merit functions are typically ap-
plied to guide the formation of biclusters and triclusters in greedy
and exhaustive searches. In stochastic approaches, a set of parameters
that describe the biclustering solution are learned by optimizing a
merit (likelihood) function. The pursued homogeneity determines the
coherence, quality and structure of a subspace clustering solution [22],
where the coherence is determined by the observed form of correlation
among its elements; the quality is defined by the type and amount
of accommodated noise; and the structure described by the shape and
positioning of subspaces. A flexible structure is characterized by an
arbitrary number of (possibly overlapping) subspaces. Statistical signifi-
cance criteria, in addition to homogeneity criteria, guarantees that the
probability of a given subspace to occur (against a null model) deviates
from expectations [3,23].

Given multivariate and three-way data, this work aims at assessing
the quantitative impact produced by pattern-centric feature spaces,
using biclustering and triclustering stances (Definition 4), to guide
predictive tasks.

4. BicTric methodology

This section introduces BicTric, the proposed approach to learning
predictive models from feature spaces produced under a mixture of
biclustering and triclustering stances.

In this work, we propose a generic methodology able to work
with any biclustering and triclustering algorithm. Fig. 1 depicts the
BicTric workflow. To this end, consider the presence of heterogeneous
data with static variables (two-way dataset) and temporal variables
(three-way dataset). In the initial step, biclustering and triclustering
are performed over the two-way and three-way data, respectively, to
obtain biclusters and triclusters, seen as discriminative features.

In particular, when considering temporal data, we can either use
each tricluster as a single feature or use its respective biclusters individ-
ually as multiple features. The latter case might be helpful depending
on the heterogeneity of biclusters composing a tricluster.

After this initial step, additional principles are necessary to pro-
duce the target feature space, i.e. to map the original data space
𝑌𝑠𝑡𝑎𝑡𝑖𝑐 , 𝑇𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙 ∈  into the pattern-centric space 𝑃𝑏𝑖𝑐 , 𝑃𝑡𝑟𝑖𝑐 ∈  ,

𝐵𝑖𝑐𝑇 𝑟𝑖𝑐 ∶  →  . (1)

Sections 4.1 to 4.4 detail the necessary steps to yield this transfor-
3

mation for subsequent predictive modelling tasks.
4.1. Processing input data

Temporal observations from heterogeneous data may not be read-
ily available within a three-way data structure. The number of time
points could not be equal for all the instances in the original input
dataset (e.g. patient follow-up screening). Some instances can have
more records than others. To increase the performance prediction, we
can transform the original data into a new data space where instances
have the same number of time points before the instant target. How-
ever, this approach will lead us to discard a (possible) high number
of individuals with fewer time points. In this context, we propose to
group consecutive time points in which sets of these points will have a
maximum length min(𝐿, 𝑃 ), where 𝐿 is a predefined set length and 𝑃
is the available number of instance’s time points.

This preprocessing step is independent of the nature of the data.
It can be used with any type of three-way labelled data. In Fig. 2 we
present a possible example of preprocessing in clinical data. In this case,
we have patients with a different number of appointments, and the
target is to predict if a patient will evolve (E) to a state that needs
non-invasive ventilation support (E = Y) or not (E = N). To transform
the original data into a dataset where each patient has a predefined
size of 3 appointments (𝐿 = 3), we create sets of 3 consecutive
appointments. The label of each set is now the corresponding label of
its last appointment. Note that in this example, the patient P4 has only
2 (𝑃 = 2) available appointments, so will be created a set of size defined
by min(3, 2) = 2 and not to be removed.

The transformed dataset containing these sets of time-points for
each individual will be the input for our proposed BicTric classifier.

4.2. Pattern discovery

Once the temporal observations are preprocessed, the resulting data
is described by 𝑁 instances and 𝑀 variables, consisting of single-
time measurements along 𝑀𝑠𝑡𝑎𝑡𝑖𝑐 static variables, 𝑌𝑠𝑡𝑎𝑡𝑖𝑐 ⊂ 𝑌 , and
a fixed number of periodic measurements along 𝑀𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙 temporal
variables, 𝑌𝑠𝑡𝑎𝑡𝑖𝑐 ⊂ 𝑌 , such that 𝑌𝑠𝑡𝑎𝑡𝑖𝑐 ∩ 𝑌𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙 = ∅ ∧ 𝑌𝑠𝑡𝑎𝑡𝑖𝑐 ∪
𝑌𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙 = 𝑌 ∧ 𝑀 = 𝑀𝑠𝑡𝑎𝑡𝑖𝑐 + 𝑀𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙, forming a two-way (static)
dataset and three-way (temporal) dataset, respectively. Biclustering and
triclustering algorithms are then eligible to be applied over the pro-
duced two-way and three-way datasets, respectively, for the retrieval
of statistically significant local associations.

4.2.1. Biclustering and triclustering searches
Given the end predictive goal, the target subspaces by both bi-

clustering and triclustering tasks should show a correlation between
instances, i.e. pattern coherence should be preserved across objects.

For the target biclustering task, this can be accomplished by seeking
subspaces, 𝐵 = (𝐼, 𝐽 ), whose elements, 𝑎𝑖𝑗 ∈ (𝐼, 𝐽 ), are described by

𝑎𝑖𝑗 = 𝑐𝑗 + 𝛾𝑖 + 𝜂𝑖𝑗 ,

where 𝑐𝑗 is the expected value of variable 𝑦𝑗 ∈ 𝑌𝑠𝑡𝑎𝑡𝑖𝑐 , 𝛾𝑖 is the
adjustment for instance 𝑥𝑖, and 𝜂𝑖𝑗 is the noise factor of 𝑎𝑖𝑗 . The
bicluster pattern 𝜑𝐵 is the set of expected values in the absence of
adjustments and noise {𝑐𝑗 ∣ 𝑦𝑗 ∈ 𝐽}. This stance can be considered
for pursuing biclusters with constant coherence (assuming 𝛾𝑖 = 0), and
additive coherence (𝛾𝑖 ≠ 0).

Similar assumptions are extended towards the triclustering task.
In this context, given a three-way dataset, the elements, 𝑎𝑖𝑗𝑘, of a
subspace,  = (𝐼, 𝐽 ,𝐾), are described by

𝑎𝑖𝑗𝑘 = 𝑐𝑗 + 𝛾𝑖 + 𝛽𝑘 + 𝜂𝑖𝑗𝑘,

where 𝑐𝑗 is the expected value of variable 𝑦𝑗 ∈ 𝑌𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙, 𝛾𝑖 is the
adjustment for instance 𝑥𝑖, 𝛽𝑘 is the temporal variation on time point
𝑧𝑘, and 𝜂𝑖𝑗𝑘 is the noise factor of 𝑎𝑖𝑗𝑘.

The tricluster patterns 𝜑 are the set of expected values in the

absence of adjustments and noise {𝑐𝑗 ∣ 𝑦𝑗 ∈ 𝐽}𝑘. A consensus across
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Fig. 1. BicTric Workflow: Learning predictive models using transformations onto pattern-centric feature spaces.
Fig. 2. Example of computing sets of snapshots with maximum length min(𝐿, 𝑃 ), in
this case, L = 3 and P is represented by the number of snapshots (where the patient
was not using NIV) available for each patient. P4 has only 2 (𝑃 = 2) snapshots before
NIV, and only one set with this 2 snapshots was considered.

time points can be considered in order to produce a single pattern from
a tricluster, {𝑐𝑗 ∣ 𝑦𝑗 ∈ 𝐽}.

Fig. 3 provides an illustrative view of additive bicluster and triclus-
ter subspaces, along with their patterns.
4

In particular, BicTric is by default equipped with biclustering and
triclustering searches able to find additive subspaces given their well-
recognized relevance in clinical domains [3,6]. For this purpose, we
consider the triCluster algorithm [24] to find both biclusters over
static data and triclusters over temporal data. The biclustering search
undertaken in triCluster is exhaustive and capable of accommodating
additive factors on numerical variables. To this end, the Pearson coef-
ficient is used to indicate the correlation strength between objects and
a subset of overall variables.

In the context of the triclustering task, we instantiate the triclus-
tering step considering triCluster [24], a pioneer, highly cited, and
state-of-the-art triclustering approach proposed by Zhao and Zaki in
2005. It is a quasi-exhaustive approach, able to mine arbitrarily po-
sitioned and overlapping triclusters with constant, scaling, and shifting
patterns from three-way data. Given that triCluster was proposed to
mine coherent triclusters in three-way gene expression data (gene-
sample-time), at this point, it is important to understand that clinical
data can be preprocessed in order to yield a similar structure, in which
gene-sample-time data becomes patient-feature-time data, for instance.

triCluster has 3 main steps: (1) construct a multigraph with similar
value ranges between all pairs of samples; (2) mine maximal biclusters
from the multigraph formed for each time point (slices of the 3D
dataset); and (3) extract triclusters by merging similar biclusters from
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Fig. 3. Illustrative additive bicluster 𝐵 and tricluster  from integer static and temporal data. Bicluster 𝐵 has pattern 𝜑𝐵 = {𝑐3 = 1, 𝑐8 = 3, 𝑐11 = 2} and adjustment factors 𝛾
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observation (patient) dimension, and 𝛽 = {𝛽2 = 0, 𝛽3 = 0, 𝛽4 = 1} along the time dimension. We highlighted noisy elements in red circles.
(
s
c
v

4

p
s
t

c
s
o
a
m
o

l
d
c

4

m
i

p
i
o
r
a

t
o
t
t
w

5

C
S

different time points. Optionally, it can delete or merge triclusters,
according to the overlapping criteria used.

BicTric is applied with an extended version of the triCluster since
the original version is unable to consider contiguity constraints along
the time dimension. As our goal is to mine temporal three-way data,
meaning the 𝑍 dimension (contexts) is time, we introduce temporal
contiguity constraints similar to the stance taken in CCC-Biclustering
[25], a state-of-the-art and highly efficient temporal biclustering al-
gorithm. As a result, BicTric mines Time-Contiguous Triclusters, tri-
clusters with consecutive time-points. The new TCtriCluster algorithm
considers this time constraint on its third phase. The use of contiguity
constraints is associated with significant efficiency gains, leverages
the interpretability of triclustering solutions, and potentially promotes
predictive accuracy [3].

4.3. Virtual patterns

Once the patterns are found, we then assess how well each bicluster
and tricluster describe a given object in order to produce the 𝑎′𝑖𝑗 ∈ R
entries of the new pattern-centric space,  →  . To this end, we use the
bicluster/tricluster most representative pattern and the object pattern.
The object’s (local) pattern corresponds to its values in the features in
the bicluster or the features and contexts in the tricluster. To obtain the
most representative pattern of a bicluster, we use the Virtual Pattern
2D introduced in [26]. To compute the tricluster’s most representative
pattern, we extended the Virtual Pattern 2D as follows:

Definition 5 (Virtual Pattern 3D). Given a tricluster  , its virtual pattern
𝑃 is defined as a set of elements 𝑃 = {𝜌1, 𝜌2,… , 𝜌𝐼}, where 𝜌𝑖, 1 ≤ 𝑖 ≤ 𝐼 ,
is defined as the mean (or the mode, in case of categorical features) of
values in the 𝑖th row for each context:

𝜌𝑖 =
1

|𝐽 ||𝑍|

𝑍
∑

𝑧=1

𝐽
∑

𝑗=1
𝑎𝑖𝑗𝑧. (2)

.4. Similarity matrices

Let 𝑆 be the number of static virtual patterns given by the found
iclusters, and 𝑇 be the number of temporal patterns corresponding
o the number of unique patterns found in the output triclusters (or
orresponding biclusters).

In order to assess how similar each of the 𝑁 objects (patients)
s to the produced bicluster and tricluster features, we propose the
alculus of the similarities between the virtual pattern 𝑃 and the
orrespondent object pattern (same features and contexts). To this end,
e consider two major approaches: (1) compute the Euclidean distance;
r (2) compute Pearson correlation. The similarities are computed for
5

emporal (resulted in a matrix with size 𝑁 × 𝑇 ) and static patterns p
resulted in a matrix with size 𝑁 × 𝑆) and then merged into a single
imilarity matrix with size 𝑁 ×(𝑆+𝑇 ). This matrix will then be used to
ompute the learning instances by adding the class label to each feature
ector.

.5. BicTric in predictive tasks

Given a set of training examples, BicTric’s is applied to learn and
roduce the target pattern-centric feature space autonomously. Any
tate-of-the-art classifier or regressor can be subsequently applied over
his new data space to learn a predictive model.

During testing time, the learned mapping,  →  , is further
onsidered to transform testing examples to the pattern-centric feature
pace. To this end, we first compute the similarities between the new
bject and the virtual patterns obtained in the learning phase. This
rray can then be passed to the trained classification or regression
odel, returning a class or quantity estimate for the new object as

utput.
Using the introduced principles, BicTric can be used to support the

earning of predictive models from heterogeneous static and temporal
ata. Fig. 4 depicts how our proposed methodology can be used to
lassify a new object.

.6. BicTric model evaluation

We proposed four well-established metrics to evaluate the perfor-
ance of BicTric models: Area under the Receiver Operator Character-

stic (ROC) curve (AUC), Accuracy, Sensitivity and Specificity [27].
The Receiver Operator Characteristic (ROC) curve assesses the true

ositive rate against the false-positive rate at various threshold values
n binary classification settings. The Area Under the ROC Curve (AUC)
ffers a summary statistic of the ROC curve, ranging from 0 and 1 (cor-
ect decisions with high confidence) and measuring of the predictive
bility of the classifier under different decision thresholds [27].

Accuracy is the ratio of the number of correct predictions to the
otal number of input samples [27]. Sensitivity identifies the portion
f positive instances that were correctly classified, while specificity is
he portion of the negative instances that were correctly classified. Illus-
rating, sensitivity (specificity) informs on the percentage of individuals
ith (without) a disease that were correctly diagnosed [27].

. Case study

A large longitudinal cohort was led by the authors at Lisbon ALS
linic (Centro Hospitalar Lisboa Norte) to study Amyotrophic Lateral
clerosis (ALS). ALS is a neurodegenerative disorder associated with

rogressive muscular impairments without known cause or cure to
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Fig. 4. BicTric Workflow at testing time: Using the BicTric model to classify new instances.
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Table 1
Static and temporal features considered in the ALS case study. The following temporal
features are concerning ALFRS-R scale [29]: ALSFRS (original score); ALSFRS-R (revised
score); ALSFRSb (bulbar subscore); R ( respiratory subscore); ALSFRSsUL (upper limb
function); ALSFRSsLL (lower limb function); ALSFRSr (question 10 of the original
ALSFRS score evaluating respiratory symptoms).

Static

Gender
Body Mass Index (BMI)
Age at onset
Family History of Motor Neuron Disease
Predominant Upper vs. Lower motor

Neuron clinical phenotype
Onset Form
Diagnostic Delay
El Escorial Revised Criteria
Positive vs. Negative C9orf72 mutation

Temporal

ALSFRS
ALSFRS-R
ALSFRSb
R
ALSFRSsUL
ALSFRSsLL
ALSFRSr
Forced Vital Capacity (FVC)
Maximum Inspiratory Pressure (MIP)
Maximum Expiratory Pressure (MEP)

date [28]. In particular, we aim at predicting the need for non-invasive
ventilation (NIV) within 90 days since the last appointment. The 90
days frame is clinically defined based on its actionability towards care
monitoring protocols.

This section describes the target data cohort used in this study and
the specific preprocessing steps needed to adequately address disease
progression problem in ALS patients with BicTric methodology.

5.1. Data

The Lisbon ALS cohort was considered, containing Electronic Health
Records from ALS Patients regularly followed at the local ALS clinic
since 1995 and last updated in May 2021. Its current version includes
a total of 1485 patients, with 998 patients considered eligible as
they were consistently assessed using the static and temporal features
shown in Table 1 and according to the criteria defined in [7] to
compute the Evolution class. Each patient has a set of static features
(demographic and clinical data, and genetic information) along with
temporal features (measured at the follow-up every 3 months), namely
clinical markers of disease progression, as motor function (evaluated by
ALSFRS-R) and respiratory function (evaluated by FVC, MIP and MEP).
6

5.2. Data preprocessing

Data were preprocessed as described by Carreiro et al. [7], and
Pires et al. [16] to obtain patients snapshots. Patients are followed up
regularly and perform a couple of prescribed tests after each appoint-
ment. Since a patient may not be able to perform all the tests in a
single day, we have to take the temporal distribution into account when
aligning records. In this context, we computed snapshots of the patient’s
condition with an acceptable time length to comprise all the prescribed
tests. The patient’s snapshots are sets of assessments obtained by a
hierarchical (agglomerative) clustering with some constraints: (1) the
evaluations that compose a snapshot cannot belong to the same test,
once doctors never prescribe the same test twice; and (2) all the evalu-
ations considered in the same snapshot should be consistent according
to the NIV state (the patient should have the same NIV condition in all
the assessments). The defined cutting point to form the snapshots was
100 days given the typical periodicity of the assessments as explained
in [7], which means that the time windows between snapshots are
never higher than 100 days for the monitored tests in this cohort study.

Next, we computed the evolution (E) class for each snapshot accord-
ing to the NIV administration date. If a patient received NIV within 90
days of the snapshot’s date, the learning example is labelled as Y or is
abelled as N, otherwise.

Then, we processed data as explained in Section 4.1 to transform
he original dataset into three-way data as input data to BicTric. In
ddition, we created 3 datasets having examples composed of 3, 4
nd 5 consecutive snapshots (CS). The number of initial examples is
ocumented in the ‘TOTAL’ column of the Table 2 discriminated by
lasses.

lass imbalance. Due to the short time window considered (90 days) in
ur case study, the number of non-evolutions examples (class N) is far

superior to that of evolutions (class Y - patients requiring NIV within
90 days), which are key for the learning task. To minimize the impact
of this class imbalance, and grounded on empirical evidence against
alternatives, we performed Random Undersample (RU) to reduce the
majority class examples, obtaining a proportion of 2/3 within the
dataset, followed by SMOTE [30], to oversample the minority class
examples, minimizing class imbalance. Table 2 shows class distribution
after these steps.

6. Results

BicTric was applied with (1) the proposed TCtriCluster approach
extended from Zhao and Zaki [24]; (2) the underlying biclustering
algorithm used within this triclustering search [24], (3) using the
similarity matrices as learning examples in an appropriate classifier.

In our experiments, we evaluated four models using Naive Bayes,
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Table 2
Class distribution.

Total RU SMOTE

N Y N Y N Y

3 CS 2019 510 1020 510 1020 1020
4 CS 1669 501 1002 501 1002 1002
5 CS 1401 497 994 497 994 994

Table 3
Baseline 1 results: IPM and SPM based approach by Martins et al. [18].

Clf Sensitivity Specificity AUC Accuracy

NB 57.7 ± 7.6 60.6 ± 6.8 63.6 ± 4.4 59.0 ± 4.1
SVM 72.3 ± 4.8 65.9 ± 8.7 76.5 ± 4.2 70.5 ± 3.4
XGB 71.0 ± 3.9 54.6 ± 4.9 68.7 ± 3.5 63.8 ± 3.5
RF 72.4 ± 3.8 53.6 ± 6.0 69.5 ± 3.6 64.2 ± 3.3

SVM with Gaussian kernel, XGBoost, and Random Forests due to their
state-of-the-art performance for the target predictive task [17,18].

In what follows, we present BicTric’s results obtained following the
main workflow proposed (Section 6.1) and additional specialized mod-
els for stratified patient populations (Section 6.2). We explained some
alternative decisions made within BicTric methodology. We compared
the results with a baseline obtained by a state-of-the-art pattern-based
classifier which is, at the best of our knowledge, a pioneering approach
in using discovered patterns as features in predictive tasks. The results
from the baseline, published in [18], were obtained from a previous
version of the dataset in the study. We reproduced their method with
our updated version dataset and used it to evaluate the proposed
approach’s effectiveness.

6.1. Predictive models without patient stratification

Baselines. Martins et al. [18] proposed a method using the same ALS
data to learn predictive models to predict the same target (need for
NIV) using an approach that starts by discovering patterns in static and
temporal data using Itemset mining in static features and sequential
pattern mining in temporal ones. These patterns were then fed to the
classification task as features. They used a simple binary approach
to compare the learning instances with the patterns and Euclidean
distance. The latter showed to be the best approach. In this context,
and since it is the closest approach to BicTric found in the literature, we
decided to use their results as a baseline (Baseline 1) for our evaluation
experiments. Table 3 depicts the results.

Furthermore, we consider an additional static baseline classifier
reliant on the static features and temporal data only from the last snap-
shots from each set of consecutive snapshots. We assess the behaviour
of different classifiers learned over these features as our prognostic
predictors (Baseline 2). Table 4 depicts the results.

BicTric. We evaluated the approach using 4 different classifiers, as
explained before. In the model evaluation step, we used 5-fold cross-
validation, balancing the training folds with the same approach used
before triclustering step: random undersample of majority class until
obtain the proportion of 2/3 followed by SMOTE of minority class
achieving equal number of both classes examples. We also ensured that
the examples belonging to a specific patient were included in the same
fold within cross-validation. Table A.10 depicts BicTric’s results.

6.2. Specialized predictive models using patient stratification

Using the same data, we stratified the patients in three groups
7

according to their disease progression profile, following the approach a
Table 4
Baseline 2 results: Models learnt using data from the last point of each set of consecutive
snapshots.

Clf Sensitivity Specificity AUC Accuracy

3 CS

NB 43.2 ± 4.8 81.4 ± 2.7 70.0 ± 3.1 62.3 ± 2.6
SVM 43.0 ± 4.9 81.4 ± 2.7 73.7 ± 3.1 62.2 ± 2.6
XGB 72.9 ± 3.3 72.1 ± 3.4 80.4 ± 2.1 72.5 ± 2.3
RF 73.5 ± 3.3 72.7 ± 3.9 80.9 ± 1.8 73.1 ± 2.5

4 CS

NB 54.2 ± 4.8 77.3 ± 4.3 73.4 ± 3.3 65.8 ± 3.3
SVM 55.2 ± 4.5 75.7 ± 4.3 71.4 ± 2.9 65.5 ± 3.3
XGB 73.5 ± 3.8 71.1 ± 3.6 80.2 ± 2.5 72.3 ± 2.8
RF 74.3 ± 3.0 71.3 ± 3.6 80.4 ± 2.3 72.8 ± 2.4

5 CS

NB 60.6 ± 4.2 72.7 ± 3.6 73.0 ± 3.1 66.7 ± 3.1
SVM 62.5 ± 4.3 69.2 ± 3.8 70.6 ± 3.5 65.8 ± 3.3
XGB 75.3 ± 3.6 69.7 ± 3.9 80.1 ± 2.4 72.5 ± 2.7
RF 75.0 ± 3.8 68.7 ± 4.0 80.3 ± 2.3 71.9 ± 2.8

Table 5
BicTric results: Summary of the best obtained results. Detailed results are documented
in Tables A.10, A.12, A.13, A.14.

Approach Clf Sensitivity Specificity AUC Accuracy

All 5/D/D SVM 76.3 ± 2.9 74.7 ± 3.0 83.3 ± 1.9 75.2 ± 2.4
Slow 3/D/D RF 61.1 ± 11.8 81.7 ± 3.5 82.2 ± 4.1 80.0 ± 3.0
Neutral 4/D/C SVM 67.9 ± 6.1 73.4 ± 4.5 78.6 ± 3.7 71.6 ± 3.8
Fast 3/D/C SVM 80.2 ± 7.1 72.2 ± 6.2 82.4 ± 5.4 75.3 ± 4.9

Table 6
Distribution of classes with patient stratification.

TOTAL RU SMOTE

N Y N Y N Y

3CS
Slow 1006 91 182 91 182 182
Neutral 730 278 556 278 556 556
Fast 165 101 165 101 165 165

4CS
Slow 864 91 182 91 182 182
Neutral 570 271 542 271 542 542
Fast 135 99 135 99 135 135

5CS
Slow 742 90 180 90 180 180
Neutral 455 269 455 269 455 455
Fast 116 98 116 98 116 116

used by Pires et al. [16]. The patients were stratified in Slow, Neu-
tral and Fast progressors according to a Progression Rate (PR) value,
computed by:

𝙿𝚁 =
48 − ALSFRS-R1st Visit
𝛥𝑡1st Symptoms; 1st Visit

, (3)

where 48 is the maximum score for ALSFRS-R feature, ALSFRS-R1st Visit
s the ALSFRS-R score in the first appointment (diagnosis) and
𝑡1st Symptoms; 1st Visit is the time in months between the dates of first
ymptoms and the first appointment [16]. Progression rates were
omputed for each patient. Considering these values, patients were
ivided into three groups based on the distribution of PR values as
uggested by clinicians: 25% of patients with lower and higher values
re stratified as Slow and Fast progressors, respectively. The remaining
0% were considered Neutral progressors.

After stratifying the patients into three groups of progressors, we
omputed the sets of snapshots for each group as in previous settings.
able 6 shows class distribution after patient stratification. Note that
ome patients considered in the general model (with all patients) do
ot have all the information needed to compute the progression rate,
o we dismiss their snapshots at this phase.

Again, we considered the same two baselines as was done for
he dataset with all patients. We applied the IPM and SPM based
pproach [18] and used static features together with only the last
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Fig. 5. Impact on the model of the top 20 most relevant patterns used by the classifiers. The terminology used is the following: patterns (documented in Table 9) obtained from
triclusters (temporal data) are identified as ‘Tric’, and those obtained from biclusters (static data) are identified as ‘Bic’, followed by an identification number and finally, the
snapshot position in the set of snapshots, in which 0 is the first position. (For interpretation of the references to colour in this figure legend, the reader is referred to the web
version of this article.)
temporal point of each set of consecutive snapshots. Tables 8 and A.11
provide the achieved results for each baseline, respectively.

As was done for the dataset with all the patients, we performed dif-
ferent experiments with the BicTric approach, using Euclidean and/or
Correlation matrices as input to the classifiers: Naive Bayes, SVM with
8

Gaussian kernel, XGBoost and Random Forests. Table 5 presents the

summary for the best results obtained by these specialized models for

slow, neutral and fast progressors. The (Tables A.12, A.13 and A.14)

with all the detailed results are documented in Appendix.
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Fig. 6. Top 20 most important patterns used by the classifiers. The terminology used is the following: patterns (documented in Table 9) obtained from triclusters (temporal data)
are identified as ‘Tric’, and those obtained from biclusters (static data) are identified as ‘Bic’, followed by an identification number and finally, the snapshot position in the set of
snapshots, in which 0 is the first position. Class 0 represents ‘non-evolutions’ and Class 1 represents ‘evolutions’.
7. Discussion

7.1. General models (without patient stratification)

When comparing the gathered results in Tables 3, 4 and A.10,
we observe that BicTric approach shows significant improvements in
predictive performance against all baselines, including the competitive
baseline approach followed in [18] for this case study. The SVM
classifier yields the best results in our case study. When applied under
the BicTric approach, it yields an approximate 83 AUC using an embed
Euclidean distance matrix obtained from 5 CS data. The baselines
9

results obtained (with the same classifier) show 76.5 and 70.6 for AUC
in baselines 1 and 2, respectively. For baseline 2, SVM was not the best
classifier, although the best result (RF) did not surpass BicTric.

Moreover, BicTric (with SVM classifier) achieved Sensitivity higher
than 75%, meaning that this classifier correctly predicts a positive
evolution for NIV administration in more than 75% of the positive
situations.

On the other hand, we observe that Specificity, the true negative
rate, is generally higher than 75%, being good in predicting the neg-
ative class, in this case, non-evolution to NIV. We also note that this



Journal of Biomedical Informatics 134 (2022) 104172D.F. Soares et al.
Table 7
Results obtained with BicTric learnt from the whole dataset per disease progression
group.

Group Sensitivity Specificity Accuracy

Slow 51.0 ± 10.2 87.8 ± 2.9 83.8 ± 3.3
Neutral 76.4 ± 4.3 65.7 ± 5.6 69.7 ± 3.6
Fast 92.8 ± 4.7 47.3 ± 7.0 65.7 ± 5.8

Table 8
Baseline results for each ALS progression group.

Clf Sensitivity Specificity AUC Accuracy

Slow progressors

NB 59.2 ± 11.3 66.3 ± 10.4 66.8 ± 7.4 63.4 ± 5.4
SVM 70.2 ± 11.1 69.2 ± 8.2 75.9 ± 8.1 69.6 ± 4.4
RF 69.1 ± 8.8 75.7 ± 8.1 80.9 ± 5.4 73.0 ± 4.8
XGB 70.1 ± 7.7 78.1 ± 9.1 81.2 ± 6.9 74.8 ± 6.3

Neutral progressors

NB 39.4 ± 8.9 78.9 ± 6.8 64.8 ± 5.5 54.1 ± 4.8
SVM 64.8 ± 7.8 61.6 ± 6.7 70.7 ± 4.9 63.6 ± 5.3
RF 79.0 ± 6.2 38.1 ± 6.4 65.7 ± 4.4 63.8 ± 3.8
XGB 73.8 ± 5.4 46.7 ± 7.4 66.3 ± 4.8 63.7 ± 4.3

Fast progressors

NB 36.3 ± 18.0 75.3 ± 11.9 59.0 ± 11.0 65.3 ± 8.0
SVM 58.7 ± 9.1 66.0 ± 12.4 66.8 ± 7.6 61.4 ± 7.1
RF 78.0 ± 9.5 33.6 ± 11.0 60.2 ± 9.5 61.3 ± 7.3
XGB 71.6 ± 10.1 40.6 ± 12.8 59.2 ± 8.5 59.9 ± 5.5

is an outstanding achievement since the superior result in predict-
ing respiratory insufficiency in patients with ALS. Moreover, although
SVM achieved the best results, we can note that other classifiers also
achieved high values in Specificity, being harmed by the class imbal-
ance of the original dataset, having test sets in cross-validation with a
low number of positive examples.

It is important to note that the high patient heterogeneity, together
with the difficulty of learning models without patient stratification
as reported in [16], makes these results even more promising, since
BicTric’s application in specific subgroups to learn specialized models
according to disease progression groups, has the potential to improve
our prognostic results.

The common use of biclustering and triclustering to compute
pattern-centric features in the proposed BicTric methodology yielded
relevant insights and promotes the model’s interpretability, as shown
below.

7.2. Specialized models (stratified patients)

Unexpectedly, the results for these specialized models did not out-
perform the results obtained when learning from all patients. This
led us to think that the general model was biased by the examples
belonging to the neutral group patients, which was good in predicting
the need for NIV in these neutral patients but not so good for slow and
fast progressors. We recovered the general model and tested it with
the data from slow, neutral and fast progressors to verify this detail.
The results in Table 7 confirm this hypothesis as evidenced by the
discrepancy in the Sensitivity and Specificity observed for the Slow and
Fast groups.

Looking in detail at the results obtained by the specialized BicTric
models, we can verify that the SVM classifier achieved using the dataset
with examples composed of 3 consecutive snapshots (3/D/C) for slow
progressors 71.2% and 73.7% in Sensitivity and Specificity, respec-
tively. Despite these results being less discrepant in these two metrics,
all the other classifiers surpassed 80% in Specificity. The high values
10

of standard deviation in Sensitivity reveal the difficulty of predicting
Table 9
The most relevant patterns used by the different learnt BicTric models: All Patients,
Slow, Neutral and Fast progressors. The terminology used is the following: patterns
obtained from triclusters (temporal data) are identified as ‘Tric’, and those obtained
from biclusters (static data) are identified as ‘Bic’, followed by an identification number
and finally, the snapshot position in the set of snapshots, in which 0 is the first
position.

All patients

Tric_79_4 [ALS-FRSb = 12, ALS-FRSr = 4, R = 12]
Tric_97_4 [ALS-FRSb = 12, R = 12]
Tric_14_4 [ALS-FRSb = 12, ALS-FRSr = 4]
Tric_16_4 [ALS-FRSb = 12]
Tric_206_4 [ALS-FRSr = 4, R = 12]
Tric_99_4 [R = 12]
Tric_0_1 [ALS-FRS = 37, ALS-FRS-R = 45]
Tric_0_0 [ALS-FRS = 38, ALS-FRS-R = 46]

Slow progressors

Tric_9_2 [R = 12]
Tric_55_2 [ALS-FRSb = 12, R = 12]
Tric_5_2 [ALS-FRSr = 4]
Tric_31_2 [ALS-FRSb = 12, ALS-FRSr = 4]
Tric_54_2 [ALS-FRSb = 12, ALS-FRSr = 4, R = 12]
Tric_12_2 [ALS-FRSb = 12]
Tric_126_2 [ALS-FRSr = 4, R = 12]
Tric_63_2 [ALS-FRSsUL = 12, ALS-FRSr = 4]

Neutral progressors

Tric_117_4 [ALS-FRSr = 4, R = 12]
Tric_51_4 [R = 12]
Tric_3_4 [ALS-FRSb = 12, ALS-FRSr = 4]
Tric_42_3 [ALS-FRSb = 12, R = 12]
Tric_41_3 [ALS-FRSb = 12, ALS-FRSr = 4, R = 12]

Fast progressors

Tric_1_2 [ALS-FRSr = 4, R = 12]
Tric_1_1 [ALS-FRSr = 4, R = 12]
Tric_0_1 [ALS-FRSr = 4, R = 12]

the positive class. Values for Specificity were generally high with low
standard deviations meaning that it is easier to predict non-evolutions.
Comparing these results with the baseline, in Table 8, we can see that
BicTric was better in Sensitivity and largely overpassed the baseline in
Specificity.

The results for neutral progressors were more similar to the general
model. The best model was obtained using the dataset with five consec-
utive snapshots (4/D/C). The same happened for the fast progressors,
needing five consecutive snapshots to achieve high results in Sensitiv-
ity. As happened for the slow progressors, BicTric exceeded the baseline
results in Neutral and Fast groups, highlighting the superior result for
the fast progressors (82.4 AUC) with an SVM classifier.

In general, we observed contrasts between Sensitivity and Speci-
ficity caused by the different patterns unveiled by the biclustering/
triclustering phase. The obtained patterns were more discriminative
(and more in number) for one of the classes, making the classifier
disregard the evidence for the less discriminating class. Despite this
fact, the results show Sensitivity levels above 75%, making these results
very promising in ALS prognostic for respiratory insufficiency.

7.3. Model interpretability

Complementarily to predictive accuracy, we are interested in assess-
ing the interpretability of the pattern-centric feature space produced by
BicTric by studying the top patterns highlighted by the classifiers. To
this aim, we chose to analyse the top discriminative patterns discovered
when applying BicTric, by the predictive models (identified previously)
yielding the best results. The goal is to identify the most relevant
features, what features appear together, and whether the more rele-
vant temporal patterns (considering putative patterns from the average
patient) can help physicians in their prognostics.

To perform the model explainability and analyse the most im-

portant patterns used by the model, we applied the unified SHAP
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Table A.10
BicTric results for the NIV predictive task. CS—Number of considered consecutive
snapshots/similarity criteria used in matrix T/similarity criteria used in matrix S;
C—Pearson correlation, D—Euclidean distance.

CS Clf Sensitivity Specificity AUC Accuracy

3/C/C

NB 50.2 ± 4.9 79.0 ± 3.0 71.9 ± 2.2 73.2 ± 2.0
SVM 65.2 ± 4.9 78.7 ± 3.6 79.2 ± 1.9 76.0 ± 2.4
XGB 59.0 ± 5.8 80.9 ± 1.9 78.7 ± 2.1 76.5 ± 1.5
RF 59.1 ± 4.6 82.2 ± 2.0 79.9 ± 1.9 77.5 ± 1.4

3/C/D

NB 50.8 ± 4.3 79.7 ± 1.9 72.2 ± 2.1 73.9 ± 1.6
SVM 63.8 ± 3.5 75.2 ± 2.5 77.0 ± 1.9 72.9 ± 2.0
XGB 60.0 ± 4.9 81.2 ± 1.8 79.1 ± 2.1 76.9 ± 1.6
RF 59.0 ± 5.0 82.6 ± 2.0 80.0 ± 1.8 77.9 ± 1.4

3/D/C

NB 56.5 ± 4.2 75.8 ± 2.7 73.4 ± 2.1 71.9 ± 2.1
SVM 72.0 ± 4.0 77.3 ± 1.7 82.5 ± 1.6 76.2 ± 1.5
XGB 58.0 ± 4.1 82.1 ± 1.8 79.4 ± 1.6 77.2 ± 1.3
RF 60.1 ± 4.9 82.7 ± 1.8 80.6 ± 1.9 78.2 ± 1.4

3/D/D

NB 56.6 ± 4.2 77.6 ± 1.7 74.1 ± 2.0 73.3 ± 1.5
SVM 72.5 ± 3.8 76.7 ± 1.9 81.8 ± 1.7 75.9 ± 1.6
XGB 59.1 ± 5.3 82.2 ± 1.5 79.6 ± 2.0 77.5 ± 1.3
RF 59.1 ± 4.7 83.0 ± 1.9 80.9 ± 1.7 78.2 ± 1.4

4/C/C

NB 57.5 ± 6.0 78.4 ± 2.5 74.6 ± 2.4 73.6 ± 1.9
SVM 69.5 ± 4.3 79.5 ± 2.6 81.0 ± 2.6 77.2 ± 2.1
XGB 58.3 ± 4.9 82.2 ± 2.0 80.3 ± 1.7 76.7 ± 1.8
RF 60.0 ± 4.4 83.3 ± 1.8 81.3 ± 1.9 77.9 ± 1.7

4/C/D

NB 57.1 ± 4.6 79.0 ± 2.6 75.2 ± 2.2 73.9 ± 1.8
SVM 71.0 ± 4.1 75.1 ± 2.5 79.6 ± 2.2 74.2 ± 2.1
XGB 57.7 ± 4.0 82.2 ± 1.9 80.0 ± 1.8 76.5 ± 1.7
RF 59.4 ± 3.7 83.7 ± 2.0 81.3 ± 2.0 78.1 ± 1.8

4/D/C

NB 63.2 ± 4.8 76.3 ± 2.4 75.6 ± 2.2 73.3 ± 2.0
SVM 69.0 ± 4.6 79.9 ± 2.2 83.3 ± 2.4 77.4 ± 1.8
XGB 58.3 ± 4.1 81.9 ± 1.8 80.1 ± 2.2 76.5 ± 1.6
RF 59.9 ± 4.2 83.5 ± 1.8 81.7 ± 2.2 78.1 ± 1.7

4/D/D

NB 61.8 ± 3.9 77.2 ± 2.5 76.5 ± 2.1 73.6 ± 2.1
SVM 69.6 ± 4.1 78.8 ± 2.6 83.1 ± 2.4 76.7 ± 2.1
XGB 58.8 ± 4.6 82.5 ± 1.8 80.3 ± 2.0 77.0 ± 1.5
RF 60.0 ± 4.0 83.8 ± 1.8 81.7 ± 2.1 78.3 ± 1.6

5/C/C

NB 61.2 ± 4.1 78.3 ± 2.1 75.9 ± 2.2 73.8 ± 2.0
SVM 75.7 ± 3.1 75.8 ± 2.8 81.3 ± 2.3 75.8 ± 2.2
XGB 62.7 ± 4.5 81.1 ± 2.7 81.1 ± 1.9 76.3 ± 2.2
RF 63.5 ± 4.2 82.2 ± 1.8 82.0 ± 1.5 77.3 ± 1.5

5/C/D

NB 61.0 ± 4.8 78.4 ± 2.6 76.9 ± 2.2 73.8 ± 2.2
SVM 76.7 ± 3.4 72.8 ± 2.6 80.2 ± 2.0 73.8 ± 2.1
XGB 62.1 ± 4.4 81.1 ± 2.0 81.1 ± 1.8 76.1 ± 1.7
RF 62.9 ± 3.8 82.7 ± 2.5 82.0 ± 1.5 77.5 ± 1.8

5/D/C

NB 65.1 ± 3.8 76.6 ± 2.5 76.7 ± 2.1 73.6 ± 2.2
SVM 76.1 ± 2.9 75.3 ± 2.6 83.2 ± 1.9 75.5 ± 2.3
XGB 62.5 ± 4.6 81.3 ± 2.1 81.1 ± 1.1 76.4 ± 1.7
RF 62.4 ± 4.0 83.2 ± 1.9 82.4 ± 1.3 77.8 ± 1.3

5/D/D

NB 65.2 ± 3.6 77.3 ± 2.7 77.5 ± 2.1 74.1 ± 2.3
SVM 76.3 ± 2.9 74.7 ± 3.0 83.3 ± 1.9 75.2 ± 2.4
XGB 60.9 ± 2.8 81.9 ± 2.4 81.3 ± 1.2 76.4 ± 1.8
RF 62.3 ± 4.2 83.3 ± 1.8 82.5 ± 1.2 77.8 ± 1.3

approach [31]. In particular, we selected the KernelExplainer and
TreeExplainer methods, which introduce the possibility of directly
measuring local feature interaction effects [32].

Fig. 6 and Table 9 show the classifier’s most relevant patterns for
each group of patients, ranked by their feature importance output by
SHAP, with the top ones showing more predictive power than those
at the bottom. An overall analysis of the most important patterns
discovered is a good descriptor of patients who are not significantly
affected by the disease since the values of the features are generally
high (a maximum score means the functions are not affected). We noted
that these patterns identify clearly the patients who will not need NIV
within 90 days (non-evolutions) and are thus highly discriminative.
These patterns are also relevant for further clinical analysis since these
features can be essential to identify disease progression patterns leading
to the need for NIV for a given time window.
11
Table A.11
Baseline 1 results for each ALS disease progression group: Models learnt using data
from the last point of each set of consecutive snapshots.

Clf Sensitivity Specificity AUC Accuracy

Slow progressors

3 CS

NB 21.7 ± 11.4 89.5 ± 2.9 66.7 ± 7.7 55.6 ± 6.0
SVM 21.2 ± 11.5 89.4 ± 2.7 71.3 ± 7.4 55.3 ± 6.1
XGB 73.1 ± 8.6 76.4 ± 9.3 81.5 ± 4.2 74.7 ± 5.3
RF 74.4 ± 8.2 75.3 ± 9.3 82.3 ± 4.4 74.8 ± 6.0

4 CS

NB 37.1 ± 11.7 79.4 ± 6.8 69.1 ± 6.5 58.2 ± 6.1
SVM 29.5 ± 11.2 86.6 ± 5.4 75.3 ± 6.6 58.0 ± 6.0
XGB 70.5 ± 8.4 69.6 ± 10.4 77.9 ± 6.1 70.0 ± 6.5
RF 73.1 ± 7.7 69.6 ± 10.9 80.4 ± 5.3 71.3 ± 6.9

5 CS

NB 46.6 ± 11.2 74.2 ± 8.5 69.7 ± 7.3 60.4 ± 7.0
SVM 39.9 ± 11.3 79.9 ± 7.6 69.9 ± 7.5 59.9 ± 6.9
XGB 71.3 ± 9.4 68.0 ± 8.4 77.0 ± 6.3 69.7 ± 6.1
RF 75.0 ± 8.8 69.1 ± 10.6 79.8 ± 6.1 72.1 ± 7.1

Neutral progressors

3 CS

NB 52.2 ± 7.9 76.5 ± 3.9 64.7 ± 5.2 59.9 ± 4.5
SVM 51.7 ± 7.9 77.2 ± 3.7 66.8 ± 4.6 60.0 ± 4.5
XGB 80.1 ± 4.4 69.8 ± 4.6 77.3 ± 2.7 70.5 ± 2.5
RF 80.5 ± 5.4 69.7 ± 5.4 78.1 ± 3.1 70.6 ± 3.4

4 CS

NB 64.0 ± 5.4 70.8 ± 5.6 67.4 ± 3.8 62.9 ± 3.8
SVM 63.9 ± 5.3 70.3 ± 5.4 65.1 ± 4.7 62.6 ± 3.7
XGB 79.1 ± 4.7 67.8 ± 5.0 77.1 ± 3.1 69.0 ± 3.6
RF 80.7 ± 4.6 65.8 ± 5.6 77.5 ± 3.1 68.7 ± 3.6

5 CS

NB 71.4 ± 6.7 64.4 ± 6.6 67.2 ± 5.3 63.4 ± 4.8
SVM 73.7 ± 6.0 61.2 ± 6.3 64.8 ± 5.3 63.0 ± 4.5
XGB 80.7 ± 4.8 64.1 ± 6.8 75.0 ± 4.3 67.9 ± 4.0
RF 80.1 ± 5.8 63.8 ± 6.8 75.1 ± 4.1 67.5 ± 4.2

Fast progressors

3 CS

NB 65.0 ± 11.2 67.0 ± 11.1 71.1 ± 6.6 66.0 ± 6.4
SVM 69.8 ± 10.8 64.0 ± 10.8 67.8 ± 6.6 66.9 ± 6.3
XGB 68.4 ± 11.6 65.9 ± 11.3 75.2 ± 6.1 67.1 ± 7.1
RF 70.4 ± 10.1 65.9 ± 10.7 77.7 ± 4.9 68.2 ± 5.4

4 CS

NB 69.3 ± 11.0 58.6 ± 10.6 67.6 ± 8.3 64.0 ± 7.5
SVM 76.8 ± 8.7 52.5 ± 12.1 64.7 ± 9.6 64.7 ± 7.9
XGB 65.5 ± 10.8 59.8 ± 13.4 68.8 ± 7.6 62.6 ± 8.5
RF 67.5 ± 10.6 56.0 ± 14.3 72.3 ± 7.5 61.8 ± 8.9

5 CS

NB 74.2 ± 9.5 51.4 ± 17.3 67.1 ± 10.9 62.8 ± 9.2
SVM 84.1 ± 6.6 42.0 ± 14.7 62.7 ± 8.9 63.0 ± 8.0
XGB 60.6 ± 14.1 57.0 ± 14.4 67.4 ± 9.1 58.8 ± 9.6
RF 68.1 ± 11.7 52.5 ± 15.5 69.6 ± 9.2 60.3 ± 9.5

Looking in detail at the results obtained with the whole dataset,
considering all the patients, we can pinpoint the patterns [ALS-
FRSb=12, ALS-FRSr=4, R=12] and [ALS-FRSb= 12, R=12]
from the last snapshot of the set as the patterns that more influence the
classifier’s decision. To better understand this influence, we used the
summary plot from SHAP [31] to visualize how the similarity between
the patients and the patterns lead to a positive or negative evolution
for respiratory insufficiency. Fig. 5 depicts the impact of each pattern
in the model output. Concerning these two patterns, which presented
the higher importance and the next four, we can see a good separation
between the red and the blue point, which led us to conclude that a
low level of similarity with these patterns means an evolution to an NIV
state. On the other hand, a high similarity leads to a non-evolution to
an NIV state.

The rationale for the clinical decision towards NIV indication incor-
porates objective assessments (respiratory tests, progression rate and
respiratory symptoms) and subjective markers (previous neurologist
experience and patient interaction). It would be essential to attain
more objective predictive models for the NIV timing, potentially ap-
plied in different centres, improving standardization of the clinical
care. Regarding clinical interpretability based on features of tempo-
ral progression provided by functional status, it is straightforward to
understand the critical role of the respiratory symptoms, as given by
ALS-FRSr and R. However, our study shows the important role of
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Table A.12
BicTric results for the NIV predictive task specialized for slow progressors. CS—
Number of considered consecutive snapshots/similarity criteria used in matrix T/
similarity criteria used in matrix S; C—Pearson correlation, D—Euclidean distance.

CS Clf Sensitivity Specificity AUC Accuracy

3/C/C

NB 39.6 ± 14.4 81.4 ± 5.7 67.7 ± 5.9 77.9 ± 4.5
SVM 59.7 ± 8.1 73.1 ± 6.0 73.6 ± 4.8 72.0 ± 5.4
XGB 61.4 ± 11.2 80.6 ± 2.7 81.6 ± 4.1 79.0 ± 2.4
RF 59.4 ± 9.7 82.0 ± 3.4 81.0 ± 4.3 80.1 ± 3.3

3/C/D

NB 33.9 ± 10.2 87.3 ± 3.5 68.8 ± 5.2 82.9 ± 3.3
SVM 49.7 ± 11.9 76.5 ± 6.0 70.5 ± 5.6 74.3 ± 5.2
XGB 62.2 ± 12.5 80.8 ± 2.8 81.2 ± 4.3 79.3 ± 2.6
RF 58.8 ± 11.3 82.0 ± 3.1 81.1 ± 4.6 80.1 ± 2.8

3/D/C

NB 40.5 ± 10.3 82.3 ± 3.7 73.0 ± 4.1 78.8 ± 3.2
SVM 71.2 ± 8.5 73.7 ± 2.8 81.1 ± 4.1 73.5 ± 2.6
XGB 61.5 ± 12.2 80.6 ± 3.7 81.6 ± 4.1 79.0 ± 2.7
RF 60.9 ± 11.7 82.0 ± 3.3 82.0 ± 4.0 80.3 ± 2.6

3/D/D

NB 37.9 ± 9.3 85.4 ± 3.2 74.3 ± 4.8 81.5 ± 3.1
SVM 70.8 ± 9.9 73.7 ± 3.3 80.6 ± 4.3 73.5 ± 3.1
XGB 61.5 ± 12.2 80.9 ± 3.3 81.2 ± 4.4 79.3 ± 2.7
RF 61.1 ± 11.8 81.7 ± 3.5 82.2 ± 4.1 80.0 ± 3.0

4/C/C

NB 37.8 ± 14.1 83.1 ± 3.9 68.5 ± 8.0 78.8 ± 3.3
SVM 58.7 ± 10.7 78.0 ± 4.4 73.7 ± 6.4 76.2 ± 4.1
XGB 59.4 ± 13.5 80.0 ± 2.6 78.7 ± 5.9 78.1 ± 2.5
RF 54.6 ± 11.6 82.0 ± 2.8 79.3 ± 5.0 79.4 ± 2.3

4/C/D

NB 37.6 ± 15.7 84.9 ± 3.9 67.3 ± 6.9 80.4 ± 3.2
SVM 49.0 ± 12.7 78.6 ± 4.1 70.4 ± 6.6 75.8 ± 3.5
XGB 62.4 ± 12.1 80.9 ± 3.0 78.8 ± 6.0 79.2 ± 3.0
RF 55.0 ± 10.8 82.7 ± 2.8 79.2 ± 5.3 80.0 ± 2.7

4/D/C

NB 41.1 ± 14.3 82.1 ± 3.1 72.3 ± 7.2 78.2 ± 2.8
SVM 66.9 ± 10.7 72.1 ± 4.5 78.1 ± 4.4 71.6 ± 3.7
XGB 58.5 ± 12.7 80.2 ± 3.1 78.2 ± 6.1 78.2 ± 2.8
RF 56.3 ± 11.2 83.3 ± 3.2 79.9 ± 5.2 80.7 ± 2.8

4/D/D

NB 40.7 ± 13.1 83.6 ± 3.2 71.0 ± 6.3 79.5 ± 2.8
SVM 67.8 ± 10.5 71.4 ± 4.4 77.7 ± 4.2 71.0 ± 3.7
XGB 60.2 ± 13.5 80.7 ± 2.9 77.4 ± 6.2 78.7 ± 2.7
RF 58.5 ± 12.4 83.0 ± 3.1 80.6 ± 5.2 80.6 ± 2.9

5/C/C

NB 43.1 ± 11.3 82.6 ± 3.5 70.2 ± 7.4 78.3 ± 3.2
SVM 61.1 ± 12.3 76.1 ± 5.3 75.1 ± 6.6 74.4 ± 4.6
XGB 64.9 ± 10.7 80.1 ± 3.9 81.1 ± 3.6 78.5 ± 3.1
RF 56.7 ± 13.0 82.3 ± 3.1 79.4 ± 4.0 79.5 ± 2.9

5/C/D

NB 41.3 ± 12.2 84.9 ± 3.7 70.8 ± 6.9 80.2 ± 3.4
SVM 52.9 ± 11.2 79.8 ± 4.2 72.9 ± 6.3 76.9 ± 3.6
XGB 61.6 ± 12.3 80.4 ± 3.8 80.1 ± 4.0 78.3 ± 3.1
RF 57.6 ± 11.4 81.3 ± 3.5 79.0 ± 4.5 78.8 ± 3.0

5/D/C

NB 44.0 ± 11.5 81.6 ± 3.4 73.1 ± 6.9 77.5 ± 3.2
SVM 64.2 ± 11.4 74.1 ± 4.1 77.2 ± 4.4 73.1 ± 3.0
XGB 61.6 ± 11.3 80.6 ± 2.8 79.5 ± 4.3 78.6 ± 2.3
RF 58.4 ± 13.3 82.3 ± 3.0 80.1 ± 4.6 79.7 ± 2.7

5/D/D

NB 43.1 ± 12.7 83.6 ± 3.7 73.5 ± 6.0 79.2 ± 3.3
SVM 64.7 ± 12.1 73.6 ± 4.0 76.9 ± 4.3 72.6 ± 2.8
XGB 59.8 ± 11.4 80.8 ± 3.9 79.4 ± 4.3 78.5 ± 3.5
RF 57.8 ± 12.7 82.0 ± 3.0 80.3 ± 4.3 79.4 ± 2.7

respiratory function in determining NIV time, which is congruent with
clinical data pointing out a worse prognosis in patients with bulbar
disability. Moreover, our study indicates that the relative importance of
respiratory symptoms and bulbar dysfunction depends on the specific
population categorized by progression rate. For fast progressors, respi-
ratory symptoms are the only relevant predictor. However, concerning
neutral progressors, respiratory symptoms and bulbar impairment are
important, while each variable has a reduced independent predictor
value in slow progressors. Our study dissects the clinical decision ratio-
nale and can contribute to finding an objective prognostic model. Thus,
clinically, all the most relevant patterns in Table 9 are in complete
agreement with the classifier decision of non-evolution to NIV state
(interpreted by Fig. 5).

Concerning the fast progressors, triclustering did not output a high
number of patterns. As we can see by Fig. 6 and Table 9, the pattern
12
Table A.13
BicTric results for the NIV predictive task specialized for neutral progressors. CS—
Number of considered consecutive snapshots/similarity criteria used in matrix T/
similarity criteria used in matrix S; C—Pearson correlation, D—Euclidean distance.

CS Clf Sensitivity Specificity AUC Accuracy

3/C/C

NB 53.4 ± 7.6 71.2 ± 5.9 69.3 ± 2.8 66.2 ± 3.5
SVM 59.8 ± 5.6 76.1 ± 4.7 74.6 ± 3.0 71.6 ± 3.2
XGB 52.7 ± 7.8 80.4 ± 4.5 74.8 ± 3.1 72.8 ± 3.4
RF 49.8 ± 7.0 82.3 ± 3.0 75.6 ± 2.8 73.4 ± 2.2

3/C/D

NB 57.5 ± 5.7 70.2 ± 3.5 69.6 ± 3.3 66.7 ± 2.6
SVM 55.5 ± 6.2 72.4 ± 5.7 71.2 ± 3.3 67.7 ± 4.0
XGB 52.0 ± 7.2 80.2 ± 4.2 74.2 ± 3.5 72.4 ± 3.0
RF 49.9 ± 7.6 83.1 ± 3.8 75.4 ± 2.8 74.0 ± 2.8

3/D/C

NB 57.1 ± 5.6 69.6 ± 4.8 70.7 ± 2.6 66.2 ± 3.1
SVM 60.4 ± 6.9 79.9 ± 3.5 77.6 ± 2.3 74.6 ± 2.0
XGB 52.2 ± 6.8 80.6 ± 3.3 75.5 ± 2.9 72.8 ± 2.6
RF 51.4 ± 6.1 83.2 ± 3.2 77.1 ± 2.5 74.4 ± 2.5

3/D/D

NB 58.6 ± 5.1 71.2 ± 4.0 71.9 ± 2.9 67.7 ± 2.8
SVM 63.2 ± 7.1 77.2 ± 3.7 77.6 ± 2.7 73.3 ± 1.9
XGB 53.3 ± 7.2 81.0 ± 3.2 75.5 ± 3.2 73.4 ± 2.4
RF 51.3 ± 7.4 83.3 ± 3.4 77.1 ± 2.6 74.4 ± 2.5

4/C/C

NB 56.0 ± 7.3 72.5 ± 5.0 70.9 ± 3.6 67.2 ± 3.8
SVM 68.4 ± 6.5 71.9 ± 6.0 76.1 ± 4.6 70.8 ± 3.8
XGB 55.2 ± 5.5 80.2 ± 4.5 72.8 ± 4.2 72.2 ± 3.5
RF 56.8 ± 7.6 81.6 ± 4.0 75.2 ± 3.9 73.6 ± 3.2

4/C/D

NB 59.5 ± 6.3 71.8 ± 4.5 71.7 ± 4.0 67.8 ± 3.6
SVM 67.5 ± 6.3 67.2 ± 4.6 73.1 ± 3.8 67.3 ± 2.8
XGB 55.2 ± 5.8 80.2 ± 4.1 72.9 ± 4.1 72.2 ± 3.1
RF 55.7 ± 6.9 82.0 ± 4.8 75.3 ± 4.0 73.5 ± 3.5

4/D/C

NB 62.7 ± 6.5 69.2 ± 5.2 71.9 ± 4.0 67.1 ± 3.8
SVM 67.9 ± 6.1 73.4 ± 4.5 78.6 ± 3.7 71.6 ± 3.5
XGB 56.3 ± 6.8 80.0 ± 4.2 73.3 ± 4.0 72.3 ± 3.2
RF 56.5 ± 6.0 82.4 ± 2.9 76.5 ± 3.4 74.0 ± 2.1

4/D/D

NB 62.4 ± 5.9 70.5 ± 4.5 72.8 ± 4.3 67.9 ± 3.8
SVM 68.3 ± 6.3 72.5 ± 4.8 78.0 ± 3.6 71.1 ± 3.8
XGB 57.5 ± 6.8 80.2 ± 4.1 73.7 ± 4.1 72.9 ± 3.4
RF 55.3 ± 5.6 83.1 ± 3.8 76.4 ± 3.3 74.1 ± 2.6

5/C/C

NB 57.6 ± 5.9 72.3 ± 4.3 71.4 ± 3.6 66.8 ± 3.4
SVM 72.8 ± 6.7 68.0 ± 6.1 75.7 ± 4.6 69.8 ± 3.7
XGB 60.2 ± 5.9 76.4 ± 4.4 74.6 ± 3.8 70.4 ± 3.3
RF 61.2 ± 6.7 78.3 ± 4.9 76.9 ± 3.7 72.0 ± 3.6

5/C/D

NB 59.8 ± 6.4 73.2 ± 4.1 72.5 ± 4.2 68.2 ± 3.9
SVM 69.0 ± 5.3 66.5 ± 4.9 74.0 ± 3.8 67.5 ± 3.7
XGB 59.7 ± 5.8 77.1 ± 4.4 74.2 ± 3.6 70.7 ± 3.1
RF 60.7 ± 5.9 79.4 ± 4.3 76.4 ± 3.9 72.5 ± 3.7

5/D/C

NB 62.6 ± 6.1 71.1 ± 4.3 71.9 ± 3.7 68.0 ± 3.6
SVM 76.0 ± 6.8 66.5 ± 5.0 78.4 ± 4.6 70.0 ± 4.3
XGB 61.6 ± 4.9 77.9 ± 4.2 75.9 ± 3.6 71.9 ± 2.9
RF 62.5 ± 8.4 79.1 ± 4.0 78.3 ± 3.8 73.0 ± 3.0

5/D/D

NB 63.6 ± 6.6 71.7 ± 4.5 73.1 ± 4.2 68.7 ± 4.3
SVM 74.9 ± 6.0 66.2 ± 5.2 77.8 ± 4.6 69.4 ± 4.1
XGB 61.3 ± 6.1 77.7 ± 4.0 75.5 ± 3.4 71.6 ± 3.1
RF 60.7 ± 7.1 79.3 ± 4.3 77.8 ± 3.9 72.3 ± 3.2

[ALS-FRSr=4, R=12] is highly discriminative. We can see a delin-
eate separation between the most similar and dissimilar patient profiles
from that pattern in Fig. 5.

8. Conclusions and future work

In this work, we proposed to learn predictive models from lon-
gitudinal cohort data by mapping the original heterogeneous data
space into a feature space described by discriminative patterns learnt
by biclustering static data and triclustering temporal data. The pro-
duced feature space yield statistical properties of interest and can be
subsequently used by state-of-the-art predictive models to leverage
both predictability and explainability. Results in the ALS case study,
where prognostic models were learned to classify NIV need within 90
days since the last visit, show promising evidence along with both
targets.
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Table A.14
BicTric results for the NIV predictive task specialized for fast progressors. CS—Number
of considered consecutive snapshots/similarity criteria used in matrix T/ similarity
criteria used in matrix S; C—Pearson correlation, D—Euclidean distance.

CS Clf Sensitivity Specificity AUC Accuracy

3/C/C

NB 59.4 ± 12.2 53.3 ± 14.3 61.1 ± 7.1 55.7 ± 7.1
SVM 74.7 ± 8.5 60.6 ± 12.0 76.1 ± 5.9 65.9 ± 6.7
XGB 65.2 ± 9.5 75.6 ± 7.9 79.5 ± 5.7 71.7 ± 6.3
RF 60.8 ± 9.3 72.0 ± 7.7 76.4 ± 6.0 67.8 ± 5.7

3/C/D

NB 52.3 ± 11.6 59.0 ± 10.8 61.5 ± 6.7 56.5 ± 7.0
SVM 62.6 ± 14.4 57.8 ± 13.7 65.3 ± 8.1 59.6 ± 7.5
XGB 63.3 ± 10.3 73.7 ± 8.0 77.7 ± 5.7 69.7 ± 6.5
RF 60.3 ± 10.8 72.8 ± 8.2 75.8 ± 6.3 68.0 ± 6.7

3/D/C

NB 60.0 ± 11.9 52.2 ± 13.3 61.7 ± 7.0 55.2 ± 6.5
SVM 80.2 ± 7.1 72.2 ± 6.2 82.4 ± 5.4 75.3 ± 4.9
XGB 66.0 ± 8.5 76.6 ± 6.5 80.4 ± 5.5 72.6 ± 5.2
RF 61.2 ± 8.6 73.2 ± 6.3 76.8 ± 6.3 68.7 ± 5.2

3/D/D

NB 53.7 ± 12.0 60.6 ± 10.4 62.2 ± 7.1 58.0 ± 7.4
SVM 77.7 ± 10.2 73.2 ± 6.9 81.0 ± 6.0 74.9 ± 5.6
XGB 64.4 ± 7.8 75.2 ± 7.2 78.8 ± 6.1 71.0 ± 4.7
RF 60.0 ± 9.1 73.1 ± 6.9 76.3 ± 5.9 68.1 ± 5.5

4/C/C

NB 68.9 ± 10.0 49.3 ± 9.1 62.9 ± 6.8 57.6 ± 5.5
SVM 81.7 ± 12.3 54.8 ± 9.1 74.0 ± 7.0 66.2 ± 5.9
XGB 63.5 ± 10.1 74.7 ± 9.1 76.4 ± 6.2 69.9 ± 6.3
RF 66.1 ± 9.2 72.4 ± 9.6 76.6 ± 6.2 69.8 ± 6.5

4/C/D

NB 55.6 ± 8.9 58.5 ± 11.7 64.6 ± 8.0 57.3 ± 6.5
SVM 61.4 ± 14.5 61.3 ± 11.7 69.5 ± 7.2 61.4 ± 6.4
XGB 62.0 ± 10.6 73.5 ± 9.7 75.5 ± 7.0 68.6 ± 6.2
RF 64.9 ± 9.0 73.5 ± 8.2 76.5 ± 6.5 69.9 ± 5.7

4/D/C

NB 71.3 ± 9.8 49.5 ± 9.6 65.0 ± 6.7 58.7 ± 5.4
SVM 80.8 ± 6.8 66.1 ± 10.9 79.0 ± 5.7 72.3 ± 7.1
XGB 62.0 ± 9.5 75.7 ± 9.1 78.1 ± 5.4 69.9 ± 5.9
RF 63.6 ± 10.5 72.9 ± 9.2 77.7 ± 6.4 69.0 ± 5.8

4/D/D

NB 57.2 ± 11.0 59.9 ± 11.9 66.0 ± 8.1 58.7 ± 6.9
SVM 77.8 ± 7.4 67.9 ± 8.9 77.8 ± 6.4 72.1 ± 5.9
XGB 62.6 ± 9.4 74.4 ± 8.9 76.7 ± 6.4 69.4 ± 5.9
RF 64.4 ± 9.6 72.9 ± 9.5 77.3 ± 6.3 69.3 ± 5.6

5/C/C

NB 66.4 ± 10.6 49.5 ± 14.5 60.0 ± 8.6 57.3 ± 7.9
SVM 83.1 ± 9.9 47.8 ± 12.6 70.3 ± 8.6 64.0 ± 7.8
XGB 66.3 ± 12.2 67.5 ± 10.5 74.9 ± 6.2 67.0 ± 5.9
RF 68.2 ± 10.6 65.8 ± 9.3 76.4 ± 6.7 66.9 ± 6.1

5/C/D

NB 60.0 ± 10.2 57.6 ± 13.1 65.5 ± 8.2 58.7 ± 7.6
SVM 60.0 ± 10.9 59.1 ± 14.5 66.6 ± 8.8 59.6 ± 7.8
XGB 64.7 ± 14.2 66.5 ± 9.2 72.7 ± 6.7 65.7 ± 5.4
RF 68.1 ± 13.4 66.2 ± 10.8 74.7 ± 7.2 67.1 ± 4.9

5/D/C

NB 67.4 ± 12.1 49.5 ± 15.0 61.5 ± 8.8 57.8 ± 7.8
SVM 80.4 ± 8.7 61.9 ± 8.7 77.4 ± 6.0 70.4 ± 6.2
XGB 65.5 ± 12.2 65.3 ± 9.4 74.5 ± 7.2 65.4 ± 5.6
RF 68.8 ± 10.8 64.8 ± 10.5 76.7 ± 6.7 66.6 ± 5.7

5/D/D

NB 60.5 ± 10.2 58.0 ± 12.9 65.7 ± 8.3 59.1 ± 7.4
SVM 72.0 ± 13.5 64.6 ± 12.4 75.1 ± 6.1 68.0 ± 6.3
XGB 65.3 ± 13.4 67.7 ± 10.6 73.6 ± 7.0 66.6 ± 7.2
RF 70.0 ± 10.8 65.2 ± 10.5 74.9 ± 7.4 67.4 ± 6.1

We further highlight relevant future directions, including BicTric’s
alidation for alternative prognostication end-points in ALS and other
eurodegenerative diseases, as well as the enhancement of the under-
ying biclustering and triclustering searches in accordance with the
athered behavioural limitations. Nevertheless, this work shows the
otentialities of putting together biclustering and triclustering stances
o learn discriminative prognostic patterns, which can be used not
nly to learn more accurate prognostic models from high dimensional,
eterogeneous and temporal data but also to provide clinicians with
ovel insights concerning disease progression.
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