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Abstract

Procedural content generation (PCG) is the process of automatically generating content through

the use of algorithms, making it a concept that involves artificial intelligence (AI). This project

suggests the construction of a Rhythm-Based Level generator with online dynamic difficulty

adjustment (DDA) in a 2-D platformer, using the idea of the launchpad generator [1] as a basis.

DDA is a technique that adjusts the difficulty of a game to the player’s skill. The goal of this

project is to contribute to the research in this area by either adding or improving methods of

generating content.

To create the generator, a different approach to generate rhythms and actions is considered,

where an action is defined as an input or a combination of inputs that allows the player to

progress in the game, and a rhythm is viewed as a group of actions. These actions are converted

into playable geometry that forms a level. An analysis of the properties of each type of action

was made to ensure that the generated geometry is possible to complete and the difficulty is

adequate as well as adaptable.

To validate the generated levels, an artificially intelligent player (AI agent) is used to set

benchmark values for the DDA method and ensure that the difficulty of each generated level is

discernible. Tests with this agent are conducted to verify the quality of the generated content.

The evaluation function and geometry probabilities are constantly altered to reach results that

suit the agent. The tests showed the average difficulty of the levels was converging to what was

considered an adequate bound value.

Tests with real players are performed to validate the results of the agent’s test and to obtain

different opinions regarding the quality of the generated content, and the viability of the PCG

and DDA methods. The results demonstrated that the players showed interest in the concepts

explored in this study.

The project concludes with an analysis of the viability of these methods, the qualities of the

work done, and what can be improved in the future.

Keywords: Procedural content generation, Dynamic difficulty adjustment, Rhythm,

Action, Artificial Intelligence
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Resumo

Este projeto veio no seguimento de outra tese com tema semelhante e teve o objetivo de im-

plementar as melhorias propostas pela tese anterior. Para esta tese desenvolveu-se um gerador

procedimental de ńıveis para um jogo de plataformas 2-D, em que a dificuldade dos ńıveis era

adaptada consoante as habilidades do jogador durante o tempo de jogo. Um ńıvel é fragmentado

em múltiplos segmentos, sendo que os subsequentes elementos do ńıvel eram formados à medida

que o jogador progredia no jogo.

Geração procedimental de conteúdo é o processo de gerar automaticamente conteúdo através

de algoritmos. Quando aplicada a video jogos, o conteúdo surge na forma de: ńıveis, modelos

3-D, imagens 2-D, objetos de jogo, etc. Este tipo de geração tem a vantagem de ser maioritari-

amente realizada por computador, reduzindo o tempo de trabalho que seria consumido a criar o

respetivo conteúdo. Como o conteúdo é gerado aleatoriamente a sua qualidade está dependente

das restrições colocadas no gerador, por isso a implementação deste tipo de métodos considera-se

um processo complicado quando se pretende produzir bons resultados consistentemente. Como

a qualidade do conteúdo gerado pode ser inconsistente, existe sempre um risco associado à sua

implementação em jogos comerciais, assim este projeto pretende adicionar ou melhorar técnicas

de geração procedimental de conteúdo para aumentar a viabilidade da sua execução em jogos

atuais.

A técnica que permite o constante ajuste da dificuldade num jogo denomina-se ajustamento

dinâmico de dificuldade. Estes tipos de métodos permitem alterar a dificuldade de um jogo

consoante o progresso e as habilidades demonstradas pelo jogador, com o objetivo de tornar o

jogo mais apelativo. Se um jogador sentir muita facilidade durante o jogo, a cont́ınua exposição

a este conteúdo com igual grau de dificuldade pode afectar negativamente a experiência do

jogador. A mesma lógica aplica-se a conteúdo que é considerado muito dif́ıcil. Para evitar estes

cenários, métodos que ajustem a dificuldade tem que ser implementados corretamente.

No projeto foi inicialmente realizada uma investigação de várias técnicas de geração pro-

cedimental de conteúdo e ajustamento dinâmico de dificuldade. Realizou-se uma análise dos

diferentes tipos de técnicas e das suas propriedades, de forma a considerar várias metodologias

que pudessem ser utilizadas no projeto.

Este projeto tencionou suceder o anterior, visto que o gerador de conteúdo desenvolvido tem

na sua base o conceito de ritmos. Ritmos descrevem o tipo de geometria que pode ser gerada

aleatoriamente num dado ńıvel. Um ritmo é definido como um conjunto de teclas ou ações que

ao serem executadas corretamente, permitem ao jogador completar o segmento do ńıvel que é

caracterizado por um conjunto de inputs. Quando a secção constitúıda pelo ritmo é conclúıda,

um novo ritmo de dificuldade adaptada é gerado. Este ciclo cont́ınua até o jogo terminar.

Primeiramente para criar o gerador de conteúdo, definiu-se a metodologia utilizada para a

geração de ações. Nesta seção foi definido o que é uma ação, as suas propriedades, como é que

uma ação varia consoante o tipo de jogo (sendo o nosso caso um jogo de plataformas), o que se

deve considerar ao gerar uma instância de ação e os principais aspetos que afetam a dificuldade

de uma ação. Com esta análise foi posśıvel averiguar uma forma viável de gerar ńıveis para

este projeto. Concluiu-se que seria benéfico gerar geometria que proporcionasse o jogador a

pressionar as teclas (inputs) que correspondiam a essa geometria, em oposição a gerar tipos de

teclas que posteriormente seriam associadas a uma geometria.

Foi realizada uma análise das mecânicas do jogo (limites f́ısicos do jogo, e os eventos e
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interações que são posśıveis de executar ao pressionar conjuntos de inputs) para determinar os

tipos de geometrias que correspondem a cada ação. Este estudo possibilitou associar a cada

ação um ńıvel de dificuldade que estava, diretamente relacionado com o conjunto de inputs e a

forma de os executar.

Para desenvolver o método de dificuldade adaptativa foi necessário estabelecer métricas que

caracterizam qualitativamente o progresso do jogador em cada ritmo. Cada parâmetro está cor-

relacionado com o quão bem um jogador executa as ações associadas ao ritmo. Os valores obtidos

em cada parâmetro permitiram avaliar a velocidade, precisão, tempo de reação e coordenação

do jogador ao completar uma geometria. Cada métrica encontra-se relacionada com um peso

que ajusta o impacto da variável na adaptação de dificuldade. Estas definições possibilitaram

a construção de uma função de avaliação cujo valor, quantificava a qualidade da execução das

ações, e consequentemente a dificuldade do ritmo seguinte.

A validação do gerador foi realizada através de testes com um agente de inteligência artificial.

O agente tinha a função de obter tempos de referência para o método de dificuldade adaptativa.

Ponderou-se que tipo de comportamento deveria ser usado pelo agente e concluiu-se que uma

árvore de decisões seria um estilo comportamento adequado devido ao tipo de conteúdo que

é gerado. O agente consegue identificar uma geometria que se encontra relacionada com uma

ação, e executa-a automaticamente pressionando as teclas associadas à geometria apresentada.

Os testes com o agente consistiram na extração de dados usados na função de avaliação

enquanto o agente jogava ńıveis criados pelo gerador com diversas dificuldades. Os objetivos

destes testes foram, verificar se era posśıvel distinguir a diferença na dificuldade dos ńıveis

através da métricas utilizadas para avaliar a execução do agente, e se o agente convergia para um

intervalo de dificuldade adequado. Teorizou-se que, para cumprir estes objetivos, o agente teria

que obter valores superiores nas dificuldade mais baixas e valores gradualmente menores a medida

que a dificuldade dos ńıveis aumentava. No entanto, para garantir que a função de avaliação

atribúıa valores adequados, nos testes iniciais não foi introduzida dificuldade adaptativa. Quando

um teste terminava os resultados eram analisados e posteriormente eram executadas alterações

nos pesos da função de avaliação e na probabilidade de gerar ações, com o objectivo de aperfeiçoar

os resultados e a qualidade do conteúdo gerado.

Nos resultados dos testes foi evidenciada uma dispersão que pode ser considerada signi-

ficativa, no entanto verificou-se resultados positivos que fundamentavam os argumentos e que

compriam os objetivos do projeto. Esta dispersão era proveniente da aleatoriedade do gerador

e do comportamento do agente.

Nos testes com dificuldade adaptativa, verificou-se que em média o agente obtinha mais

progresso no jogo à medida que a dificuldade diminúıa, ou seja obteve uma forma de distinguir os

ńıveis de dificuldade. No que diz respeito a convergência do agente para um grau de dificuldade,

o agente em média convergia para um intervalo de dificuldades de [5, 6.6] (os valores variam

entre 0 e 10).

Para terminar a validação testou-se o gerador com jogadores reais. Um grupo de dez jo-

gadores com experiências diversas jogou ńıveis criados pelo nosso gerador com e sem ajustamento

dinâmico de dificuldade. Realizou-se um quiz para obter a opinião de cada um dos jogadores

sobre a qualidade da adaptação de dificuldade, e a preferência individual entre o jogo com e

sem ajuste na dificuldade. Adicionalmente foi posta em questão a relevância da reutilização dos

conceitos de geração procedimental de conteúdo e dificuldade adaptativa em jogos atuais.

Os resultados do quiz mostraram que em geral os jogadores sentem que a adaptação foi
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adequada e que ambos os conceitos de geração de ńıveis introduzidos no gerador são interessantes

para serem explorados noutros jogos. Os poucos jogadores que discordavam com a qualidade da

adaptação, tendiam para valores de dificuldades baixos (entre 0 e 2). Estas opiniões derivavam da

geração de ações com dificuldades ligeiramente superiores nas dificuldades mais baixas. Embora

estas geometrias exigiam uma execução de inputs que era considerada mais dif́ıcil de acordo

com os parâmetros estabelecidos, estas alterações vieram no âmbito de aumentar o número de

geometrias posśıveis em dificuldades inferiores.

O projeto conclui-se com a análise dos resultados obtidos e uma discussão da viabilidade do

uso das técnicas de geração procedimental de conteúdo e ajustamento dinâmico de dificuldade

nos jogos comerciais. Finalmente o projeto termina mencionando algumas sugestões de inovações

e reparos na abordagem utilizada.

Palavras-chave: Geração procedimental de conteúdo, Ajustamento dinâmico de difi-

culdade, Inteligência artificial (AI), Ritmo, Ação
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Chapter 1

Introduction

This thesis arises from a previous project with a similar topic, in which the main goal was to

create a level generator that could work in a variety of 2-D games. With this generator, it was

possible to choose the difficulty of the game, and the level would be constructed accordingly

using a rhythm (definition in subsection 1.4.1) to generate its geometry. A geometry is a chunk of

the level composed of game objects. However, this generator created levels offline, meaning the

level is built before the run time of the game. A possible improvement was proposed where these

levels could be generated online, adjusting its difficulty/geometry while the player is playing the

game. Another proposed improvement was a bigger range of difficulties for the game in question,

allowing for a better adjustment of them to the player’s skill. Therefore, the main objective of

this thesis was to create an online level generator that uses rhythms to build the geometry of a

level in a 2-D platformer, and contribute to the research in this area.

1.1 Motivation

Procedural content generation (PCG) is a group of methods capable of automatically generating

content. This type of content generation is often applied to videogames to extend the player’s

playtime. Since there is more content for the players, they are inclined to spend more time

playing, increasing the game’s replayability. Therefore, the use of PCG in this industry allows

the possibility of creating products/games where a lot of work can be done by an AI. This

massively reduces the workload of videogame designers and artists, and helps create games with

similar quality to those that only possess ”human-made content”. Therefore, by using PCG, a

product with more longevity while consuming less time and money is achievable [2].

However, there are some negative aspects to PCG namely the controllability of the content

produced when compared to human-made content. To have complete control of the generated

content and its quality, various details need to be specified [2]. If it does not improve the player’s

experience then the use of PCG can be a hindrance to the success of a game, resulting in the

content not meeting the player’s expectations. Nonetheless, if the developers can control the

generated content while ensuring its quality, PCG can have a positive influence on the player’s

experience enhancing the entertainment factor of the game. To sum up, PCG needs to be

executed rigorously otherwise it will not benefit the final product.

The most common use of PCG in games is the offline creation of environments such as

vegetation, like trees and bushes [3], but many games use PCG for other purposes. Some games

use PCG to generate game objects such as levels/playable areas 3-D models and sprites, and
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usable items in-game. One of the first games to introduce PCG was Rogue [4], in which all of

the levels in the game were generated by an algorithm that made each one a different experience.

This type of generation is what inspired various games that nowadays use PCG. When applied

correctly, PCG can be an extremely useful tool to create a better and more replayable product.

This has been proven by the success of multiple games like Minecraft [5] classified as the best

selling videogame of all time. However, other games such as the series Civilization [6] also

found success by using PCG to create environments and levels. Another famous series called

Borderlands [7] also uses PCG but differently, instead of creating levels it uses an algorithm to

generate a variety of weapons for the player. These examples help to identify ways of using PCG

that found success in the videogame industry.

For this thesis, the main focus of this project is applying PCG to generate levels in a 2-D

platformer. A platformer or a platform game is a videogame genre where the player has to

maneuver a character by moving and jumping between suspended platforms of differing heights

to reach the main objective of the game. To moderate the difficulty of the level, while the player

is playing, a dynamic difficulty adjustment (DDA) method was implemented. These methods

usually consist of the alteration of parameters and game behaviors that make a game easier or

harder [8]. Thus, it allows the game to adapt its difficulty based on the player’s skill set [9].

These methods guarantee that the content is neither too easy or too hard for the player (if so the

player is considered to be in a flow state, a chart that represents this concept can be visualized

in Figure B.1 in appendix B).

1.2 Objectives

The project had the following objectives:

• Create a rhythm-based level generator. This generator will use rhythms and their proper-

ties to recognize what type of geometry needs to be placed. To achieve a generator with

these properties, these subgoals need to be met:

– Define the actions, rhythms, and their respective properties for our game.

– Implement a rhythm generator that allows us to create and manipulate multiple

rhythms, that are then turned into playable geometry.

– Implement a geometry generator that uses the rhythms as input to create the geom-

etry of the level. The generated content is associated with the rhythm’s properties.

• Implement online content generation with a DDA method. The generator should be able

to evaluate the player’s skill and generate more content in real-time based on the skill

value attributed to the player (the DDA method requires us to understand and define

what makes the generated content more difficult).

• Validating our generator to ensure the generated content is suitable for players. Conduct

a statistical study that analyzes the results to formulate adequate conclusions.

• Test the game with real players to obtain their opinion, and based on the results, conclude

if the type of content generation and DDA method used are worth revisiting in other

platformers (if the players enjoyed the type of game and want to play more of it in the

future).
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1.3 Procedural Content Generation

1.3.1 Taxonomies

In PCG several types of algorithms vary in the way they generate content. In this segment,

different aspects of these methods are summarized [10, 11]. An algorithm may possess the

following properties:

• Input Parameters:

– Use of random seeds – the algorithm receives a random number as input and it

generates content based on that seed. If given the same seed the content generated

will be the same.

– Use of parameter vectors – the algorithm receives a multidimensional vector as

input. Each vector contains various parameters that allow for a more controlled

generation of content.

• Influence of parameters in the randomness of the content:

– Stochastic generation - content generated with the same input parameters can

differ.

– Deterministic generation – content generated with the same input parameters will

have the same result.

• Validity of the content:

– Constructive generation – the content is only generated once. Before the content

is finalized and put into the game, it goes through a verification process to ensure the

validity of the generated content.

– Generate-and-test generation – the content is first generated and evaluated by

the chosen algorithm’s criteria to validate the content. If the content is not valid it

is discarded and regenerated. The process loops and terminates when the content is

valid.

• Type of content:

– Necessary content – content that needs to be generated due to it being crucial for

the game to be playable.

– Optional content – content that is not necessary to complete the game or a level.

• When is the content generated?

– Offline generation of content – content is generated during the game’s develop-

ment.

– Online generation of content - content is generated during the game run-time.
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The objective was to create an online rhythm-based level generator with a DDA method

[8] that controls the difficulty of the game as it is being played. Rhythms will be used as

input parameters to generate levels that can be completed (use of parameter vectors to generate

necessary content). Stochastic generation is considered because the same rhythm can generate

different content.

1.3.2 Some Approaches To PCG

In the following subsections, a number of approaches to PCG are discussed [3, 10].

Search Based

Search based procedural content generation (SBPCG) is a special generate-and-test type of

generation that mostly uses evolutionary algorithms. Nonetheless, other search methods such

as heuristic/stochastic are also viable to generate content for games [10].

In these methods, when a candidate is generated, the algorithm not only accepts or rejects

the content but also grades it using a test function. This function is denominated as a fitness

function and its value defines the quality of the content. The most difficult part of this method

is obtaining a good enough fitness function that grants the desired optimization for the content.

When generating content for a given candidate, the value of the previous instance (previ-

ous candidate) of the fitness function is put into consideration, meaning the next candidate is

influenced by the previous. The goal of this dependency is to generate content with a higher

fitness value. When the next candidate is generated, it will always differ from the previous

due to a random mutation that occurs in the evolutionary algorithm. By constantly mutating

candidates it is possible to create content with higher or lower fitness values than the previous.

When the process ends the candidate that possesses the content with the highest fitness value

is then generated.

Figure 1.1: Comparison between some approaches: search based, generate-and-test and con-
structive approach [10].
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Figure 1.1 shows a visual representation of a comparison between the search based, con-

structive and generate-and-test generations when it comes to the process of content creation

and validation. In the constructive method, the content is only generated and evaluated once,

while in the generate-and-test method the content can be evaluated multiple times before being

placed into the game. Search based and generate-and-test differ in the way that content is re-

generated, search based mutates the already existing population while generate-and-test creates

completely new content.

Experience-Driven

Experience-driven procedural content generation (EDPCG) uses the information of a player’s

experiences as a tool to optimize its content [12].

In this method, the player’s experience is modeled as a function of the game’s content. The

function describes the player by its playstyle and reactions to the gameplay, and the quality of the

content is evaluated with the model of the player’s experience. The content is also represented

in a way that maximizes the efficiency and performance of the generator. Finally, the generator

searches for the content that optimizes the player’s experience according to the acquired model,

and the process is repeated. In Figure 1.2 the representation of the EDPCG previous described

loop can be visualized.

Figure 1.2: Experience-driven approach’s structure [12].

Learning-Based

Machine learning is a data-driven methodology for knowledge modeling that has been applied

to various fields of AI [13]. Learning-based procedural content generation (LBPCG) is a PCG

framework that is based on this methodology [13].

This method uses information gathered from game developers and public testers, and it needs

to generalize trained component models that allow the generation of adaptable content with

minimal interruption to a player’s experience. Therefore, LBPCG avoids the use of evaluation

functions which limits the search to relevant content only and a minimized interface [13].

This process tries to mimic commercial videogame development and divides a videogame’s

life cycle into three stages [13]:

• Development - attempts to encode the developer’s knowledge of the content by using the

Initial Content Quality (ICQ) model that filters illegitimate and content of low quality,
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and the Content Categorization (CC) model which separates the legitimate and acceptable

content.

• Public test - models public player’s experiences by using the Generic Player Experience

(GPE) model that collects the feedback of the player, and the Play-log Driven Categoriza-

tion (PDC) that models the cognitive/affective experience based on the tester’s behavior

and the category of game content that elicits the experience.

• Adaptive - generates content for the target players using the Individual Preference (IP)

model that controls the generated content with the four models created in the development

and the public test stages.

Figure 1.3: Learning-based procedure content generation (LBPCG) framework [13].

In Figure 1.3 a visualization of the game’s life cycle and the interaction between the models

used can be observed [13].

1.4 Procedural Level Generation

Since level generation is one of the main objectives of this thesis it is important to mention

the technique that is going to be used to generate content, however other methods are also

mentioned.

1.4.1 Rhythm-Based Generation

Similar to the previous thesis and the article from which this idea was based on [1], we intend

to use rhythms in order to build levels. To explain this method, it is imperative to understand

what a rhythm is in this context. In Launchpad, a rhythm can be described as a sequence

of actions that a player can make in-game, and action is an input that allows the player to

perform an event in the game that affects the player character. In this case, an input (or player

input) is considered to be a key that the player can press to deliver the information of the

corresponding action to the game. In this article [1], rhythms have properties that make them

easy to distinguish from each other, these being: length, type, and density:

• Length - the time that the rhythm takes to complete.

• Type - the actions of a rhythm can be spaced differently along its length, this variation

in space from action to action is defined as the rhythm’s type. A rhythm’s type can be,

random, regular (even distribution), or swing.
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• Density - defines the overall quantity of the actions in relation to the amount of time

used to perform them.

Figure 1.4: Representation of the various parameters of rhythms [1].

Figure 1.4 illustrates a representation of rhythms that simplifies their discernibility. The

lines serve as a way to visualize the rhythms and their different properties. The text at the right

of these lines enumerates the various parameters of each rhythm.

Figure 1.5: Representation of a rhythm that is based on two actions move and jump and has a
length of 8.5 seconds [1].

In Figure 1.5 another way of observing rhythms is shown. The image contains three columns

that each represent the type of action that needs to be performed (the type of event that

occurs), the action’s starting point, and the endpoint in seconds. This rhythm has a length of

8.5 seconds and the player needs to perform actions of two different types move and jump. The

type of rhythm in this instance seems to be regular since there is a new action every 2 seconds

(the time between new actions is the same as seen in the first line of Figure 1.4).

According to [1], the rhythm-based method is a two-layered grammar-based approach to

generating rhythms. This means that the process starts by generating rhythms based on the

player’s available actions in the game. Then these actions are associated with level geometry that

is restricted based on the player character’s physical constraints. The clearest way of showing

its effect is with an example. In Figure 1.6 a rhythm and four possible levels can be visualized.

The rhythm is represented in the same way as in Figure 1.5. By observing the rhythm and

the generated levels it is possible to spot and associate each geometry with each action. For

instance, at the beginning of A, there are three gaps that the player must jump over, these can

be correlated to the three jump actions in the rhythm that initiate at 2, 4, and 6 seconds. The

player is also moving during this time, meaning the move and jump action types intersect each

other and serve as a means for the player to clear these initial geometries. The same can be

observed in B, C and D, but instead of there just being gaps, it varies from small platforms,

gaps, and enemies (red boxes). These geometries can be cleared by performing the same actions

in the initial portion of the rhythm. After the beginning section in A, the next geometry is

a moving platform. To clear it the player must wait 2 seconds and not input any actions, the

wait time is noted due to the move action not being performed from seconds 8 to 10. The same
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can be applied to the other levels with blocks that move vertically and a platform that moves

horizontally. These examples show how the two-layered grammar-based approach works and

how the geometry can vary even when using the same rhythm for geometry generation.

Figure 1.6: A generated rhythm that can be associated with four possible levels [1].

In our project, we intend to develop a rhythm generator that creates rhythms to generate

levels with different difficulties. This means that the difficulty of a level is dependent only on

the geometry produced by the generated rhythm. Therefore, according to these examples, and

assuming all actions have the same difficulty, then rhythms with lower density could generate an

easy level while rhythms with higher density could build harder levels. However, not all actions

have the same difficulty, and thus using the density property to define what makes a level easy

or hard is not a viable option.

The evaluation of the player’s performance on a given level needs to be properly defined.

For this, we need to implement an algorithm whose fitness function can evaluate the rhythm’s

difficulty and the performance of the player. Since the same rhythm can produce different

geometries it is easy to assume that these levels have different difficulties, even though they

were generated from the same rhythm (this issue is addressed in 2.2.1).

1.4.2 AI-Based Generation

AI-Based generation uses two types of AI in order to create a level that is possible to complete

[14]. These are the level design AI and the AI player, they are responsible for creating the level

and testing the level’s playability respectively. Firstly, the level design AI creates a chunk of

a level, then the AI player (who has all the information about the mechanics and physics of

the game) confirms if the generated content is possible to complete. If the AI player checks the

chunk and recognizes it as feasible then, the process repeats meaning the level design AI creates

a new chunk, and the AI player tests it. If the AI player does not find the level possible, then
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the level design AI creates a different new chunk to be tested. The process is repeated until the

level is complete.

The randomness of the levels comes in the form of a generic design algorithm that uses the

characteristics of a level as parameters to randomize and create different experiences. However,

this method is known for not being efficient, for its versatility and its complexity [14].

1.4.3 Combining Pre-Made Parts

This is the most popular method of level generation due to it being the easiest. This approach

uses pre-made parts (parts of levels that already exist), and combines them in a complex way

to achieve a level chunk, and eventually a full level.

The method offers a decent diversity because of the number of combinations it can create.

However, after an extended amount of time the human mind starts recognizing the patterns and

the illusion of every level being unique quickly disappears [15].

1.5 Dynamic Difficulty Adjustment

DDA or dynamic difficulty adjustment is a technique that allows a method to adjust parameters

in a game that affect its difficulty. These parameters differ based on the specific game the DDA

system is implemented [16]. In this section, some DDA methods are mentioned. Most of this

information can be found in this article [17].

1.5.1 Probabilistic

There have been multiple studies that used probabilistic algorithms to implement DDA methods

or investigate possible improvements. The probabilistic method of the article [18] has the main

objective of maximizing the player engagement throughout the game by using the modeled

progression of the player on a probabilistic graph that maximizes engagement. In Figure 1.7 a

visualization of a player progression model in a level-based game can be observed, where each

state is represented by the blue spheres that identify the current level and the number of trials

done to clear that level. The authors determine a reward variable that denotes the expected

number of rounds (attempts) the player will play throughout the entire game. This reward is

calculated using the probability of the player winning and losing. It is also used to determine the

player’s engagement and how the difficulty is going to be adapted. On the mobile level-based

game, using this method, an A/B experiment was conducted with two groups of players, one

played with DDA and another without. In this experiment, an analysis of the number of rounds

and the time spent playing was done to compare player retention with and without DDA. The

authors of [18] indicate to have achieved an increase up to 9% in playtime in relation to both

groups. The results of this test can be seen in Figures B.2 and B.3 in appendix B.

Another DDA method was proposed by [19] where the authors suggested the use of parameter

manipulation as a way to improve player experience in a game called Space shooter. To reach

this goal a challenge function was created which uses probabilistic calculations to modify the

in-game parameters that consisted of player health, weapons, behaviors, and more. A study was

realized with 30 people with three different versions of a game: an easy version, a hard version,

and a version with DDA. Their results showed that 60% of the players preferred the version

with DDA, 10% preferred the easiest, and 30% preferred the hard version.
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Figure 1.7: An abstract example of a probabilistic graph showing the player’s progression model
in a level-based game [17].

1.5.2 Dynamic Scripting

Dynamic scripting is an online unsupervised machine learning algorithm of DDA that uses rule-

based to change the behaviors of enemies in a game. The viability of this method was studied

by [20] and it mainly applies to RPGs (RPGs or Role-Playing Games are a game genre where

generally a character undergoes a quest, with turn-based combat and a progression system

that improves the abilities of the said character). The rule-based serve to create scripts that

control the behaviors of each newly generated opponent, and the rules are designed manually

using domain-specific information. A group of rules is extracted that corresponds to the type

of opponent generated, which are then used to compose a script that controls that particular

opponent. Each rule also possesses a weight that affects the probability of that rule being

selected. These weights serve as a way to adapt the rule-base and are influenced by the success

and failure rate of the rules that compose the script.

1.5.3 Hamlet System

Hamlet Systems built by [21] are used in games that possess an inventory mechanic, where a

player can store items to aid it throughout the game. This system has been seen in games such

as Half-Life [22] and it adjusts the supplies in-game, to manipulate a game’s difficulty. Hamlet

systems manage the game statistics in accordance with statistical metrics that are defined in

advance, decide the adjustment tasks and rules, carries out those tasks and rules, present data

and system settings, and created traces for playing rounds [21].

The method is constantly monitoring the information of the game and with the information,

it attempts to anticipate when the player is struggling repeatedly and when it is near a state

where it needs more resources.

1.6 Research Considerations

For the PCG methods researched some of them can be generalized to fit various game genres,

however since this project is meant to be a sequence to the previous thesis, the PCG method

that is considered to generate levels is rhythm-based.

When it comes to DDA methods most work best in specific game genres, for example,

dynamic scripting is mainly applied to RPG games to control the behavior of the enemies, while
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the hamlet systems can be applied to games that possess an inventory mechanic to manage the

number of resources the player obtains in-game. Therefore, the best approach for this project

was to create a DDA method from scratch to ensure that it fits our platform game. At the same

time, a generalization of this method and what is being evaluated is done with the purpose of

its implementation being possible in other game genres.

To determine what type of statistical study should be conducted, research was made to

comprehend the type of tests that are usually executed and what is the most adequate for our

project. When examining [18, 19, 23, 24, 25], it is clear that to understand the effects of a DDA

method, A/B tests were conducted, where the results of the tests with and without DDA were

analyzed to reach conclusions regarding its contribution to the player’s experience. Therefore,

it we decided to conduct a similar study. The idea was to test the generator with an AI agent

and visualize how certain parameters of the DDA method would vary with the difficulty across

multiple runs of the game and to observe if the change in difficulty was adequate for real players.

To conclude the generator’s validation it was imperative to test it with real players to understand

how their experience varies when playing a game with and without DDA (A/B test).

1.7 Document Structure

The document structure is the following:

• Chapter 2 - an explanation of our adaptation of the rhythm-based level generation is

done by: mentioning how we define actions and rhythms, the methods used to generate

them, what makes an action difficult, and how the online generation of content is applied,

and the DDA method used is explained by describing what was being evaluated, what

metrics were used and how much those metrics weight.

• Chapter 3 - describes the method used to validate our generator. The method was

developed in the form of an AI agent that plays the generated levels and sets relevant

information for the DDA method (benchmark times).

• Chapter 4 - a statistical study was conducted that analyzes the quality of the generator’s

content. Multiple tests with the AI agent explained in chapter 3 were done to ensure

the discernibility of the difficulties, the adequacy of the content, and that the agent was

converging to a bound value of difficulty. Afterward, the generated levels were played by

real players, which provided another source of validation.

• Chapter 5 - the conclusion of the project where we analyze the success of the implemented

of the concepts in this thesis and suggest some ideas for future work.
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Chapter 2

Level Generator Implementation

The main goal of this thesis is to test the viability of a game that has its levels procedurally

generated using a rhythm-based method while their difficulty is altered with a dynamic difficulty

adjustment (DDA) technique. To achieve this goal, we must implement these concepts in a level

generator of a platformer game (since this project is a sequence to another thesis the game genre

is already decided). This chapter focuses on explaining everything that was done to make our

level generator.

2.1 Software Considerations

The first step in this project was deciding on what platform the level generator was going to be

developed. Some ideas were considered immediately due to their easy accessibility, these were:

• Mario AI Benchmark - this is a benchmark software based on Infinite Mario Bros [26]

that was used for an AI Competition [27] and already has a built-in generator that can

be modified for this project [28]. The generator uses seeds to generate random levels with

functions that can create geometries to fill the levels. The benchmark is a good option

since, we want to create a generator that uses rhythms and converts them into geometry,

and having many tools at our disposal facilitates this process.

• Pygame - alternatively an already existing game made in Python with the library Pygame

could be used. If this option was chosen and no games that suited the project were found,

then we would have to create our game engine from scratch which could take a long time

to develop.

• Unity - Unity is a free game engine that allows anyone to make games. It makes various

tasks easier when it comes to game development. However, to use this platform with the

level of dept that might be needed for this project requires a lot of knowledge on how to

use it properly, which takes more time than we have for this thesis. The project had an

initial deadline of six months, making this option not viable.

For the reasons previously listed, we decided to use the Mario AI Benchmark. This bench-

mark already had a basis for our generator that was easy to modify. The built-in generator can

create a random level by changing multiple parameters with a given random seed. However,

the goal of this project is to implement a generator that uses rhythms as an input and converts
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these into a level where its geometry matches that of the rhythm. Thus, we made alterations

to the Benchmark’s generator in order to achieve our goals. Meaning that the same Launchpad

generator’s two-tiered grammar-based method [1] was used to generate our levels. Even though

the same concept is being used, some changes to the definitions of actions and rhythms were

made they fit our project.

A DDA method was also implemented in the generator with the goal of adapting the difficulty

of the game to the player’s skill, thus turning the generated levels more interesting and fun for

all players regardless of their previous experience with videogames. To implement the DDA

method the actions’ properties and what makes an action difficult must be defined as well.

The benchmark possesses level templates that can be filled and altered to create levels with

the desired geometry. First, it is imperative to understand how the templates classify the space.

Every level is constructed with two variables that determine its space in length and height.

Considering a 2-D Euclidean space the level’s length determines how long the level can go on its

x axis (horizontal axis), while the height determines the size of the level’s y axis (vertical axis).

Length and height are the number of cells a level has in each line and column of the template

respectively. Each cell is composed of 256 pixels in a shape of a square, with 16 pixels being the

value of the sides. This information is relevant to classify the properties of actions and rhythms.

The goal of the level generator is to fill the cells of the template with geometry that represents

the rhythms that reflect the player’s skill.

2.2 Rhythm-Based Generation Adaptation

2.2.1 Defining Actions

Actions are considered inputs or buttons that the player uses to perform events that allow it to

progress in the game, and in this case complete levels. We consider that the player is progressing

in a game when it is getting closer to achieving the end goal of the game. Although this goal

varies from game to game, for this project the goal is finishing a level.

When considering the generation of instances of action, it is important to be able to dis-

tinguish different actions and know what geometries can be assigned to them. This creates a

need to establish properties for each instance of action. These properties can be based on the

example in Launchpad generator [1]. In Launchpad the different properties of actions that can

be discernible are the following:

• The type of action - the event in-game that occurs by making the corresponding input.

• The initial position where the action occurs - the position where the action begins,

normally represented in a euclidean space with (x, y) coordinates.

• The duration of the action - the time the corresponding input is read as true.

The type of action is highly dependent on the type of game that is being considered. In a

platformer, a player might be capable of moving and jumping; in an FPS (First-person shooter

is a shooter videogame from a first-person perspective) (shooters are a game genre that revolves

around gun-based combat) a player might be able to shoot a weapon and move, while in a turn-

based RPG a player might be able to command an attack on an enemy. By using the established

Launchpad generator’s [1] definition of actions, it can be inferred that even when considering
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different game genres with non-identical styles of play, an action is still defined as an input that

when performed creates an event in the game.

In this project, the focus will be on a platformer. Given most 2-D Mario games ([26]) as an

example, the player can use singular inputs to move left and right, jump, run and duck. This

move-set also applies to the benchmark we are using. In addition, an up input is considered to

complete certain types of geometry (a geometry is considered completed when a player performs

the correct inputs while in that geometry and progresses in the level).

Action Generation Considerations

When it comes to the generation of instances of action, it is necessary to understand all the

actions that can be performed and what they can achieve in-game. Meaning it is possible to

recognize how much progress each action can give to the player in every geometry. As mentioned

before, in-game, progress is achieved when the player completes a geometry and gets closer to

finishing the level. Depending on the geometry that is being considered, an input can have a

positive or negative impact on progress. In most scenarios, for a player to advance in a level

the player must combine certain complementary inputs (for instance, the move and jump inputs

can be combined to complete some geometries). This means that, depending on the game genre,

different inputs affect the player’s progress differently making the generation of some individual

inputs not beneficial. For example, if the goal of the game is to reach the right border of the

level, then an input that makes the player move left without it being necessary to progress is

redundant. Therefore, by identifying what actions can give the player progress, a significant

number of inputs and input combinations that do not need to be generated can be disregarded.

To create the generator, the properties of the generated instances of action need to be

considered. This information simplifies the process of choosing the type of geometry and where

to place it in the level. However, this process can be complicated when dealing with groups of

actions that possess simultaneous inputs. The authors of the Launchpad rhythm-based generator

[1] generated instances of action as inputs, and so when two actions are generated their starting

times differ. However, in some scenarios, actions can have starting times that can occur while

another action is still being performed, which is what we consider simultaneous or overlapping

inputs.

As a result, it is relevant to consider not only the position and duration of that action but

also what other actions can be performed at the same time. To analyze how to deal with the

issue of overlapping inputs, an analysis of the possible geometries that frequently appear in this

type of game genre was conducted. In 2-D Mario games ([26]), there are geometries in a level

where the player is required to perform a jump over a gap, implying that at one point in time,

the player must press the corresponding move and jump button at the same time to complete

that geometry. In Figure 2.1 an example of this gap geometry constructed with the Mario AI

benchmark can be observed. To complete this geometry, the player is required to press both

the move right and jump buttons simultaneously. It is possible to complete this geometry with

these inputs as shown in [b].

In this example, if the length of the gap is extended, it adds a third action and another

requirement for the player. The player now needs to run, move right, and perform a jump

to complete the geometry with the added momentum the character carries. In Figure 2.2 the

example of a geometry with a wider gap than in Figure 2.1 can be observed. The increased speed
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[a] [b]

Figure 2.1: Geometry made with Mario AI benchmark, that requires the player to move and
jump.

from the run input allows the player to complete the geometry as shown in [b]. Otherwise, if

this combination of inputs is not performed it is impossible to progress in the game.

[a] [b]

Figure 2.2: Geometry made with Mario AI benchmark that requires the player to run, move
right and jump.

However, adding inputs can also negatively impact player progress, if a duck action is added

to the previously mentioned sequence, the player is no longer able to complete the same geometry

because the geometry of Figure 2.2 can only be completed by that sequence of inputs. Thus, it

is possible to associate that geometry with the three previous inputs.

Some combinations of inputs create scenarios where there exists no geometry that can be

associated with the combination and contribute to the player’s progress. For example, if the

player inputs to move right and left at the same time, the player character stops moving. Even

though there are instances where this could be useful, for example, an action where the player

must wait and stop his movement, the same can be accomplished by not inputting any actions

at the correct time.

The initial idea for the project was to generate the inputs that constitute a rhythm and then

generate the geometry accordingly, however, with this method, some issues start to arise. The

resulting geometry that is associated with the inputs needs to be possible to complete. To solve

this problem, there was a need to apply various constraints to our input generation. Even so, it

was necessary to examine the density and the rate of each generated action. In most levels of

2-D Mario games ([26]), the end of the level is usually located at the most right part of the level

(which is considered to be our main goal), meaning that if the goal of the game is to reach this

end location, most of the generated inputs would have to be of type move right. Even if this was

feasible, there was still a need to adjust the types of geometries presented based on the player’s

skill. Making it more complicated to modify the rate and density of the generated inputs, while

trying to simultaneously create easy or hard geometries based only on inputs. To achieve this, it

would require defining a different set of constraints in action probability and duration for each

input and each level of difficulty. For these reasons, other methods were put into consideration.
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Our Adaptation Of Action Generation

To guarantee that undesired sequences of actions were not generated in our rhythms, a simple

change was proposed. Instead of generating each input individually, it was more practical

to isolate each type of geometry and associate them with a specific combination of inputs.

This facilitated the generation due to there being no need to determine the input density and

duration. This solution also solved the problem of the generated geometry not being possible to

complete, since it was easy to guarantee that each geometry was feasible (to complete) due to

our understanding of the game’s mechanics and the player character’s physical limitations. In

our case, the biggest concern was ensuring that the player character can reach the end of the

level given its move-set, by being able to complete geometries with big gaps and high platforms.

Finally, there was a need to ensure that the generated geometries require the player to perform

specific input combinations that are vital to the geometry’s completion. This way it simplified

the differentiation of actions while increasing input variety in the gameplay.

Nevertheless, there will always be scenarios where inputs can be used without necessity and

the player is still able to complete the geometry. An example of this type of geometry would be

the one in Figure 2.1, where the player can move right and jump over the gap, yet a run input

can be added even if it is not required. In the geometry of Figure 2.2 the player is required

to input move right, run, and jump to complete the geometry. These geometries differ by the

fact that they both require a move right and jump input, but only one requires a run input.

Since one geometry requires the player to press and additional input, we can discern these as

two separate actions even though the geometries are similar in appearance.

Since the association of geometries with input combinations was being considered, then a

redefinition of action was required. In Launchpad [1] an action is considered to be an input

that allows the player to perform an event in the game. However, for this project, an action

is defined as an input or a combination of inputs that the player must perform to progress in

the game. With this redefinition, the issue of generating undesired and overlapping inputs was

solved due to an action being able to contain multiple inputs that are required for the player to

achieve progress.

The next step was to search for geometries that could be associated with an individual or

combination of inputs. To determine these correlations, as mentioned previously, a fundamental

understanding of the game’s mechanics, the character’s physical limitations (more specifically

the character’s horizontal and vertical speed and acceleration), and the available geometry was

required. By comprehending the character’s move-set it was possible to associate combinations

of inputs with events in the game and correlate these events with a set of geometries.

This way the number of possible geometries is only limited by the move-set of the player

character and the game’s mechanics, meaning that the only downside to this approach is the

possibility of not having enough variety in geometries for every type of input combination. If

there is a low diversity of geometries in a level, then presumably the game can get stale similarly

to the issue of the combining pre-made parts method of level generation explained in subsection

1.4.3.

After examining the available tools in the benchmark, it was decided that this approach

would be used to generate actions, due to it being feasible to create a variety of scenarios where

the player would be forced to use the input combination associated with the geometry of that

action. These combinations of inputs can be discerned by the different necessary inputs that the
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player is forced to use to complete a geometry. Meaning that these necessary inputs are what

characterize the type of action of each instance. If the player chooses to not use these inputs,

the geometry is either impossible to complete or the player is penalized.

The action types created are identified by their necessary inputs, thus some actions that

allow the player to progress in the level are the following:

1. Move Right - the type of action that corresponds to geometry that only requires the

player to input moving right.

2. Jump - the type of action that correlates to the combination of a move right and jump

inputs.

3. Run Jump - the type of action that requires the combination of a run input, a moving

right input, and a jump input.

4. Up - the type of action that corresponds to the input of going up a ladder.

5. Duck - the type of action that corresponds to any combination of inputs that involve the

player ducking are contained can be generated from this type.

6. Move Left - the type of action that generates geometries that require the player to move

left. Inputs other than move left need to be present due to the position of the end goal.

7. Wall Jump - this type of action requires a wide variety of necessary inputs to be per-

formed. This action type generates geometry that allows the player character to jump off

a wall. The inputs required are the run, jump, and move left and right inputs. An example

in detail is analyzed in this subsection.

8. Wait - the type of action that requires the player to make no inputs for a short period

to achieve the most favorable outcome. However, due to the nature of the end goal, other

inputs need to be used to progress.

Converting Actions To Level Geometry

After determining the types of actions that could be generated, there was a need to convert

these instances of actions into playable geometries. Our idea was to generate instances of action

and determine the corresponding geometry based on their properties.

In the examples of Figures 2.3 to 2.7, some of the possible geometries that can be generated

with these types of actions can be observed. In addition, examples of possible Gantt charts for

each action can be visualized in Figures B.4 to B.8 in appendix B.

[a] [b] [c]

Figure 2.3: Possible geometries of a jump action.

In Figure 2.3, examples of possible geometries for a jump action and the action being per-

formed are visible. The action is performed with two inputs, move right and jump. In [a] there

17



is a simple platform with a higher elevation. In [b] and [c] the player is shown jumping over

enemies with the same inputs. In the case of [a] and [b], the player is required to input a jump

to proceed with the game due to an object blocking its path, yet in [c] its path is not blocked.

Theoretically, it is not imperative for the player to use the jump action to process in the level,

however in this scenario, if the jump input is not used the player is punished and can lose the

game.

[a] [b]

Figure 2.4: Possible up action geometry.

The images shown in Figure 2.4 represent a possible geometry for an up action and the

action being performed with one input, move up. Figure 2.4 [a] and [b] show the player going

up a ladder by pressing its corresponding input.

[a] [b]

Figure 2.5: Possible duck action geometry.

In Figure 2.5, the images represent a possible geometry for a duck action and the action

being performed. To complete the chunk of the level, the player should duck and avoid the

incoming enemy. This geometry shows that if the player does not perform the corresponding

action, the game will punish it by taking damage or ending the game.

[a] [b] [c]

[d]

Figure 2.6: Possible move left action geometry.
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The images in Figure 2.6 reveal a possible representation of the geometry generated by

the move left action. Image [a] shows the beginning position of the action. To complete the

left action geometry, the player must move left and jump onto the platform as shown in [c].

Afterward to progress in the level the player is required to perform another jump and move

right as seen in [d]. Image [b] reveals what occurs if the player tries to complete this geometry

without moving left. The player character has physical limitations that do not allow the player

to jump and complete the geometry without moving left.

[a] [b] [c]

[d] [e] [f]

Figure 2.7: Wall jump action geometry.

The images in Figure 2.7 represent a possible geometry for a wall jump action. Image [a]

shows the beginning position of the action. To complete this geometry the player must move

right while running and then jump onto the wall as shown in [b]. While on the wall the player

is required to hold the move right and run button and let go of the jump button. While holding

the previous inputs, the player needs to press the jump button again and change directions

(done by using a move left input, without inputting to move right). If executed correctly, this

sequence allows the player to jump off the wall as seen in [c] to reach the platform as shown in

[d]. To complete the geometry the player needs to reach the top of the left platform. Achieving

this can be done with a simpler run jump combination, as seen in [e] and [f]. Since this is by

far one of the hardest actions, it will be left for the highest difficulties. The game’s mechanics

allow this type of geometry to be feasible to complete, and so it was decided that this type of

action would be viable to use in our generator due to it providing more difficult geometries that

can be later used on the highest difficulties when the DDA method is implemented.

Accessing Action Information

The simplest way to differentiate instances of actions is by their properties. Since a redefinition

of action was done, it was imperative to also redefine the properties of these instances. The

following parameters define the properties of an action and contain the information necessary

to generate instances of action that can be converted into geometry:
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• Type - the type of geometry that is associated with one or a combination of necessary

inputs.

• Length - how much of the level does the generated geometry occupy in cells.

• Height - the position where the geometry of the action ends (ends in the last horizontal

cell) in the vertical axis.

• Difficulty - the difficulty of an action determines how easy or hard the type of action is

going to be.

Through these properties, the information required to convert an instance of action into

a playable geometry can be accessed. When compared to the action properties set by [1] it

is clear that these new properties do not contain the action’s duration. This is due to the

instances of action being considered a combination of inputs that can vary in duration. Initially,

it was thought that, in most cases, the length of the geometry could dictate the duration of

the action, because it would be simple to calculate the action’s duration based on the length of

the geometry and the velocity and acceleration of our player character in geometries that only

require the player to move in one direction. Nonetheless, there are problems with this approach.

Firstly, the player is not always moving in the same direction, for instance, in the actions type

move left and wall jump this method would be slightly more complex but still feasible. This

complexity stems from the player having to change its direction multiple times. Another issue

with this method is that the values of action duration would be used as a reference for real

players (when applied to the DDA method), thus this method would be considering that players

can obtain the best times in each geometry which is not feasible. Therefore, to better suit

the adaptation of difficulty, this method would require an alteration of the duration of each

geometry, thus determining when the player should increase or decrease its speed and at what

rate. To solve this problem, it was decided that an AI agent would play every geometry isolated,

and then the times the agent achieves (moving in both directions) would be used as a reference

for the action duration property.

Determining Action Difficulty

The difficulty of performing every action is different and needed to be clearly defined if one of

the goals was to apply a DDA method to the generated levels.

One method of discerning the difficulty of two actions is to use the rhythm definition, which

infers that the action/geometry that requires the most number of inputs (more density in a

rhythm) is harder. However, more metrics for determining an action’s difficulty could be defined

to obtain a more concrete group of properties that would later help with the DDA method. Using

the number of inputs as the only metric to determine an action’s difficulty is not the best option

available.

A starting point for this analysis would be to consider the how difficult required to perform

the correct sequence of inputs of an action. For this project, we consider the difficulty to be

how arduous an action can be to perform for a given player. A player can struggle with input

combinations due to various factors, the ones that were identified in this project are the following:

the coordination needed to perform the action, the speed at which the action is performed, the

precision of the inputs (the ability to press an input in a specific time frame), and the reaction
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time of the player. The difficulty of a geometry is not associated with the punishment attributed

to the player if it fails to perform it. For example, the geometry generated by the wall jump

action type (visible in Figure 2.7) can be attempted by the player as many times as necessary

without the player being punished (in terms of losing the game it can only happen if the time

runs out). However, to complete this action, the player is required to press multiple types of

different inputs and press inputs simultaneously (which requires some level of coordination),

have the timing to jump off the wall (has to have good precision and reaction time or it falls)

and press the inputs with the correct duration to not overshoot platforms.

Alternatively, a jump action type (as shown in Figure 2.1) can generate a hole in the ground

that can be fatal if the inputs are not performed correctly (the player loses the game). When

comparing this geometry to the one in Figure 2.7 the number of inputs required to complete

each geometry differs drastically. In the geometry of Figure 2.1, the player needs to press fewer

simultaneous inputs with a smaller duration (smaller jump compared to the previous wall jump

action), and the timing required is correlated to the length of the gap, thus there is a clear

difference in the difficulty.

Another example could be of two jump actions, one where a hole is generated and another

where a platform with higher elevation is generated. Considering that, in these scenarios, the

length and height of the required jump are the same, both actions demand an equal number of

inputs (being two move right and jump) and duration, yet they differ in the fact that one of the

generated geometries can end the game. This could imply that the player needs to have good

timing to complete the geometry with the hole, meaning that the difficulty of the jump needed

to complete the geometries is very similar. This signifies that these actions should be considered

close when it comes to the level of difficulty, even if one is slightly harder.

With these examples, it is possible to comprehend that the difficulty of an action is not

related to the punishment the player receives when failing to perform the action.

Some of the aspects that modify the difficulty of an action were identified in the previous

examples, these included the number of inputs, simultaneous inputs, timing, and duration. By

altering at least one of these characteristics, in one geometry type, it is possible to create level

chunks with various degrees of difficulty. For instance, the duration of an input can be altered

to increase an action’s difficulty and creates a new geometry. Given the example of a run jump

action where a huge gap is generated and the player is required to move right, run and jump to

complete the gap. If two gaps with different length values are considered, then in the larger gap,

the duration of the inputs is significantly higher than in the smaller gap. In this example, by

increasing the length of the gap, the reaction time and the degree of precision needed to perform

the action correctly also increases.

In Figure 2.8 there are two different gaps in [a] and [b] where one possesses a greater length

than the other. These actions differ notably, in one the player does not need to be as precise,

meaning it can jump earlier and still complete the geometry (Figure 2.8 [a]). Therefore, the

characteristics that were listed (duration and timing) are indirectly connected through these

geometries, since creating a geometry where the duration of inputs is increased influences the

timing required to complete the geometry. In [b], if the player jumps as early as in [a], it can fail

the geometry due to the gap being larger, signifying that for example, if the player is moving

at maximum speed, there is a different interval of time, from [a] to [b], or area of the platform

from which the player can perform a jump and complete the gap. The interval is more forgiving

in [a] making this action easier.
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[a] [b]

Figure 2.8: Possible run jump action geometry with different length properties making one is
harder than the other.

The same logic can be applied to our move left action, the player is not punished for failing

the jump in that geometry, but by increasing the length of the gap, the player’s timing becomes

key to succeeding in variants of geometries in the highest difficulties. This process of altering

properties can be repeated for all action types expanding the number of total geometries with

different difficulties.

However, there are some types of geometries that possess a different property than all the

others. When considering the geometries that generate enemies, all the previous metrics can

be used to evaluate the difficulty of these actions. However, the inputs that are required in

these geometries constantly change with time due to the enemies changing their positions in

each frame. For example, if an enemy is closer the duration of the jump input does not need to

be as long when compared to an enemy that is farther away. The timing and types of inputs

also differ with the enemy’s current position, if the enemy collides with the player and the game

continues, then the player needs to move left to defeat the enemy. In our generator, the number

of enemies and their speed increases with the difficulties. The goal of this change is to alter

the values of the difficulty’s parameters to better suit higher levels of difficulty. More enemies

implies an increase in the number of inputs (more jumps to be performed), and the increase

in their speed, accelerates the process of inputs changing with time and decreases the time the

player has to complete it successfully. For these reasons, the actions that generate enemies can

be considered one of the hardest types of possible geometries.

In conclusion, the difficulty of actions can be distinguish by multiple parameters:

1. Number of inputs - how many buttons (including repetitions of the same input) does

the player need to press to complete the geometry.

2. Duration of inputs - how much time does the player needs to hold certain buttons. The

higher the duration does not necessarily indicate that the action is harder. Implying this

metric that requires context to be correctly evaluated. The duration of the inputs can

be affected over time (geometries with enemies). If the duration is modified the timing

required for the player to complete a geometry can also be affected.

3. Timing of the inputs - how precise does the player need to be with his inputs to succeed.

4. Amount of simultaneous inputs - how any inputs are required to be used by the player

at the same time.

5. Influence of time in the inputs - how does time influence the types of inputs in a given

geometry.
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By using these parameters as a basis, the difficulty of the created geometries can be discerned

and associated with a certain degree of difficulty. A level can possess an action with slightly

higher or the same difficulty as the rhythm they belong to, for example, the easiest version of

the jump and run jump actions can appear in the same difficulty, even though one is easier than

the other. This is done to increase the number of geometries in lower difficulties and reduce

the monotony of the game (not using the same inputs constantly). Since the mechanics of the

game are not very complex (only requiring six inputs to play), the number of input combinations

that are associated with lower difficulties is smaller. To exemplify this association, consider the

example of a wall jump action (Figure 2.7) and a move left action (Figure 2.6). In this case, the

geometry generated by a wall jump action requires more inputs and more simultaneous inputs,

thus this geometry is associated with a higher difficulty than the move left action. By applying

this method to all action types and their variants, we intend to increase the engagement of

multiple players with varied experiences.

Originally the range of the difficulties went from [0; 5], where 0 is the easiest and 5 is the

hardest. Each difficulty also had its types of geometries, meaning that, in different difficulties, no

geometry would be the same. Nevertheless, it was decided that the interval of difficulties would

be extended to [0; 10], and the difficulties would be separated in pairs, and thus these would

have similar geometries, but different enemy movement speed values. For example, difficulties

5 and 6 have similar geometries but the enemies in difficulty 6 move much faster and therefore

are harder to deal with.

2.2.2 Defining Rhythms

The authors of [1] define a rhythm as a set of actions that the player must complete in order to

complete a level. The authors also defined the characteristics of a rhythm those being length,

action probabilities, density, and type. In our case, we decided to simplify these properties due

to the changes made to our actions. Therefore, in this project, the properties of a rhythm are

the length and the difficulty. A rhythm’s length remains the same, which is how long a group of

actions in a rhythm takes to complete and consequently how much space of the level it occupies.

Action probabilities differ based on the difficulty of the rhythm, meaning easier actions appear

more often in a rhythm with a small degree of difficulty. The opposite applies to a rhythm of

higher difficulty.

However, unlike the other characteristics, the density is indirectly affected by the other

parameters these being the rhythm’s difficulty and action probability. Meaning that, in this

project, the density of a rhythm is not set to be low, medium, or high, as seen in [1] (based on

the number of actions in the rhythm). Instead, as mentioned previously, the odds of generating

an action and the rhythm’s difficulty define the density of our rhythm. For example, a move

right action requires one input, and a jump action requires two inputs (move right and jump).

Therefore, if we consider a rhythm where a move right action is followed up by a jump action,

then this section of the rhythm only requires two inputs. However when considering a section

with a single wall jump action, the density of the wall jump action is greater than the previous

example due to the number of required inputs being superior. This example reveals how the

difficulty can affect the density since by the parameters stated in subsection 2.2.1 a wall jump

action is considered more difficult and thus is only generated in the highest difficulty. Therefore,

in some cases, the increase in the difficulty can cause the density to also increase. In short, in
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higher difficulties, harder types of actions are generated more, which often leads to the generation

of rhythms that required more inputs from the player (denser rhythms). Finally, the rhythm’s

type is similar to the density because it is influenced by the odds of generation an action. In

[1] a rhythm can be considered regular, swing, or random. A consistent rhythm with an even

number of inputs that are spread along the level is called regular. In a swing rhythm, actions are

separated into small groups, meaning that there are sections of the rhythm that are denser than

others. In any other case, the rhythm is considered random. In our generator, regular rhythms

usually only happen in very low difficulties due to the type of actions that are generated. Swing

rhythms never occur since the generator places the geometry of its instance of action immediately

after the previous geometry, and thus if the rhythm is not regular or swing then it is random.

Accessing Rhythm Information

Similar to the methodology applied actions, it was also possible to differentiate each rhythm

by its properties. These properties contain the information needed to generate our levels, and

initially, the idea was to store every characteristic of the rhythm just as in the Launchpad level

generator [1]. However, most of the information contained in their properties (in the rhythms

generated by the Launchpad level generator) did not benefit our project, meaning that to discern

our rhythms there was only a need to define two properties, the rhythm’s length and difficulty.

The length of the rhythm is the number of cells the rhythm occupies in the level, while the

difficulty defines how easy or hard the action in that rhythm will be, in short:

• Difficulty - the difficulty of the actions that are generated later are set by this value,

which also influences the rhythm’s density and type.

• Length - the number of cells (space in game) the rhythm occupies.

Generating Rhythms

With rhythms and actions defined, the next step was to generate a group of actions that represent

our rhythm in-game. Firstly, a reference for a starting point in the level needed to be established

to determine the positions of the geometries. Afterward, it was imperative to set the length value

of the level (how long our level is going). Modifying the rhythm’s length, allows us to choose

how many rhythms should be generated for a given level. Since DDA was going to be applied, a

method to generate content up to a certain point in the level was required. With this in mind,

a method was made to create a list of instances of individual actions. The following itemization

simplifies this method:

• Step 1 - first we create a new empty list to contain all the instances of individual actions

that will be generated. Then an instance of type begin is added to this list (this begin

action has the same required inputs as a move right action). The function of this action

is to give the player some time before the evaluation starts.

• Step 2 - then we verify if the maximum playable length has been covered, if so we set an

end action after the last action and end the method.

• Step 3 - in case the length has not been reached, we check if the current height is equal

to the maximum height, if so an action that reduces the current height of the geometry
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is added, otherwise, we create a new instance of action with randomized height, length,

and type of action, which is then added to the list (randomizing the properties requires

restrictions to ensure that the geometry is playable, these were explained in 2.2.1). Return

to Step 2.

By using this method, it is possible to obtain a list of instances of individual actions where

the information of each property can be used to generate playable geometries.

Even though this method is simplified in the previous itemization, its complexity lies in the

number of restrictions that are mandatory for the level to be playable. For example, when the

properties are randomized, there is a need to ensure that the length and height properties are

set in specific intervals due to the player character’s physical limitations. The height property

of an action can be defined as the playable row of cells in the generated geometry where that

action ends. Meaning that when generating instances of action, it is necessary to guarantee that

the player can achieve this value of height at the end of each geometry. For example, considering

two instances of individual actions denominated A1 and A2, where A1 is the instance that was

generated before A2, and their height values are respectively y1 and y2, where y1 < y2. In Figure

2.9 an example of a generated geometry for A2 can be observed. In this Figure, three cells are

highlighted with colors, cells 1, 2 and k of coordinates (x1, y1), (x2, y2) and (xk, yk) respectively,

where 1 and 2 are the last playable cells of the lowest y value of each generated geometry. To

complete this geometry, the player needs to reach cell 2, however, the player character cannot

reach cell 2 by inputting to move right and jump (the player character can jump a maximum

of four cells vertically). This implies that before reaching cell 2, the only viable option is to

first reach cell k. Therefore, when generating the height property, in these scenarios where

there are other platforms, it is mandatory to consider that the yk position needs be at least

y1 + JHeight ≤ yk ≤ y2 − JHeight where JHeight is the maximum jump height. However, this

example just demonstrates the restrictions of generating instances of actions when considering

one property. In the example of Figure 2.9, the length property affects the space between xk

and x2. This distance needs to be close enough for the player character to be able to reach cell 2

because there is a limit of cells the player character can move horizontally while jumping before

it starts to lose height. Implying that the geometry can be impossible if y2 − yk ≤ JHeight, due

to the distance between xk and x2 not allowing this jump to be feasible.

Figure 2.9: An example of a geometry with three highlighted cells.

Nevertheless, even if it was possible to randomize these action properties and achieve ge-

ometries that were feasible to complete, there was still a necessity to consider how these should

25



change with the increase of difficulty. Therefore based on the criteria of subsection 2.2.1, more

restrictions were made to ensure the generated geometries get considerably harder as the diffi-

culty increases.

However, even after implementing these restrictions, the previously mentioned method can

reliably generate multiple different geometries with the same instances of individual actions.

2.2.3 Converting Rhythms Into Geometry

At this point in the project, the rhythms and actions were clearly defined and the information

of their properties was easy to obtain. To create a level, the last step was converting these

instances of individual actions into playable geometry. To achieve this, modifications to an

already existent algorithm in the Mario AI Benchmark were executed, which we will refer to it

as algorithm B. This algorithm was previously used to generate levels based on a seed (random

number) that would change the characteristics of a level. Therefore, instead of creating a new

algorithm from scratch, it was decided that this algorithm B would be altered to better suit this

project. After modifying it, the algorithm permitted the construction of the previous examples

of the geometry shown in this chapter.

Algorithm B begins by creating a level template with the length property of the rhythm and

a height value that was preset for the game to be playable. This level template corresponds to

an empty level of length × height = cells. An empty level possesses no geometries, therefore

the second step was to fill the cells and create a playable level. To determine the types of

geometries that should compose a level, the list of instances of individual actions was used to

obtain the information of each action and generate the geometry accordingly. However, for this

to be feasible, the algorithm should place geometries that differ based on the types of inputs

(type of action) and the difficulty. For this reason, more algorithms were created to generate

an appropriate level chunk with the information of the current instance of action. This process

was simple due to the benchmark already possessing some tools to create geometries in chunks

such as floors, blocks, ladders, enemies, and coins. After the geometry is placed in the level, the

last step of B consists in setting an endpoint for the game, thus a cell in the most right part of

the level is chosen, and when the player has the same position as this cell, the game ends and it

counts as a win.

When it comes to the algorithms used to build the geometry in the second step of B, these

can generate different geometries even with the same instance of action. A simple example would

be an instance with the type jump that can generate an enemy, a tube, coins, or a terrain that

requires the player to jump over it. However, since we were associating the geometries to the

types of inputs, before creating these algorithms, there was a need to comprehend the possible

outcomes that could be generated while ensuring the geometries were possible to complete with

the restrictions made to the action’s properties. The second step of this algorithm can be seen

in algorithm 1 in appendix A. In this step, it is clear that the type of geometry generated is

depended on the type of action, and that the information of each instance of action is used in

all the algorithms that build the geometries.
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2.3 Dynamic Difficulty Adjustment

As seen in subsection 1.5, the approaches for DDA methods vary for different game genres. In

this project, we decided to generalize and create a simple method that can be easily implemented

in other games.

To accomplish this, it was necessary to define some objective and subjective aspects of

our game. The goal was to change the game’s difficulty mid-gameplay, but there was a need

to determine when to increase or decrease the difficulty. The best way is by evaluating the

performance of the player. Player performance can be defined as how well a player can progress

in the game, what it can achieve, and the way it does it. In subsection 2.2.1, we consider that the

player is progressing when it is getting closer to the end goal of the game, and so the objective

(goal) is to reach the end of the level. Implying that it was imperative to establish how well

the player is performing until it reaches its objective. To determine performance, we need to

account for subgoals. These can be classified as secondary tasks that do not always give the

player progress but can complete to increase its performance. In a 2-D Mario game ([26]), there

are specific tasks that increase the overall score of the player these are usually the collecting of

coins and defeating enemies.

Once the performance value is obtained, it is associated with an increase or decrease in

difficulty, which directly influences the next generated rhythm.

2.3.1 Defining Performance

In this project, the player performance is considered to be a value (or score) that can be calcu-

lated based on the comparison of certain parameters.

First, it was necessary to determine what was being evaluated, in this case, we are evaluating

how well a player can complete a rhythm. Completing the rhythm requires the player to have

certain types of inputs and timing to perform every action correctly. This means that we

considered the following variables for the evaluation of the player: the time the player takes to

complete the rhythm, the subgoals it completes, backtracking in the level (considered a mistake

when not necessary), taking damage from enemies, and losing the game. In some 2-D Mario

games ([26]), the score stat is affected by most of the variables mentioned. At the end of the

level, the time that was not used, the coins picked up and enemies defeated all convert into score.

In this project, the score attributed to each metric used to evaluate a player’s performance is

referred to as an individual performance score. The following metrics were used to determine

the performance:

• Time to complete a rhythm - can indicate how fast a player was at completing the

rhythm.

• Time Moving Backward - this metric shows if the player made mistakes due to its

theoretical unnecessary need to backtrack.

• Coin collecting - the number of coins picked up can determine if the player is passing

through specific locations. If these are placed in spots where the player needs to be as

precise as possible, it can be a way of determining the precision and timing of the inputs.

• Enemies Defeated - the enemies are a subgoal for the player that can increase its score.
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However, they are constantly moving which forces the player to have good timing and

input adjustment.

• Damage taken - if the player takes damage (by colliding with an enemy) or loses the game

it is an indication that the intended combination of inputs was not performed correctly.

Evaluating Performance

To evaluate a player’s performance, we have to compare the values it obtains with the expected

values of each level. When it comes to the coins picked up and enemies defeated, we determine

how many coins and enemies exist and how many the player has respectively picked up or

defeated. But when it comes to the time it took to complete a level, the time spent backtracking,

and the damage taken during the game, the comparison becomes more complex. Initially, we

thought of calculating the fastest possible time to clear a certain length of the level and use

that as a reference for most actions. However, not every player plays perfectly, meaning that we

either add some time to compensate or we adjust the values extracted. Both options add bias

due to us directly affecting these values. Even if these values are not modified, this option is

not viable because it is assumed that it is feasible for a player to maintain maximum velocity

throughout the entire level, which is not possible. To solve these issues, as mentioned previously

it was decided that an AI player (AI agent) would be used to obtain reference times in all the

possible geometries. These times are then compared to the player’s values.

However, the damage taken metric cannot be evaluated in the same manner. This benchmark

has a specific health system that is connected to the power-ups the player character currently

possesses. A power-up is a game object that, when picked up, alters the state or mode of the

player character, which influences the number of times the player can make mistakes (in the

benchmark these states are denominated as modes, and thus we refer to them as such). In this

benchmark, the player character (or Mario) has three states or modes and two power-ups:

• Mode 0 - the default mode, if the character takes damage from an enemy while in this

mode, the game ends on a loss.

• Mode 1 - it can be reached by obtaining a mushroom, if the character takes damage it

reverts to mode 0.

• Mode 2 - it can be reached by obtaining a fire-flower, if the character takes damage it

reverts to mode 1.

Each power-up gives the player an extra health point, meaning that getting hit by an enemy

while having at least one power-up, does not end the game on a loss. This implies that, if

the player is not allowed to get power-ups in the middle of the rhythm it is easy to track how

many times the player got hit by checking the beginning mode and the end mode. To estimate

good values for this metric, some tests need to be made with the AI agent. Still, a logical

starting point of this individual performance metric would be to attribute a positive score when

the player remains in the same mode at the end of the rhythm (does not take damage), and a

negative score otherwise, increased by the number of times it took damage.

If the player loses, the evaluation needs to be executed differently. If the level is not complete,

there needs to be another method other than time to determine the player’s performance. In
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this case, we decided to use the percentage of length that was traveled in the rhythm. The time

and time moving back metrics are replaced by this length and not put into consideration when

evaluating the performance. If the player ends the game early due to a loss, the time obtained

can be lower than the estimated time. This results in the individual performance metric of time

and time spent backtracking being greater than they should be.

Tracking Evaluation Metrics

This subsubsection explains the process used to track these metrics. To achieve this, we track

the relevant events that occur in every frame of the game. The number of frames is used to

check how long it takes to complete any given geometry (the frames per second are 24 regardless

of the device used), and by analyzing the number of frames that the player has negative velocity,

the time that it spent backtracking is obtained. To track the number of coins picked up, a coin

pick-up counter that was already implemented in the benchmark was used.

When it comes to the tracking of enemies defeated, there is was a slight issue that needed

to be considered. Even though a counter for the enemies defeated exists, it was not adequate

for this project. In the game, some enemies are impossible to defeat if certain conditions are

not met, some enemies can only be defeated with the fire-flower power-up, and others are

completely invincible. Another enemy type can be defeated repeatedly due to their intended

infinite spawning system. For these reasons, a new enemy defeated counter was created that

is only affected by enemies that were always able to be defeated regardless of the game state.

This allows the player to obtain the best possible performance scores in any starting character

mode (or Mario mode) and it also prevents players from abusing the enemies that are constantly

spawning for more performance score.

To check the number of times the player took damage, the Mario mode at the beginning and

end of the rhythm is verified. The subtraction of these modes is described by:

n = MEnd −MBegin (2.1)

The value of n in equation 2.1 is used for the evaluation of the performance. Where n is the

number of times the player took damage, and MEnd and MBegin are the Mario mode at the end

and beginning of the rhythm respectively.

Finally, the length traveled can be determined by either the maximum number of cells reached

(cell column) or the number of pixels in the x axis, the second option was chosen. This value is

updated when the current length of the player is greater than the maximum length reached at

that point in the game.

2.3.2 Calculating Performance

To calculate the performance, a method that uses the previously mentioned individual perfor-

mance scores as input was created. This method calculates every quotient between the values

the player obtains and the ones that are estimated to be achieved, therefore that the scores are

based on how close the player is to these estimated values. In the case of the time variables,

since the fastest possible time is not being used, it is possible to go faster. If a player obtains a

shorter time than the estimate, the highest possible score is equivalent to 100% or 1 even if the

player was faster.
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This process affects the difficulty of the next rhythm, thus the performance score needs to be

a number that reflects that change. If the performance value is defined as a percentage, then the

increase or decrease in difficulty per rhythm should be carefully chosen. To start, a maximum

change of 3 was implemented, which implies that after finishing a rhythm, the difficulty of the

next rhythm will fluctuate between [D − 3;D + 3], where D is the difficulty of the previous

rhythm.

Calculating Individual Performance Values

The next step was to define how the performance score affects the difficulty. First, there was

a need to determine what metrics were going to be put into consideration for the evaluation,

because as mentioned in subsection 2.3.1, if the player loses, different metrics are used to evaluate

the performance. Another case that needs to be considered is the lowest difficulty since there

are no enemies, thus this metric cannot be used to calculate the performance score.

Afterward, we compare how close the player is to the estimated value and attribute an

individual performance score (based on the quotient) for that parameter.

Initially, a discrete method was briefly tested with the values that were somewhat evenly

spread along with various intervals. However, since increasing or decreasing the difficulty by

3 can affect the geometry drastically the interval required to achieve this score was considered

small.

• For percentages in range of [90; 100]% a +3 performance value is obtain.

• For percentages in range of [89; 75]% a value of +2 is obtained.

• For percentages in range of [60; 74]% a value of +1 is obtained.

• For percentages in range of [40; 59]% a value of 0 is obtained.

• For percentages in range of [25; 39]% a value of −1 is obtained.

• For percentages in range of [10; 24]% a value of −2 is obtained.

• For percentages in range of [0; 9]% a value of −3 is obtained.

Even so, it could be argued that different difficulties should have different performance

benchmarks for our values. For example, difficulty 0 requires a percentage of above 60% to

reach a value of +1, but in difficulty 5 it could require less percentage, due to it being considered

harder. However, it provides an inaccurate determination of the performance of a player, due

to it becoming easier to reach increasing higher difficulties, and the possibility of the generated

content being inadequate for the player.

This option of determining the performance was proven unfavorable after a few tests with

the AI agent. The problem with this discretization is that reaching the limits of our intervals is

completely irrelevant to the performance score. For instance, if there are two players and one

achieves a value of 75% and another achieves a value of 74%, they both receive different changes

in difficulty even though their percentages only differed by 1%. For this reason, a continuous

option was chosen. The alternative and definitive option was to use the following equation:

P (x) =
(x− 50)× 3

50
(2.2)
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Equation 2.2 represents how the individual performance score varies based on the given per-

centage x. This way we attain a linear equation that could be considered a slight improvement,

due to its simplicity when compared to the method that used the discrete intervals. However,

the previous issue is still present in this new method, being continuous signifies that decimal

numbers are obtained, while the actual difficulty values are considered integers, therefore if we

chose to round up the values, there are instances where, for example, the two players can obtain

values of 1.4 and 1.5 respectively and gain different increases in difficulty. Still, it was decided

that the project would be processed with this approach.

This method works for most metrics, but it cannot be applied to our measurement of indi-

vidual performance value of damage taken. When it comes to the Mario modes, there only exist

three states, thus the only viable solution is to make this parameter discrete.

Nevertheless, there is another aspect to examine about Mario modes. If the goal is to

determine how well a player is doing based on the damage taken, then all the possible cases

need to be considered, due to it being feasible for players to lose in any of these modes. For

example, the generator can create geometries with gaps that the player needs to jump over,

however, if a player fails to perform this jump and falls, the game ends regardless of the current

state of the health system. Therefore, a player who did not collide with any enemies but fell in

the gap should be considered better than a player who collided with two enemies and still fell in

the gap (when considering that in the other metrics the scores that both scores obtained were

the same). For these reasons, the individual performance score of the damage taken metric in a

rhythm is determined by the following method:

• If the player loses and:

– did not get damaged, obtains a performance value of 0.

– got damaged once, obtains a performance value of −1.5.

– got damaged twice, obtains a performance value of −3.

• If the player clears a rhythm and:

– did not get damaged, obtains a performance value of 3.

– got damaged once, obtains a performance value of −1.

– got damaged twice, obtains a performance value of −2.

Determining Weights

The next step was to determine the weights of each parameter. A weight determines how

valuable a metric is when calculating performance. For example, if the coins have a greater

weight than everything else, then a player can take more time, take more damage, backtrack

more and defeat fewer enemies, and still obtained a high performance score if it picked up every

coin.

One way to dictate how relevant these are variables is by using the definition of a rhythm

(sequence of actions that must be completed to finish a level) to get an idea of how well a player

is completing the said level. This implies that there is a need to judge how fast and precise a

player is during a rhythm.

The precision can be studied with the placement of subgoals (coin and enemy placement).

In our geometries, coins and enemies were placed in a way that allows the player to perform the
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correct combination of inputs and complete the objective at the same time. Implying that, if the

player collects every coin in a segment, it had precise inputs while performing the action. For

example, two different players can go through the same chunk of the level and complete it with

different precision. The player that gathered more coins is considered more precise due to the

inputs required to attain that number of coins. This becomes clear when observing a geometry

similar to Figure 2.10, if the player does not jump at the edge of the platform the coins will not

be collected. This method can be a way of judging the timing and precision of the player.

[b]

Figure 2.10: Possible run jump action geometry.

When it comes to enemies, these move toward the player, implying that at one point in time,

these eventually collide with the player and move on to a previous geometry in the level. To

achieve the lowest amount of time and defeat the enemies, the player needs to jump in a certain

interval of frames to hit and defeat the enemy, before the player is forced to backtrack, taking

more time in the process. This becomes even harder the higher difficulties due to the increase

in enemy movement speed and number of enemies. For these reasons, the number of enemies

defeated can be another way of studying the player’s precision, since missing enemies implies

that the intended inputs were not performed.

In short, the weights can be changed based on how we define player performance. For

instance, if the speed and precision of the player have equal values then the option of putting

similar weights can be considered. However, if speed is valued more than precision then the

weights can be modified to benefit players who complete levels faster.

Even though we established ways to evaluate the player’s performance, the weights, and

estimated individual performance score, these are ultimately determined by the AI agent’s be-

havior. Since there is a need to judge the generator’s content, the weights must be constantly

altered to suit our agent, thus in the initial test, it was decided that all the evaluation metrics

should have the same weight.

Calculating The Performance

To calculate the performance, the individual performance scores are multiplied by their respec-

tive weights and are added up afterward. The final score is then added to the current difficulty.

If the player wins:

P = W1 × TF +W2 × TB +W3 × C +W4 × E +W5 ×M (2.3)

If the player loses:

P = W1 × C +W2 × E +W3 × L+W4 ×M (2.4)

Where in equation 2.3, P is the total performance score, TF is the individual score attributed
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to the time metric, TB is the score for the parameter of time spent backtracking, C is the score

achieved by picking up coins, E is the score acquired by defeating enemies and M is the score

associated with the damage taken. W1 to W5 are the respective weights of each individual

performance score (although they began with the same value they were altered during the test

phase).

Equation 2.4 removes the time and time moving backward parameters and introduces L

which is the performance value of the distance traveled. W1 to W4 are also the respective weight

of each metric.

2.3.3 Updating The Level

One of the main goals of this project was to implement a level generator that generates geom-

etry as the player is playing. At this point in the project, we defined every requirement and

constructed the tools to accomplish this goal. The actions and rhythms were defined, and algo-

rithms were created to generate them and their associated geometries for different difficulties.

The player’s performance could also be calculated in each chunk of the level. Therefore, the

last step was to update the level as the player progresses, more specifically when a rhythm is

completed.

Updating the level while in the game required us to check where the player is in the level in

relation to the rhythms. When the player reaches the length that is equivalent to the last action

of that rhythm a new rhythm needs to be generated. To accomplish this the first step was to

calculate the player’s performance by using the DDA method. The method only evaluates the

player when it leaves the geometry associated with the beginning action and finishes when it

reaches the last action. Afterward, by using the algorithms mentioned in subsections 2.2.2 and

2.2.3 a new list of individual instances of actions is generated and these are converted into the

geometry of the next rhythm. Lastly, each rhythm needs to be evaluated separately, thus our

solution was to implement a checkpoint system. In a rhythm, we consider a checkpoint to be the

first column of cells of the last action. This location is associated with its corresponding rhythm,

therefore when the player finishes a rhythm its performance score, and the length traveled are

stored for future use, and the counters used for the player’s evaluation are reset.

To evaluate the player and our AI agent, there was a need to establish how many rhythms

should be played before finishing the game. The length value of the level’s template affects the

number of rhythms that are possible to place in each level, thus it was decided that a player

should play 10 rhythms. This way, it should give the DDA method enough attempts to converge

any given player to a bound value of difficulty, without making the game too short nor too long.

2.4 Generator And DDA Considerations

To advance in the thesis, some aspects of this chapter need to be kept in mind. In the Launchpad

article [1], actions are defined as an input that allows the player to perform an event in the game.

However, when analyzing the rhythm-based approach, it was clear that this methodology could

be simplified in order to create similar or better outcomes while maintaining the integrity of what

makes a rhythm and an action. Thus, action was redefined to be an input or a combination

of inputs that are associated with a specific group of geometries and that, when performed

correctly, allow the player to progress in the game. Individual instances of actions have various
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properties but are mostly discerned by their action type. However, the same instance can

generate different geometries and the other action properties also influence their associated level

chunk. To ensure the geometries were possible to complete, the player character’s limitations

were studied to determine what type of restrictions should be placed when generating the action

properties. To generate these geometries, some already existent algorithms were altered and

multiple were created using the tools provided by the benchmark. Thus, when the game begins

or when the player finishes a rhythm, these individual instances of action are used to create a

possible to complete level chunk based on the player’s skill.

To implement a DDA method there was a need to comprehend what elements make an

action difficult. Some parameters that might influence the difficulty of an action were able to be

identified, these were: the number of inputs and the number of simultaneous inputs required, the

duration and timing of these inputs, and the influence of time on the inputs. These parameters

helped determine how difficult the necessary combinations of inputs is to execute. Therefore,

the geometries considered for this project were associated with a level of difficulty based on these

parameters.

Finally, the DDA method allowed us to evaluate the player’s performance based on the same

concepts used to determine the difficulty of the geometries (speed and precision). The speed of

a player is determined by the number of frames, and its precision can be judged based on the

completion of sub-goals (coins and enemies). The scores attributed to the player in the time

metrics are compared with the values obtained by the AI agent obtains (benchmark values).

However, these expected times have a bias since we decide how the agent behaves.
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Chapter 3

Validation Of The Level Generator

After creating the level generator and the adaptive difficulty method, the next step in the project

involved the recognition of the quality of the created levels. Therefore, it was necessary to use

a tool that could validate the generated content. The goal of this validation process was to

determine if the generated levels had the right degree of difficulty and if the DDA method was

adequate at determining the player’s performance. Thus, if both these conditions were met, we

consider that the generator is generating appropriate geometry for the player while changing

the difficulty at a rate that is acceptable.

To achieve this goal, it was decided that an AI agent would be used for level validation.

Meaning the agent would play multiple generated levels while being evaluated on its performance

or on other metrics suited to determine the adequacy of the content. With the information of

the agent’s individual performance scores (e.g., time scores), it is possible to reach conclusions

in regard to the current state of the generator. For example, if the agent obtains an individual

performance score that is consider inferior to the intended value, then modifications could be

made to our DDA method’s evaluation function or to the weights of the individual performance

scores. To ensure the adequacy of the DDA method, the different difficulties should be able to

be discerned by the agent’s data and the agent should on average converge its ending difficulty

(achieved by winning or losing) to an adequate bound value (e.g. [6; 8]).

However, the issue with this approach is that the results have an innate bias toward our

agent. Therefore, it is necessary to understand how the agent is operating to comprehend the

context of the results. By understanding the AI’s behavior and the context behind the results,

it is possible to form conclusions in regard to the adequacy of the generated content.

Initially, the idea was to use an AI that was already developed to conduct the tests. However,

after a long search and multiple attempts to find a suitable agent that would satisfy our needs,

no agent was qualified to fulfill this purpose. Most of the agents were not compatible with the

version of the benchmark used and modifying the version would imply changing multiple aspects

of the project done up to this point. Thus, it was decided that we would create our agent.

3.1 AI Benchmark Tools

The Mario AI Benchmark was used for an AI agent competition, so for this reason, it comes

equipped with useful tools to build an AI agent. The first tool is a grid that is constantly

attached to the player character represented in Figure 3.1. This grid is by default made up of 19

by 19 squares with its center on the character in mode 0 (character mode explained in section
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2.3.1). These squares have the same size as a cell, implying that each one is made up of 256

pixels. This grid is used to obtain the information that is contained in the center pixels of each

square in each frame. The information is then used by an algorithm (second tool) to associate

it with a game object (e.g., ground, enemies, coins, nothing). This generalization allows us to

clearly identify what is inside each square and consequentially what type of geometry surrounds

the agent at any given time. Therefore, to stay in tune with the type of PCG used, we can define

the agent’s behavior to be the combination of actions that need to be performed to complete

the generated geometry that is currently surrounding the agent.

Figure 3.1: A visual representation of the grid (the player character is in mode 0).

Lastly, there is another algorithm that changes the inputs the agent performs in every frame,

thus by modifying this algorithm, it is possible to construct behaviors for the agent that alter

the inputs executed in each frame.

The combination of these tools creates a system that works similarly to a group of sensors.

With these, it is possible to discern what is happening around the AI agent in every frame and

make it respond adequately.

3.2 AI Agent Behavior

3.2.1 Decision Tree

When it comes to what method should be used to define the agent’s behavior, it is imperative to

determine the goals of the behavior. As mentioned previously, we wanted the agent to identify

the type of geometry that surrounds it and make it perform the combination of inputs that

are associated with that geometry. To execute this methodology, it was decided that, for this

project, a decision tree could be used. A decision tree is a decision-making system that is made

up of connected decision points [29]. The tree has a starting decision and for each decision one of

a set of ongoing behaviors is chosen (an example can be seen in Figure 3.2). This type of decision-

making is simple to implement since the game that is being used has a low number of different

inputs which create unique events. Due to the low variety of inputs, there are multiple groups

of geometries that can be completed with the same combination of inputs, thus the number of

decisions necessary to correlate a geometry with a sequence of inputs can be considered low.

Therefore, a decision tree was chosen as the decision-making system of the agent due to the

effectiveness of the methodology and the simplicity of the algorithm.

Nonetheless, the agent is required to obtain benchmark values for the DDA method, which

are later used as a comparison for real players. Meaning that, for these values to exist, the agent
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needs to be capable of completing any geometry in an isolated system (the level is composed of

only the specific geometry the agent is completing). Once the agent can complete all the possible

geometries, we extract the number of frames taken to complete it, the number of frames the

agent was moving with negative velocity, and associate these with their corresponding geometry.

Our idea for the decision tree is to break it down into a section of sequences and a section

of non-sequence movement. For this project, we consider a sequence to be a sequence of inputs

that the agent can perform to complete a group of geometries. However, sequences also manage

scenarios where movement restrictions need to be executed to cover instances in case the agent

ever gets stuck (nevertheless these are still sequences of inputs). The non-sequence is a behavior

with not sequential inputs that the agent can execute to complete simple geometries. The non-

sequence only triggers when the agent does not spot any geometries related to the sequences

(this fact is visible in Figure 3.2, if none of the checks are made, then the agent chooses to

perform the non-sequence behavior), thus it is used to complete specific geometries correlated

to instances of actions with the types move, jump, and duck.

Figure 3.2: Decision tree that describes the agent’s main behavior.

Figure 3.2 reveals a simplified version of the main decision tree. The circle-shaped blocks

represent a decision and the outcome of this decision is based on the geometry the agent detects

with the use of the grid and the previously mentioned algorithms. The rectangle-shaped blocks

represent the previously explained sequences and non-sequence. Each sequence and the non-

sequence have their own decision trees. Sequences can end when the agent has completed the

geometry, a small fraction of time has passed after the geometry was completed, or the set time

for the agent to complete the geometry ended. To establish how long the agent was in each

sequence and to determine how long some inputs would be pressed the computer clock was used

as a variable. However, by controlling the time spent inputting certain combinations of keys, each

run of the game needed to be done in real-time, which limited the number of tests that could be

done. Nevertheless, after running the tests, we considered that this restriction did not hinder the
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conclusions made during the test phase (since the goals set were achieved). Therefore, to make

the most out of each test, a variety of changes were made to ensure that adequate conclusions

could be drawn. Another point to note is that understanding the context behind the agent’s

behavior and what should be changed was essential to produce positive results.

Figure 3.2 also shows the priority of each sequence. The order of the sequences needs to

meet certain criteria. Because the agent analyzes its surrounding using the grid, it is possible,

in some instances, that it checks two or more sequences simultaneously. In these cases, if the

priority is not implemented correctly, then the agent does not perform the correct sequence and

fails to complete the geometry.

[a] [b]

Figure 3.3: Game view with and without the grid. The order of the decisions in the main
decision tree affects what tasks the agent will perform.

Figure 3.3 shows a scenario where the order of the sequences is extremely important. In

this case, two different sequences can be detected, these being the Fall sequence and the

Run Jump sequence. The tiles that are required to be verified for the agent to begin a Fall

sequence or Run Jump sequence contain red or blue circles respectively. In Figure 3.3 [a]

there are tiles with both red and blue circles, therefore the priority in the main decision tree

determines what sequence the agent should perform and, in this case, the agent performs a Fall

sequence.

When the priority is executed poorly, the agent can either ignore certain geometries and

subgoals or even lose the game. Figure 3.3 shows an example of a geometry where a subgoal

would be ignored if the priority of the sequences was inverted. If the jump is prioritized then

the agent ignores the coins below and loses performance.

3.2.2 Non-Sequential Behavior

As mentioned previously, the non-sequence movement is the type of behavior the agent uses

when it does not detect any geometries that are related to sequences. This behavior handles

the agent’s simple movements such as: moving forward, jumping over small gaps, jumping to

platforms, defeating one enemy by jumping, and ducking to avoid enemies. Therefore, when the

agent decides to use this behavior, the inputs it uses are not sequential, thus it was denominated

as a non-sequence movement.

In this non-sequence behavior, when performing a jump action, the agent always inputs the

highest jump possible with the exception of the instances of action that generate an enemy

(by varying the duration of the input jump the character can jump to different heights). By

allowing the agent to jump the highest possible even when it is not necessary, we ensure that it
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can complete any of the gaps or platforms that appear in front of it without impacting the time

of completing the geometry.

Figure 3.4: Visual representation of the non-sequence movement decision tree.

In Figure 3.4 a simplified representation of the decision tree of the agent’s behavior when it

using the non-sequence movement can be observed. The agent uses this behavior to complete

geometries that are considered easier based on our criteria in subsection 2.2.1. The number of

squares in the grid that need to be checked for the agent to perform any action in this type of

behavior is lower when compared to the sequences. For this reason, these actions can be used

in the same decision tree without negatively affecting the agent’s behavior. The priority of the

decisions is not as crucial as in the main decision tree because the generated geometries do not

have checks that overlap similarly to Figure 3.3.

3.2.3 Sequences Of Inputs

The sequences are a sequence of inputs that allow the agent to complete a geometry. Sequences

are differentiated by the type of geometry (and consequentially by the type of action) they can

handle, therefore, in most cases, sequences can be used to complete most variations of possible

geometry that correspond to an action type. However, some sequences were made specifically

to ensure the agent does not get stuck.

The sequences that the agent can use are the following:

• Ladder sequence - deals with any kind of ladder (up actions).

• Fall sequence - handles scenarios where the agent needs to fall to reach a geometry (move

actions).

• Run Jump sequence - allows the agent perform jumps over large gaps (run jump ac-

tions).

• Left sequence - allows the agent to complete geometries where it was to move in the

opposite direction of the end goal (move left actions).

• Duck sequence - manages the behavior of the agent in some of the geometries that

require the agent to duck (duck actions).

39



• Coin sequence - made to correct the Fall sequence (move action correction).

• Wait sequence - handles geometries where the agent has to wait to complete them (wait

actions).

• Wall Jump sequence - meant to deal with geometries that involve jumping from one

wall to another (wall jump action).

• No Momentum Jump sequence - allows the agent to complete specific geometries

where it has no space to move, but it needs to perform a greater jump (jump actions and

jump action correction).

The Ladder sequence commences when the agent spots a ladder and it focuses on making

sure the agent can go up the ladder. The agent’s momentum needs to be put into consideration,

so the idea is to slow it down first and let it climb up the ladder. While climbing the agent needs

to shift its direction when necessary to stay on the ladder. This adjustment needs to be made

carefully to ensure the process does not take a long time (obtain better times to performance

measure). The agent can also, leave the ladder early if necessary or perform a jump at the top

if needed to reach other geometries.

The Fall sequence handles scenarios where the agent needs to reduce its height by falling

and not ignore geometries. If the priority of this sequence is poorly managed it can conflict with

the Run Jump sequence due to their similarities when checking for the respective scenarios.

The agent uses the grid to identify the space ahead that it must fall, managing its speed based

on that space.

The Run Jump sequence allows the agent to jump over large gaps. This sequence begins

by allowing the agent to move back and afterward, it turns around to start a run. When it

reaches the edge of the platform a jump is executed. For the agent to not move back the grid

needs to increase massively. However, while running the character can jump over 10 cells in

length if it lands on a platform with the same height as the initial platform. Thus, this behavior

allowed us to construct many variations of the same style of geometry which requires the agent

or the player to perform these types of inputs (run, move and jump inputs).

The Left sequence begins once the agent observes a wall it cannot jump over, and so it

starts and moves back. Afterward, two checks need to be made, first, the agent must identify

the platform on the left to jump on. Once the agent reaches this platform (this being the second

check), it moves in the opposite direction and jumps to the top of the previous unreachable

wall. In higher difficulties, the jump is bigger requiring the agent to also input a run action to

complete the geometry.

The Duck sequence is similar to the Run Jump sequence. The geometry of these

actions consists of a wall that can only be traversed by ducking under it. First, the agent moves

backward to clear some distance, then it turns around and begins to run. Once it is close to the

wall, the agent inputs a duck action and performs a slide to complete the geometry.

The Coin sequence has the function of correcting any sequence or non-sequence behavior

that makes the overshoot coins. An example would be a jump action where the agent jumped

past a few coins and turns around to collect them. The sequence starts when the agent detects

a coin immediately behind it and finishes once no more coins are detected.

The Wait sequence takes care of geometries where the agent has to wait or make no inputs

to complete the geometry without being punished (by losing or taking damage). The sequence
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begins once the agent spots an enemy that it cannot avoid. When the agent does not detect the

enemy, the geometry is now possible to complete, and the agent proceeds.

The Wall Jump sequence was previously explained in subsection 2.2.1, but to reiterate,

the sequence begins when the agent encounters a geometry with a platform on the left and a

wall on the right. To complete this geometry, the agent needs to jump off the wall to reach the

platform, and then, to achieve progress it needs to execute a jump while running similar to the

Run Jump sequence.

The No Momentum Jump sequence is used to handle scenarios where the agent detects

a jump that needs to be made, but it is currently located in a confined space where it will not

have enough momentum to make the jump unless a run input is made.

Figure 3.5: Run jump sequence decision tree.

3.2.4 Negative Aspects To Consider

Even though careful precautions were taken to guarantee the agent could complete most actions

presented to it, this behavior still has negative aspects that need to be mentioned, and these are

relevant to understand the results achieved in the tests. Firstly, the agent can complete all the

possible geometries, if they are isolated. Meaning that if the agent’s starting point in the game

is the same as the geometry, and there is nothing else in the area that occupies that geometry

(conflicting geometries), then the agent will complete that level chunk without being punished

by the evaluation criteria explained in subsection 2.3.1. It was imperative to achieve a way of

determining the time values for every geometry to evaluate a player’s performance, and this was

the only option.

However, as the agent was being created and experimented with, it was evident that it

struggled with some combinations of these geometries (when a geometry would directly influence

another one). For this reason, some sequences were changed and some were added to ensure

the agent could handle the generator’s content (an example of an added sequence is the No

Momentum Jump sequence). Nevertheless, there are some rare instances where the agent

still fails and loses the game.

The problem with this approach is that, if the agent can complete every geometry without

failing then it is complicated to discern the difficulty of a level based on the performance score.

Thus, we needed to decide in what situations the agent should fail while being able to use it to

41



retrieve the data that is used as a benchmark. Therefore, excluding scenarios where we want

the agent to fail, the agent should in theory always attain the best possible scores in the time

variables. This is not only due to the agent completing most geometries but also because we

are comparing the time the agent achieved in isolated geometries with the time it achieves in a

normal level. However, even if we are able to acquire the benchmark values and decide where the

agent should fail, the agent should achieve a lower performance score when the specific group of

geometries that should make him lose is generated, making our results biased for those specific

scenarios.

The final decision was to make the agent have the hardest time when facing enemies. Because

of the way we are evaluating player performance, the enemies are in theory the hardest obstacle

to overcome that can affect the performance score (subsection 2.2.1). Even though failing a gap

that can end the game, the player is not timed to perform an input and can take time to perform

the jump. However, enemies move toward the player forcing it or the agent to act before it takes

damage or loses the game. Another important detail is that the enemy’s position is constantly

changing, thus the time the player needs to be pressing these inputs changes from frame to

frame (input duration). Since the performance value is dependent on the enemies defeated, it is

important for the player to be able to defeat them to obtain a good score. In this case, the agent

still has a bias when it comes to performing poorly, but it is easier to manipulate the results of

our generator by changing the weights of each metric. To improve the results of the test, the

odds of an enemy being generated in higher difficulties can be increased, and its behavior can

be modified to be harder to avoid and defeat. The only issue that arises with this approach is

that the validation of other geometries might not be as good as it is for enemies due to the agent

mostly failing in these scenarios. For example, using extracted data (performance score) it is

hard to discern the difficulty of two levels if one only contains gaps (the agent rarely fails) and

another that only contains enemies (the agent fails mostly on these geometries). Even though

these geometries are constructed with the data of the same type of action, the level with gaps

is significantly easier for the agent.

Another possible way of discerning the difficulty of the game is with the generation of a

random number that entails if the AI agent completes or fails a geometry. The problem with

this approach is that the results will again have a bias toward the odds chosen for each sequence.

Therefore, what makes the game easy or hard is only defined by the odds and not by the

character’s lack of behaviors to complete a geometry. The goal was for the agent to make

mistakes because it does not know how to handle a given scenario instead of it being random.

Nonetheless, the agent still has another problem with its behavior. If the agent is in a

sequence its behavior will not change until an end sequence condition is achieved. This implies

that there are scenarios where the agent is using the behavior of a sequence, but it needs to

adopt a new behavior to handle what it is currently facing. In these cases, the agent keeps

performing the same behavior regardless of its surroundings. This mostly occurs when there is

a combination of subsequent actions with an enemy involved. The enemies move in the initial

player’s direction and do not stop, meaning that sometimes they can end up influencing other

geometries.

Figure, 3.6 shows four images of a possible group of geometries that the agent has a harder

time completing. [a] shows the initial state of the geometries where there is a small space where

the agent can duck under with enough momentum and slide to the other side, and afterward

jump over the bullet enemy (a duck followed by a jump action). In the Duck sequence the
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[a] [b]

[c] [d]

Figure 3.6: A scenario where two geometries of different actions can affect the performance of
the agent.

agent checks that there is a space where it can duck under, turns around to get enough space to

generate momentum, and executes the slide. The agent only finishes the sequence if it runs out

of time, or it reaches the other side of the duck geometry. This means that if the agent is slow,

the enemy will reach it before the agent executes all the actions. In this case, the agent will

be punished by either losing or taking damage. [b] represents the turning point of the Duck

sequence, the grid is active to show the point where the sequence is triggered (blue circles).

The center of the two squares in front of the character’s sprite needs to have the information of

those corresponding blocks (game objects) to start the sequence. [c] shows the character moving

back to get momentum and the enemy moving toward it. [d] demonstrates the character trying

to complete the geometry but the enemy blocks its path. If the agent ignores the enemy it gets

hit by it and loses performance by taking damage or losing. In this instance, the problem is

that the agent is too slow while completing the geometry and consequently it gets hit by the

enemy. A possible solution for this behavior would be to detect the information for a square

farther away from the character. In this case, the agent does not have to turn around since it

has the distance to initiate the run. However, due to other conflicting geometries, this was not

possible.

Therefore when it comes to the tests, it might be difficult to discern where and why the agent

was failing, and thus it was imperative to understand the context of its behavior to interpret the

results, and to be able to correctly adjust the weights and the probability of each geometry being

generated to ensure the agent was able to converge to an adequate bound value of difficulty.

3.3 Synopsis Of The Validation Process

For a better understanding of the next chapter, there are some aspects of the validation process

that need to be considered as context to comprehend the results obtained in the tests. Firstly,

the validation process needed to ensure that the generator was generating adequate content

before we initiated the tests with real players. To realize this goal, we created an AI agent that

played our generated levels while being evaluated by the DDA method. This agent was also used

to set benchmark values for the said DDA method. To guarantee the adequacy of the content,

we consider that the content is acceptable when the difficulties can be discerned, and when the

agent can on average achieve a suitable bound value of ending difficulties (e.g. [4; 6]). For its
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behavior, the agent uses the decision-making system of a decision tree which allows it to identify

the geometry surrounding it and execute a combination of inputs to complete the geometry.

This decision tree is composed of sequences and a non-sequence. Sequences are sequences of

inputs that allow the agent to complete more complex geometries, while the non-sequence is

the behavior used when the agent does not detect any geometries that are related to sequences.

This decision-making system allows the agent to complete every geometry isolated (the agent’s

starting point in the game is the same as the geometry and there is nothing else in the area that

occupies that geometry) while making it simple to establish the benchmark values for the DDA

method.

However, the negative aspects of this approach were clearly identified. First, the agent can

only fail in specific geometries (geometries with enemies), and when performing a sequence, the

agent is locked into that sequence until all sequential inputs have been performed or it ran out

of time. Thus, the agent adds a bias to the test results since we determined where the agent

should lose. The agent being locked into a sequence was not considered as significant as the

previous issue, seeing as the probability of it occurring is low. However, this sequence lock could

have made it complicated to interpret why the agent was losing during the tests.
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Chapter 4

Testing The Level Generator

With the AI agent finished, the project was ready to proceed to its test phase. Before initiating

the analysis of the results, there was a need to establish how the testing process was going to occur

while justifying the approach used. In this testing phase, three goals needed to be accomplished,

these were the discernibility of the difficulties, the conversion of the agent’s ending difficulty to

a bound value, and ensuring that the change in difficulty was adequate. Once results were

obtained, they were analyzed to determine if the goals were achieved, however, when the results

proved inadequate, the parameters of the generator and of the DDA method were altered to

improve the results. This method was repeated until a generator with the desired properties was

obtained. When the generator possessed these properties, a test with real players was conducted

to acquire the players’ information and opinions regarding the generator’s content.

In the agent’s tests, we decided to execute a methodology similar to the ones used in the

studies mentioned in section 1.6. In our case, we decided to evaluate the fluctuation a few

metrics with the change in difficulty over multiple runs of the game. These methods frequently

use an adequate sample size to reach the expected value due to the quality of the convergence

being correlated with the number of samples. Thus, to obtain reasonable results and formulate

adequate conclusions in regard to the generator’s content, a adequate number of runs needed

to be performed. For the initial test, we consider that given the space complexity, 100 runs per

difficulty would be sufficient cover up the search space. By examining the results of the agent

and the answers given in the quiz (while taking into consideration the context of the player’s

test results) it is possible to validate the generator.

4.1 Testing With The AI Agent

Evaluation Metrics

To test the AI agent, there was need to establish evaluation metrics that were able to discern

the difficulty of the levels. In subsection 2.3.1, some parameters were used to determine the

performance of a player. Our initial idea was to observe these metrics and attempt to distinguish

the difficulties through the performance while analyzing if the adaptation was adequate. Ideally,

the performance score would indicate how well the agent was playing the game and the change

in difficulty, thus based on that change, it would be possible to discern if the agent was in a low

or high difficulty. Another idea was to extract and analyze any metrics that had a noticeable

relation with the performance score. Nonetheless, even if some of these parameters were not
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used to validate our generator, it was mandatory to check if any could be used to reach our

goals. The metrics used in the DDA method chosen to be extracted were the following:

• Total Performance/Performance score - the performance value obtained at the end

of a rhythm.

• Time to complete a rhythm - the number of ticks the agent takes to complete a rhythm

in comparison to the expected value.

• Time spent moving backward - the number of ticks the agent had negative velocity

(moved back) after completing a rhythm in comparison to the expected value.

• Coins picked up - the percentage of the coins picked up during rhythm.

• Number of enemies defeated - the percentage of enemies defeated in the rhythm.

• Damage taken - the number of times the agent was damaged during the rhythm (this

value can be 0, 1 or 2 depending on Mario starting mode 2.3.1).

• Length traveled - the percentage of length traveled by the agent in the rhythm (or the

level depending on the test).

Due to the possibility of the generated geometry of each rhythm being drastically different,

we decided to observe other parameters that could have a relation with the performance score.

However, it seemed logical to find metrics that were correlated with the type of geometry since

the agent’s behavior cannot handle certain level chunks. Even though some rhythms might have

the same difficulty value, the agent struggles when completing geometries that contain enemies

(3.2.4), therefore, if a rhythm contains various geometries of this type, then its performance

score should be inferior when compared to other rhythms. For this reason, the following metrics

were extracted:

• Number of dangerous geometries - the number of geometries in the generated rhythm

that can punish the player by damaging him or ending the game.

• Percentage of dangerous geometries - the percentage of dangerous geometries (in

relation to the total number of geometries).

• Number of geometries with enemies - the amount of geometries in the rhythm that

generate enemies.

4.1.1 Tests Without Adaptive Difficulty

Test 1

In the first test, we wanted to analyze how the performance score of the agent would vary when

trying to complete multiple levels that were generated with the same rhythm (ensuring the

stochastic generation explained in subsection 1.3.1, while distinguishing the difficulty). This test

could indicate that, if different geometries were being generated when using the same rhythm,

then these could be distinguished by the performance value obtained. Test 1 also allowed us to

observe the fluctuation of the extracted values with the increase of the difficulty.
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Thus, the following test was proposed, for each difficulty, 10 different rhythms would be

generated. For each rhythm, the agent would play 10 levels, and after these 10 levels, a new

rhythm would be generated. This process is repeated 10 times allowing for 100 runs per difficulty

and 1100 runs in total. Once the agent finishes a rhythm or loses, the variables are extracted

for observation, and the game is reset for another run. In every run, the AI agent starts with

Mario mode 2, therefore it is possible to detect when it takes damage at least two times before

ending the game (Mario mode is explained in subsection 2.3.1).

To grasp the state of the generator, it is imperative to choose from the established metrics

which ones were suited to distinguish the difficulty of the levels, and to evaluate the content’s

adequacy. To discern the difficulty, the most logical parameters to study were the performance

score and the length traveled in the level. The performance score was chosen due to it being

considered an estimate of how well the player is playing and directly impacting the change in

difficulty. In a game run where the length of the level is considerably large, the length traveled

by the agent could indicate how hard a level is since it determines how far the agent went in a

given level. For example, if two different levels are considered and the agent goes farther in one

of them, then it could mean that that level is easier. In theory, both these metrics should decay

as the difficulty increases due to the game progressively becoming harder for the agent, thus it

is more difficult to achieve progress without committing mistakes. Ideally, the difficulties should

be discerned through data analysis two game runs and by comparing their performance and the

length traveled. Thus, by observing the results of the two games, it should be clear which one

possesses the greater value. Nonetheless, the innate randomness of the generator complicated

this process since a rhythm that is considered easy for the agent could still be generated in the

highest difficulties (despite the odds being low). To ensure an adequate interpretation of the

results, multiple runs per difficulty were executed, therefore, as mentioned previously, in Test 1

the agent played 100 levels per difficulty.

However, this evaluation process of the generator contains some biased that is related to the

weights applied to the individual performance scores (explained in subsection 2.3.1) and the AI

agent’s behavior. If the agent has a difficult time in a specific geometry and that geometry is

generated more often, then the agent might lose earlier (travel less length) and achieve an inferior

performance score than it would otherwise have in another rhythm with the same difficulty. An

example where the agent’s behavior can influence the results is the following, consider two

rhythms R1 and R2 composed of the same actions and with the same difficulty value. However,

R2 has its first action AF swapped with its last AL, and AL generated a geometry that the

agent has a harder time completing. Additionally, consider that the agent loses if it makes one

mistake. Therefore, in R1 the agent will travel more distance than in R2 even though the actions

in these rhythms have collectively the same difficulty. In this scenario, both rhythms have the

same number of actions with the same type and the same difficulty, but the agent loses sooner

in R2 and, thus obtains a worse score and travels less length. Nevertheless, this specific scenario

can only occur if the agent starts the rhythm in Mario mode 0 (making one mistake loses the

game), which in this test never happened due to the agent only playing one rhythm per run.

However, if two equal rhythms are considered and both have their hardest geometries placed at

the end of the level, then if we change the position of these geometries in one of the rhythms,

the agent will attain different scores and length values in both rhythms even if it starts with

mode 2 (can commit two mistakes before ending the game). Nonetheless, these scenarios should

only occur when multiples level chunks with enemies are generated at the beginning of a level.
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When it comes to the weights of the individual performance scores (explained in subsection

2.3.1), there will always be a bias that is introduced, because we decide their weights. Initially,

the weights of each parameter began with equal value, however as more tests were conducted,

changes were performed to better suit our agent and improve the generator’s content.

When observing the extracted data some issues were spotted. Firstly, as expected, not all

of the extracted metrics had a clear connection to our performance and length values. Since

there was no visible relation between these parameters, some evaluation metrics were discarded

for this study. For example, no correlation was found when comparing the number of dangerous

geometries, and the number of enemies to the total performance score and length traveled.

Another issue is that, since we are reusing rhythms there is some inconsistency in the results

that without context can be misinterpreted, which can lead to incorrect conclusions about the

state of the generator. By using the same rhythms, different results in geometry and scores were

achieved, which means that different content is being generated with the same rhythm. However,

even if the geometry differs the performance score was either very similar, or it drastically

changed in the same rhythm. This inconsistency in the test’s results was presumably caused

by the randomness of the generator’s content and the agent’s behavior. For example, in cases

where a very easy rhythm for our agent is generated, the performance and length values were

greater than in the other nine rhythms of the same difficulty, skewing 10% the data to be higher

than the average of that difficulty. Therefore, the randomness and the reuse of rhythms can

inflate the score in some runs. Thus, to better discern the difficulty, it is imperative to conduct

tests where the current rhythm is constantly changing (to remove rhythm bias).

To observe and interpret the extracted data, a box plot graph was constructed which reveals

the performances scores obtained in each (visible in Figure 4.1).

Figure 4.1: Box plots of Test 1’s performance scores in each difficulty with the outliers.

In Figure 4.1, despite the dispersion in scores, it can be inferred that the median, the lower

whiskers, and the averages in Figure 4.2 decrease as the difficulty increases (with the exception

of difficulties 3’s average). Figure 4.2 was constructed without outliers, however a version of

this graph with the outliers can be seen in Figure B.9 in appendix B (the box plots without the
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Figure 4.2: Average of Test 1’s performance scores in each difficulty with the outliers removed.

outliers can also be observed in Figure B.10 in appendix B). Still, the dispersion is apparent

when observing the positions of the quartiles since these do not decrease accordingly. In the first

5 difficulties (from 0 to 4) the position of the quartiles seem in tune with what was theorized, but

in the rest of the plots (from 5 to 10), their positions are inconsistent. Another point to note is

that there exist some outliers in difficulties 1 and 10, nonetheless, these appear in line with what

was expected. For difficulty 1, these outliers are presumably due to difficult geometries (for the

agent) being generated at the beginning of the level, and for difficulty 10, geometries that the

agent finds complicated were not generated, therefore the agent is able to complete the levels

(influenced by the rhythm bias). For example, the position of the upper whisker only changes

in difficulty 10, which likely stems from this issue. The lowers whiskers of difficulties 5 to 10

reach a score of -3, implying that the agent lost several times at the beginning of the game. The

dispersion of the results, it severely noted in difficulties 5 to 9 due to the whiskers enclosing the

entire interval of scores of [-3; 3]. However, when it comes to the standard deviation σ of these

difficulties, when compared to the other plots, these only differ by what can be considered a

small margin. For example, the difficulty 7’s standard deviation is σ7 = 1.73 while difficulty 1’s

is σ1 = 1.75. The value of σ1 stems from the outliers present in difficulty 1’s plot. However, by

removing these outliers a value of σ1 = 0.47 is obtained, which is a better representation of the

dispersion of this plot. The same logic can be applied to difficulty 10 seeing as σ10 = 1.66, but by

removing some outliers a value of σ10 = 0.66 is acquired. Despite the plots of difficulties 3 and

4 only containing a few outliers, their σ values are similar to rest of the results these being σ3 =

1.60, σ4 = 1.49 (and σ3 = 1.29, σ4 = 1.00 without the outliers). The exceptions in this pattern

are difficulty 0 due to its high precision and difficulty 2 (σ0 = 0.07, σ2 = 0.72, which do not

contain outliers). Difficulty 0’s results are expected since it is impossible to lose in its generated

geometry. When it comes to difficulty 2, it is assumed that easy rhythms were generated, and

therefore this plot has the highest precision (when compared to the plots of difficulties 1 to 10).

To sum up, when it comes to the standard deviation, the results show that our generator could

be considered to have high variance (σ2) results despite the positive behavior of the average.

49



Another method of studying the data dispersion is through the analysis of the plot’s median,

quartiles, and whiskers. In difficulties 5 to 10, when observing the positions of the quartiles

and the whiskers, it can be inferred that in various runs the agent consistently achieved greater

performance scores than in the difficulties beneath, which ideally should not occur. The opposite

also transpires in difficulties 0 to 4, where there are instances of inferior scores when compared to

the difficulties above. Difficulty 5’s plot reveals both these phenomena. In this plot, the AI agent

was able to consistently achieve runs where the performance score is greater than in difficulty 4.

This is evident by observing the position of the whiskers and the quartiles in both box plots. In

the area between difficulty 5’s third quartile and upper whisker, the interval of scores is [2.88; 3]

and for difficulty 4 the interval is [2.25; 3], therefore in the agent’s best 25% runs of difficulty 5 it

attained a minimum score of 2.88, while in difficulty 4 this minimum score was 2.25. The same

process can be applied to other areas of the plot, for example, when comparing the interval of

values between the median and third quartile of both difficulties ([1.72; 2.25] and [1.79; 2.88] for

difficulties 4 and 5 respectively), it is evident that the agent frequently obtained greater scores

in difficulty 5. However, when comparing the area between the median and the lower whisker

of both plots, the agent often acquired inferior scores in difficulty 5, as intended. For example,

in the regions between the lower whisker and first quartile (the 25 runs with the worst scores)

the agent obtained intervals of [0.58; -1.77] and [-1.39; -3] for difficulties 4 and 5 respectively. In

difficulty 6, the same region encapsulates the interval of values of [-1.11; -3], which means that

in the same 25% worst runs, the agent obtained inferior scores in difficulty 5. To summarize,

in difficulty 5, the agent frequently obtained greater and inferior scores when compared to

difficulty 4, and it often attained worse scores than in difficulty 6, which is presumably due to

a combination of the randomness of the generator and the AI agent’s behavior, as mentioned

previously.

One factor that could explain the sudden drop in the position of difficulty 5’s first quartile is

the probability of an enemy being generated. In difficulty 5, the geometries that include enemies

become too complex for the agent to handle since its behavior is not optimal to complete these

instances. Thus, when an enemy is generated, it is more likely for the agent to take damage or

lose the game resulting in inferior scores. Nonetheless, there was no way to determine if this

was the case, due to there being no relation between the performance score and the number of

geometries that had enemies. The type of actions where the agent lost were also extracted and

no relation with the performance score was spotted.

The inconsistency of the values is also apparent in other difficulties. Difficulty 6 to 8 have

similar third quartiles and upper whiskers to difficulty 4, yet their first quartile is more akin

to difficulty 5’s first quartile. However, when comparing their medians, difficulties 6 to 8’s are

considerably beneath 4 and 5’s. Still, in 6 and 8, the agent achieved performance scores above

2 with similar consistency as in difficulty 4 and obtained inferior scores to -1 as often as in

difficulty 5.

When it comes to the plots for difficulties 9 and 10, these seem consistent with what was

expected. Both plots have the lowest performance scores out of all the difficulties, with 10 having

inferior scores more consistently than in 9, evident by the position of their third quartiles. In

difficulty 10, the agent obtained scores between [-1.36; -3] in 75% of the runs (with the lowest

scores), while in difficulty 9 these values differ between [-0.56; -3]. The first quartile of both

plots show that the agent achieved a score around -3 in 25% of the runs. Still, in difficulty 9,

the agent was able to attain scores above 0.5, 25% of runs, which as mentioned previously is
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probably due to the randomness of the generator.

Some problems with the test are identified. First, by using the same rhythm several times,

there is a biased for that specific rhythm, therefore if a rhythm is easy regardless of the difficulty

(generated multiple actions that are easier for the agent), then the agent completes the level

with a high performance score. In the opposite case, if the rhythm is harder, then the agent

completes the level by taking damage or loses and obtains a score that is significantly inferior

to the average. If the rhythm’s difficulty is judged only by the performance score, then a level is

easy or hard based on the number of times the agent fails to complete a geometry successfully

and the location of the difficult geometries. If these geometries are placed earlier in the level,

then these have a more substantial effect on the score, due to the agent making mistakes sooner

and traveling less, and therefore, it achieves an inferior value of length traveled. Since one

rhythm occupies 10% of the data of one difficulty, if there are multiple easy rhythms, then our

data is skewed to have performance scores that match these easy rhythms.

Another possible issue is the dispersion in the results. In Figure 4.1 in difficulties 5 to 9, the

area between the whiskers covers the entire scope of possible scores. Assuming that the goal is

to discern each difficulty by using the performance, then having results with an inferior σ can

facilitate this process. This variance is presumably caused by the generator’s randomness and

the agent’s behavior, therefore a possible solution is modifying the odds of generating actions

that are more difficult for the agent. With this change, the dispersion should be reduced making

it easier to distinguish each difficulty. Another point to note is that, when it comes to the

dispersion, the standard deviation does not provide as much information in regard to the state

of the generator, thus the box plot analysis appears to be better suited for this study.

Nevertheless, when observing Test 1’s results the bias does not seem to be negatively affecting

the decrease of the performance scores with the difficulty (the discernibility was considered

decent but it could be improved). However, to better comprehend the generator, another similar

test was conducted with the goal of observing more results and conclude with more certainty this

bias is an issue. If the results were consistent, then reusing rhythms does not hinder the quality

of the results. On the other hand, if the results were not analogous, then rhythms should not be

reused if the goal was to discern difficulty. The rhythms were only reused to ensure the stochastic

generation was implemented correctly, and by observing the different scores represented by the

outliers in difficulties 1 and 10, it is clear that the same rhythm can generate different geometries.

If the number of runs was increased, the discernibility of difficulty may become easier. How-

ever, by increasing the number of runs the computation time of each test is also increased. Each

test takes a long period of time to execute due to the agent having to play the level in real-time,

thus, to make the most out of every test, cautious changes were performed before conducting

further tests. However, for Test 2 no changes to the generator or the DDA method were made.

Test 2

To further understand consistency of the dispersion in the results, another test was conducted,

but instead of changing difficulties, it was decided that only difficulty 5 would be studied. This

new test consisted of 500 runs where the data of each segment of 100 runs would be used to

construct one box plot graph (a sub-test). For every 10 runs of a sub-test, a new rhythm was

generated, which equates to a total of 10 rhythms per sub-test and 50 rhythms for the entire

study.
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Figure 4.3: Box plots of Test 2’s performance scores in difficulty 5.

The results of the box plots in Figure 4.3 confirm that these tests have a rhythm bias due

to the inconsistency of the dispersion. In the difficulty 5’s sub-tests 1, 3, and 4, the results

appear consistent. These plots have their upper whisker around 3 and their lower whisker at -3.

However, sub-tests 2 and 5 differ from this group by the position of the quartiles, and 5 also has

its lower whisker significantly higher than the other plots.

In sub-tests 3 and 4, by observing the area between the upper whiskers and the third quartile,

it can be affirmed that the agent achieved scores between [2.25; 3]. When compared to the other

sub-tests, this zone, which consists of 25% of its best scores, covers a larger interval of values.

For example, sub-test 1 first quartile has the value of 2.76, thus, in the other plots, the agent

frequently attains greater scores than in sub-tests 3 and 4 in its best 25 runs of each sub-test.

The first quartiles of sub-tests 1, 3, and 4 appear to be similar, seeing as their values are

respectively -1.20, -1.51, and -1.41. However, when observing sub-test 2’s first quartile (0.56), it

can be inferred that the agent acquired negative scores less frequently in this sub-test. Therefore,

when compared to sub-tests 1, 3, and 4 the agent achieved greater scores in its worse 25 runs

in sub-test 2. Similarly, sub-test 5’s first quartile and lower whisker have considerably greater

values than the other plots (1.37 and 0.59 respectively), thus this sub-test has significantly less

dispersion than the rest of the plots due to the agent obtaining higher scores than the other

sub-tests more often. This inconsistency in the dispersion is again attributed to the randomness

in the actions, the reuse of rhythms, and the agent’s behavior. Another point to note is that the

outliers of sub-test 5 represent runs where the agent lost. These might stem from the generated

rhythms being drastically easier for the agent except for one rhythm (represented in the scores

as the outliers).

When it comes to the medians, in sub-tests 3 and 4 this value is 1.25, while in sub-test 1’s

the median is 1.49. Therefore, the agent obtained better greater more frequently in sub-test 1,

however, the median seems to increase with the position of the first quartile, thus it is apparent

that in regard to the median these plots are similar.

When it comes to the standard deviation of the plots, these have values of σ1 = 1.98, σ2 =
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1.87, σ3 = 2.19, σ4 = 2.01 and σ5 = 1.53 (without outliers σ5 = 0.73). These σ values encompass

what can be considered a sizeable interval of scores and indicate the magnitude of the dispersion

without adding more relevant information. Therefore, it appears that, similarly to the previous

test, using the standard deviation as a means to interpret the data is not the most adequate

method of evaluating the generator’s content.

However, sub-tests 2 and 5 show less dispersion due to the agent attaining consistently greater

values of performance when compared to the other sub-tests, presumably due to the generated

rhythms being easier for the agent, and thus the value of sub-tests 2 and 5 third quartiles is

considerably greater at 2.95. Therefore, when comparing this value to the third quartile of

sub-test 1, it is assumed that easier rhythms were more frequently generated in sub-test 1 in

comparison to sub-tests 3 and 4, but not to the same degree as sub-tests 2 and 5.

The results of Test 2 show that, if the goal is to study the adequacy of the generator’s

content, then it is not viable to generate the same rhythm multiple times. Even though it was

noted that the same rhythms can generate different geometry, which leads to different results

in performance, this methodology is inconsistent when it comes to distinguishing difficulties.

Generating different rhythms could shift the results to more favorable outcomes since the rhythm

bias is removed. Nonetheless, with more rhythms, it was assumed that the considerably high

dispersion of the results would still be present due to the generator having more opportunities

to generate geometries of different difficulties for the agent, thus obtaining various high and low

performance scores.

However, with Test 2 it was possible to observe and confirm that the agent adds some bias to

our generator. Since the dispersion was expected to remain, some precautions were considered

to facilitate the discernibility of the difficulties. Our first option was to further increase and

decrease the odds of generating harder and easier geometries respectively as the difficulty goes

up. Implying that results should be skewed allowing for fewer runs of high scores when it comes

to difficulties 5 to 10. However, due to the generator creating more geometries that are harder

for the agent (in the higher difficulties), the variety of types of action in a rhythm is reduced

(the geometries presented will differ less when it comes to the inputs that need to be performed).

Another option was to modify the DDA method by changing the amount of performance acquired

with each metric and their weights to better suit our agent’s behavior, which should alter the

position of the median, quartiles, and whiskers of the box plot graphs. In this case, the metric

of the number of enemies defeated could be increased (hardest geometries for the agent) while

decreasing other metrics.

The negative aspect of this adjustment is that certain playstyles (the manner in which the

player plays the game) are punished with less score. For example, a player that is fast at

completing levels, but often misses enemies and does not defeat them receives less score if this

change is implemented. Therefore, if the enemies defeated metric has a sizeable weight when

compared to everything else, then the score this player attains is inferior, even though his time

taken metric is considered good. Still, our idea was to try to reduce the dispersion by carefully

changing the generator with both options.
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4.1.2 Tests With Adaptable Difficulty

Test 3

For this new test, it was decided that the adaptive difficulty method (section 2.3) would be

used and that no change to the action probability and DDA method should be performed.

Presumably, by modifying the odds of generating certain actions that are more difficult for the

agent, the problem of generating a complicated action earlier in the level which makes the agent

lose or be punished should appear less frequently in the lowest difficulties. However, since the

rhythms are not being reused, it was decided that it would be beneficial to study the results

with the rhythm bias before changing other parameters.

The previous results showed that generally, the performance scores is decreases as the diffi-

culty increases. Even if the dispersion of the results was considered an issue, this concept still

applies. Seeing that, our main goal was to create a generator that adapts the difficulty to the

player’s skill, a methodology that helps confirm this fact is the observation of the agent’s ending

difficulty value. If it converges to an adequate bound value, the generator’s DDA method is

considered acceptable. However, another goal is to be able to discern difficulties through data

analysis. To distinguish the difficulties, other metrics were considered for this study, mainly the

length traveled in the level. For example, when comparing two levels, if the agent goes farther

in one of them, it could mean that that level is easier for it to complete.

In this test, when a run began, a new rhythm and its geometry were generated. If the agent

completed the first rhythm, a new rhythm was generated, however, the geometry beyond the

first rhythm was influenced by adaptive difficulty. The difficulty of subsequent rhythms was

determined by the difficulty of the previous rhythm added to the rounded-up performance score

obtained in the previous rhythm. A game run, in this test, consisted of the agent attempting

to finish the game by completing rhythms that were procedurally generated. A game run ended

when the agent completes 10 rhythms or when it lost. In Test 3, 1100 runs were executed, in

which, for every 100 runs, the game began with a different difficulty. Therefore, there were 100

runs where the agent started in each difficulty.

When it comes to what metrics should be analyzed, it was predicted that the most useful

metrics would be the performance score in the first rhythm, the length traveled, and the difficulty

where the game ends. The agent’s performance in the rhythms beyond the first does not seem

logical to evaluate because its Mario mode (or health system) can differ from the first rhythm

if the agent takes damage. Therefore, if the agent takes damage in the first rhythm, then it

has fewer chances to make mistakes in subsequent rhythms (has less health), which in turn may

cause it to lose earlier in a rhythm (travel less length), and obtain a worse performance score in

the process. Thus, this score is less likely to be correlated to the average score of that difficulty

(making data analysis inconclusive). In addition, in cases where the agent begins a rhythm in

mode 0 (if any damage is taken the game ends), and travels an arbitrary percentage of length

and loses, it can receive a greater score than if it started with mode 2 (can take damage twice

without losing). If the agent begins in mode 2, continues beyond that percentage of length,

and gets damaged a total of three times resulting in a loss, it obtains an inferior score than if

it started with mode 0 due to the damage taken metric. For these reasons, it is not logical to

compare a box plot graph of rhythms beyond the first with the plots of Test 1.

Observing the performance scores of the first rhythm allowed us to conclude how the perfor-

mance varied with different rhythms and if was possible to distinguish the difficulties with this
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metric.

In Test 1, the length traveled was not directly studied since the goal was to discern the

difficulties through data. Since the length is correlated with the performance score, it is likely

that the runs where the agent attained the highest scores were the runs where it traveled more

length. However, in Test 3, the agent was allowed to go beyond the first rhythm, thus by

observing the total length traveled it was possible to analyze the DDA method adequacy. Since

there was a low number of mistakes the agent was allowed to make before losing, it should travel

more length when starting in a lower difficulty and less when starting in a harder difficulty.

Figure 4.4: Box plots of the performance scores in each starting difficulty in Test 3 (for the first
rhythm).

In Figure 4.4, a box plot of the performance scores of the first rhythms generated in each run

for each difficulty can be visualized. When it comes to difficulties 0 and 1, these appear to have

similar results to Test 1 (Figure 4.1), however when comparing difficulties 2 to 4 the position

of their quartiles and whiskers are very similar unlike Test 1. Still, the median of difficulties

1 and 2 are around 2.25, meaning that the agent obtained scores between [2.25; 3], 50% of its

best runs. When it comes to the median of difficulties 3 and 4, its value is around 1.80, thus in

both these difficulties, the agent acquired a score between [1.8; 3], in the same 50% best runs.

Therefore, despite their lower whiskers being inconsistent, these difficulty groups are discernible

through the median. Even so, the constant generation of new rhythms seems to have affected

the results of difficulty 4. When compared to Test 1, the agent achieved greater scores more

often in Test 3, thus the position of its first quartile changing from 0.58 to 1.18. The intervals of

scores of these groups are similar due to the biggest difference between difficulties 1 and 2, and

3 and 4 being the increase in enemy movement speed. In these difficulties, despite this change,

the agent can still defeat them without any issue, thus the results have some similarities.

Nevertheless, these results are not ideal since there only is a small difference in scores between

difficulties 2 to 4 and their lower whiskers are slightly inconsistent (difficulty 3 as its lower whisker

is closer to -1 than difficulties 2 and 4), still, these results are considered very positive. Another

point to note is that the outliers and the lower whiskers of these plots indicate that the agent
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lost in less than 25% of the runs. However, with this data, it is not possible to conclude if these

generated levels would have the same difficulty for a human player.

As mention previously, outliers are present in difficulties 1 to 4 but no outliers can be seen

in difficulty 10, presumably due to Test 3 not reusing rhythms, thus the agent could acquire

greater and lesser scores more frequently. Therefore, the dispersion was increased and outliers

can be seen which presumably occur due to the agent losing earlier in the game akin to Test 1.

The plots of difficulties 5, 7, and 8 in Test 3 seem to have similar results to Test 1. Their

whiskers, median, and quartiles are similar to Test 1, with the exception of difficulty 5’s third

quartile which has an inferior value than in Test 1, more akin to the plots of sub-tests 3 and 4 of

Test 2. The inconsistency of the results is more prevalent in difficulty 6 where the first quartile

changed from -1.11 to 0.53. This new value is greater than the first quartile of difficulties 5, 7,

and 8, which again shows the randomness of these results. Since the geometries of difficulties 5

and 6 are similar, it is likely that with more samples, these results could have more similarities,

however, this was not feasible due to the computational resources required to perform a test

of this magnitude. It is again assumed that all these incongruences in the results stem from

the actions that the agent finds the most difficult being generated less often in difficulty 6.

Another relevant point to note is that, as mentioned previously, the agent begins to struggle

with geometries in difficulties 5 and above, thus the dispersion is naturally greater in these plots.

When it comes to difficulties 9 and 10, it is evident that the previous results of difficulty 10

in Test 1 had a bias toward the generated rhythms and that there is no clear difference between

both difficulties, when it comes to the performance score. In this case, difficulty 9 has lower

scores than difficulty 10 which is again attributed to the agent’s behavior and the randomness

of the rhythms.

Even though it is complicated to discern difficulties 5 to 10, there were other metrics to

consider for this test, mainly the length traveled. This metric could not be used to evaluate the

generator’s content in Test 1, due to it being complicated to distinguish how difficult a level is

if its length is considerably small. However, this metric is more suited to study the generator’s

adaptation. By having more than one rhythm, it is possible to determine how far the agent

could go in the level when starting in a given difficulty. Thus, the percentage of the total length

traveled by the agent was studied with the goal of observing the quality of the adaptation and

the possibility of it being beneficial when it came to discerning the difficulties.

In Figure 4.5, it is evident that generally the percentage of the average length traveled along

the level decreases with the starting difficulty, as it was intended. On average when starting at

difficulty 0, the agent completes three rhythms, when starting at difficulties 1 to 4 it clears two

and the number of completed rhythms decreases as the difficulty the increases (each rhythm is

composed of 100 length which equates to 10%). The difficulty groups of 5 and 6, and 9 and 10

do not follow the same pattern but differ by what can be considered a small margin. Thus, it

can be inferred that the average length traveled appears to be a good metric when it comes to

distinguishing the difficulties.

In Figure 4.6, it is possible to observe the dispersion in the percentage of length value

across all starting difficulties. By visualizing these plots, it can be inferred that despite the

dispersion, the difficulties can, in most cases, be discerned,with the exception of the difficulty

groups mentioned previously (5 and 6, and 9 and 10). The most consistent value that decreases

with the difficulty is the third quartile. Even so, even if the whisker and the first quartile do

not follow this pattern perfectly, these results are still considered positive. This dispersion and
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Figure 4.5: Average values of the length traveled for each starting difficulty in Test 3.

Figure 4.6: Box plots of the length traveled for each starting difficulty in Test 3.

inconsistency are again due to the type of geometry generated. Since our agent has a harder

time dealing with enemies, it is likely for it to lose while in a geometry that contains them. In

some runs, more enemies might be generated, and therefore the agent travels less length. The

other possibility is that the agent is losing to a group of interfering sequences which can also

have affected the results, as explained in subsection 3.2.4. On the other hand, the first test

showed that there was no clear relation between the number of enemies and the performance

score, so that data was not studied.

Since the position of the whiskers, quartiles, and medians of plots in Figure 4.6 are in tune it

what was is expected (a decrease of length with the starting difficulty), the only possible issues

with this data are the dispersion and some inconsistencies in the pattern. Nonetheless, if these
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factors are not considered a problem, then the results seem to be positive.

In both Figures 4.5 and 4.6, it is apparent that the agent never finished the game, even

in the lowest possible difficulties (never reaches 100%). The generator was making the game

harder as the agent completes each rhythm, however, the agent was unable to complete some

of the geometries, and so it lost before finishing any levels. There could be two reasons for this

outcome, either the level was too long, and it needed to be shortened or the changes in difficulty

were too abrupt. The second option was easy to validate, however, due to the time it took to

perform these tests, a variety of changes needed to be implemented to improve the quality of

the next test’s results.

The last metric to study was the difficulty where the agent ended the game, and for this

evaluation, the same box plot and average graphs were constructed.

Figure 4.7: Box plots comparing the starting and ending difficulty in Test 3.

In Figure 4.7, it is evident that the end difficulty increases with the starting difficulty. Since

the test only allows the agent the possibility of losing once, the difficulty of the game never

decreased, with the exception of difficulty 5, visible by its lower whisker (25% of the runs ended

either in difficulty 4 or 5). This implies that it was very rare for the DDA method to attribute

the agent with a negative score unless it lost, thus making it improbable that the difficulty

reduced when the agent completed a rhythm. When the agent lost, it always received a negative

score which would decrease the difficulty if the agent kept playing. Another factor that could

contribute to these results was the abrupt changes in difficulty. If the changes were too extreme

then the agent would be placed in a level with geometries that were drastically more difficult,

resulting in it losing.

One aspect to note about Figure 4.7 is that in the starting difficulty 1 the agent obtains

lower end difficulty scores than in difficulty 0, due to the agent always receiving a score that

rounds up to 3 in the first rhythm. In difficulty 0, it is impossible to lose (unless the time runs

out), thus the lowest end value of the starting difficulty 0 is 3.

From these results, it seems that the generator was adapting too fast and not punishing the

agent as much as it should. Therefore, in the next test, changes to the DDA method needed to
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be implemented to improve the results.

Test 4

To improve the results of Test 3, the following changes were implemented:

• Total performance score - the interval possible scores was changed from [-3; 3] to [-2;

2]. The goal of this change was to slow down the adaptation process.

• Weights of the parameters - the weights of the parameters of each individual perfor-

mance score were change to better suit our agent. By slightly increasing the weights of

the enemies defeated and of the damage taken metrics, and decreasing the both times and

the coins picked up metrics. In cases the where the agent fails, the length score was also

changed to be lower since its weight is given by the sum of both time weights.

• Odds of generating geometries - the odds of generating actions that were in theory

harder for the agent such as jump actions in higher difficulties were increased slightly

(specifically the odds of an enemies being generated were increased).

Since the length traveled proved effective when it came to discerning the difficulty, and the

results of the performance score were inconsistent, we decided to not study the performance

and focus on other metrics. Therefore, the length traveled and the difficulty at which the agent

ended the game were analyzed and compared with the previous test.

Test 3 required an unreasonable amount of computational resources to complete, thus it was

decided that the next test would be shorter, and consequently, a smaller sample size of data

would be gathered. Test 4 consisted of 30 runs of the game for each difficulty where all the

generated rhythms were random. A run ended when the game was completed, or if the agent

lost. For this test, the main goal was to observe if the data acquired could reveal if the changes

done to the generator were an improvement to the adaptability of the generator.

Figure 4.8: Box plots of the length traveled for each starting difficulty in Test 4.
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Figure 4.9: Average values of the length traveled for starting difficulty in Test 4.

In Figures 4.8 and 4.9, the results of the length traveled in percentage and its average can be

observed. It is immediately evident that the average length results are more consistent than in

Test 3, seeing as the length traveled decreases as the starting difficulty increases. It is also clear

that the percentage of length traveled seems to have increased in the lowest difficulties when

compared to Test 3. This increase is due to the modifications made to the interval of possible

scores affecting the difficulty changes from rhythm to the rhythm being reduced to ± 2, and

the odds of generating harder actions in lower difficulties being slightly decreased. Thus, the

agent is able to complete more rhythms and go farther in the level. Difficulty 0 stands out due

to it being impossible to lose in its first rhythm unless the time runs out. Therefore, the agent

always has at least 10% of the level completed before reaching difficulty 1 or 2, depending on

its performance in the prior level chunk.

When observing Figure 4.8, it is clear that the effective changes complicate the discernibility

of the difficulties, evident due to the significant reduction in length in the highest difficulties

and the position of difficulty 2 first quartile. Specifically, the positions of the upper whisker of

difficulties 7 and 8 seem to have been lowered slightly, which again probably stems from the

changes made to action generation. Therefore, the changes made for Test 4 did not improve the

discernibility of the difficulties when taking into account the dispersion. Still, these results were

considered acceptable when analyzing the other metrics.

It is possible that, if the number of samples was increased that better results would be

achieved, however, this data is still in tune with what was expected.

In Figure 4.8 the dispersion of the results in the higher difficulties seems to have been

reduced, but the changes also increased the dispersion in the lower difficulties. This decrease,

as mentioned previously stems from the increased chance of the generator placing a geometry

that is hard for the agent, making it more difficult to traverse the level in the highest difficulties,

thus the agent loses sooner and travels less length.

In Figure 4.10 the plots show the comparison of the ending difficulties when the starting

difficulty differs, while in Figure 4.11 the averages of the ending difficulty can be seen. From
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Figure 4.10: Box plots comparing the starting and ending difficulty in Test 4.

Figure 4.11: Average values of the ending difficulty for each starting difficulties in Test 4.

these results, it is evident that the DDA method was attributing more negative scores to the

agent when it finished a rhythm since there are various occasions where the end difficulty is

lower than the starting difficulty. For instance, this fact can be observed in the lower whiskers

of difficulties 2 to 9, with the exception of difficulty 3, and the outlier in difficulty 10. Even

so, the difficulty only decreases by 2 in difficulties 8 and 9, meaning the agent might need more

attempts to fail for the game to adapt adequately. In difficulty 10, the value rarely changes, due

to the agent losing before completing a rhythm. Another aspect to note is that, in difficulties

4 to 8, the agent fails more often leading to smaller differences between start and end value.

Thus, the results are considered an improvement to Test 3 even with the slightly worse results

in the length box plots.
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Nonetheless, these values reveal that the changes to the DDA method were successful in

increasing the difficulty of the game (traveled less length in Figure 4.8), in reducing the dispersion

test the highest difficulties, and in slightly improving the adaptation of the generator when the

agent does not lose but performs poorly. The last point is evident when comparing these results

of Figures 4.7 and 4.10.

When observing the averages values of the ending difficulty in Figure 4.11, it is clear that,

with the exception of starting difficulty 0, these keep increasing as the starting difficulty increases.

However, in difficulties 0 to 7, the end value always exceeds starting value, which is a product

of the number of times the game allows the agent to make mistakes before ending the game on

a loss. In difficulties 8 to 10, the agent attains averages that are lower than their respective

starting values, but still, the biggest difference between the initial value and the average in these

difficulties is 10’s -0.3, which stems from the impossibility of obtaining a greater difficulty value.

Thus, when starting in difficulty 10, if there is at least one run where the agent completes a

rhythm and achieves a negative performance that is ≤ -0.5, then the average will never be greater

than the initial value. Therefore, to attain a more adequate adaptation, the agent required more

attempts to commit mistakes.

These results show that the game got significantly harder and that the generator attempted

to adapt to the difficulty when it was needed, yet these results could be improved. Test 4

did not let the agent continue if it lost, thus the performance value of the last rhythm was

never accounted for the adaptation of difficulty. For this reason, another test was conducted to

analyze scenarios where the agent is given more attempts while trying to improve the results by

modifying the parameters of the DDA method and action generation.

Test 5

In Test 5 the agent would again play 30 runs of the game for each starting difficulty. How-

ever, when the agent lost the game, it continued playing in a new level with adapted values

of length and difficulty based on the previous level’s total length traveled and its performance.

Additionally, upon losing, the game restarts and the agent returns to Mario mode 2 grating it

more chances to make mistakes before ending the game. Therefore, a run allowed the agent to

lose twice before finishing a run. With Test 5, the goal was to again study the adaptation of

the generator, thus the length traveled and the end difficulty were observed. Ideally, on average

every starting difficulty should have similar values of ending values, meaning that it would be

possible to associate a bound value to our agent. The parameters of the DDA method and action

probability were also altered to try to improve the results.

• Weight of the parameters - the weights of each parameter were changed in the same

manner similarly to Test 4. Since the agent frequently came close to the expected time

and it has difficulty dealing with enemies, the weights were changed:

– Time to complete the rhythm - 10%.

– Time moving backward - 10%.

– Coins picked up - 10%.

– Enemies defeated - 30%.

– Damage taken - 40%.
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– Length traveled - 20%.

• Required score to attain a change in difficulty - the percentage to obtain a given

score was also increased. Previously a score of 50% grants the player a change of 0, now to

obtain the same score 75% is required. In addition, a minimum percentage to get a score

above -2 was also added. This change was implemented to improve the converging of the

ending difficulty by making it harder to attain an increase in difficulty upon completing a

rhythm. The formula is given by equation 4.1.

P (x) =


(x−75)×2

75 , if x ≥ 40

−2, otherwise
(4.1)

These changes would ideally slow down the adaptation even further and make it more com-

plicated for the agent to reach the highest difficulties.

To formulate adequate conclusions, the data must be interpreted with the correct context,

thus it is imperative to consider that, in this test, the agent possessed three attempts at clearing

a level. For instance, if the agent begins in difficulty 10 and loses, then the difficulty can

decrease to 8 and presumably the agent will travel more length in this second attempt due to

this change. The same logic can be applied to the lower difficulties, for example, if the agent

begins in difficulty 0, then after finishing a rhythm, the difficulty can increase to 2, making it

possible for the agent to lose and travel less length.

Figure 4.12: Box plots of the length traveled for each starting difficulty in Test 5.

Figures 4.12 and 4.13 represent the box plots and the average of length traveled in the

first attempt of each run. As expected, due to the change in the required score, the results of

average length were reduced when compared to the data of Test 4 (Figure 4.9), however since

the agent has more attempts to finish a level, thus it as more chances to win. In Figure 4.12,

the results appear more inconsistent than in Test 4, seeing as the first quartile, the median and

the dispersion do not consistently reduce with the increase of the difficulty, even if these values
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Figure 4.13: Average values of the length traveled for each starting difficulty in Test 5.

generally decrease. The pattern breaks in difficulties 2, 4, 5, and 9, presumably due to the

agent traveling less length than in the difficulties below them more frequently, thus it obtain an

inferior first quartile in these difficulties when compared to the ones above. It cannot be inferred

with complete certainty since there is innate randomness to the results, but this incongruence

must stem from the reduced sample size and the modifications implemented in the generator.

However, when observing the upper whiskers and third quartiles of all plots, it is clear that their

values, in the majority of cases, decrease as the difficulty increases which is considered a positive

result. Therefore, it is again assumed that the inconsistency in the first quartiles is attributed to

instances where the agent lost early in the game to a hard action. It is possible that, with more

samples, the discernibility would improve, however for this test, we decided that these results

were sufficient when considering the results later obtained for the ending difficulties.

In Figure 4.14, there is a noticeable difference in the value of the length traveled for the

highest difficulties in [b] when compared to Figure 4.13. For example, by observing the difficulty

10’s data in both Figures, it is clear that, in the first attempt, the agent reached an average

value of 8.3%, however, in the second and third attempts, the values increase to 11.2% and 16.3%

respectively. This is due to the game being adjusted when the agent loses, thus the difficulty

was decreasing which allowed the agent to clear more length. In Figure 4.14 [b], it is apparent

that the results are converging to a set value between [16.3; 24.8]%, which is a positive result

considering that it could indicate that the difficulty of the level was also converging. In [a], the

length traveled seems to generally decrease with the increase of difficulty, however, the values

are considerably more consistent and close to each other than in Figure 4.13. In [b] the results

appear to be converging but conclusions are difficult to make, seeing as, in difficulties 0 to 6,

there were instances where the agent won and the game ended. Therefore, it would be possible

to obtain greater values of length if the game continued (the agent is not able to win the game

after a certain starting difficulty, in this case, 7). Another point to note is that adding the

percentages of the graphs in Figure 4.14 [a] and [b], and in Figure 4.13, will never result in a

value of 100% because the total length of the levels in attempts 2 and 3 is adapted based on the
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[a]

[b]

Figure 4.14: Box plots of the length traveled in the second and final attempt in relation to the
percentage total level length in Test 5.

number of rhythms evaluated in the previous attempt.

Since the agent was able to win the game in some runs of Test 5, its success rate was studied

(visible in Figure B.16 in appendix B). The results showed that the agent could complete the

game 57% of the time starting at difficulty 0, and from difficulties 1 to 6 it achieved values

between 40% and 13%. Therefore, there were multiple instances where the average length could

have been increased if the game continued. Yet, it is unknown in what Mario mode the agent

finished the game (how much health it had), thus it is uncertain if the agent had conditions to

increase this value significantly.

In Figures 4.15 and 4.16, the relation between the start and end difficulty is studied using

box plots and the average. In this test, it is evident that on average the ending difficulty is

converging to values between [5; 6.6], with the average increasing with the starting difficulty.

Test 5 allowed for a better adaptation of the difficulty seeing as the agent had more attempts
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Figure 4.15: Box plots comparing the starting and ending difficulty in Test 5.

Figure 4.16: Average values of the ending difficulty for each starting difficulties in Test 5.

and some end values significantly differ from their starting point.

In Figure 4.15, the result are considered an improvement over the previous test (Figure 4.10).

Even though there is no clear pattern, it is evident that in difficulties 7 to 10 the dispersion of

values has increased in relation to the previous test. In this case, this dispersion is considered

positive since it indicates that the generator is capable of adapting to the difficulty after multiple

attempts. For example, the agent was able to play in difficulty 5 regardless of its starting point.

When it comes to the lower difficulties, the dispersion is still present, however, it can be

inferred that the game was significantly harder (the executed changes to the generator were

effective) since, in difficulties 0 to 5, the agent never surpassed an end value of 8 except for the

outlier in difficulty 2. Therefore, the game got too hard for the agent and thus it cannot reach
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a higher difficulty than 8.

These results could be improved (obtaining an even smaller bound value) with a larger sample

size, but the conversion of the length and difficulty are still evident with this data. Nevertheless,

as mentioned previously, the results are considered positive, since the last goal was for the agent

to achieve values that could converge to a small bound value of difficulties. Therefore, with the

current version of the generator, it is possible to associate our agent with difficulties 5, 6, and 7.

4.2 Testing With Real Players

When we were finally satisfied with the generator state, the next step was to test the generator

with real player. For these tests, we wanted to see if players could notice that levels were being

adapted as they were playing, and at the same time, obtain their opinions in regard to the

adequacy of the content. Another goal was to understand if the players found this type of

gameplay with adaptive difficulty interesting when applied to other platformer games and other

genres.

To obtain this data a quiz was conducted. To reach adequate conclusions, the results of this

quiz analyzed with the context of the data collected from the game. To perform these tests, 10

individuals were asked to play our game. In terms of age demographic, 8 of these players were

in the range of 23 to 25 years of age. The other two players were 52 and 53 years old, one that

actively played videogames and the other did not. In terms of gender, the younger group was

composed of 4 females and 4 males and the older group consisted of 1 female and 1 male. This

way, it is achievable to target two different demographics and also distinguish the people in these

groups by the amount of time they played videogames. The players also used their computer’s

keyboard to play the game (this information is relevant for context).

The test proceeded as follows, each player would play a tutorial level and 3 games types:

• Tutorial - first the players played a tutorial level. The goal of this level is to give some

freedom to the player so that they can become more comfortable with the controls and

the game it self.

• Game type 1 - after the tutorial, once the players felt ready, they played the game type

1. This game type was played twice and consist of a game run where the player starts in

difficulty 0 and plays a level with adaptive difficulty.

• Game type 2 - after game type 1, game type 2 is played once. It consist of a game run

where the difficulty is constant (this value is depended on game 1 performance).

• Game type 3 - succeeding game type 2, game type 3 is played twice. It consists of

a similar game run to game type 1, however the first run had game type 2’s starting

difficulty, and in the second run the starting difficulty is influenced by the performance

score obtained in the first play section of game type 3’s.

In each run of each game type, the players had 3 attempts to finish the level, meaning they

could lose two times before the run ended. The levels were composed of 10 rhythms for a total

of 1000 length and in each rhythm the performance was evaluated. Once the players finish this

process they responded to the quiz.
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4.2.1 Quiz Results And Data Comparison

The quiz required the players to fill in the information about their age and gender, and contained

the following questions:

1. Personal consideration - how much time this person plays videogames per day?

2. Familiarity with platformers - how many platformers has this person played, if any?

3. Adaptation of game type 1 and 3 - did the player noticed the difficulty adaptation in

games type 1 and 3?

4. Adaptation of game type 2 - did the player notice that the difficulty was not being

adjusted in game type 2?

5. Quality of the adaptation - how adequate was the adaptation of difficulty?

6. Game type preference - what game type did this person prefer?

7. Revisiting this concept - does the player want other games to use procedural content

generation and adaptive difficulty?

For each question, with the exception of the last, multiple options were given to choose as an

answer. The number of each question in the enumeration specifies what results of each question

is being analyzed.

Figure 4.17, illustrates the results of question 1. In the graph, the number of answers relative

to the type of answer can be observed. The type of answer from varies based on how much

time the players spent playing videogames. The type of answer is described in the following

enumeration:

1. Never played videogames.

2. Plays casually - does not play videogames every day.

3. Plays less than an hour a day.

4. Plays more than an hour a day.

The results show that the half of players play more than one hour a day, three of them play

less than one hour a day and one player never played videogames. Since half of the players

play more than one a day our results could be skewed, so this information is relevant when

interpreting these answers.

Figure 4.18, shows the results of question 2. In the graph the number of answers relative

to the type of answer can be observed. The type of answer varies based on how familiar each

player is to platformers:

1. Never played a platformer.

2. Played few platformers.

3. Played many of platformers.
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Figure 4.17: Type of answer in relation to the number of answers to question 1.

Figure 4.18: Type of answer in relation to the number of answers to question 2.

The results of Figure 4.18 reveal that most players have experienced platform games. This

implies that the majority of players have the notion of how platformers function and their type

of gameplay. This is a positive note due to the possibility of the players comparing the levels

of our generator to the levels other platform games. The data of this graph can also be used as

context for the answers given. The players that never played a platformer need to be kept in

mind when analysing these answers.

Questions 3 to 7 allow for a deeper understanding of the adequacy of the generator’s content

when taking into account each individual player’s opinion. Few of these questions gave insight

into what type of game do the players prefer and if they believed this level generation and

DDA was worth revisiting other games. For these reasons, the answers to the quiz questions

are analyzed in conjunction with the test results of each individual (performance scores). The

performance scores can give context to the answers given.

Figure 4.19, reveals the results of question 3. In the graph the number of answers relative

to the type of answer can be observed. The type of answer varies based on how the players felt

in regard to that the change in difficulty:

1. No DDA noticed - no difference in difficulty noticed while playing.

2. Barely noticed DDA - a small difference in difficulty noticed was while playing.
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3. Noticed DDA - a considerate difference in difficulty was noticed while playing.

4. Noticed DDA very well - a big difference in difficulty was noticed while playing.

Figure 4.19: Type of answer in relation to the number of answers to question 3.

These results indicate that the majority of players noticed that the difficulty was changing

while they were playing. Still, there is one answer of type 1 (No DDA noticed) implying that

one player did not notice the difficulty changing. To study this case, it is necessary to analyze

the performance scores of this player and compare them to other players.

[a]

[b]

Figure 4.20: Player’s 7 performance and difficulty in each rhythm.

In Figure 4.20 the performance scores and difficulty obtained by player 7 in each rhythm

can be observed. This player claimed to not notice any change in difficulty, and in previous
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questions responded with played less than 1 hour a day and played many platform games. The

constructed graphs of Figure 4.20 correspond to the game runs where player 7 achieved its

highest number of rhythms and its highest difficulty of 3. Considering that each game type is

played twice the graph corresponds to the run where the player went the farthest in the game,

thus there is more data to evaluate in these graphs. By observing this data, it is clear that this

player remained most of its play time in between difficulties 0 and 2. As a result the player did

not notice a significant change in the difficulty in the geometries since the generator was placing

this player in an interval of difficulties where the levels had around the same difficulty. In [a]

the player begins in difficulty 0 and jumps to 2 in the second rhythm. Afterwards the difficulty

value fluctuates within the mentioned interval. The player is only able to reach difficulty 3

one time, and the game ended as seen in rhythm 8 of [a]. The same fluctuation is seen in [b]

where the player remains inside the same interval of difficulties. Since the player was not able

to complete the easier rhythms, mainly indicated by the drop in performance in rhythm 3 and

4 of [a] and [b], the generator never placed this player in a difficulty higher than 4 due to the

player’s performance not allowing it to increase. Therefore, this player would not notice the

game getting harder, thus the type of answer given is justified.

[a]

[b]

Figure 4.21: Player’s 8 performance and difficulty in each rhythm.

In Figure 4.21 the data of the same game types of another player can be observed (player 8).

Player 8 noticed that the difficulty was being modified, thus answered question 3 with Noticed

DDA. In [a] and [b], player 8 was able to obtain an larger interval of difficulties those being [0;

5] and [1; 7] respectively. When comparing the range of difficulties obtained in Figures 4.20 and

4.21, it is seems more likely that player 7 was not able to discern if the difficulty changing while
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the player 8 was. By observing these Figures it can be inferred that the generator is often able

to associate a player with a given interval of difficulties. Player 7, this player was not able to

reliably complete level in difficulty 2, thus the generator kept lowering the difficulty, while in

player 8’s run game type 3 the generator required around 6 rhythm before the difficulty was to

stabilized. In Figure 4.21 [b] it is evident that after rhythm 5 this player consistently remains

in difficulties 5 to 7, implying that if the player only played in these difficulties while having the

same performance scores, then presumably it did not notice the difficulty changing.

The human error also needs to be accounted. Players can make mistakes even in lower

difficulties, thus increasing the number of rhythms required to converge the difficulty.

Players can also improve while playing and achieve difficulties that are higher than their

previous. In Figure 4.20 [a] player 7 was able to eventually reach difficulty 3 and in Figure 4.21

[a] player 8 was able to reach difficulty 5 after a few mistakes.

[a]

[b]

Figure 4.22: Player’s 5 performance and difficulty in each rhythm.

Figure 4.22 represents the data of a player (player 5) that considered the change of difficulty

to very apparent. In [a] the difficulty increases with each rhythm, until in rhythms 7 and 8 the

difficulty drops the player obtaining worse performance scores. In [b] player 5 began in difficulty

6 and was able to reach difficulty 10, implying that the change in difficulty was noticeable.

To sum up, question 3 seems to dictate positive results implying that most players were able

to discern that the difficulty was changing, and those who were not were already set to a certain

difficulty interval.

In Figure 4.23, the results of question 4 can be observed. In this graph, the number of

answers relative to the type of answer can be visualized. The type of answer are identical to

question 3 (Figure 4.19).
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Figure 4.23: Type of answer in relation to the number of answers to question 4.

The graph in Figure 4.23 reveals that the slight majority of players felt a small change in

difficulty which could be attributed the randomness of action generation. For example, if a

level contains one or two generated rhythms that are considered easier than the rest due to the

randomness of the actions, then it is logical that players feel that the difficulty could change

slightly during the gameplay. Another possible reason for these answers could be the difficulty at

which each player was placed for this test. A graph was constructed to illustrate the plausibility

of this last point.

Figure 4.24: A combination graph shows the answers to question 4 in relation to the difficulty
that the players were placed in game type 2.

In Figure, 4.24 the players that were able to achieve higher difficulties answered that the

difficulty did not change (players 3, 5 and 8, player 7 being the exception). While players at-

tributed with lower difficulties noticed a small change in difficulty (player 2 being the exception).

This presumably due to the action generation in easier difficulties, where it is less likely that

an harder action is generated often, and if this phenomenon happens at least once, the players

might feel a change in difficulty. Nevertheless, these results are considered positive since some

players were able to notice that the difficulty did not change and those who felt like the difficulty

was changing only indicated to be by a small amount.

In Figure 4.25, the results of question 5 can be observed. In the graph the number of answers
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relative to the type of answer can be observed. Type of answer varies based on how adequate

the change in difficulty was:

1. Not adequate - an unsuitable change in difficulty for the type of game.

2. Less adequate - a not so suitable change in difficulty for the type of game.

3. Adequate - a suitable change in difficulty for the type of game.

4. Very adequate - a very suitable change in difficulty for the type of game.

Figure 4.25: Type of answer in relation to the number of answers to question 5.

These results show that most players were satisfied with the change in difficulty. The play-

ers that responded that the adaptation was not adequate were the player that never played

videogames (player 6) and the player 7 (associated with Figure 4.20). Upon analysing the re-

sults of player 6 and the answers given to the previous questions it is expected that this player

found the lower difficulties harder due to the lack of experience (player 6 answered question 1

with never played videogames). Player 7 also found the game too difficult. To further compre-

hend these answers, the results obtained by these player were verified.

In Figure 4.26 the results of performance and difficulty of player 6 can be observed. In these

graphs, it is possible to visualize that in both instances where this player reaches difficulty 2,

the performance value decreases significantly due to the player losing afterwards. In [a] player

6 was only able to complete a rhythm of difficulty 1 once (rhythm 4), while in [b] the player

manages to succeed in this difficulty more often. This is presumably due to this player having

more experience with the game when playing game type 3. Even so, in [b] and in the rhythms

that have a difficulty value of 1, this player has a performance score close to 0, implying that the

player is committing mistakes when the difficulty is stabilized. Meaning that, for this player, the

game is considered too hard even in the lowest difficulties, thus it is likely that the player felt

that the game does not adequately change the difficulty for its skill level. However, there was

another player that never played platformer games and felt like the adaptation was adequate,

yet this player plays videogames casually. To make the game easier more sets of geometries that

are considered easier could be constructed and generated in the lower difficulties to ensure that

the generator creates adequate content for players that never played videogames.

Since the players were monitored while playing, it was simple to identify the instances where

player 6 found the game to be hard. Player 6 struggled more with geometries that were associated
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[a]

[b]

Figure 4.26: Player’s 6 performance and difficulty in each rhythm.

with the run jump action. This action, in the lower difficulties, requires the most coordination of

inputs (requiring three inputs) to perform the action correctly (further explained in subsection

2.2.1). Thus, since this player possessed less coordination than the others (presumably due to

the lack of experience), the run jump action felt arduous and not adequate for that difficulty.

When comparing player 6 to the player that plays causally but never played platformers (which

answered question 5 with very adequate), it is reasonable to assume that the difference in game

genre did not affect this player’s perception of the adequacy of the difficulty. Thus, it is likely

that player 6 found the game to be more difficult due to the lack of coordination.

Player 7 expressed the same concerns about the difficulty and the present geometry, having a

harder time in the run jump and the duck actions that required the player to run. Based on the

criteria in subsection 2.2.1 both of these actions have similar levels of difficulty, since they both

require the player to perform multiple inputs simultaneously while having good timing to jump

or duck. However, these types of actions are considered harder when compared to the other

actions that can be generated in the lower difficulties. Player 7 claimed to have no experience

using a keyboard to play videogames, making it arduous to complete more complex geometries.

This statement complements the point of the players finding these actions more difficulty due

to their lack of experience and coordination. However, it also reveals that we were able to make

a good distinction when it comes to the difficulty of geometries in section 2.2.1.

These types of actions are able to be generated in these difficulties to increased the number

of geometries that can appear in the game in the lower difficulties. Nevertheless, this implies

that these actions should only be generated in slightly higher difficulties with the goal of making

the lower difficulties easier for less experienced players. This way, players with experience are
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not negatively influenced by these changes (the game becomes too easy).

Nonetheless, the results of question 5 help identify the flaws of our generator. These flaws

were not noticeable when using the AI agent for validation due to the agent only making mistakes

in the specific geometries, making it complicated to evaluate the difficulty of some geometries.

Even so, excluding players with less experienced, players found the adaptation of difficulty to

be adequate.

In Figure 4.27 there is an illustration of the results of question 6. The graph shows the

number of answers relative to the type of answer. The possible answers varied between the

game types 1, 2 and 3 and represent the favoured method of playing:

1. Game type 1 - a game with adaptive difficulty starting at the lowest possible difficulty.

2. Game type 2 - a game with no adaptive difficulty starting at a difficulty determined by

game 1.

3. Game type 3 - a game with adaptive difficulty starting at a difficulty determined by

game 1.

Figure 4.27: Type of answer in relation to the number of answers to question 6.

Figure 4.27, shows that the majority of players prefer game 3, thus by using the data of game

type 1 to determine the starting difficulty player experience was improved. By beginning in a

difficulty more suited for the player, the game can adapt faster requiring less rhythms. However,

this method requires previous data to associate the player with a level of difficulty. Reaching

this interval sooner implies that the players faces their preferred challenges faster (the difficulty

is not too easy or too hard thus improving its experience).

These results of question 6 (Figure 4.27) confirm that the generator is not ideal at converging

players that never played videogames into an interval of difficulties, seeing that player 6 preferred

game type 1. It is logical that this player would prefer game type 1 since it is the most adequate

for this particular player due to it beginning in difficulty 0. If easier geometries were implemented

and generated more often in the lower difficulties then this player could presumably prefer game

type 3.

In Figure 4.28, the results of question 7 can be observed. Players were asked the concepts of

PCG and DDA implemented were worth revisiting in other games, and the majority responded

with yes. The results are in tune with the question 6, however it means that players do not just
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Figure 4.28: Type of answer in relation to the number of answers to question 7.

prefer these concepts together but actually enjoyed them enough to want to see them in other

products.

With a larger sample size different results for each question could be obtain. It is plausible

that if there were more players that never played videogames played in our data pool, then more

people could probably answer question 6 (Figure 4.27) by preferring game type 1. However, for

players that already play videogames, the generator is capable of creating levels that suit the

player’s skill which overall means that the results are considered positive.

4.3 Summary Of The Results Obtained

In this chapter, the level generator was tested with an AI agent and with real players. The goals

of the agent’s tests were to converge the agent’s ending difficulty to a bound value, to distin-

guish the difficulties, to ensure stochastic generation, and to guarantee an adequate adaptation.

Multiple metrics were analyzed but only a few showed some clear patterns that helped us reach

these goals, namely the performance score and the length traveled. Initially, a test with reused

rhythms was conducted which revealed that the results have a bias toward the agent’s behavior

and the rhythms. Even so, the same rhythm was able to generate different levels which were

evident in the dispersion of the results and in the outliers obtained. In Test 3, the difficulties

were able to be discerned with the length traveled since this value on average decreased with

the increase of the difficulty. However, to accomplish the other goals, some changes to the pa-

rameters of the DDA method were implemented (based on the agent’s behavior) to improve the

adaptation of the difficulty. In test 5, the ending difficulty of the agent converged on average to

a bound value between [5; 6.6] and, when the agent was given more attempts to make mistakes,

the length traveled also converged. Thus, in this state, we considered that the generator was

constructing adequate content and was ready for the test with real players.

To complete the validation of the generator, players were asked to play three types of games.

These three games were distinguished by the quality or absence of DDA. Therefore, game types

1, 2, and 3 respectively consisted of a game with adaptive difficulty that starts at difficulty 0,

a game with no adaptive difficulty but it was set in a difficulty that was considered adequate

for the player based on the first game, and a game with adaptive difficulty that began in the

same difficulty as game 2. After answering the quiz, most players preferred game type 3 and
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considered the adaptation to be noticeable and adequate. However, the players that disagreed

with the majority consistently achieved the lowest values of difficulty and stated that certain

geometries were too difficult. This was expected since the type of geometries mentioned are

more difficult than the others (in these difficulties) when considering the parameters stated to

affect the difficulty in subsection 2.2.1. Therefore, our discernibility was a success, seeing as

the players with less experience found these geometries to be harder (these geometries were

included to increase the diversity of the inputs), while the other players found the adaptation

to be adequate. Finally, when asked if this type of PCG and DDA were worth revisiting, the

majority of the players responded with yes.

78



Chapter 5

Conclusion

In this thesis, the main goals set for our project were achieved. We created a rhythm-based

level generator for a 2-D platformer that was able to adapt the difficulty of the game based on

the player’s performance as it is being played. The generator was then tested with a validation

tool (an AI agent) and, after multiple adjustments, it was able to converge the ending difficulty

of the agent to what was considered an adequate bound value. The final phase of the project

consisted of another test but with real players, where the objective was to obtain their opinion

regarding the quality of the generated content. The results of these tests revealed that most

players found that the generated content was adequately adapting to their skill level and that

the concepts of PCG and DDA were interesting to revisit in other platform games and other

genres.

The project was facilitated due to the methodology used to generate actions. These actions

were redefined to be an input or a combination of inputs that are associated with a group of

geometries and that the player must perform to progress in the game. This definition simplified

the process of action generation since there were fewer restrictions that needed to be considered,

and it became easier to correlate these inputs with a set of specific geometries. The only issue

with this approach is that it requires a decent number of geometries to not make the game stale,

similar to the combining pre-made parts method (subsection 1.4.3).

The method used to discern the difficulty appears to be one of the best qualities of the

project. The difficulty of an action is discerned by some parameters which include the number

of inputs, duration of inputs, the timing of the inputs, number of simultaneous inputs, and the

variation of inputs with time (subsection 2.2.1). By defining and understanding each parameter

it was possible to discern which actions/geometries were easier or harder, which was proven

successful in the test with real players. Very inexperienced players did not seem to find the

easier difficulties adequate and mentioned that specific geometries were too difficult. These

statements were in tune with the parameters used to discern difficulty seeing as the geometries

that these players considered hard were placed in the lowest difficulties to increase input variety,

even though these were considered slightly harder than others by our parameters.

The validation method chosen for this project seemed to have some issues. By using an AI

agent, a bias is added to the generated content. This is due to the agent being used to extract

benchmark values for the DDA method and used to ensure the generator is able to discern the

difficulty of the game. However, because the agent serves both these functions, the DDA method

and action generation odds were directly influenced by the agent’s behavior. Thus, the generator

changes the difficulty based on what the agent finds easier or harder. Therefore, by determining
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how the agent behaves, where it succeeds and fails, we consequently dictate what is considered

difficult in the game. Thus, when modifying the DDA method and action generation odds,

the agent’s behavior was always put into consideration. The necessity of obtaining benchmark

values for the DDA method meant the agent needed to be able to complete most geometries,

therefore, when it came to the tests, the agent always achieved times that were very close to

the benchmark times. In consequence, to facilitate the discernibility of the difficulties, the time

metrics required a reduction in weight. To ensure the difficulties were able to be distinguished

during the tests, when constructing the agent’s behavior it was settled that the agent should

fail in the geometries that were considered the hardest. In our case, these were actions that

generated multiple enemies, which contained all the parameters stated to make an action difficult

(subsection 2.2.1).

When it comes to player experience, this issue only impacts the diversity of playstyles be-

cause, as mentioned previously, the weights of metrics such as the time taken to finish a rhythm

and time moving backward had to be reduced due to the agent’s behavior. Therefore, if a player

is fast at completing a rhythm but takes damage it will be less rewarded than a player who was

slow and completed the game without being damaged. Nonetheless, most players enjoyed the

generated levels and found that the adaptation was adequate (section 4.2).

Even though this type of procedural content generation and DDA method was implemented

in a platformer, this methodology can be easily replicated and applied to other game genres. The

definition set for actions in subsection 2.2.1, allows for various types of geometries to be generated

even for the same types of inputs. The number of possible geometries is directly correlated to the

complexity of the game’s mechanics (in general more inputs more combinations). To generate

content, it is necessary to set the objective of the game, define combinations of inputs that

contribute to the player’s progress toward that goal, set properties for each action to ensure

the generated geometry is possible to complete, and discern the difficulty of each action. For

example, considering an FPS, if the goal is to defeat every enemy in an area without being

damaged, some possible inputs could be inputs to crouch, move, aim, and fire. When combining

these inputs, it is feasible to associate them with geometries where the player needs to move

from cover to cover, in order to defeat enemies, while not being punished for receiving damage.

To replicate the DDA method of section 2.3, it is mandatory to determine and set metrics that

can be used to recognize how well the player is performing in the game. These parameters reflect

the performance of the player when completing an action and should determine how well the

player is reaching the main goal. For example, in our generator, the goal is to reach the end

of the level, however, the player is also evaluated for picking up coins and defeating enemies.

These geometries force the player to perform specific inputs, and if these are not executed

correctly, the player is punished even if it reached the goal. These generalizations imply that

this methodology can be applied to other game genres and produce similar outcomes. However,

the definition of difficulty explained in subsection 2.2.1 cannot be applied equally to any game

genre. For example, in turn-based RPGs, the difficulty can for example stem from the knowledge

necessary to understand the game’s mechanics in order to achieve the intended goal. Thus, our

definition of might not be ideal since the parameters stated in subsection 2.2.1 may not be

coherent with the goal of the game.

To sum up, the qualities of this thesis are the following:

• Action redefinition - the redefinition of actions allowed for an simpler method of gen-
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eration geometry.

• Difficulty - the definition of difficulty and the properties used to discern it proved effective

when considering the results of the test with real players.

• DDA - the level generator was able to converge and associate a bound value of difficulty

to our agent and our players, even when considering the bias introduced by the agent’s

behavior.

• Understanding player opinions and online generation - the test with real players

revealed that the majority of players would like to play more games that use PCG and

DDA. Based on player feedback, modifying the difficulty and level geometry as the game

was being played improved player experience.

• Validation tools - the results of this project reveal the main issues of using AI agent as

validation tool and the bias that it brings to the studies.

• Replicating the PCG and DDA methods - the methodology used can be replicated

for other game genres and produce similar outcomes.

However, some aspects of this project could be improved in the future:

• Improve the method of validation - the project showed that if an AI agent is used to

determine benchmark values for the DDA method and used to discern the difficulty of the

game, a bias is introduced. To solve this issue, a different tool should be used to achieve

both goals.

• Improve the DDA method - if the DDA method is used in other games then it is

imperative to explore and analyze more ways of determining player performance.

• Action difficulty quantification - even though we were able to identify some parameters

that affect the difficulty of a geometry, more research could be conducted to create an

equation that quantifies the difficulty of performing the required inputs of an action. This

would further improve the quality of the DDA method and the adequacy of the content

to any demographic of players.

• Less dispersion in the results - to facilitate the interpretation of the results it is

necessary to find a way to minimize the dispersion.

• Using a different game - these methods of PCG and DDA could be implemented in a

game that possesses more complex mechanics, allowing for more combination of actions

to be made and more geometry to be created. With a more complex game, the issue a

difficulty not possessing diverse geometries should not be present.

• Different types of levels - the levels created by the generator all have the same objective

(to reach the end goal at the most right part of the level). Since player experience was

improved with the generation of different content, then by changing the position of the

end goal different levels can be generated adding more content.
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Appendix A

Algorithms

Algorithm 1 GenerateGeometry

ListOfActions← GenerateActions(Rhythm,Lengthtraveled)
SumOfLength← Lengthtraveled
for Action in ListOfActions do

switch ActionType do
case Begin

assert(GenerateInitialGeometry(Action, SumOfLength))
break

case Move
assert(GenerateMoveGeometry(Action, SumOfLength))
break

case Jump
assert(GenerateJumpGeometry(Action, SumOfLength))
break

case RunJump
assert(GenerateRunJumpGeometry(Action, SumOfLength))
break

case Up
assert(GenerateUpGeometry(Action, SumOfLength))
break

case Duck
assert(GenerateDuckGeometry(Action, SumOfLength))
break

case MoveLeft
assert(GenerateMoveLeftGeometry(Action, SumOfLength))
break

case WallJump
assert(GenerateWallJumpGeometry(Action, SumOfLength))
break

case Wait
assert(GenerateWaitGeometry(Action, SumOfLength))
break

case End
assert(GenerateEndGeometry(Action, SumOfLength))
break

SumOfLength← SumOfLength+ActionLength
PreviousAction← Action

end for
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Appendix B

Relevant Figures

Figure B.1: A representation of the flow channel of a player [17].

Figure B.2: Comparison of the number of rounds played with and without DDA [18].
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Figure B.3: Comparison of the time played with and without DDA [18].

Figure B.4: A Gantt chart for a Jump action.

Figure B.5: A Gantt chart for a Up action.
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Figure B.6: A Gantt chart for a Duck action.

Figure B.7: A Gantt chart for a Move Left action.

Figure B.8: A Gantt chart for a Wall Jump action.
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Figure B.9: Average of Test 1’s performance scores in each difficulty with the outliers.

Figure B.10: Box plots of Test 1’s performance scores in each difficulty with the outliers removed.
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Figure B.11: Average performance score obtained in the first rhythm of Test 3.

Figure B.12: Box plots of Test 4’s performance scores in each difficulty.
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Figure B.13: Average performance score obtained in the first rhythm of Test 4.

Figure B.14: Box plots of the percentage of length travelled in the second attempt of Test 5.
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Figure B.15: Box plots of the percentage of length travelled in the third attempt of Test 5.

Figure B.16: Percentage of games won by the agent in Test 5.
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