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Resumo

OModelo Padrão, apesar de ser uma das teorias mais bem verificadas experimentalmente no mundo
da física, tem as sua limitações. Um grande problema que o Modelo Padrão enfrenta é o facto de não
dar qualquer explicação para a existência de matéria escura, comprovada apenas por observações prove-
nientes da astronomia e da cosmologia. Por estas razões, propomos uma extensão simples do Modelo
Padrão: adicionar um campo complexo escalar que acopla apenas com o dubleto de Higgs. De seguida
fazemos a renormalização do setor escalar, usando condições on-shell e process dependent, calculamos
a correção a um loop do decaimento do Higgs para matéria escura e verificamos que a correção é estável.
De seguida fazemos uma procura no espaço de parâmetros do modelo para verificar quais os parâmet-
ros que verificam os mais relevantes constrangimentos teóricos e experimentais. A comparação com o
valor medido experimentalmente no Large Hadron Collider dá-nos informação sobre o sector escuro do
modelo. A adição do campo complexo tem outra vantagem, a de permitir a existência de uma transição
electro-fraca de primeira ordem (algo que não é possível no Modelo Padrão). Esta transição poderá dar
origem a ondas gravitacionais primordiais que poderão ser detetadas em experiências futuras, tal como
LISA. Verificámos que é possível, por extensão do modelo, obter ondas gravitacionais fortes o suficientes
para serem detetadas e que existe também uma dependência no valor dos parâmetros do Modelo Padrão,
em particular na massa do Higgs do quark top. Verificámos também uma forte dependência nos parâmet-
ros do setor escuro e, por fim, que a configuração do vácuo a temperatura zero afeta a força do sinal das
ondas gravitacionais.

Palavras Chave: Extensão do modelo padrão, renormalização, correções a 1-loop, ondas gravita-
tionais primordiais, LISA.
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Abstract

It is well known that, although the Standard Model of particle physics can make many accurate pre-
dictions about the physical world around us, it is still incomplete in many regards. One of the most
noticeable areas where the Standard Model fails us to give some reasonable explanation is the absence of
dark matter, that one can infer from astronomy/cosmology. For that reason, we propose a simple model:
a complex scalar extension of the Standard Model, where the new field only couples with the Higgs
doublet. We then renormalize the scalar sector, using on-shell renormalization conditions and process
dependent conditions to calculate the 1-loop correction of the Higgs decay into dark matter. We have
verified that the corrections are stable. After that, we performed scans to find the allowed parameter
space that fulfils not only theoretical constraints but also the most relevant experimental ones. We have
then compared with the experimentally measured value at the Large Hadron Collider to have access to
the dark sector of the theory. The addition of the complex scalar field has another advantage. It allows
for a first-order electroweak phase transition (which is not possible in the Standard Model) that could
produce gravitational waves that could be detected in upcoming experiments, such as LISA. We see that
strong enough gravitational waves are indeed possible. We have also verified their dependence on the
Standard Model parameters inside their experimental uncertainty, in particular the Higgs and top quark
mass, which can be important. We have also showed that the dark sector parameters play a huge role in
the gravitational wave profile and, lastly, verify that the vacuum configuration at zero temperature affects
the strength of gravitational waves.

Keywords: Standard model extension, renormalization, 1-loop corrections, primordial gravitational
waves, LISA
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Resumo Alargado

Esta tese está dividida em dois temas distintos relacionados pelo mesmo modelo de física. O modelo
é a extensão doModelo Padrão por um campo escalar complexo com todos os números quânticos iguais a
zero (CxSM). O novo campo acopla apenas com o dubleto de Higgs e, por isso, apenas o setor escalar do
Modelo Padrão vai ser alterado. Este novo campo pode ou não ganhar um valor de expectação do vácuo
(VEV). Caso o VEV seja zero, estaremos no cenário em que há duas partículas de matéria escura com
massas distintas que interagem com o Modelo Padrão apenas através da partícula de Higgs. Caso o VEV
seja real e diferente de zero (podemos sempre tornar o VEV real multiplicando o campo por uma fase por
isso não há perda de generalidade) passamos a ter uma mistura entre a componente real do novo campo
e a partícula de Higgs do Modelo Padrão, neste cenário a componente imaginária irá ser a partícula de
matéria escura.

Na primeira parte da tese vamos tratar da renormalização do setor escalar da extensão complexa com
VEV escalar não nulo. O nosso objetivo é calcular a correção em segunda ordem (1-loop) ao decaimento
do Higgs para duas partículas de matéria escura. Esta correção não pode apenas ser retirada a partir dos
diagramas de segunda ordem porque irão aparecer divergências provenientes da integração do momento
interno. Para renormalizar o decaimento vamos supor que todos os campos e parâmetros são promovidos
a bare que são a soma das componentes renormalizadas e dos contra-termos. O objetivo da renormal-
ização é encontrar os contra-termos tais que a correção a 1-loop seja finita. Para isso vamos utilizar o
chamado esquema de renormalização on-shell que consiste em impor que o propagador renormalizado
verifique as mesmas condições que o propagador a nível árvore. Este esquema não é suficiente para de-
terminar todos os contra termos e por isso utilizamos o esquema de tadpoles Fleischer e Jegerlehner para
assegurar que não há termos lineares nos campos no Lagrangiano, o que valida a utilização de teoria de
perturbações. Usando o esquema de Kanemura et. al para o contra-termo do ângulo de mistura e o es-
quema de renormalização com processo auxiliar para o VEV escalar podemos encontrar os contra termos
restantes e assim calcular a correção a 1-loop. Dadas as circunstâncias, temos a liberdade de escolher en-
tre quatro esquemas de renormalização. Dois são provenientes do contra termo do ângulo, que pode ser
definido on-shell ou então na média dos quadrados das massas. Os outros dois são proveniente do contra
termo do VEV, que pode ser calculado on-shell ou na aproximação de momento externo igual a zero
(ZEM) (este último troca um pouco da estabilidade da renormalização por um maior espaço disponível
de parâmetros de massas). A conclusão geral é que este procedimento de renormalização é extremamente
estável (isto é, a correção é pequena comparada com o valor de primeira ordem) com a correção sempre
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menor que 10% do valor a primeira ordem, excepto no caso dos pontos que estão abaixo de threshold de
massa que nos permite usar o esquema on-shell. Nesse caso apenas o método ZEM pode ser usado e a
correção pode chegar até aos 50% mas apenas no caso em que a largura em primeira ordem seja próxima
de zero. Uma conclusão curiosa é que as condições experimentais de matéria escura tornam o ângulo
de mistura igual a zero extremamente indesejável. Esse constrangimento está relacionado com o valor
experimental da densidade de relíquia.

Na segunda parte da tese vamos falar sobre ondas gravitacionais criadas a partir de ondas de choque
induzidas por uma forte transição de fase electrofraca, algo que não é verificado no Modelo Padrão e é
visto como umas das condições necessárias para a bariogénese (condições de Sakharov). A transição de
fase acontece porque, à medida que o Universo arrefece com a expansão, o potencial do modelo irá alterar
a sua forma que poderá dar origem a múltiplos mínimos locais. É possível que num dado momento nos
encontremos num mínimo que deixe de ser energeticamente vantajoso e que leve o Universo a transitar,
por tunelamento quântico, para outro mínimo. Esta transição, se for brusca o suficiente, irá dar origem a
fontes de ondas gravitacionais tais como ondas de som, colisão de bolhas de vácuo ou turbulência. Nesta
tese, apenas vamos tomar em conta as ondas gravitacionais com origem em ondas de som. Se a transição
de fase for rápida o suficiente e houver muita libertação de energia, as ondas gravitacionais podem ser
fortes o suficiente para serem detetadas em experiências futuras, tais como LISA, DECIGO ou BBO. As
ondas gravitacionais dependem fortemente do modelo físico em questão e dos parâmetros do potencial
a temperatura zero. O nosso objetivo é saber se a variação do valor dos parâmetros do Modelo Padrão,
dentro da sua incerteza experimental, gera algum impacto no perfil de ondas gravitacionais. Concluímos
que de facto há uma forte dependência na massa do Higgs mas também embora mais fraca na massa do
quark top. Verificámos também que há uma forte dependência nos parâmetros do setor escuro, como seria
de esperar. A existência ou não de ondas gravitacionais intensas é também dependente da configuração
do vácuo a temperatura zero.

Verificámos que, tanto no caso em que temos duas partículas de matéria escura (VEV escalar zero)
como no caso em que temos apenas uma (VEV escalar não zero) e em que há mistura entre o Higgs e
a parte real não há ondas gravitacionais detetáveis em LISA. No entanto, os pontos do caso com VEV
escalar não zero parecem produzir ondas gravitacionais com sinais muito mais fortes que o caso do VEV
escalar zero, e por isso não é descartada a hipótese de serem encontrados pontos no futuro. Curiosamente,
se adicionarmos neutrinos de quiralidade direita num mecanismo de inverse seesaw encontramos ondas
gravitacionais detetáveis por LISA. Por haver uma ligeira instabilidade numérica no cálculo do β/H (o
inverso do tempo da transição de fase dividido pela constante de Hubble), criámos um método que nos
permite suavizar a ação num dado intervalo e usar essa interpolação para calcular não só o β/H mas
também as temperaturas de nucleação e percolação com grande precisão. Ao aplicar este método da
interpolação a quatro amostras de pontos temos uma noção da incerteza associada ao nosso método.
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Chapter 1

Introduction

The Standard Model (SM) of particle physics has been very successful at describing most of the
experimental data but, like all models in physics, it has its limitations and there are many physical phe-
nomena for which the SM provides no explanation. One of the unexplained phenomena is the mass of
neutrinos. The SM predicts that neutrinos are massless particles but we know that they oscillate between
three flavours (electron, muon and tau) [1, 2]. That fact indicates that neutrinos have mass and it is even
possible to measure their mass squared differences m2

νi − m2
νj (i, j = e, µ, τ ) (see [3] for up-to-date

values of these measurements). Although neutrino mass differences are now established and measured,
the actual masses and the hierarchy between them is still an open question [3]. The SM also fails to ex-
plain why there is more matter than antimatter in the Universe. The conditions for baryogenesis were put
forward by Sakharov [4] and comprise Baryon number violation, C-symmetry and CP-symmetry viola-
tion and the existence of an epoch where interactions were out of thermal equilibrium, during the early
history of the Universe. A strong candidate for such a transition is the electroweak (EW) epoch and, for
this reason, it is highly preferred that a strong first-order phase transition (FOPH) should have occurred
during the EW transition epoch. It is known that the SM does not provide enough CP-violation and also
that it fails to give us that type of transition [5].

Another missing ingredient of the SM is dark matter. DM particles are stable or at least they live
longer than the age of the Universe and interact very weakly with the SM particles. It started to be the
mysterious particle(s) that causes the increased gravity pull seen on the rotation curves of galaxies, i.e.
the angular velocity is higher than predicted farther from the centre of the galaxy which indicates that
there is matter missing [6, 7] according to classical mechanics. Another example is the bullet cluster [8],
where two clusters of galaxies collided and it was possible to determine, with gravitational lensing, that
the centre of the gravity pull is at the centre of the matter which did not interact in the collision and not at
the centre of the visible matter. This indicates that dark matter is influenced by gravity but couples very
weakly with visible matter. A review on the other astronomical evidence of DM can be found in [9] .

In this work, we propose a BSM (Beyond Standard Model) model which solves one of this issues
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Chapter 1. Introduction

by including a dark matter candidate. We will build an extension of the SM where one complex scalar
field is added to the SM field content that only couples with the the Higgs field. We start with a detailed
description of the model and of the renormalization scheme used. We then use it to calculate the decay
width of the Higgs particle into two dark matter particles. The most relevant and up-to-date theoretical
and experimental constraints are applied to select the points used to calculate the decay width. The results
are finally compared with the present experimental values.

Adding a complex scalar field to the theory has another benefit, it allows for a first-order phase transi-
tion (FOPT) to occur during the electroweak epoch, one of the Sakharov conditions for baryogenesis [4].
Under certain conditions, the EWFOPT can produce primordial gravitational waves, from sound waves
(SW), strong enough to be detected in upcoming spatial interferometers such as LISA [10], DECIGO
[11] or BBO [12]. Our goal is to explore the parameter space of the model to see if strong enough GWs
are indeed possible and understand the impact of the SM parameters on the GW profile and strength.
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Chapter 2

Complex Singlet Extension

2.1 Motivation

The SM is invariant under gauge transformations of the group SU(2)L × U(1)Y × SU(3)C , where
the subscript L indicates that only left-handed fields have non-zero weak isospin (denoted by T ), Y is the
hypercharge and C is the colour symmetry of quarks1. We are going to add a new complex scalar field σ
that only couples to the Higgs doublet Φ, which is a spin zero field with hypercharge and weak isospin
equal to zero

Tσ = 0 and Yσ = 0 , (2.1)

where Tσ and Yσ are the SU(2)L and U(1)Y quantum number of σ, respectively. This ρ parameter is
defined as the ratio

ρ ≡
m2

W

m2
Zc

2
w

=

∑n
i=1 vi

[
4Ti (Ti + 1)− Y 2

i

]∑n
i=1 2Y

2
i vi

, (2.2)

where mW is the W bosons mass, mZ is the Z boson mass and cw is the cosine of the Weinberg angle,
and where the last equality is the expression for a generic n scalar extension of the SM, see Ref.[13]. The
ρ parameter has a very precise measured value [7]

ρexp = 1.00038± 0.00020 , (2.3)

which is in agreement with our model since we have the same ρ parameter as the SM, which at tree-level
is

ρCxSM = ρSM = 1 , (2.4)

in both models. The same is true for any extensions with only doublets and singlets.
1Colour will be omitted from now on because it will not relevant for the calculations.
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2.2 Scalar Potential

The scalar potential of the theory is composed of the scalar particle, introduced in the previous section,
and the usual Higgs doublet Φ also present in the SM. The doublet has quantum numbers:

YΦ =
1

2
and TΦ =

1

2
. (2.5)

The scalar potential describes the masses of particles as well as their interactions, and is given by

V0(Φ, σ) =µ
2
ΦΦ

†Φ+ λΦ

(
Φ†Φ

)2
+ µ2σσ

†σ + λσ

(
σ†σ

)2
+ λΦσΦ

†Φσ†σ +

(
1

2
µ2bσ

2 + h.c.
)
, (2.6)

with Φ and σ given by

Φ =
1√
2

(
G+ iG′

ϕh + h+ iη

)
, σ =

1√
2
(ϕσ + σR + iσI) , (2.7)

where h, η,G,G′, σR and σI are real scalar fields. In the potential we write all the terms with dimension
up to four compatible with the symmetries of the gauge group, and we impose an additional σ → σ∗

symmetry which also forces all the parameters of the potential to be real. The parameters ϕh and ϕσ are
the vacuum expectation values (VEV) of the neutral CP-even component of the Higgs doubletΦ and real
part of the new scalar particle, respectively. In quantum field theory, particles are described as quantum
fluctuations around their classical mean-fields, the average of the field in the vacuum, denoted by ⟨...⟩,
is the vacuum expectation value. We have that

⟨Φ⟩ = 1√
2

(
0

ϕh

)
, ⟨σ⟩ = 1√

2
ϕσ . (2.8)

The VEV of the Higgs doublet ϕh is measured experimentally to be about 246.22 GeV [3]. The scalar
VEV ϕσ is a free parameter of the model and can be chosen freely unless it breaks any theoretical or
experimental constraints. The vacuum expectation values of the model, at zero temperature, are:

ϕh(T = 02) = vh = 246.22 GeV, ϕσ(T = 02) = vσ . (2.9)

Themodel has two distinct interpretations depending if vσ is zero or not. The differences will be discussed
in the next section.

Just as in the SM, the VEV of the Higgs doublet will break the electroweak symmetry SU(2)L ×
U(1)Y into the local U(1)Q. For this reason, the conservation of isospin T and hypercharge Y will be

2ϕh = 246.22 GeV = vh and ϕσ = vσ is only valid at the cosmic temperature of T = 0. In the past the Universe was
warmer and the potential had a different shape and different VEVs. This will be explained in more detail on chapter 5. On
chapter 3 and on the current we work at present time, i.e. at T = 0 .
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broken but the sum of the two will still be conserved. We define the new conversed quantum number as
electric charge and it is given by

Q ≡ T3 + Y . (2.10)

where T3 is the field eigenvalue of the third generator of weak isospin.
The potential must be stable so we impose the boundedness from below conditions, that do not allow

the potential to become infinitely negative as fields become infinitely large

λΦ > 0, λσ > 0, λΦσ > −2
√
λΦλσ . (2.11)

To use perturbative theory we cannot have large couplings because they would violate the unitarity condi-
tions. We impose that the eigenvalues of the 2 → 2 scattering matrixM2→2 must be smaller, in absolute
value, than 8π. For our particular model those constraints are [14, 15]

|λΦ|, |λσ|, |λΦσ| < 4π , (2.12)∣∣∣∣2λσ + 3λΦ ±
√
2λ2Φσ + (2λσ − 3λΦ)

2

∣∣∣∣ < 8π. (2.13)

We further need to impose that the minimum of the potential is truly at the VEVs, otherwise pertur-
bative theory cannot be used. That is done by forcing the linear field terms to vanish at the VEVs so that
we are at a stationary point

dV0(Φ, σ)

dΦ

∣∣∣∣∣
vacuum

≡ −Th = 0 and
dV0(Φ, σ)

dσ

∣∣∣∣∣
vacuum

≡ −Tσ = 0 , (2.14)

where Th and Tσ are dubbed the tadpole terms. The minus sign comes from the definition of the tadpoles
terms as the derivative of the Lagrangian instead of the derivative of the potential. In our model the
tadpole terms are explicitly given by

Th := −vh(µ2Φ +
1

2
λΦσv

2
σ + λΦv

2
h) , (2.15)

Tσ := −vσ(µ2b + µ2σ + λσv
2
σ +

1

2
λΦσv

2
h) . (2.16)

From this moment on we are going to split the analysis into the cases when we have a zero scalar
VEV and a non-zero scalar VEV.

2.2.1 Zero Scalar VEV vσ = 0

In this scenario we set vσ to zero, therefore Tσ = 0 is fulfilled. When we set Th = 0 we get

µ2Φ = −v2ΦλΦ , (2.17)
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which is the same relation that one gets from the Higgs mechanism in the SM [16]. We can determine
the massmh of the Higgs particle as

m2
h = 2λΦv

2
h . (2.18)

The mass of σR and σI are dubbed asmD1 andmD2 , respectively. These are dark matter (DM) particles
because at least one of them is stable. It can also be that if they are very close in mass that they are both
DM candidates. The masses of these particles are given by

m2
D1 = µ2σ + µ2b +

λΦσv
2
h

2
, (2.19)

m2
D2 = µ2σ − µ2b +

λΦσv
2
h

2
. (2.20)

Here we can see the role that the parameter µ2b plays in the model, its sign indicates which particle is the
stable and metastable dark matter particle. Noting that

m2
D2 −m2

D1 = −2µ2b , (2.21)

if µ2b > 0 then D2 is the lightest particle of the two and is, consequently, the stable particle while D1

is the metastable particle. If µ2b < 0 then they switch roles. The reason why the heavier DM particle
is metastable, and therefore not stable, is because it can decay into the lightest DM particle at next-to-
leading order by decaying to the other DM particle together with SM particles. The lighter particle cannot
decay since no decay to other DM particles is kinematically allowed, and it is therefore stable.

2.2.2 Non-Zero Scalar VEV vσ ̸= 0

In this case we have a non zero scalar VEV vσ ̸= 0. To use perturbation theory we have to impose
that the tadpoles vanish (Eqs. 2.16). This allows us to write the µσ and µΦ parameters as a function of
the other parameters in the potential and the VEVs,

µ2σ = −µ2b − λσv
2
σ − 1

2
λΦσv

2
h , (2.22)

µ2Φ = −λσv2σ − 1

2
λΦσv

2
h . (2.23)

In order to compute the mass of the particles, we expand the potential and collect all the bilinear terms.
We soon notice the mixing between the h and σR fields and therefore we have rotate from the gauge basis
into the mass basis. We do that by grouping the scalar fields in a vector and introducing an orthogonal
rotation matrix, such that the length of the vector is preserved, to transform the fields. The fields in the
two basis are written as (

h

σR

)
and

(
h1

h2

)
, (2.24)
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where the first vector is in the gauge basis and the second vector is the rotated fields in the mass basis.
We define α as the mixing angle and the orthogonal matrix R as the rotation matrix

R(α) =

(
cos(α) sin(α)
− sin(α) cos(α)

)
, (2.25)

and finally the two basis are related by the following transformation(
h1

h2

)
=

(
cos(α) sin(α)
− sin(α) cos(α)

)(
h

σR

)
. (2.26)

We can write the bilinear terms of the potential in a compact form, using the mass matrix of h and σR

V0(Φ, σ)
∣∣∣
bilinear

= −1

2

(
h

σR

)[(
2λΦv

2
h vhvσλΦσ

vhvσλΦσ 2λσv
2
σ

)
−

(
Th
vh

0

0 Tσ
vσ

)](
h σR

)
, (2.27)

where we can identify the non-diagonal mass matrix as

M2 =

[(
2λΦv

2
h vhvσλΦσ

vhvσλΦσ 2λσv
2
σ

)
−

(
Th
vh

0

0 Tσ
vσ

)]
. (2.28)

We left the tadpole terms explicitly because they will be important at higher orders. To determine the
diagonal mass matrix we impose the minimum conditions, Th = Tσ = 0, and rotate the fields. The result
is a diagonal matrix with the masses squared in the diagonal,

R(α)M2R−1(α) =

(
m2

h1
0

0 m2
h2

)
, (2.29)

so that the bilinear terms of the potential are written has

V0(Φ, σ)
∣∣∣
bilinear

= −1

2

(
h1 h2

)(m2
h1

0

0 m2
h2

)(
h1

h2

)
. (2.30)

To find the mixing angle α one needs to solve Eq. 2.29. We find the following expression for α

tan(2α) = λΦσvhvσ
λΦv2h − λσv2σ

, (2.31)

as well as expressions for the masses of the CP-even particles, which are easily found since rotations do
not change the matrix eigenvalues

m2
h1,h2

= λΦv
2
h + λσv

2
σ ±

λΦv
2
h − λσv

2
σ

cos(2α) . (2.32)

Finally, the mass for the dark matter candidate is given by

m2
D ≡ m2

σI
= −2µ2b , µ2b < 0 . (2.33)
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2.3 Scalar Lagrangian

The scalar potential is not the complete picture, we also have to take into account the kinetic terms
in order to write the full scalar Lagrangian

LS = (∂µσ)(∂
µσ)† + (DµΦ)(D

µΦ)† − V0(Φ, σ) , (2.34)

where Dµ is the covariant derivative. For a field with an SU(2)L × U(1)Y symmetry it is defined as

Dµ = ∂µ − ig
τa
2
W a

µ − ig′Y Bµ , (2.35)

where we used the Einstein convention for repeated indices. g is the coupling constant of the SU(2)L

group, g′ the coupling constant of the U(1)Y group (Y is the generator of the U(1)Y group), τa are the
Pauli matrices (Ta = τa/2 are the generators of the SU(2)L group), W a are the SU(2)L gauge fields
and B is the U(1)Y gauge field. The new particle, σ, is an SU(2)L × U(1)Y scalar and so its covariant
derivative is just the partial derivative. As in the SM, the Higgs VEV vh breaks the electroweak gauge
group down to the local U(1) charge,

SU(2)L × U(1)Y → U(1)Q . (2.36)

The numbers of generator of the gauge group goes from 3+1 = 4 to 1. The Goldstone theorem [17] tells
us that three Goldstone bosons are created, the number of broken generators, and become the longitudinal
polarization of the gauge bosons (gauge bosons become massive). The mass generation of the gauge
bosons is induced the Higgs mechanism. To find the masses we collect the bilinear field terms (ofW a

and B) of the scalar potential, dropping all kinetic terms, the ones with two partial derivatives. Only the
Higgs covariant derivative of the doublet Φ contributes

−LS

∣∣
bilinear = −(DµΦ)(D

µΦ)†|bilinear =
v2h
8

[∣∣W 1 − iW 2
∣∣2g2 + ∣∣− gW 3 + g′B

∣∣2] . (2.37)

This expression tells us thatW 1±iW 2 form a particle-antiparticle pair, and that there is a mixing between
W 3 and B. The mass eigenstates are obtained by the following transformations

W± =
W 1 ∓W 2

√
2

,

(
W 3

B

)
=

(
cw sw

−sw cw

)(
Z

A

)
, g =

e

sw
, g′ =

−e
cw

, (2.38)

with cw = cosΘ, sw = sinΘ, where Θ is the Weinberg angle. After inserting these transformation into
Eq. 2.37 we get

−LS

∣∣
bilinear =

v2hg
2

4
W+

µ W
−µ +

v2hg
2

8c2w
ZµZ

µ . (2.39)
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The masses of the gauge bosons are

mW =
vhg

2
≈ 80.379GeV (2.40)

mZ =
vhg

2cw
≈ 91.1876GeV (2.41)

mA = 0 . (2.42)

Notice that the ρ parameter, introduced in Eq. 2.2, is identically 1 at tree-level in this model.

2.4 Lagrangian

In this section I will be making a very short description of the full Lagrangian which will be used in
this thesis in order to fix the notation. It is given by

LCxSM = LGauge + LFermion + LS + LYukawa + LGF + LGhost , (2.43)

where LS is the scalar Lagrangian discussed in the previous section 2.3. The remaining terms are going
to be discussed in the following sections.

2.4.1 Gauge Lagrangian

The Gauge Lagrangian is composed by the kinetic terms of the gauge bosons. It cannot have explicit
mass terms because that would break SU(2)L × U(1)Y symmetry.

LGauge =
1

4
Ga

µνG
aµν +

1

4
W a

µνW
aµν +

1

4
BµνB

µν , (2.44)

whereGa
µν ,W a

µν , Ba
µν are, respectively, the field strength tensors of the gluons fields, the SU(2)L gauge

bosons and the U(1)Y gauge boson. The tensors are defined as

Ga
µν = ∂µG

a
ν − ∂νG

a
µ + fabcGb

µG
c
ν , (2.45)

W a
µν = ∂µW

a
ν − ∂νW

a
µ + ϵabcGb

µG
c
ν , (2.46)

Bµν = ∂µBν − ∂νBµ , (2.47)

where fabc are the SU(3) structure constants and ϵabc are the SU(2) structure constants.

2.4.2 Fermionic Lagrangian

The Fermionic Lagrangian is responsible for the kinetic terms of the fermionic fields as well as the
gauge interactions. It is given by

LFermion =
∑
q

iqγµDµq +
∑
l

ilγµDµl (2.48)
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where q are the quark fields and l are the leptonic fields. The covariant derivative Dµ is not the same
for all the fields and should be changed according to the quantum numbers that each field. The fields
with a bar over them, e.g. q, are called the adjoint fields and they are defined as q = q†γ0 in the Dirac
representation [16]. They are necessary to write Lorentz invariants and Lorentz vectors in the Lagrangian.
There are 6 quarks. They can be organized as up-type quarks p : {u (up), t (top), c (charm)} and down-
type quarks n :{d (down), b (bottom) and s (strange)} quark. It is also useful to group them in flavours
which are {(u, d), (c, s), (t, b)}. There are 6 leptons. They can be grouped into the massive leptons : e
(electron), µ (muon) and τ (tau) and the massless leptons νe (electron neutrino), νµ (muon neutrino) and
ντ (tau neutrino). The leptonic families are {(νe, e), (νµ, µ), (ντ , τ)}.

A central point of the Standard Model is that only left-handed chiral particles are present in the weak
interaction, hence the L in the SU(2)L gauge group. As a consequence, since neutrinos are massless
and only found in left-handed states, we do not need right-handed neutrinos in our Lagrangian3. The
meaning of left and right-handed chiral states comes from the chirality operator γ5 ≡ iγ0γ1γ2γ3, where
γi, i ∈ {0, 1, 2, 3} are the Dirac matrices. The left and right chirality projection operators are defined as

PR =
1 + γ5

2
, PL =

1− γ5

2
, (2.49)

respectively. This operator is the operator that splits the Dirac spinors into components with different
chirality,

Ψ = (PR + PL)Ψ = ΨR +ΨL. (2.50)

In the relativistic limit, chirality has the same handedness as the helicity operator h⃗ = s⃗·p⃗
p2
, that is why

we can use right-handed chirality and helicity interchangeably for neutrinos. In the Standard Model left-
handed and right-handed chiral particle have different interactions and belong to different representations
of the gauge groups. Left-handed particle are grouped into SU(2)L doublets while the right-handed
particles belong in SU(2)L singlets

q =

(
pαL

nαL

)
, pαR, nαR , l =

(
νβL

lβL

)
, lβR , (2.51)

where α ∈ {u, c, t} (β ∈ {e, µ, τ}) is the quark (lepton) flavour (family).
If we try to add a mass term to the Fermionic Lagrangian we run into a problem

−meee = −mee(P
2
R + P 2

L)e = −me(eLeR + eReL) . (2.52)

Therefore terms like eLeR and eReL break the gauge group and so explicit mass terms for the fermions
cannot exist in the Lagrangian.

3This is an approximation of the SM, in reality they have a very small mass so we can have both left and right-handed
neutrinos.
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2.4.3 Yukawa Lagrangian

The Yukawa Lagrangian is responsible for the interactions between the scalar sector and the fermionic
sector. It is also responsible for the fermion masses which are generated when the Higgs field acquires
its VEV. We define the quark and lepton left-handed doublets, respectively, as

Qi =

(
piL

niL

)
, Lβ =

(
νβL

lβL

)
(2.53)

where only left-handed particles are present. The Yukawa Lagrangian is constructed by combining theQi

and Lβ doublets with the Φ doublet in an SU(2)L invariant way. In order to build hypercharge invariant
terms, we couple these terms with their right-handed components. A table with the quantum numbers of
the fermions of the SM is shown below 2.1.

pL pR nL nR lL lR νL

T 3 1
2 0 −1

2 0 −1
2 0 1

2

Y 1
6

2
3

1
6 −1

3 −1
2 −1 −1

2

Q 2
3

2
3 −1

3 −1
3 −1 −1 0

Table 2.1: Quantum numbers of the SM fermions.

All the possible combinations of allowed terms are

LYukawa = −
∑
i,j

QiΓi,jnjRΦ−
∑
i,j

Qi∆i,jpjRΦ̃−
∑
β

yβLβLlβRΦ+ (h.c.) , (2.54)

where Φ̃ = iσ2Φ∗ is the SU(2)Higgs doublet with Y = −1
2 , Γi,j ,∆i,j and yβ are the Yukawa couplings,

h.c. is the hermitian conjugate of the expression that came before. The Higgs VEV will cause the appear-
ance of terms like −vhΓi,jniLnjR + (h.c.) which are the mass terms of the n-quarks, the same happens
for the p-quarks and leptons. The quark Yukawa couplings Γi,j , ∆i,j are, in general, not diagonal. In
the quark sector, we cannot simultaneously diagonalize all Yukawa matrices, this allows for different
flavours to interact via charged bosons through the CKM matrix [16]. The same does not happen in the
leptonic sector, the inexistence of right-handed neutrinos allows us to diagonalize the Yukawa coupling
yβ so that charged-current interactions can only happen inside each leptonic family. When diagonalizing
the mass terms we notice that flavour changing neutral currents (FCNC) vanish at tree level.

2.4.4 Gauge Fixing Lagrangian

The gauge fixing Lagrangian is necessary so that the gauge boson propagators can be properly defined.
For each gauge boson i there is a gauge parameter ξi that is introducedwhich acts as a Lagrangemultiplier.

11
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The gauge parameters are unphysical quantities that can be chosen arbitrarily, and all observables (e.g.
amplitudes, widths, etc) are independent of them. In the Rξ gauge, the Lagrangian is given by

LGF = − 1

2ξG
F 2
G − 1

2ξA
F 2
A − 1

2ξZ
F 2
Z − 1

ξW
FW−FW+ . (2.55)

where

F a
G = ∂µGa

µ , (2.56)

F a
A = ∂µAa

µ , (2.57)

F a
Z = ∂µZa

µ − ξZmZη , (2.58)

F a
W+ = ∂µW+a

µ − ξWmWG , (2.59)

F a
W− = ∂µW−a

µ + ξWmWG
′ . (2.60)

The most common choices for calculations are [18]

• Lorenz gauge ξ = 0

• Feynman-t’Hooft gauge ξ = 1

• Unitary gauge ξ → ∞, which decouple the Goldstone bosons and ghosts from the theory.

2.4.5 Ghost Lagrangian

The gauge fixing procedure introduced in Eq. 2.55 enables us to define the gauge bosons propagators
properly, but it also enables for the propagation of non-transversal modes of the gauge bosons which
indicates that we have too many degrees of freedom [18]. In the path integral formalism these additional
degrees of freedom are cancelled by the appearance of a non trivial Jacobian with the form of a determi-
nant [19]. A way to simplify the calculations is to write the determinant as a functional of the Grassmann
numbers

det(∂µDµ) =

∫
DθDθ exp

{
i

∫
d4x θ(−∂µDµ)θ

}
, (2.61)

where θ are the Grassmann fields (numbers), which anti-commute

θiθj = −θjθi ,

and are scalars under Lorentz transformations. This method transforms the non trivial determinant into
interactions of a new ghost particle θi so that calculations are simplified at the cost of additional Feynman
diagrams. These new ghost fields do not obey the spin-statistics theorem [18] and therefore are unphysical

12
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particles that can only appear as internal lines of Feynman diagrams, and not in external legs. The ghost
Lagrangian is given by

LGhost =
4∑

i=1

[
c+
∂(δFW+)

∂(αi)
+ c−

∂(δFW−)

∂(αi)
+ cZ

∂(δFA)

∂(αi)
+ cA

∂(δFZ)

∂(αi)

]
ci (2.62)

+

8∑
a,b=1

ωa
∂(δF a

G)

∂(βb)
ωb , (2.63)

where c+, c−, cZ , cA and ωa are, respectively, the ghost fields corresponding to theW+,W−, Z, A and
gluons bosons. The αi and βb are a parametrization to find the analytical expression for the variation of
the gauge fixing terms FV . The complete expression is given in Ref. [20]. The ghost Lagrangian is also
necessary to ensure unitarity and gauge independent results. One can think of ghost particles as particles
with negative degrees of freedom that cancel against those introduced during the gauge fixing procedure.
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Chapter 3

Renormalization

3.1 Introduction

The main goal of this chapter is to calculate the next-to-leading order decay width of the Higgs boson
into two dark matter particles. The 1-loop contributions to the decay width will produce infinite results
and we have to perform the renormalization of the process, i.e. to remove the divergent parts in a con-
sistent way. We are going to perform the renormalization in 4 different schemes. The different schemes
originate from the possible ways to renormalize the VEV vσ and mixing angle α. A thorough discussion
on the different schemes is performed in the following sections.

Using ScannerS [14, 15] we can collect a sample of parameter points that fulfil the most relevant
theoretical constraints such as perturbative unitarity, vacuum stability and boundedness from below as
well as the most relevant experimental constraints from colliders such as the measurements of the Higgs
coupling to the remaining SM particles and the bounds coming from direct searches for new scalars.
Finally, dark matter constraints are also included. The DM relic density has to be below the experi-
mental value measured by the Plank experiment [21], the DM-nucleon cross section has to be below the
bounds set by the XENON1T [22] experiment and the invisible width constraints are also taken into ac-
count [23]. All constraints are included in ScannerS via the interface with other high energy physics
codes: HiggsBounds-5 [24] for the Higgs searches and HiggsSignals-2 [25] for the experimental
constraints of the SM-like Higgs boson measurements. For the DM constraints, the relic density and
the nucleon-DM cross section for direct detection are calculated using MicroOMEGAs-5.2.1 [26]. To
simplify the notation we are going to consider that the h1 always coincides with the SM-like Higgs

mh1 = 125.1GeV , (3.1)

and the scalar h2 can be lighter or heavier than the SM-like Higgs.
The Feynman Rules for the CxSM were generated using the Mathematica [27] package FeynRules

[28]. The analytic expression for the amplitudes were generated with the FeynArts [29] package and
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3.2. Leading Order Amplitude Chapter 3. Renormalization

FeynCalc [30] was used to write the the amplitudes as functions of the Passarino-Veltman [31] integrals.
The numerical value of the integrals is obtained from LoopTools [32, 33]

3.2 Leading Order Amplitude

The calculation of a particle width using quantum field theory is a perturbative process. In most cases,
like the one we are studying, the first contribution comes from the tree level amplitude1. If we want to
increase the precision of our calculations we have to calculate the contributions of the next order in per-
turbation theory, which translates into the 1-loop corrections in our case. The leading-order contribution
to the amplitude is straightforward since it only involves scalar fields and it is given by the single diagram

h1

σI

σI

= iALO
h1σIσI

= −i
m2

h1
sin(α)
vσ

≡ iλh1σIσI
.

Figure 3.1: Leading order amplitude iALO
h1σIσI

of the Higgs decay into dark matter particles.

where we defined λh1σIσI
as the trilinear coupling between the h1, σI and σI fields.

3.3 Next-to-leading Order Amplitude

In order to calculate the next-to-leading order (NLO) amplitude we need to calculate the 1-loop cor-
rections, which are composed by the diagrams of the next order in perturbation theory. The 1-loop con-
tributions are not so trivial. If one is tempted to simply add the Feynman diagrams of the following order
one runs into the problem of the appearance of diagrams with internal loops which diverge when we in-
tegrate over the loop momentum. To solve this problem we need to add the corresponding counterterm
Lagrangian which arises from the transformation of the initial Lagrangian (more details in the next sec-
tions). The goal of renormalization is to choose these counterterms such that the divergences that appear
in the 1-loop corrections are cancelled consistently, therefore achieving a finite result for any physical
process. The physical process also needs to be gauge independent, an issue to be discussed later.

We are going to split the 1-loop contributions into eight parts: the vertex correction AVC, the vertex
counterterm ACT and the corrections to the external legs Aleg,i with the corresponding counterterms for
each leg Aleg CT,i, which is depicted in Fig. 3.2.

1This is not always the case, e.g. in the SM the Higgs decay to photons only happens at 1-loop
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h1

σI

σI

(a) AVC

h1

σI

σI

(b) ACT

h1

σI

σI

(c) Aleg, 1

h1

σI

σI

(d) Aleg CT, 1

h1

σI

σI

(e) Aleg, 2

h1

σI

σI

(f) Aleg CT, 2

h1

σI

σI

(g) Aleg, 3

h1

σI

σI

(h) Aleg CT, 3

Figure 3.2: 1-loop corrections to the leading order amplitude. AVC is vertex correction,ACT is the vertex
counterterm, Aleg,i is the leg correction for the leg i and Aleg CT,i is the vertex counterterm for the leg i.
The gray circles indicates the 1-loop corrections while the crossed circles indicate diagrams coming from
the counterterm Lagrangian.

The 1-loop amplitude is the sum of all the 1-loop contribution from the diagrams above

iA1-loop = iAVC + iACT

+ iAleg, 1 + iAleg, 2 + iAleg, 3 (3.2)

+ iAleg CT, 1 + iAleg CT, 2 + iAleg CT, 3 .

We define the next-to-leading order amplitude as2 the sum of the leading order amplitude with the 1-loop
corrections

iANLO = iALO + iA1-loop . (3.3)

Computing the squared absolute value of the NLO amplitude yields

|ANLO|2 ≈ |ALO|2 + 2Re[(ALO)∗A1-loop] (3.4)

where we neglected the term |A1-loop|2 because it is a second order relative to the expansion parameter.
2If there is no tree level amplitude then next-to-leading order amplitude is iA1-loop + iA2-loop and so on.
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3.4 Decay Width

In this section we present the calculation of the decay width. The branching raio is what is measured
experimentally (usually a cross section times a branching ratio) but the decay width is the first step to
calculate the branching ratio. To go from the amplitude to the decay width we have to integrate the
amplitude over the Lorentz invariant phase space

ΓNLO
h1σIσI

= S
(2π)−2

2EσI

∫
|ANLO

h1σIσI
|2δ4(pµh1

− pµσI,1
− pµσI,2

)δ(p2σI,1
−m2

σ)δ(p
2
σI,2

−m2
σ)d

4pσI,1d
4pσI,2

(3.5)

where pµσI ,1
and pµσI ,2

are the four momentum vector for each outgoing particle. After some simplifica-
tions [16] the width is given by

ΓNLO
h1σIσI

= S
pσI

32π2m2
h1

∫
|ANLO

h1σIσI
|2dΩ (3.6)

where pσI is the σI absolute value of the linear momentum in the centre of mass (CM) reference frame,
and

∫
(...)dΩ is the integration over the solid angle. S is the symmetry factor that accounts for indistin-

guishable particles, in our case, S = 1
2! . Using the conservation of momentum pµh1

= pµσI ,1
+ pµσI ,2

and
the energy–momentum relation E2

i = p2i +m2
i for each particle i we can find an expression for pσI , the

magnitude of the momentum in the CM reference frame,

pσI =
1

2

√
m2

h1
− 4m2

σI
, (3.7)

andmh1 > 2mσI for the process to be kinematically allowed. Putting everything together and integrating
over the solid angle (the amplitude does not depend on the angle), we get the full expression for the decay
width

ΓNLO
h1σIσI

=

√
m2

h1
− 4m2

σI

32πm2
h1

|ANLO
h1σIσI

|2 (3.8)

3.5 Regularization

The need for renormalization is not yet explicitly clear. Let us suppose we want to calculate the 1-
loop correction to the Higgs decay into dark matter. The 1-loop diagrams will contain loops. An example
of such a diagram is shown in Fig. 3.3.
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h1

h1

h1
σI

σI

Figure 3.3: Example of a tadpole diagram that contains divergences. This contribution belongs to the
AVC diagrams in Fig. 3.2

The amplitude for the diagram Fig. 3.3 is given by

iA = i

∫
d4kλh1h1σIσI

i

−m2
h1

λh1h1h1

i

k2 −m2
h1

∝ i

∫
d4k

k2 −m2
h1

(3.9)

where we have to integrate over the internal loop momentum. The calculation of this integral is not
trivial because we have a non-trivial metric, dia(1,−1,−1,−1), and therefore we cannot change into
spherical coordinates right away. UsingWick’s rotation [17], that consists of defining the four-momentum
kµE = (k0E , k⃗) = (−ik0, k⃗) which transforms as an Euclidian vector with k2 = −k2E , and with Cauchy
integral theorem3 we can change our metric from Minkowski into Euclidian and, consequently, go to
spherical coordinates. The integral then becomes

i

∫
d4k

k2 −m2
h1

=

∫
dk4E

1

k2E +m2
h1

= 2π2
∫ ∞

0
dkE

k3E
k2E +m2

h1

= ∞ . (3.10)

The integrand diverges as we take kE → ∞, so the integral also diverges and the amplitude, for this
tadpole diagram, is infinite.

The first step of renormalization is regularization. Regularization consists of making the loop in-
tegrals depend on a parameter that controls the infinities, that parameter is called regulator. The aim
of regularization is to isolate the infinities. The method we will be using is dimensional regularization
because it preserves the gauge structure of the theory. We start by going from an integral in 4 dimensions
to a integral in d-dimensions, where d = 4− ε∫

I(k)d4k → (2πµ)4−d

∫
I(k)ddk = (2πµ)4−d

∫
kd−1I(k)dk

∫
dΩd (3.11)

where I(k) is an arbitrary integrand. The infinity is restored when we set the regulator to zero, i.e. ε→ 0.
This procedure consists of using the analytical continuations for each expression in d-integer dimensions

3∮ f(z)dz = 0 if there are no simple poles inside the path.
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that comes out the integral, this is why we are allowed to take the limit d→ 4. The parameter µ ensures
that the dimensionality of the integrand is maintained. The parameter µ is called the renormalization
scale, although the dependence on the renormalization scale is unwanted it is not always possible to
cancel it. We can simplify the integral above using the following expressions [17]∫ ∞

0
dkE

kaE(
k2E +M2

)b =M2
(

a+1
2

−b
)
Γ
(
a+1
2

)
Γ
(
b− a+1

2

)
2Γ(b)

, Ωd =

∫
dΩd =

2πd/2

Γ(d/2)
, (3.12)

where Γ(n) is the factorial analytical continuation, with Γ(n+1) = n! = n×n−1× ...×2×1 , n ∈ Z+.
It is defined as

Γ (x) =

∞∫
0

sx−1e−sds, Γ(n+ 1) = n!, n ∈ N . (3.13)

In this work, we catalogue the internal loop momentum integrals into the Passarino-Veltman (PV)
Integrals [31, 34]. The ones relevant for our calculations are

A0

(
m2

0

)
=

(2πµ)ϵ

iπ2

∫
ddk

1

k2 −m2
0

, (3.14)

B0

(
r210,m

2
0,m

2
1

)
=

(2πµ)ϵ

iπ2

∫
ddk

1∏
i=0

1[
(k + ri)

2 −m2
i

] , (3.15)

C0

(
r210, r

2
12, r

2
20,m

2
0,m

2
1,m

2
2

)
=

(2πµ)ϵ

iπ2

∫
ddk

2∏
i=0

1[
(k + ri)

2 −m2
i

] , (3.16)

where r2ij = (ri − rj)
2 .

Fortunately, the package FeynCalc can perform the catalogation for us and using LoopTools we
can get a numerical value for the the Passarino-Veltman integrals. The numerical results is presented
considering that the divergent part∆

∆ =
2

ε
− γE + ln(4π) , (3.17)

is zero, equivalent to the MS scheme. We can change the settings of LoopTools such that∆ and µ take
other values, this allows us to check if our results are divergences free and if they do not depend on the
renormalization scale. As an example the tadpole amplitude presented in Eq. 3.9 can be written as a
function of the Passarino-Veltman integral as

iA =
i

m2
h1

λh1h1σIσI
λh1h1h1

∫
d4k

1

k2 −m2
h1

PV
=

i

m2
h1

λh1h1σIσI
λh1h1h1

[
iπA(m2

h1
)
]

(3.18)
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3.6 Renormalization

Now that we found a way to regularize the infinities, it is time to start defining the counterterm La-
grangian which will cancel the divergences. The usual procedure is to consider that all of the parameters
of the potential, as well as the fields, are infinite. They are called the bare parameters and bare fields.
The standard notation is a 0 in the subscript (i.e. λ0 or ϕ0). Then we consider that these bare quantities
can each be split into a finite part and counterterm (denoted with a δ). The counterterms are considered
to be infinite. The finite parts defined in this way are dubbed as the renormalized parameters/fields. The
bare parameters are defined as

µσ,0 = µσ + δµσ ,

λσ,0 = λσ + δλσ . (3.19)

The bare fields are defined as

σI,0 =
√
ZσIσI , (3.20)

where
√
ZσI is the field renormalization constant to all orders of perturbation theory. Since we only want

the next to leading order contribution it is useful to expand this renormalization constant as√
ZσI ≈

(
1 +

δZσI

2

)
. (3.21)

We have seen before that in our model we have mixing between the Higgs field and the real component of
σ. For that reason, we have to introduce field renormalization constants that also mixes the counterterms
of the fields because they have the same quantum numbers,(

h1

h2

)
0

=
√
Zh

(
h1

h2

)
. (3.22)

Just as before, we expand this matrix up to first order

√
Zh ≈

(
1+

δZh

2

)
=

 1 +
δZh1h1

2

δZh1h2

2
δZh2h1

2
1 +

δZh2h2

2

 . (3.23)

These shifts do not happen only to the fields present in Eq. 3.19, Eq. 3.20 and Eq. 3.22 but to all
parameters and fields appearing in the Lagrangian. But since we are only interested in a particular decay
we do not have to find the counterterms for all fields and parameters and we will only focus on the scalar
sector. With these rescalings we rewrite the whole Lagrangian, up to first order, as

LCxSM,0 ≈ LCxSM + δLCxSM , (3.24)
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where LCxSM is the tree level Lagrangian which produces the tree-level diagrams as in Fig. 3.3, and
the 1-loop diagrams (gray circles) in Fig. 3.2. The δLCxSM is called the counterterm Lagrangian and is
responsible for generating the counterterm diagrams at 1-loop, which are represented as a crossed circle
in Fig. 3.2.

The input parameters in the theory are chosen, as much as possible, as physical quantities that can be
measured. In the potential, we have 6 independent parameters. The two VEVs are not independent as
they are determined by the minimization condition. The most obvious choice is the masses of the particles
and to complete the number of independent parameters we also choose the VEVs and the mixing angle
α, that can be extracted from physical processes. We chose for input parameters

mh1 ,mh2 ,mσI , vh, vσ, α . (3.25)

which are the only quantities that have to be renormalized. The shift in the DM mass is defined as

m2
σI,0

= m2
σI

+ δm2
σI
, (3.26)

and the mixing angle is shifted as

α0 = α+ δα , (3.27)

while for the VEVs we have

vh,0 = vh + δvh (3.28)

vσ,0 = vσ + δvσ. (3.29)

The mass matrix of the two Higgs bosons is redefined as

D2
0 = D2 + δD2 . (3.30)

although, as we will see in the next section, the counterterm δD2 requires a more careful examination
and is not necessarily diagonal.

3.7 On-shell Renormalization

In the next sections we are going to discuss how to find the parameter counterterms and field renor-
malization constants. In this particular section, we focus on the renormalization of the mass and of the
corresponding field. This is not enough to calculate the counterterms because the minimum conditions
also need to be discussed. The on-shell renormalization scheme aims to calculate the renormalized prop-
agator using the on-shell renormalization conditions. First, it is useful to define the 1-particle irreducible
(1PI) diagrams, also called the self-energies. This is the set of 1 → 1, next to leading order diagrams,
which cannot be split into two by cutting an internal line.
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iΣ(p2) = = + + · · ·1PI

Figure 3.4: One-particle irreducible diagrams, also called self-energies. Set of diagrams that cannot be
split into two by cutting an internal line. Although the self-energies are defined to all order of perturbation
theory we only show, and use in our calculations, up to the leading order contribution.

Next we compute the bare propagator to all orders of perturbation theory by summing all 1PI diagrams
as in

G0(p
2) = + + + · · ·1PI 1PI 1PI

When we write the analytical expression for each diagram it is easy to notice a pattern that allows us to
rewrite the whole sum as a geometric series as

G0(p
2) =

i

p2 −m2
0

+
i

p2 −m2
0

(
iΣ(p2)

i

p2 −m2
0

)
+

i

p2 −m2
0

(
iΣ(p2)

i

p2 −m2
0

)2

+ · · ·

=
i

p2 −m2
0

∞∑
n=0

(
iΣ(p2)

i

p2 −m2
0

)n

=
i

p2 −m2
0 +Σ(p2)

(3.31)

To calculate the renormalized propagator we substitute the bare fields by the renormalized fields in the
definition of the propagator in momentum space

G0(p
2) =

∫
e−ipx ⟨0|T [ϕ0(x)ϕ

∗
0(0)] |0⟩ d4x

=
√
Z

(∫
e−ipx ⟨0|T [ϕ(x)ϕ∗(0)] |0⟩ d4x

)√
Z∗

=
√
ZĜ(p2)

√
Z

∗
, (3.32)

where the Ĝ is the renormalized propagator4 and T is the time order operator. Inverting Eq. 3.32 and
introducing it into Eq. 3.31 yields

Ĝ(p2) =
i

p2 −m2 + Σ̂(p2)
, (3.33)

where Σ̂(p2) is the renormalized self-energy

Σ̂(p2) = Σ(p2)− δm2 +
δZ

2

(
p2 −m2

)
+
(
p2 −m2

) δZ∗

2
. (3.34)

4The hat ∧ is standard notation for renormalized quantities

23



3.7. On-shell Renormalization Chapter 3. Renormalization

The renormalized self-energy is the result of expanding
√
Z
[
(p2 −m2

0 +Σ(p2)
]√

Z
∗ and collecting

all next-to-leading order terms, i.e. everything except p2 −m2, into the new self-energy which we call
renormalized. The procedure for mixing of fields is very similar but instead of having complex number
we have 2× 2 field renormalization constants, mass counterterms and self-energies.

The renormalized propagator is similar to the tree level propagator, apart from the renormalized self-
energy in the denominator. We have the freedom to choose the counterterms, so we will impose the
following three on-shell renormalization conditions [18, 17]

1. Ĝ(p2) has a single pole at p2 = m2.

2. Ĝ(p2) has residue i at p2 = m2.

3. Mixing of the fields vanishes at p2 = m2.

The analysis for one field or for two mixing field is different and will both be discussed next.

3.7.1 Single Field

The first condition imposes that the renormalized self-energy must vanish on-shell

Re
[
Σ̂(m2)

]
= 0 =⇒ δm2 = Re

[
Σ(m2)

]
(3.35)

The second condition imposes that the residue is i at p2 = m2

i = (p2 −m2)
i

p2 −m2 + Σ̂(p2)

∣∣∣∣∣
p2=m2

L’Hôpital
=

i

1 + dΣ̂(p2)
dp2

∣∣∣∣∣
p2=m2

(3.36)

Re
[
dΣ̂(p2)

dp2

] ∣∣∣∣∣
p2=m2

= 0 =⇒ δZ = −Re
[
dΣ(p2)

dp2

] ∣∣∣∣∣
p2=m2

(3.37)

In this case, the third condition does not apply since there is no mixing.
We can see that that these conditions impose that the tree level propagator G(p2) coincide with the

renormalized propagator Ĝ(p2) on a vicinity of p2 = m2. These conditions allow us to renormalize the
mass and the field renormalization constant of the DM particle

δm2
σI

= Re
[
ΣσI (m

2
σI
)
]

(3.38)

δZσI = −Re
[
dΣσI (p

2)

dp2

] ∣∣∣∣∣
p2=m2

σI

(3.39)
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3.7.2 Two Mixing Fields

The case for two mixing fields is not so trivial because the field renormalization constants are not
diagonal. We start by defining the self-energy for two mixing fields as

hi hjiΣhihj
(p2) = 1PI1PI

Figure 3.5: Self-energies for two mixing fields. In the case for mixing fields the incoming particle and
outgoing particle is not always the same.

The next step is to calculate the renormalized propagator. Due the matricial nature of the mixing it is
easier to analyse the the inverse propagator5 instead of the propagator itself. It is given by the symmetric
matrix

iĜ−1
hihj

=
[
1p2 −D2 + Σ̂h(p

2)
]
hihj

, (3.40)

where is 2× 2 renormalized self-energy matrix is given by

Σ̂h(p
2) = Σh(p

2)− δD2 +
δZh

2

(
1p2 −D2

)
+
(
1p2 −D2

) δZ†
h

2
, (3.41)

where we introduced the following notation for the self-energy and renormalized self-energy

Σh(p
2) =

(
Σh1h1(p

2) Σh1h2(p
2)

Σh2h1(p
2) Σh2h2(p

2)

)
and Σ̂h(p

2) =

(
Σ̂h1h1(p

2) Σ̂h1h2(p
2)

Σ̂h2h1(p
2) Σ̂h2h2(p

2)

)
(3.42)

Both Σh(p
2) and Σ̂h(p

2) are symmetric, this imposes δZh = δZ∗
h, i.e. the field renormalized countert-

erms must be real. The counterterm for the diagonal mass matrix δD2 is symmetric and, in general, not
diagonal. The reason is that the tadpoles themselves are going to be shifted during renormalization, so
they will cause also a shift in the mass matrix. This discussion will be the subject of the next section.
When we apply the first renormalization condition we get the same relation as before but only for the
diagonal entries

Re
[
Σ̂hihi

(m2
hi
)
]
= 0 =⇒ δD2

hihi
= Re

[
Σhihi

(m2
hi
)
]
. (3.43)

The second condition yields the same results as for the single field but only for the diagonal field renor-
malization constants

Re
[
dΣ̂hihi

(p2)

dp2

] ∣∣∣∣∣
p2=m2

hi

= 0 =⇒ δZhihi
= −Re

[
dΣhihi

(p2)

dp2

] ∣∣∣∣∣
p2=m2

hi

. (3.44)

5Also called the two point correlation function, up to a minus sign
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The third condition imposes that the off-diagonal elements must vanish on-shell,

Σ̂hihj
(m2

hi
) = 0 , (3.45)

Σ̂hihj
(m2

hj
) = 0 . (3.46)

Therefore the counterterms for the off-diagonal field renormalization constants is

δZhihj
=

2

m2
hi

−m2
hj

[
Σhihj

(m2
hi
)− δD2

hihj

]
, i ̸= j . (3.47)

The complete expression for the field renormalization constants needs the matrix counterterm δD2, which
is yet to be determined. This is the subject of the next section.

3.8 Fleischer-Jegerlehner Tadpole Scheme

As we have seen in the last section, we need the off diagonal terms of the mass counterterm δD2

matrix so that we can write the complete expression for the field renormalization constants. If we do not
impose the tree level minimum conditions Th = Tσ = 0, which we cannot do because all the parameters
are shifted, then the diagonal mass counterterm matrix is not diagonal due to the tadpole equations

D2
0 =

(
m2

h1,0
0

0 m2
h2,0

)
−R0

(Th,0

vh,0
0

0
Tσ,0

vσ,0

)
R−1

0 . (3.48)

In this section we are going to use hi = h1, h2 for the two mixing fields in the mass basis and ϕi = h, σR

for the two mixing fields in the gauge basis. We are also going to neglect all second order contributions.
One can try to go around this issue by making the bare parameters also satisfy the tadpole equations,

in that case we would have Tϕi,0 = 0 making the counterterm mass matrix diagonal. This approach has
a problem because there are non-zero 1-point functions at 1-loop such as

ϕi = iT
1-loop
ϕi (3.49)

disallowing the use of perturbation theory. To recover the condition that allows us to do perturbation
theory at tree level (imposing vanishing tadpoles) we have to force that all 1-point functions must cancel
the corresponding counterterm. That is the main reason we have to be careful with the tadpoles diagrams
contributions.

In this work we use the method developed by Fleischer and Jegerlehner (FJTS) [35, 36], where we
split the bare VEV into the component vtϕi,0

which satisfies the bare tadpole equation and is the proper
renormalized VEV and counterterm, and an additional contribution∆vϕi

which does not have a physical
interpretation yet. So we have that

∂VCxSM,0

∂ϕi,0

∣∣∣
ϕi,0=vtϕi,0

= 0 , vϕi,0 = vtϕi,0
+∆vϕi

= vϕi
+ δvϕi

+∆vϕi
. (3.50)
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To make things clear we write the minimum conditions using the explicit dependence of the tadpole
equations on the VEVs. We start with the component vtϕi,0

which, by definition, makes the tadpole
equations vanish

Tϕi,0(v
t
h,0, v

t
σ,0) = 0 , (3.51)

which can be written explicitly as

−vth,0
(
µ2Φ,0 +

1

2
λΦσ,0

(
vtσ,0
)2

+ λΦ,0

(
vth,0
)2)

= 0 , (3.52)

−vtσ,0
(
µ2b,0 + µ2σ,0 + λσ,0

(
vtσ,0
)2

+
1

2
λΦσ,0

(
vth,0
)2)

= 0 . (3.53)

For bare VEVs vϕi,0 the tadpoles equation do not vanish and there in a contribution to the 1-point function

Tϕi
≡ Tϕi,0(vh,0, vσ,0) ̸= 0 , (3.54)

where Tϕi
is a compact way of writing the total contribution to the one-point functions from the tadpoles

equations. Explicitly the two tadpole equations are written as

Th ≡ −vh,0(µ2Φ,0 +
1

2
λΦσ,0v

2
σ,0 + λΦ,0v

2
h,0) ̸= 0 , (3.55)

Tσ ≡ −vσ,0(µ2b,0 + µ2σ,0 + λσ,0v
2
σ,0 +

1

2
λΦσ,0v

2
h,0) ̸= 0 . (3.56)

Each component of the bare VEV will give a contribution to the non-diagonal mass matrix M2 and to
the diagonal mass matrix D2. We can split each shift to the mass matrices as

D2
0 = D2 + δD2 = D2 + δD2

t +∆D2 , (3.57)

M2
0 =M2 + δM2 =M2 + δM2

t +∆M2 , (3.58)

whereD2
0(M2

0 ) is the bare mass matrix,D2(M2) is the renormalized mass matrix, δD2
t (δM2

t ) is the shift
on the bare mass matrix caused by the vev shift δvϕi

, and ∆D2(∆M2) is the shift on the bare mass
matrix caused by the vev shift ∆vϕi

. The last two contributions δ(...) and ∆(...) are considered to be a
next-to-leading order contribution.

To ensure that there are no 1-point functions we impose that bare tadpoles at vϕi,0 must cancel against
the 1-loop contributions of the tadpoles diagrams. The linear terms in the renormalized field in the po-
tential must vanish

−V linear
CxSM, eff =

∑
ϕi

ϕi

(
Tϕi

+ T
1-loop
ϕi

)
= 0 . (3.59)
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The leading order term ofTϕi
is zero because of Eq. 3.51. This allows us to interpretTϕi

as a counterterm 6

that cancels the 1-loop contributions of the 1-point functions. The conditions Tϕi
= −T 1-loop

ϕi
can be

diagrammatically represented as

ϕi ϕi+ = 0 (3.60)

which means that all tadpoles, along with tadpole counterterms, vanish from the theory 7.
We still have to find a way to determine the additional VEV counterterms ∆vϕ and understand the

impact of this shift. On one hand, after writing explicitly the dependence of the Tϕ on the bare VEVs we
can Taylor expand it around vtϕ,0, up to first order, and get

Tϕi
= Tϕi,0

(
vth,0 +∆vh, v

t
σ,0 +∆vσ

)
(3.61)

= Tϕi,0

(
vth,0, v

t
σ,0

)︸ ︷︷ ︸
=0 (3.51)

+∆vh
∂Tϕi,0

∂vh,0

∣∣∣
∆vϕi=0

+∆vσ
∂Tϕi,0

∂vσ,0

∣∣∣
∆vϕi=0

+O((∆vϕi
)2) (3.62)

≈ ∆vh
∂Tϕi

∂vh
+∆vσ

∂Tϕi

∂vσ
(3.63)

We are allowed to make the last approximation because the shift (∆vϕi
)2 is already of second-order and

only first-order contributions will survive from the tadpole derivative. On the other hand, we have that

∂Tϕi

∂vϕj

= −Mij , (3.64)

where M is the mass matrix. This allows us to relate the∆vϕ and T 1-loop
ϕ in a compact way(

T
1-loop
h

T
1-loop
σR

)
= −

(
Th

Tσ

)
=M2

(
∆vh

∆vσ

)
. (3.65)

The appearance of the mass matrix allows us to convert all the tadpoles and VEVs shifts from the gauge
basis into the mass basis, which is more suited for amplitude calculations. We can rotate the tadpole
counterterm and 1-loop corrections from the gauge basis to the mass basis by using the same rotation
matrix Rα(

T
1-loop
h

T
1-loop
σ

)
= R−1

α

(
T
1-loop
h1

T
1-loop
h2

)
,

(
Th

Tσ

)
= R−1

α

(
Th1

Th2

)
,

(
∆vh

∆vσ

)
≡ R−1

α

(
∆vh1

∆vh2

)
.

(3.66)

6Although we have call it a tadpole counterterm we are not renormalizing the tadpoles, we merely imposing that we are in
the true vacuum.

7This is why we defined the self-energies without the contribution of tadpoles.

28



Chapter 3. Renormalization 3.8. Fleischer-Jegerlehner Tadpole Scheme

Multiplying both sides of Eq. 3.65 by the Rα matrix, which diagonalizes bare mass matrix, yields(
T
1-loop
h1

T
1-loop
h2

)
= −

(
Th1

Th2

)
=

(
m2

h1
∆vh1

m2
h2
∆vh2

)
. (3.67)

Finally we can identify that VEV shifts, in the mass basis, as a connected tadpole diagramwith zero linear
momentum transfer

∆vhi
=

1

m2
h1

T
1-loop
hi

= i
i

−m2
hi

T
1-loop
hi

= i

(
hi

)
(3.68)

We almost have the complete set of physical relations to determine δD2. To get to the final result it is
useful to use some relation between the gauge basis and mass basis in index notation. We have that the
mass fields and gauge field relate as

hm =Rmnϕn, ϕn = R−1
mnhn = RT

mnhn = Rnmhn (3.69)

=⇒ ∂

∂ϕn
(...) =

∂hm
∂ϕn

∂

∂hm
(...) = Rmn

∂

∂hm
(...) . (3.70)

Now we can determine the bare mass matrix counterterm, and therefore∆D2 = D2 −D2 − δD2
t using

Eq. 3.57. The aim is to expand the bare potential LCxSM,0 calculated in the FJTS, and Taylor expand it
around the bare VEV vtϕi,0

8

(D2
0)ij = (R0)im(M2

0 )mn(R
−1
0 )nj (3.71)

= −(R0)im
∂2Lt

CxSM
∂ϕm∂ϕn

(R−1
0 )nj (3.72)

= −(R0)im

〈
∂2Lt

CxSM,0
∂ϕm∂ϕn

+
∂3LCxSM

∂ϕm∂ϕn∂ϕk
∆vϕk

〉
(R−1

0 )nj (3.73)

= (D2
t,0)i,j −RimRmm̃RnñRkk̃RjnR

−1
kl ∆vhl

〈
∂3LCxSM

∂hm̃∂hñ∂hk̃

〉
(3.74)

= (D2
t,0)i,j − δim̃δjñδlk̃∆vhl

〈
∂3LCxSM

∂hm̃∂hñ∂hk̃

〉
(3.75)

= (D2
t,0)i,j −

〈
∂3LCxSM

∂hi∂hj∂hl

〉
∆vhl

(3.76)

= (D2
t,0)i,j − λhihjhl

∆vhl
(3.77)

where δij is the Kronecker delta, λhihjhl
is the trilinear coupling between particles hi, hj and hl, and

Dt,0 is the bare mass matrix with∆vϕi
= 0. Lt

CxSM,0 is the bare Lagrangian with∆vϕi
= 0. Here we see

8Differentiating in vϕi,0 is the same as differentiating in ϕi because the Lagrangian is a function of (vϕi,0 + ϕi).
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what happens to the mass matrix counterterm - it is shifted by the contributions to the tadpole diagrams.
Analysing Eq. 3.48 and Eq. 3.54 we can conclude that D2

t,0 is diagonal

D2
t,0 =

(
m2

h1
0

0 m2
h2

)
︸ ︷︷ ︸

D2

+

(
δm2

h1
0

0 δm2
h2

)
︸ ︷︷ ︸

δD2
t

, (3.78)

and the the VEVs shift∆vhi
create a contribution that can be described by tadpole Feynman diagrams

(D2
0)ij = (D2

t,0)ij + i
∑
hl


hi hj

hl

 . (3.79)

We can now go back to the renormalized self-energy, Eq. 3.41 in the on-shell renormalization scheme
section, and see the effect of the VEV shifts∆vhi

in the FJTS[
Σ̂h(p

2)
]
ij
=
[
Σh(p

2)
]
ij
−
[
δD2

t

]
ij
+ λhihjhl

∆vhl
+ (...) (3.80)

The contribution from the ∆vhl
, in the FJTS, creates additional self-energy like diagrams that can be

included in the definition of the self-energies making the mass matrix counterterm diagonal. We redefine
the self-energies as

iΣtad
hihj

(p2) = iΣhihj
(p2) + iλhihjhl

∆vhl
. (3.81)

where the the subscript tad indicates that we also take the tadpole contribution to the self-energy into
account. Diagrammatically, the self-energies with tadpoles can be drawn as

iΣtad
hihj

(p2) = hi hj hi hj+ hi hj+ + · · ·

Figure 3.6: One-particle irreducible diagrams, also called self-energies. On this definition of self-energy
we include the tadpoles.

The FJTS also affects the trilinear couplings. Consider the definition of a bare trilinear coupling
λhihjhk,0

λhihjhk,0 = ⟨∂i∂j∂kLCxSM,0⟩ (3.82)

=
〈
∂i∂j∂kLt

CxSM,0
〉
+∆vhm ⟨∂i∂j∂k∂mLCxSM⟩ (3.83)

= λhihjhk
+ δλhihjhk

+∆vhmλhihjhkhm . (3.84)
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where ∂i ≡ ∂
∂hi

. We can see that, in the FJTS, the VEV shifts ∆vϕi
represent an additional contribution

to the bare trilinear couplings and create additional tadpole diagrams 9 that have to be included as well

iλhihjhk,0 = hi

hj

hk

+ hi

hj

hk

+
∑
m


hi

hm

hj

hk


(3.85)

In this method, by imposing that we are in the true VEV, all 1-point functions are zero in the renor-
malized potential, and we found a way to determine the counterterm of the mass matrix by redefining the
self-energies. We can apply again the on-shell renormalization conditions stated in the last section, and
find that the field renormalization constants and mass counterterms

δZh1h1 = −Re
[
∂Σtad

h1h1

(
p2
)

∂p2

]
p2=m2

h1

(3.86)

δZh1h2 =
2

m2
h1

−m2
h2

Re
[
Σtad
h1h2

(
m2

h2

)]
(3.87)

δZh2h1 =
2

m2
h2

−m2
h1

Re
[
Σtad
h1h2

(
m2

h1

)]
(3.88)

δZh2h2 = −Re
[
∂Σtad

h2h2

(
p2
)

∂p2

]
p2=m2

h2

(3.89)

δm2
h1

= Re
[
Σtad
h1h1

(
m2

h1

)]
(3.90)

δm2
h2

= Re
[
Σtad
h2h2

(
m2

h2

)]
(3.91)

The mass counterterms are gauge independent by construction in this scheme but the same is not true
in general for the field renormalization constants. This is not a problem because the field renormaliza-
tion constants are not physical observables. Still, care should be taken if they are used to define other
renormalization constants as will be discussed later.

3.9 Leg Corrections and Leg counterterms

Now that we found how to describe the field renormalization in the on-shell scheme we are going to
take a closer look at what happens between the leg corrections and the corresponding leg counterterm.

9Assuming that the quadrilinear coupling λhihjhkhm exists
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We are going to explore the case without mixing, which corresponds to any of the dark matter legs.

iAleg, 3 + iAleg CT, 3 = h1

σI

σI

+ h1

σI

σI

(3.92)

The total amplitude is given by the self-energy like terms on the left and the 2-point function counterterms
of the dark matter particle on the right. It can be written as

iAleg, 3 = iλh1σIσI

i

p2 −m2
σI

Σtad
σIσI

(p2) , (3.93)

iAleg CT, 3 = iλh1σIσI

i

p2 −m2
σI

[
(p2 −m2

σI
)δZσI + δm2

σI

]
. (3.94)

When we apply the on-shell renormalization conditions and substitute in the counterterms we get

iAleg, 3 + iAleg CT, 3 = −λh1σIσI

[
Σtad
σIσI

(p2)− Σtad
σIσI

(m2
σI
)

p2 −m2
σI︸ ︷︷ ︸

≈
dΣtad

σIσI
(p2)

dp2

−
dΣtad

σIσI
(p2)

dp2

∣∣∣
p2=m2

σI

]
(3.95)

p2→m2
σI= 0, . (3.96)

In the on-shell renormalization scheme, the leg corrections and leg counterterms cancel against each other.
This result also applies for the case with mixing so all the leg corrections and counterterms cancel. This
makes the calculations simpler because when we want to calculate the 1-loop correction to a process we
already know that there will be no corrections to the external legs and we can only focus on the structure
of the vertex at 1-loop. This is valid for the on-shell renormalization scheme.

3.10 Renormalization of α in the KOSY Scheme

For the renormalization, we are going to use the method developed by Kanemura, Okada, Senaha and
Yuan [37] which we denote as the KOSY scheme. The method consists of using the basis transformation
Eq. 2.26 to link the two bare bases of fields using the bare rotation matrix(

h1

h2

)
0

= Rα,0

(
h

σR

)
0

, (3.97)
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where Rα,0 is the bare rotation matrix which can be written as

Rα,0 = R(α0) = R(α+ δα) = R(α)R(δα) = R(δα)R(α) . (3.98)

Since we are only interested in next to leading order contributions, we can expand the correction to the
rotation matrix, R(δα), as

R(δα) =

(
cos(δα) sin(δα)
− sin(δα) cos(δα)

)
≈

(
1 δα

−δα 1

)
. (3.99)

Using appropriate base transformations, it is possible to relate the bare mass field and the mass field using
the bare rotation matrix(

h1

h2

)
0

= Rα,0

(
h

σR

)
0

= RδαRα

√
ZϕR

T
αRα

(
h

σR

)
≡
√
ZKOSY
h

(
h1

h2

)
, (3.100)

where
√
Zϕ is a real symmetric matrix that relates the bare field and renormalized field in the gauge

basis. Since
√
Zϕ is symmetric then Rα

√
ZϕR

−1
α is also symmetric and can be parametrized as(

Rα

√
ZϕR

−1
α

)
ii
= 1 +

δZii

2
, (3.101)(

Rα

√
ZϕR

−1
α

)
ij
= δCh2 , i ̸= j , (3.102)

which allow us to write
√
ZKOSY
h as

RδαRα

√
ZϕR

−1
α =

√
ZKOSY
h ≈

(
1 +

δZh1h1
2 δCh2 + δα

δCh2 − δα 1 +
δZh2h2

2

)
. (3.103)

The matrix
√
ZKOSY
h has already been defined in Eq. 3.23, so the two must be equal√

ZKOSY
h =

√
Zh . (3.104)

If we compare both matrices term by term we can see that the off-diagonal of Eq. 3.23 can be arranged
in a way to determine the α counterterm

δα =

(√
ZKOSY
h

)
12

−
(√

ZKOSY
h

)
21

2
=

(√
Zh

)
12

−
(√
Zh

)
21

2
. (3.105)

From last section, we already know how to write the field renormalization constants as a function of the
self-energies with tadpoles. The α counterterm is

δα =
1

2
(
m2

h1
−m2

h2

) Re
[
Σtad
h1h2

(
m2

h1

)
+Σtad

h1h2

(
m2

h2

)]
. (3.106)
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Unfortunately, this method has one major issue. When we calculate the α counterterm using this
method we get a gauge dependent counterterm. This would not be a problem if there were another
counterterm that precisely canceled the gauge dependent coming from δα. This is not the case, the gauge
dependence does not cancel and we have that

dΓ

dξ
≠ 0 , (3.107)

where Γ is the decay width. This result is unphysical. Since the cancellation does not happen we have
to find some way to remove the gauge dependence. To do that we are going to use the Pinch technique
[38]. This method consists of extracting the self-energy like terms of an auxiliary process and using them
to correct the self-energies. This correction cancels the gauge dependence of the self-energy itself and
renders the α counterterm gauge independent as well. More details on how to find those corrections are
given in the Appendix A. We calculate the new self-energies, which we shall call pinched self-energies,
as

iΣ
pinched
hihj

(p2) = iΣtad
hihj

(p2)
∣∣∣
ξ=1

− ig2

32π2c2w

(
p2 −

m2
hi

+m2
hj

2

)
Ohihj

B0(p
2,m2

Z ,m
2
Z) (3.108)

− ig2

16π2

(
p2 −

m2
hi

+m2
hj

2

)
Ohihj

B0(p
2,m2

W ,m
2
W ) .

Note that ξ = 1, i.e. ξW = ξZ = ξA = 1, does not mean that we are in the Feynman gauge, it is just
a way to write the result in comparison with the one obtained if we were choosing that gauge. We have
also introduced the quantity Ohihj

Ohihj
=


cos2(α), hi = hj = h1

sin2(α), hi = hj = h2

− sin(α) cos(α), hi ̸= hj

(3.109)

The pinched self-energies are gauge independent by design, even before setting p2 to the mass or any
other value. This allows for some freedom on choosing p2. To write the counterterm for α we can use
the on-shell approach and use the pinched self-energies in the expression for the counterterm

δαOS =
1

2
(
m2

h1
−m2

h2

) Re
[
Σpinched
h1h2

(
m2

h1

)
+Σpinched

h1h2

(
m2

h2

)]
(3.110)

This choice for the momentum in not unique [39], it is also possible to set the momentum p2 to p⋆2 where
p⋆2 is the average squared mass

p⋆2 =
m2

hi
+m2

hj

2
. (3.111)
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which simplifies the correction Eq. 3.108 to

Σ
pinched
hihj

(p⋆2) = Σtad
hihj

(p⋆2)
∣∣∣
ξ=1

, (3.112)

and so we write the counterterm for α in the p⋆ scheme as

δα⋆ =
1(

m2
h1

−m2
h2

) Re
[
Σtad
h1h2

(
m2

h1
+m2

h2

2

)] ∣∣∣∣∣
ξ=1

. (3.113)

The correction done in Eq. 3.108 to the self-energy, in the on-shell scheme, changes the divergent
structure of the self-energy

Σ
pinched
hihj

(m2
hj
)− Σtad

hihj
(m2

hj
)
∣∣∣
ξ=1

∝ 1

ϵ

(
m2

hi
−m2

hj

)
+ finite parts . (3.114)

This change on the divergent structure is cancelled by the counterterm self-energy so that the correction
does not change the divergent part of the δα.

3.11 Renormalization of vσ scalar VEV

While discussing the cancelation of the 1-point function using the Fleischer-Jegerlehner scheme, we
split the bare VEV into

vϕi
= vϕi

+ δvϕi
+∆vϕi

, (3.115)

vtϕi,0
= vϕi

+ δvϕi
, ϕi = h, σR . (3.116)

We have seen that the ∆vhi
(mass basis) are represented by tadpole diagrams with hi 1-point functions

at 1-loop, which can be relocated into the self-energies and vertices. Nevertheless, we still have not dealt
with the renormalization of the VEVs. For our process, Higgs decay into dark matter (h1 → σIσI ), the
trilinear coupling λh1σIσI

does not depend on vh. Therefore, the vertex counterterm will not depend on
δvh so we do not have to renormalize vh 10, only vσ has to be renormalized. The renormalization of vσ
is done using the process dependent renormalization scheme. This scheme takes an auxiliary process
and imposes that δvσ is such that there is no 1-loop correction, i.e.the leading order and next to leading
order decay widths are the same. In this work we are going to use the decay process h2 → σIσI as our
auxiliary process.

ΓLO
h2σIσI

=ΓNLO
h2σIσI

(3.117)

⇔
∣∣ALO

h2σIσI

∣∣2 = ∣∣ANLO
h2σIσI

∣∣2 (3.118)

⇔
∣∣ALO

h2σIσI

∣∣2 ≈ ∣∣ALO
h2σIσI

∣∣2 + 2Re[(ALO
h2σIσI

)∗A1-loop
h2σIσI

] . (3.119)

10In fact, vh is not usually chosen as an input parameter of the theory. It is usually replaced by theW boson mass.
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The expression for ALO
h2σIσI

is real

h2

σI

σI

= iALO
h2σIσI

= −i
m2

h2
cos(α)
vσ

≡ iλh2σIσI
.

Therefore Eq. 3.119 is equivalent to the vanishing of the real part of A1-loop
h2σIσI

Re
[
A1-loop

h2σIσI

]
= 0 . (3.120)

We can easily solve for δvσ. The final results yields

δvσ = − v2σ
m2

h2
cos(α) Re

[
AVC +ACT∣∣

δvσ=0

+Aleg, 1 +Aleg, 2 +Aleg, 3 +Aleg CT, 1 +Aleg CT, 2 +Aleg CT, 3
]
h2σIσI

. (3.121)

If we take the on-shell approach and set the incoming momentum p2h2
tom2

h2
and both outgoing momenta

tom2
σI

Eq. 3.121 simplifies to

δvOSσ = − v2σ
m2

h2
cos(α) Re

[
AVC +ACT∣∣

δvσ=0

]
. (3.122)

This approach has a drawback, however. When using the process dependent renormalization scheme we
are implicitly adding constraints on the parameter space because for the auxiliary process to be kinemat-
ically viable we have to impose thatmh2 > 2mσI .

To go around this additional constraint we can use the zero external momentum (ZEM) scheme, pro-
posed in [40]. In this scheme, we set the incoming momentum and the outgoing momenta to zero. This
means that the leg corrections and leg counterterms in Eq. 3.121 do not cancel and have to be included.
In the ZEM scheme there is no constraint on the masses. Unfortunately we obtain a gauge dependent
counterterm. In the on-shell approach, the gauge dependency of the vertex correction cancels with the
gauge dependency of the vertex counterterm.That does not happen in the ZEM scheme because the ver-
tex correction is gauge independent by itself and cannot cancel the gauge dependency coming from the
counterterms. The gauge dependence has its origin in the field renormalization constants as previously
discussed. To circumvent this issue we used the pinched self-energies on the definitions of the field
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renormalization constants. So we have that

δvZEMσ = − v2σ
m2

h2
cos(α) Re

[
AVC +ACT∣∣

δvσ=0

+Aleg, 1 +Aleg, 2 +Aleg, 3 +Aleg CT, 1 +Aleg CT, 2 +Aleg CT, 3
]
h2σIσI , p

2
i=0

(3.123)

where the field renormalization constants in ACT and Aleg, CT, i are redefined as11

δZσI → δZpinched
σI

(3.124)

δZhihj
→ δZ

pinched
hihj

(3.125)

This way we get a finite and gauge independent result. This concludes the renormalization of the model.
In the next chapter we discuss the results for the decay width.

11Only for the mixing angle counterterm in the ZEM scheme.
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Chapter 4

Results and Discussion

4.1 Decay widths of h1 → σIσI at NLO

We can now calculate the decay width in the different proposed schemes at NLO. As previously stated
the vertex correctionAVC

h1σIσI
are generated with FeynArts are are written as functions of the Passarino-

Veltman using FeynCalc. The vertex correction are given by the following diagrams... To calculate the
1-loop contribution to the amplitude we also need the vertex counterterm

iACT
h1σIσI

= iλh1σIσI

(
1

2
δZh1h1 + δZσIσI

)
+ iλh2σIσI

(
1

2
δZh2h1

)
+

i

vσ

[
δvσ
vσ

m2
h1
sα − δαm2

h1
cα − δm2

h1
cα

]
(4.1)

We will perform the calculation in four renormalization schemes, two for δα and two for δvσ. For this
reason, we introduce the following notation: the first entry is the renormalization scheme for the mixing
angle and the second entry is the renormalization scheme for δvσ. They are summarized in table 4.1.

δvσ-OS δvσ-ZEM
δα-OS OS-OS OS-ZEM
δα-p⋆ p⋆-OS p⋆-ZEM

Table 4.1: The four possible choices of renormalization schemes: two for the δvσ and two for δα.

To calculate the decay widths we have to use experimental data, which is taken from Particle Data
Group (PDG)[3].
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Parameter Value [GeV] Parameter Value [GeV]
vh 246.22 mt 172.76

mh1 125.1 mb 4.18

mZ 91.1876 mτ 1.77686

mW 80.379

Table 4.2: Experimental values for the Higgs VEV vh and particle masses of the SM. Due to their low
mass we neglected the contribution of light quarks and light fermions. This set of experimental values
is complete in the sense that one can derive the electric coupling, the SU(2)L coupling, Weinberg angle,
etc, can be extrapolated from them using the expressions found in section 2.3.

We are still missing the parameters for the added parts of the scalar potential. Since we hypothesised
this model there is no direct experimental data for these parameters except constraints coming from theory
and indirect experimental bounds. We therefore check if a set of parameters obey the imposed theoretical
and experimental constraints. To that end we are going to perform randoms scans in the parameters space
and these constraints are going to be verified using the C++ package ScannerS. As discussed, from the
theory side it checks for perturbativity, boundedness from below and that the tree level minimum is global
minimum and therefore stable1. The important experimental constraints that ScannerS checks are the
ones related to Higgs data. First, that the SM-like Higgs couplings, h125(≡ h1), to the remaining SM
particles are within the experimental error. Second, that the Higgs searches for a new scalar are taken
into account. Regarding dark matter we consider the bounds from direct detection and that the calculated
relic density of σI is less than the energy density of dark matter ΩDM measured by Planck 2. All plots
were done with a sample of a sample of 100 000 point generated with ScannerS that pass all constraints.
We neglected points with |mh1 −mh2 | < 2 GeV.

Parameter Values Parameter Values
mh2 [30, 1000] GeV vσ [1, 1000] GeV
mσI [10, 62.55] GeV α

[
−π

2 ,
π
2

]
Table 4.3: Allowed parameter space of the model in themσI − mh2 plane. In the left panelmh1 < mh2

and in the right panel mh1 > mh2 . The upper bound of mσI is 62.55 GeV because is required that
mh1 > 2mσI for the process h1 → σIσI to be kinetimatically allowed.

In Fig. 4.1 we plot the allowed parameter space for the dark matter particle massmσI and the mass of
the second Higgs particlemh2 . In both plots, the blue points are those above the threshold,mh2 > 2mσI ,
and the orange points are the ones below the threshold, that ismh2 < 2mσI . On the left panel we are in
the scenario of light Higgs, i.e. mh1 < mh2 . The right panel shows the scenario mh1 > mh2 . We can

1Or a local minimum but stable compared to the age of the Universe
2This means that other particles can contribute to the DM relic density.
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Figure 4.1: Scatter plot of the dark particle massmσI compared to the seconds Higgs massmh2 . In blue
are the points above mass threshold and in orange are the point below mass threshold.

see that the parameter space of mh2 is completely unconstrained while the dark matter mass is between
54 GeV and 62.55 GeV =

mh1
2 . The the heavy Higgs scenario there are two clear regions: one where

themh2 andmσI are tightly correlated and another region wheremh2 spans the all parameter space and
the dark matter particle mass is around 60 GeV. The cause for the shape of this scatter plot, as well as the
non existence of point for α around 0, are the dark matter constraints - these points produce relic densities
too high compared to the experimental value..
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Figure 4.2: Left: histogram for the mixing angle α. Right: histogram of h2Ωcdm

In the left panel of Fig. 4.2 we show the normalized distribution of the mixing angle α. First we
see that the angle is constrained in absolute value to be |α| < 0.3. This is a consequence of imposing
experimental constraints of the coupling with the remaining SM particles. SM particles since these cou-
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plings are all modified by the same factor cosα in the CxSM. Second the annihilation cross section that
is responsible for the DM relic density is proportional to cosα sinα and therefore when α = 0 this cross
section is zero and the relic density becomes too large compared to experimental measured value. In the
right panel we present a histogram for h2Ωcdm. Here we can see that most of the allowed points are below
the relic density. Still we found about 800 points that are below 2σ and above 5σ of the central value.

In the left panel of Fig. 4.3 we show a scatter plot for the scalar VEV vσ as a function of the mixing
angle α. Just as in Fig. 4.2, there is a small interval around α ∼ 0 that is not allowed by experimental
data, in particular by the DM relic density measurement. In the right panel we now show vσ as a function
of the DM particle mass mσI . We conclude from both plots that all the parameter space is accessible in
those variables.

Figure 4.3: Scatter plot of the scalar VEV vσ as a function of mixing angle α. Scatter plot of the scalar
VEV vσ as a function of the DM particle massmσI .

OS-OS

OS-ZEM

p?-OS

p?-ZEM

Figure 4.4: Plot of the next-to-leading order amplitude ΓNLO as a function of ΓLO. The different colours
identify the different renormalization schemes that we can chose.

In Fig. 4.4 we plot the NLO decay width as a function of the LO one. There is a massive overlap

42



Chapter 4. Results and Discussion 4.1. Decay widths of h1 → σIσI at NLO

OS-OS

OS-ZEM

p?-OS

p?-ZEM

mh2
> 2mσI

mh2
< 2mσI

Figure 4.5: Relative difference of the next to leading order decay width. The different colours identify
the different renormalization schemes that we can chose. The marker × identifies point below the mass
threshold, with mh2 < 2mσI , and therefore can only be calculated using the ZEM scheme. The marker
• identifies any other point.

between the points from different renormalization schemes. This happens because the corrections are
quite small in all scheme.

In Fig. 4.5 we now show the relative difference between the NLO and LO width as a function of
the LO one in the different renormalization schemes. There are two types of markers, the marker ×
identifies the points withmh2 < 2mσI and therefore, can only be calculated using the ZEM scheme. The
marker • identifies any other point not obeying this kinematical constraint for the OS process dependent
renormalization scheme for δvσ. Looking at both plots on the left, which are the ones where the OS
scheme was applied for δvσ, we can see that the corrections are quite small: the maximum relative
difference is about 8% above and about 2% below the leading order decay width. For the plots on the
right the corrections are somewhat larger even for points above the mass threshold, i.e. mh2 > 2mσI ,
showing that the ZEM scheme is less stable.

In Fig. 4.6 we show the relative difference between the NLO and LO width as a function of the LO
one, but now only for the points below the mass threshold. We note that the corrections decrease the LO
width, except for a few spurious points slightly above zero. The corrections are larger and can reach 50%
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Figure 4.6: Relative difference of the next to leading order decaywidth for point below themass threshold,
mh2 < 2mσI . The two different colour identify the possible renormalization scheme for δα.

in the low LO width region. As we approach the experimental bound the corrections are well below 10%.
We will now try to understand how these relative corrections vary with the input parameters. We

choose a point, at random, that obeys all experimental constraints imposed by ScannerS and vary one
parameter at a time while keeping the others fixed. We will not impose any theoretical nor experimental
constraints on the new points because we are only interested in the effect that each parameter has in
the NLO correction. The central values for the initial parameter point are given in table 4.4. We have
calculated 500 equally spaced points for each parameter, with the other parameters set at their central
values.

Parameter Value Parameter Value
mh2 576.80 GeV vσ 969.14 GeV
mσI 60.06 GeV α −0.1508

Table 4.4: Input values for the parameters the point used to scan the dependence of each parameter on
the NLO decay width.

In the left panel of Fig. 4.7 we varied the massmh2 in the interval [30, 1000] and plotted the relative
width difference. There are two different behaviours which seem to be determined by the renormalization
of α and two possible choices. Aside from the fact that we see the thresholds of the Passarino-Veltman
functions the corrections grow withmh2 and then decrease for larger values of the mass. The corrections
seem to behave accordingly mainly to the choice of the renormalization for α but for larger masses it is
the renormalization of vσ that takes control. In the right panel of Fig. 4.7 we now plot the relative width
difference as a function of the DM mass mσI which is sampled in the interval [10, 62.55]. The relative
difference is very stable with a slight increase with the mass that reaches a maximum of only 0.1%. We
can also see that, while there is a noticeable difference between the renormalization scheme for α, it is
the scalar VEV renormalization scheme that has the biggest impact on the relative difference.
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Figure 4.7: Relative difference of the width as a function ofmh2 (left) and as a function of DM particle
massmσI (right). We started with a point, that verified all theoretical and experimental constraints, and
varied the mass mh2 in the interval [30, 1000] GeV (left) and varied the DM particle mass mσI in the
interval [10, 62.55] GeV.

Figure 4.8: Relative difference of the width as a function of the mixing angle α (left) and as a function of
vσ (right). We started with a point, that verified all theoretical and experimental, constraints and varied
α in the interval

[
−π

2 ,
π
2

]
(left) and vσ in the interval [10, 1000] GeV (right).

In the left panel of Fig. 4.8 we plot the relative width difference as a function of the mixing angle α
which is sampled in the interval

[
−π

2 ,
π
2

]
. In all range of α variation the relative width difference varies

less than 1% for all renormalization schemes. In the right panel of Fig. 4.8 we plot the relative width
difference as a function of the scalar VEV vσ which is varied in the interval [10, 1000] GeV. If the scalar
VEV vσ is too small the the width difference diverges for all renormalization schemes. These points are
however excluded by the constraints.

We finalise this section with a short discussion of the branching ratio h1 → σIσI at LO and at NLO.
In order to have a rough estimate we divide both the NLO width and the LO width by the total width at
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OS-OS

OS-ZEM

p?-OS

p?-ZEM

mh2
> 2mσI

mh2
< 2mσI

Figure 4.9: Branching ratio for h1 → σIσI at NLO as a function of the one at LO for the four renormal-
ization schemes.

LO, which is what we have available at the moment. This means that we cannot draw any conclusion but
the analysis serves as a rough guide. In Fig. 4.9 we present the branching ratio for h1 → σIσI at NLO as
a function of the one at LO for the four renormalization schemes. It is clear that the corrections are hard
to distinguish in the different schemes, especially in a scan. Points with LO branching ratio above 0.11
were discarded. We can see that close to this threshold at LO some NLO points are above this limit. This
could hint at improving the parameter space excluded in the future.

4.2 Conclusions on the NLO corrections to Higgs Invisible Width

The main conclusion that one can draw about the NLO corrections to the width in this model is
that they are quite stable in all renormalization schemes proposed. The ZEM scheme for the scalar VEV
counterterm produces corrections that, although still acceptable, are somewhat larger than the OS scheme
for the VEV, particularly for small values of the width. Still these are the values that will hardly be
probed in near future. Therefore this small loss is stability is acceptable which allows to probe the entire
parameter space, something that can only be done in the ZEM scheme. Although the Higgs mass in the
case of the light Higgs scenario is almost unconstrained (only the kinematic constraint on the Higgs decay
to DM exists), in the case of the heavy Higgs scenario there are two clear regimes. One regime where
the points are above the mass threshold, and in that case the h2 mass and σI mass are tightly correlated.
Another regime if the points are below the mass threshold and, in that case, there is no correlation between
the two masses. Finally we have compared the branching ratio with its present experimental bound which
is 0.11 and saw that could be more points of the parameter space probed if the NLO width is used.
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Chapter 5

Primordial Gravitational Waves

5.1 Introduction

Apart from the problem of missing dark matter (DM) analysed in chapter 3 for the particular case of
a complex scalar extension of the standard model (CxSM), the SM has another missing key feature: an
out of equilibrium epoch. Sakharov [4], in 1967, published a work with the three condition for baryogen-
esis. The first condition, baryonic number violating processes, is not addressed in this thesis. The second
condition, C and CP violating processes, has already been established in the SM (although in not enough
quantity). C is violated in weak interactions because gauge bosons couple differently with left-handed
or right-handed currents, CP is also violated via the complex phase in the CKM matrix [41, 42, 3] and
can be seen experimentally in Kaon decays into pions [43]. The third condition is the existence of an out
of equilibrium transition in the early Universe that does not allow the matter-antimatter symmetry to be
restored. A strong candidate for that transition is the electroweak phase transition (EWPT). The Higgs
condensation and the consequent breaking of the electroweak (EW) symmetry, SU(2)L×U(1)Y symme-
try, into U(1)Q caused most1 fundamental particles to acquire mass through the VEV vh. Unfortunately,
it has been known for some time that the SM EWPT is a second-order phase transition for Higgs masses
above 66.5 GeV [5] and therefore the third Sakharov condition is not fulfilled. However, it has been
shown by Espinosa, Ramon and Quiros that the extension of the SM by a complex scalar is sufficient to
produce a first-order phase transition strong enough for EW baryogenesis [44]. Similar results hold for
the two Higgs doublet model (2HDM) [45].

In this chapter we will first look for a strong first-order electroweak phase transition and then study
the possible production of primordial gravitational waves (GW) that could be detected in the upcoming
space interferometer LISA [10]. The implications for the detection of GWs in the case of the complex
extension of the SM were first discussed in [46]. To understand where the phase transitions comes from
we have to generalize quantum field theory to T ̸= 0. This is done by modifying the potential so that the

1Not all particles because it is not known how neutrinos masses are generated.
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parameters become temperature dependent using finite temperature quantum field theory2(FTQFT) [47].
The phase transition happens between two minima of the potential by quantum tunnelling, described by
the formalism of the bounce action [48, 47, 49]. The production of gravitational waves is described in
detail in [50]. We assume that we have only non-runway bubbles, that is, that the bubble wall velocities
are below the speed of light. From a computational point of view, this is no easy task. The relation
between the scalar potential parameters and the profile of gravitational waves is populated with numerical
instabilities due to the multidimensional nature of the fields as well as the numerical instabilities in the
calculation of the bounce action and its derivative. These transitions happen at very specific parameter
values. In fact, if we have two very close points in the parameter space, one may produce a FOPT while
the other not but intuitively no difference between them was to be expected. We want to study if these
instabilities are affected by the experimental uncertainties of the SM and, if so, to what extent. We also
want to analyse how codes deal with these uncertainties and if we can improve them somehow. One of
the goals of this chapter is to understand the effect of precision of the measurement of the SM parameters
affects the spectrum of possible primordial gravitational waves. Another interesting point to analyse is
if different patterns of spontaneous symmetry breaking for a specific model can produce different signal
strengths for GWs. In this chapter, we are going to analyse how the different types of symmetry breaking
in the CxSM model can affect the detectability of GWs and how the addition of new particles can affect
the spectrum of GWs. We are going to consider the two phases of CxSM, vσ = 0 and vσ ̸= 0, and also
a model with vσ ̸= 0, Majorana neutrinos and an inverse seesaw mechanism described in [51]. As we
will see, the addition of neutrinos will make a big difference in the detectability of the GWs. We are
going analyse the GW dependence on the SM parameters in this particular model with added Majorana
neutrinos. In the following sections, we are going to define the scenarios that we have for symmetry
breaking and also the effective time-dependent potential. The calculations have already been partially
implemented in a python package named CosmoTransition[52] that we are going to use to calculate
the bounce action.

5.2 Scenarios

As stated before we will discuss two different scenarios. The first scenario is the CxSM with both a
zero and a non-zero scalar VEV σ, and the second is an extension of the CxSM with Majorana neutrinos
with an inverse seesaw mechanism to generate the neutrino masses. The potential is the one described in
section 2.2.

• Scenario 1 - In this scenario will will examine the two possible patterns of symmetry breaking for
the CxSM: one where only the doublet ϕ acquires the usual SM Higgs VEV vh = 246.22 GeV at
T = 0; the other where both the doublet ϕ and real scalar field σR acquire a VEV at T = 0 which
causes a mixing between the SM-like Higgs boson h and σR. In the first case there are two dark

2By finite we mean different of 0.
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matter particles D1 and D2 at T = 0 and the mass difference is determined by the soft breaking
term µ2b in Eq. 2.21. At finite temperature though, the real part of σmay fluctuate around a non zero
VEV, i.e. ϕσ(T ) is not necessarily zero for all temperatures. In the second case the soft breaking
term provides a pseudo-Goldstone mass to the imaginary part of the complex field σ. Again, σR
can change its VEV as temperature changes but it ends up in a state of ϕσ(T = 0) ̸= 0.

• Scenario 2 - This scenario can be seen as an extension of the CxSM with a non-zero singlet VEV,
where right-handed neutrinos were added in the context of an inverse seesaw mechanism, see Ap-
pendix B. The right-handed components create additional interaction but due to their immensely
large mass can be integrated out of the theory3. The addition of the right-handed neutrinos will
completely change the picture of the equivalent scenario in the CxSM regarding the detection of
GWs.

5.3 Finite Temperature Potential

In this section we are going to define effective finite temperature potential. The general expression
is given by

Veff(T ) = V0 + V
(1)

CW +∆V (T ) + Vct , (5.1)

where V0 is the tree-level classical scalar potential that was discussed in detail in section 2.2. V
(1)

CW is the
zero temperature 1-loop Coleman-Weineberg (CW) potential. In the Landau gauge, it is given by

VCW =
∑
i

(−1)Fini
m4

i (ϕα)

64π2

(
log
[
m2

i (ϕα)

Λ2

]
− ci

)
, (5.2)

where Fi = 0(1) for bosons(fermions),mi are the ϕα field dependent masses for the particle i and, ni are
the number of degrees of freedom (d.o.f.) of particle i. Finally, Λ is the MS renormalization constants
and ci are 3

2 for each d.o.f. of scalars, fermions and longitudinally polarised gauge bosons and 1
2 for each

d.o.f. of transversely polarised gauge boson.
The Vct is the counterterm potential that allows for the cancellation of 1-loop divergences. It is

obtained by substituting the bare parameters by the counterterms in the tree-level potential and collecting
all NLO contributions

Vct = δµ2ΦΦ
†Φ+ δλΦ

(
Φ†Φ

)2
+ δµ2σσ

†σ + δλσ

(
σ†σ

)2
+ δλΦσΦ

†Φσ†σ +

(
1

2
δµ2bσ

2 + h.c.
)

(5.3)

Notice that we only perform the renormalization of the potential parameters and leave the fields un-
touched. The counterterms are fixed by imposing that the Coleman-Weinberg potential and counterterm

3They are so massive that their propagator is basically zero at EW scale
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potential should not change the form of the minimum conditions and masses at zero temperature [53, 45]〈
∂Vct
∂hi

〉
=

〈
−
∂V

(1)
CW
∂hi

〉
,

〈
∂2Vct
∂hi∂hj

〉
=

〈
−
∂2V

(1)
CW

∂hi∂hj

〉
. (5.4)

The counterterms for the CxSM with no VEV in the singlet at zero temperature are given by,

δµ2Φ = − 3

2vh

∂V
(1)

CW
∂h

+
1

2

∂2V
(1)

CW
∂h2

, δλΦ =
1

2v3h

∂V
(1)

CW
∂h

− 1

2v2h

∂2V
(1)

CW
∂h2

,

δµ2σ = 0 , δλσ = 0 , (5.5)

δλΦσ = − 2

v2h

∂2V
(1)

CW
∂σ2R

, δµ2b = 0 .

In the case of a non-zero singlet VEV (this also includes scenario 2) we get

δµ2Φ = − 3

2vh

∂V
(1)

CW
∂h

+
1

2

∂2V
(1)

CW
∂h2

+
vσ
2vh

∂2V
(1)

CW
∂h∂σR

, δλΦ =
1

2v3h

∂V
(1)

CW
∂h

− 1

2v2h

∂2V
(1)

CW
∂h2

,

δµ2σ = − 3

2vσ

∂V
(1)

CW
∂σR

+
1

2

∂2V
(1)

CW
∂σ2R

+
vh
2vσ

∂2V
(1)

CW
∂h∂σR

, δλσ =
1

2v3σ

∂V
(1)

CW
∂σR

− 1

2v2σ

∂2V
(1)

CW
∂σ2R

, (5.6)

δλΦσ = − 1

vhvσ

∂2V
(1)

CW
∂h∂σR

, δµ2b = 0 .

The last ingredient is the one-loop finite-temperature corrections which are denoted as∆V (T ) and given
by [47]

∆V (T ) =
T 4

2π2

∑
b

nbJB

[
m2

i (ϕα)

T 2

]
−
∑
f

nfJF

[
m2

i (ϕα)

T 2

] , (5.7)

where nb (nf ) are the bosonic (fermionic) d.o.f. for each particle b (f ) in the summation, andmi are the
field dependent masses. The JB/J functions are the bosonic (fermionic) thermal integrals given by

JB/F

(
y2
)
=

∫ ∞

0
dxx2 log

(
1∓ exp

[
−
√
x2 + y2

])
. (5.8)

The thermal integrals can be approximated at high temperature (y ≪ 1) by

JB
(
y2
)
≈ −π4

45
+
π2

12
y2 +O

(
y3
)
, (5.9)

JF
(
y2
)
≈ 7π4

360
− π2

24
y2 +O

(
y3
)
. (5.10)

The presence of T 2 terms in the thermal expansion suggests the possibility for symmetry restoration at
high temperatures. This leads to the breakdown of perturbation theory in a close vicinity of the critical

50



Chapter 5. Primordial Gravitational Waves 5.4. Gravitational Waves from FOPT

temperature, this issue is addressed by means of an all-order resummation procedure via the addition of
the so-called daisy, or ring diagrams, [54, 55, 56, 57]. In practice, this is done by a correction to the
tree-level potential mass terms given by

µ2α(T ) = µ2α + cαT
2 . (5.11)

Both for scenarios 1 and 2 there are daisy contributions cΦ and cσ of the form

cΦ =
3

16
g2 +

1

16
g′

2
+

1

2
λΦ +

1

12
λΦσ +

1

4
(y2t + y2b + y2c + y2s + y2u + y2d) +

1

12
(y2τ + y2µ + y2e) ,

(5.12)

cσ =
1

3
λσ +

1

6
λΦσ , (5.13)

with g and g′ the EW gauge couplings and yi the Yukawa coupling of the SM particle i. The longitudinal
modes of the gauge bosons also receives thermal corrections

m2
WL

(ϕh;T ) = m2
W (ϕh) +

11

6
g2T 2 , (5.14)

m2
ZL,AL

(ϕh;T ) =
1

2
m2

Z(ϕh) +
11

12
(g2 + g′

2
)T 2 ±D , (5.15)

where
D2 =

(1
2
m2

Z(ϕh) +
11

12
(g2 + g′

2
)T 2
)2

− 11

12
g2g′

2
T 2
(
ϕ2h +

11

3
T 2
)
. (5.16)

In scenario 2, the daisy correction cσ receives an additional contribution coming from the neutrino
Yukawa sector of the form

cσ → cσ +
1

24

3∑
i=1

Y 2
σi
, (5.17)

where Yσ are the Yukawa couplings for each leptonic family i (more details on appendix B) the Yukawa
coupling Yh can be neglected because it is orders of magnitude smaller than Yσ. It is important to notice
that the Coleman-Weinberg potential and longitudinal correction to the gauge bosons depend on the field
VEVs ϕa which are temperature-dependent so that as the potential changes its shape with temperature so
will the stationary points change, i.e. the VEVs, and consequently the Coleman-Weinberg potential.

5.4 Gravitational Waves from FOPT

As we mentioned in the last section, the potential shape will change with the decrease of the tem-
perature and as a consequence the VEVs will also change. Additionally, the potential may have two
or more simultaneous minima for a given temperature. If we look at Eq. 5.11 we see that at very high
temperatures the VEVs are both zero, i.e. ϕh(T = 0) = ϕσ(T = 0) = 0, which is the beginning of
the Universe where the SU(2)L ×UY (1) symmetry is still unbroken. As the temperature drops, another
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more stable minimum may appear. In that case we call the initial minimum the false vacuum and the
stable minimum the true vacuum. If the conditions are favourable, we can go from one minimum to the
other via quantum tunnelling. The transition from the false vacuum to the true vacuum is what we call the
electroweak phase transition. In order to model the phase transition we use the semi-classical approach
[48, 49, 58] of considering the quantum tunnelling from the false vacuum to the true vacuum, also known
in the literature as an instanton or pseudo-particle. Using the semi-classical approach, the tunnelling rate
per volume of the transition from the false vacuum to the true vacuum is given by [59]

Γ(T ) = A(T )e−Ŝ3/T , (5.18)

where Ŝ3/T is the O(3) symmetric Euclidian action given by

Ŝ3(ϕ̂, T ) = 4π

∫ ∞

0
dr r2

1

2

(
dϕ̂
dr

)2

+ Veff(ϕ̂, T )

 , (5.19)

with ϕ̂ being the field VEVs that follow the classical path defined by the Euler-Lagrange equations

d2ϕ̂

dr2
+

2

r

dϕ̂

dr
=
dVeff

dϕ̂
, with boundary conditions : ϕ̂(r)

∣∣
r→∞ = 0,

dϕ̂

dr

∣∣∣
r=0

= 0 . (5.20)

The prefactor A(T ) of the tunnelling rate has an intricate expression, but it can be well approximated as

A(T ) ≃ T 4

(
Ŝ3
2πT

) 3
2

(5.21)

There are three important temperature to characterize the transition. By chronological order, i.e.
decreasing temperature, they are

• Critical Temperature - Tc - The potential has two degenerate minima and, consequently, the tran-
sition from the false vacuum to the true vacuum begins via quantum tunnelling.

• Nucleation Temperature - Tn - There is one bubble nucleated per cosmological horizon. Tn is
the solutions of∫ tn

tc

Γ(T )VH(t) dt =

∫ Tc

Tn

dT

T

Γ(T )

H(T )4
=

∫ Tc

Tn

dT

T

(2ζMPl
T

)4
e−Ŝ3/T = 1 , (5.22)

where ζ = 3 · 10−3 andMPl is the Planck mass. There is an alternative definition for Tn. It is the
temperature at which the tunnelling decay rate matches the Hubble rate [60]

Γ(Tn)

H4(Tn)
= 1 (5.23)

which can be further approximated, in a crude way, as

Ŝ3(Tn)

Tn
∼ 140 . (5.24)
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• Percolation Temperature - T∗ - Temperature at which at least 34% of the false vacuum has tun-
nelled into the true vacuum [59] or, equivalently, the probability of finding a point still in the
false vacuum is 70%. This condition imposes that at the percolation temperature there is a large
connected structure of true vacuum that spans the whole Universe, and that is stable and cannot
collapse back to the false vacuum. This large structure is known as the percolating cluster. The
probability of finding a point in the false vacuum is given by [59]:

P (T ) = e−I(T ), I(T ) =
4πv3b
3

∫ Tc

T

Γ(T ′)dT ′

T ′4H(T ′)

(∫ T ′

T

dT̃

H(T̃ )

)3

(5.25)

To find the percolation temperature one has to solve I(T∗) = 0.34 or, equivalently, P (T∗) = 0.7.

The strength of the phase transition, conventionally denoted as α, is related to the latent heat released
in the FOPT at the bubble percolation temperature T∗. It is defined by the trace anomaly [61, 62] as

α =
1

ργ

[
Vi − Vf − T∗

4

(∂Vi
∂T

−
∂Vf
∂T

)]
(5.26)

whereVi ≡ Veff(ϕ
i
h,σ;T∗) is the value of the effective potential at the false vacuum andVf ≡ Veff(ϕ

f
h,σ;T∗)

is the value of the effective potential at the true vacuum. And ργ is the energy density of a radiation domi-
nated Universe at the bubble percolation epoch written as a function of the effective number of relativistic
degrees of freedom g∗ ≃ 108.75 for scenario 1 , and g∗ = 114 for scenario 24, [63, 64, 65, 50] is given
by

ργ = g∗
π2

30
T 4
∗ (5.27)

For an in-depth study about the strength of the phase transition and the respectiveGWsignal, see Ref. [58].
The second important characteristic of the FOPT is the inverse time-scale of the phase transition

denoted as β divided by the Hubble parameterH , such that

β

H
= T∗

d

dT

(
Ŝ3(T )

T

)∣∣∣∣∣
T∗

, (5.28)

this quantity is relevant for the calculation of the GW profile. The numerical calculation of β
H is partic-

ularly difficult due to numerical instabilities in the calculation of the derivative, for that reason we have
to employ an additional numerical treatment such that we can compute a trustworthy value. This method
will be discussed in detail in Appendix C.

In this chapter, we consider only the case of non-runaway nucleated bubbles, i.e. infra-luminal wall
expansion velocities vb < 1. By following the formalism of Ref. [50] we can estimate the spectrum

4We admite 6 additional right-handed neutrino that contribute 7
8
each.
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of primordial GWs. In the considered scenario the intensity of the GW radiation grows with the ratio
∆vϕ/T∗, where

∆vϕ
T∗

=
|vfϕ − viϕ|

T∗
, ϕ = h, σ (5.29)

is the difference between the VEVs of the initial viϕ (metastable) and final vfϕ (stable) phases divided by
the bubble percolation temperature T∗. One can also use the quantity ∆vϕ/T∗ as a way to measure the
strength of the GWs.

A phase transition is considered to be of first-order if the order parameter vϕc /Tc is of order O(1),
where vϕc are the VEVs calculated at the critical temperature Tc. This sphaleron suppression criterion
is one of the most important conditions for successful EW baryogenesis. In this chapter, we consider
∆vϕ∗ /T∗ as the order parameter instead, not only because we have phases with non-zero EW-singlet
VEV which contribute to the sphaleron suppression, but also because the actual phase transition starts at
Tn < Tc, a temperature for which the bubble nucleation rate exceeds that of the cosmological expansion,
see Eq. 5.23. Nevertheless, this condition does not necessarily lead to the generation of strong and
potentially observable GWs. A sizeable GW signal needs a large bubble wall velocity vb and a substantial
latent heat release which is related to α.

In our analysis we only consider GWs originating only from sound/shock waves (SW) which are gen-
erated by the rapid expansion of the bubble in the early Universe. According to Ref. [50] the shock wave
is the contribution that dominates the peak frequency and peak amplitude of the GW spectrum. Although
there are more sources of gravitational waves such as bubble wall collision [62, 66] and magnetohydro-
dynamic turbulence of the early Universe plasma [50] their contributions were neglected in this thesis.
The primordial GW signals produced in such violent out-of-equilibrium cosmological processes as the
FOPTs are redshifted by the cosmological expansion and look today as a cosmic gravitational stochastic
background. The corresponding power spectrum [63, 64, 67, 68, 69] of the GW is given by

h2ΩGW(f) ≡ h2

ρc

∂ρGW
∂ log f , (5.30)

where ρc is the critical energy density today. The power spectrum can be parameterized for various GW
frequencies f by multiplying the peak amplitude h2Ωpeak

GW by the spectral function as

h2ΩGW = h2Ωpeak
GW

(
4

7

)−7
2
(

f

fpeak

)3 [
1 +

3

4

(
f

fpeak

)]−7
2
, (5.31)

where fpeak is the peak-frequency. Semi-analytic expressions for peak-amplitude and peak-frequency in
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terms of β/H and α can be found in Ref. [50] and can be written as

fpeak = 26× 10−6

(
1

HR

)(
T∗
100

)( g∗
100 GeV

)1
6 Hz , (5.32)

h2Ωpeak
GW = 1.159× 10−7

(
100

g∗

)(
HR
√
cs

)2

K
3
2 for Hτsh =

2√
3

HR
K1/2 < 1 , (5.33)

h2Ωpeak
GW = 1.159× 10−7

(
100

g∗

)(
HR

cs

)2

K2 for Hτsh =
2√
3

HR
K1/2 ≃ 1 , (5.34)

where τsh is the fluid turnover time or the shock formation time, which quantifies the time the GW source
was active. In these expressions, cs = 1/

√
3 is the speed of sound, R is the mean bubble separation,

K =
κα

1 + α
, (5.35)

is the fraction of the kinetic energy in the fluid to the total bubble energy, and

HR =
H

β
(8π)

1
3 max (vb, cs) , (5.36)

where κ is the efficiency factor that can be found in Ref. [70]. The bubble wall velocity has to be rather
large to give rise to detectable GWs spectra, although it is quite challenging to provide a precise estimate
for it [71, 72]. Our analysis is performed using CosmoTransitions [52], considering the case of super-
sonic detonations to maximize the GW peak amplitude where the wall velocity vb is taken to be above
the Chapman-Jouguet limit,

vJ =
1

1 + α

(
cs +

√
α2 + 2

3α

)
. (5.37)

For certain parameter configurations, one also expects sequential phase transition patterns potentially
leading to multi-peak GWs spectra [73, 74, 75, 76]. Although usually only one of those transitions is
strong enough to produce detectable GWs.

5.5 Analysis of Scenario 1

In the first scenario we have two vacuum configuration, the one with zero scalar VEV vσ and the
one with non-zero scalar VEV. They have different renormalization conditions, i.e. Eq. 5.5 and Eq. 5.6.
This scenario can indeed produce a first-order EWPT, as well as primordial gravitational waves, but not
strong enough to be detectable in the upcoming LISA experiment.

In Fig. 5.1 we present the GW signal h2Ωpeak
GW as a function of the peak frequency fpeak in logarithmic

scale. The colour in the scatter plots represents the strength of the phase transition α for the zero scalar
VEV vσ (left panel), and for the non-zero scalar VEV (right panel). The grey curves represent the peak
integrated sensitivity curves (PISCs) for sound waves recently derived in Ref. [77]. To more easily see
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Figure 5.1: The peak-amplitude of the GW signal h2Ωpeak
GW as a function of the peak frequency fpeak in

logarithmic scale for scenario 1 in both vacuum configurations, the left panel corresponds to the zero
scalar VEV vσ while the right panel is the non-zero scalar VEV vσ. The colour bar indicates the strength
of the phase transition α. The PISCs for LISA BBO and DECIGO are represented with dashed, dot-
dashed and dotted lines respectively.

the relation between the detectability of the GWs and α or β/H one should look instead into the signal-
to-noise ratio (SNR) which we will do in section 5.7. In our scans, we found 2173 point for the zero
scalar VEV vσ configuration (left), of which only 1336 survived after applying the constraint of having
a relative error smaller than 25%, for the non-zero scalar VEV vσ configuration (right) we found 375

points, of which only 311 points survived the constraint. The important conclusion here is that all points
are far from producing detectable GW signals. We see that even though we have more points in the
zero VEV configuration, it appears that stronger gravitational waves and naturally produced in the other
vacuum configuration. For this reason, considering that we have a rather low number of points and how
close we are to entering the zone of detectability, we do not discard the possibility of finding detectable
points in the non-zero scalar VEV configuration.

5.6 Analysis of Scenario 2

5.6.1 Gravitational Waves Detection

In scenario 2, the introduction of right-handed neutrinos completely changes the picture of the de-
tectability of gravitational waves. In our scans we found a total of 14390 points, of which only 9613

survived the constraint of having a relative error of 25% or less.
At the time of the phase transition there is a fast change of minima, represented by a fast change of

the vacuum configuration. There are different possibilities for how this transition occurs and in order to
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characterise it we introduce the following notation

(vih, v
i
σ) → (vfh , v

f
σ) , (5.38)

where the first pair of values represent the VEVs before the phase transition and the second pair are the
values after the phase transition. The first term in the pair is the doublet VEV while the second is the real
part of the singlet VEV (the imaginary component of the singlet has always zero VEV).

From all 16 possible phase transition patterns, we found that only 7 are strong enough to give rise to
detectable GWsignals and, of those, the vastmajority of points has one of the 3 patterns (0, 0) → (vfh , v

f
σ),

(0, viσ) → (vfh , v
f
σ) and (vih, v

i
σ) → (vfh , v

f
σ). Although there are mainly 3 transitions, most of the points

in the parameter space that are strong enough to be detectable by the LISA are described by a transition of
the type (0, viσ) → (vfh , v

f
σ). These will be the ones discussed in the following paragraphs. Beforemoving

to the discussion of the results we have to explain in more detail the problems arising with the calculation
of the inverse time-scale β/H of the phase transition. The value of β/H is obtained from Eq. (5.28)
and it is calculated numerically from the values for the bounce action produced by CosmoTransitions.
As can be seen from the expression, the calculation involves the derivative of the bounce action, which
means that Ŝ3 has to be a continuous smooth function in the vicinity of the nucleation temperature. This
is not always the case – the action obtained from CosmoTransitions is, for some points, somewhat
erratic so that we had to devise a method to smoothen out these numerical fluctuations before performing
the derivative. This procedure is described in great detail in Appendix C together with the estimation of
the uncertainty of our method. All results presented, unless otherwise stated, exclude points with an error
above 25%.
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Figure 5.2: The peak-amplitude of the GW signal h2Ωpeak
GW as a function of the peak frequency fpeak

in logarithmic scale. The colour bar indicates the strength of the phase transition α (left panel) and the
inverse time-scale of the phase transition in units of the Hubble parameter H , β/H (right panel). The
PISCs for LISABBO andDECIGO are represented with dashed, dot-dashed and dotted lines respectively.

In Fig. 5.2 we present the GW signal h2Ωpeak
GW as a function of the peak frequency fpeak in logarithmic
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scale. The colour in the scatter plots represents the strength of the phase transition α (left panel), and the
inverse time-scale of the phase transition in units of the Hubble parameter H , β/H (right panel). From
the figure, it is clear that only values of α above about 0.1 may lead to GW signals detectable in the near
future 5. As for the inverse time-scale, the points within LISA reach are in the range 201 ≤ β/H ≤ 252.
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Figure 5.3: Peak-amplitude of the GW signal h2Ωpeak
GW as a function of the peak frequency fpeak in loga-

rithmic scale. The scatter plots present, in the colour bar,∆vh/T∗ (left panel) and∆vσ/T∗ (right panel).

A clearer picture of how the different transitions affect the strength of the GW signals can be observed
in Fig. 5.4. We can see points clustering around large values of either of the quantities ∆vh/T∗ and
∆vσ/T∗, but there is only one region that gives rise to observable GW signals, the one where both are
simultaneously large.
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Figure 5.4: Scatter plot showing∆vh/T∗ vs. ∆vσ/T∗ with the strength of the GW signal h2Ωpeak
GW given

by the colour bar.

5To be precise, we found points within LISA reach in the range 0.11 ≤ α ≤ 0.26.
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Figure 5.5: The peak-amplitude of the GW signal h2Ωpeak
GW as a function of the peak frequency fpeak

in logarithmic scale. The colour bar indicates the difference between the nucleation temperature and
percolation temperature in GeV. The PISCs for LISA BBO and DECIGO are represented with dashed,
dot-dashed and dotted lines respectively.

In Fig. 5.5 we present the GW signal h2Ωpeak
GW as a function of the peak frequency fpeak in logarithmic

scale. The colour in the scatter plots represents the difference, in GeV, between the nucleation temperature
and the percolation temperature. As the Universe cools down, the characteristic temperatures of the phase
transitionmust occur in the specific orderTc > Tn > T∗ The difference between each pair of temperatures
also seems to follow a pattern with Tc − Tn much larger than Tn − T∗. In our results, we also found that
Tn−T∗ is usually a few GeV apart for strong points but that difference vanishes as we go below the PISC
curves. The difference Tc − Tn seems to be of the order of O(20) GeV for strong points, but for points
below the PISC curves it can take any value.

5.6.2 The dependence on the SM parameters

In the studies presented in the literature connecting FOPT with the detection of primordial GWs, the
role of the SM parameters is not usually discussed (to the best of our knowledge). Suppose that a GW is
detected and that it points to a given class of models. One should then ask: what happens if we vary each
of the SM parameters within the experimentally determined error? Will it lead to significant changes in
the characteristics of the GW or not? These are the questions that we will discuss in this section taking,
as a benchmark, only scenario 2 into consideration. Note that this scenario is not only one of the simplest
extensions of the SM but it also features the perk of generating neutrinos masses. Moreover, as we have
seen in the previous section, this is a model that leads to GW signals potentially detectable in the not-
so-distant future. In order to understand the impact of the variation of the SM parameters within their
experimental errors, we have first chosen points that are within LISA reach of detection and with all
SM parameters in their central experimental values, according to the PDG review [3]. We then varied
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each of the fermion masses, from the electron to the top quark, the W and Z bosons’ masses and the
Higgs mass, all within their experimental error at 1σ. The variation of the masses of the SM particles
and the calculation of the uncertainty in the peak of the GW power spectrum are described in detail in
Appendix C. We concluded that using the smoothed version of the bounce action6, the only SM masses
capable of inducing a noticeable variation of the GW peak amplitude and frequency are the top quark
mass and, even more so, the Higgs boson mass.
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Figure 5.6: The dependence of h2Ωpeak
GW on the peak-frequency fpeak and the Higgs boson massmh1 for

fixed dark sector parameters, mh2 = 994.0 GeV, mσI = 599.9 GeV, vσ = 275.6 GeV, α = −0.52,
Mν = 254.1 GeV and µ̃ = 3.0 is shown on the left panel, since the variation is very small we show a
zoomed in version in the right panel. The chosen original FOPT (before parameters’ variation) is char-
acterised by Tc = 80.7 GeV, Tn = 57.5 GeV, T∗ = 54.2 GeV,

(
vih, v

i
σ

)
→
(
vfh , v

f
σ

)
= (0.0, 185.3) →

(236.2, 269.4), α = 0.26, β/H = 253, ∆vh/T∗ = 4.4 and ∆vσ/T∗ = 1.6. The Higgs mass is varied
within the experimental uncertainty, i.e. between 124.96 GeV and 125.24 GeV. The remaining SM pa-
rameters are fixed to their central values. Only the points for which a FOPT took place are shown.

In Fig. 5.6 we present a specific point that could be potentially probed by LISA, in the context of
scenario 2. The corresponding FOPT has been found for the central values of the SM parameters and
for the following dark sector parameters: mh2 = 994.0 GeV, mσI = 599.9 GeV, vσ = 275.6 GeV,
α = −0.52,Mν = 254.1 GeV and µ̃ = 3.0. The variation of the Higgs mass is performed from 124.96

GeV to 125.24 GeV, corresponding to an uncertainty in the Higgs mass of ±1 standard deviation while
keeping the remaining parameters constant. The remaining relevant parameters are shown in the figure
caption. In the left plot, we show the GW peak amplitude as a function of the peak frequency. We can see
that there is a variation of 25% of the position of the peak. In the right plot, we show a zoomed version of
the plot on the left. The conclusion is clear, the variation of only the Higgs mass within its experimental
uncertainty leads to a meaningful variation of the peak amplitude (and also peak frequency) . We found

6If we do not use the smoothed action we get enormously large variations with any variation of any mass, however small.

60



Chapter 5. Primordial Gravitational Waves 5.6. Analysis of Scenario 2

similar results for other points with strong GW signals and therefore the dependence on the Higgs mass
is indeed meaningful and must be considered in this type of numerical studies.
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Figure 5.7: The dependence of h2Ωpeak
GW on the peak-frequency fpeak and the Higgs massmh1 . The Higgs

mass is varied by 1σ around the central value keeping all other parameters fixed. In the left plot, the
original (before variation of any parameters) phase transition was found for the central values of the SM
parameters and for the fixed parameters of the dark sector: mh2 = 994.0 GeV,mσI = 599.9 GeV, vσ =

275.6 GeV, α = −0.52, Mν = 254.1 GeV and µ̃ = 3.0. The original FOPT is characterised by Tc =

80.7 GeV, Tn = 57.5 GeV, T∗ = 54.2 GeV,
(
vih, v

i
σ

)
→
(
vfh , v

f
σ

)
= (0.0, 185.3) → (236.2, 269.4),

α = 0.26, β/H = 253, ∆vh/T∗ = 4.4 and ∆vσ/T∗ = 1.6. In the right plot, the same quantities is
shown but for mh2 = 955.3 GeV, mσI = 858, 6 GeV, vσ = 267.1 GeV, α = 0.11, Mν = 198.3 GeV
and µ̃ = 0.03 yielding the original FOPT characterised by Tc = 103.0 GeV, Tn = 71.6 GeV, T∗ = 67.1

GeV,
(
vih, v

i
σ

)
→
(
vfh , v

f
σ

)
= (0.0, 170.7) → (239.8, 263.3), α = 0.11, β/H = 202, ∆vh/T∗ = 3.6

and∆vσ/T∗ = 1.4.

The SM parameter that has the most impact in the GW peak amplitude, and frequency, is the Higgs
mass. In Fig. 5.7 we show the peak-value of the GW power spectrum h2Ωpeak

GW as a function of the Higgs
massmh1 for two points within LISA reach. Only the points for which a FOPT took place are shown, the
red dots indicate the numerically calculated value for h2Ωpeak

GW and the blue dots are the corresponding
error, see Appendix C for more details. The numerical values for the dark sector parameters are shown
in the caption. For both plots, we vary the Higgs mass between 124.96 GeV and 125.24 GeV, which
corresponds to an uncertainty of±1 standard deviation. There is a variation of the peak by approximately
a factor of 25%, a small variation but still meaningful to the GW profile.

The other SM parameter that can shift the GW peak amplitude, and frequency, is the top quark mass.
In Fig. 5.8 we show the peak-value of the GWpower spectrum h2Ωpeak

GW as a function of the top quarkmass
mt for two points within LISA reach. Again, only the points for which a FOPT took place are shown, the
red dots indicate the numerically calculated value for h2Ωpeak

GW and the blue dots are the corresponding
error, see Appendix C for more details. The numerical values for the dark sector parameters are shown
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Figure 5.8: The dependence of h2Ωpeak
GW on the peak-frequency fpeak and the top quark massmt. The top

quark mass is varied by 1σ around the central value keeping all other parameters fixed. In the left plot,
the original (before parameters’ variation) phase transition was found for the central values of the SM
parameters and for the fixed parameters of the dark sector: mh2 = 994.0 GeV,mσI = 599.9 GeV, vσ =

275.6 GeV, α = −0.52, Mν = 254.1 GeV and µ̃ = 3.0. The original FOPT is characterised by Tc =

80.7 GeV, Tn = 57.5 GeV, T∗ = 54.2 GeV,
(
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)
→
(
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f
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)
= (0.0, 185.3) → (236.2, 269.4),

α = 0.26, β/H = 253, ∆vh/T∗ = 4.4 and ∆vσ/T∗ = 1.6. In the right plot, the same quantities is
shown but for mh2 = 955.3 GeV, mσI = 858, 6 GeV, vσ = 267.1 GeV, α = 0.11, Mν = 198.3 GeV
and µ̃ = 0.03 yielding the original FOPT characterised by Tc = 103.0 GeV, Tn = 71.6 GeV, T∗ = 67.1

GeV,
(
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)
= (0.0, 170.7) → (239.8, 263.3), α = 0.11, β/H = 202, ∆vh/T∗ = 3.6

and∆vσ/T∗ = 1.4.

in the caption. For both plots, we now vary the top quark mass between 172.46 GeV and 173.06 GeV,
which corresponds to an uncertainty in the top quark mass of±1 standard deviation. There is a variation
of the peak by, approximately, a factor of 5%, which is smaller than the variation for the Higgs mass, but
still noticeable in the context of the considered variation in the top quark mass inside its experimental
uncertainty.

In conclusion, if a GW signal is detected, one must be careful in rushing to conclusions about either
the model or its parameters since the experimental uncertainty in the SM parameters can still play a role.
With this in mind, a more precise determination of the Higgs and top quark masses is motivated in light of
a hypothetical discovery of a primordial GW signal and its theoretical interpretations, which is one further
justification for future lepton colliders. We varied the mass of all other particles but found no noticeable
impact in the GW profile. We also found that only strong GWs waves, i.e. above PISC curves, are
influenced by the Higgs and top quark mass, this dependence seems to vanish as we go to weaker GWs
signals.
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5.7 Signal-to-Noise Ratio

So far our discussion has been only around Scenario 2. The main reason behind this choice is the
fact that the right-handed Majorana neutrinos allows for points with a strong FOPT detectable by LISA
experiment. This model also has the advantage of providing an explanation for the neutrino mass which,
in turn, leaves room for explanation of the neutrino oscillation that is observed in experiments. We will
now discuss the two scenarios from the point of view of the detectability by LISA. In particular, we are
going to analyze the signal-to-noise ratio defined as

SNR =

√
T
∫ fmax

fmin

df
[
h2ΩGW(f)

h2ΩSens(f)

]2
, (5.39)

where T is the duration of the acquisition of experimental data (three years on our plots), and h2ΩSens(f)

is the nominal sensitivity for a given LISA configuration, see Ref.[50] for more details.
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Figure 5.9: Scatter plots showing the strength of the phase transitions ∆vh/T∗ in the colour scale for
scenario 1 with zero scalar VEV vσ. On the left panel we show the position of the GW peak as a function
of the peak frequency while, on the right, we show the corresponding SNR for a mission profile of three
years. The colored lines show the SNR that depends on T∗, g∗(T∗) and vb. The dotted curves are contour
lines representing the shock formation time τsh as defined in (5.34). The grey shaded region corresponds
to an acoustic period lasting longer than a Hubble time and it is where the sound waves treatment is most
reliable.

In Fig. 5.9 we present, for scenario 1 with zero scalar VEV vσ, the scatter plots showing the GW
peak position as a function of the strength of the phase transitions∆vh/T∗ in the colour scale (left), and
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the corresponding signal-to-noise (SNR) ratio for the phase transition (right) for a mission profile of 3
years. The colour grade scale is the same on both plots. The right panel was generated using PTPlot
1.0.1 [50]. The colored isolines display the expected values for the SNR that depend on T∗, g∗ and vb
while the dashed black contour lines represent the shock formation time τsh (see Eq. 5.34). The grey
shaded region corresponds to a Universe with an acoustic period lasting longer than a Hubble time and
where the approximation that GWs are produced by sound waves is most reliable [58, 62]. For τsh ≪ 1,
the turbulence effects may become important dumping the acoustic contribution. However, none of our
points feature a too small shock formation time. Using the formula for turbulence effects in Refs. [78, 58]
for an estimate, we realize that it does indeed have very little impact on the peak position on the left panel.
That the actual role of turbulence is not yet very clear [79, 80, 81], and further studies are necessary for
a more reliable calculation of such contribution. The SNR contours on the right panel take into account
the effect of an increasingly short-lasting shock formation at the cost of a decreasing SNR value. As
previously mentioned in section 5.5 we found no points that can be detectable in LISA experiment, this
is why the plot of the right has no points. Several dedicated scans were performed but the trend did not
change, there are so many terms and variables that could be responsible for this outcome so we could not
pinpoint a clear reason for the inexistence of points.
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Figure 5.10: Scatter plots showing the typical strength of the phase transitions ∆vh/T∗ and SNR for
scenario 1 with non-zero scalar VEV vσ.

In Fig. 5.10 we present the same plots as in Fig. 5.9 for scenario 1 but with non-zero scalar VEV
vσ. Just as in the previous case, all points with a FOPT give rise to GW signals not strong enough to
reach LISA sensitivity domain, but in this vacuum configuration the points are much stronger than the
previous case. Due to the small number of points, and consequently a low statistical significance, we do
not discard the possibility of finding points in LISA sensitivity the future.
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Figure 5.11: Scatter plots showing the typical strength of the phase transitions ∆vh/T∗ and SNR for
scenario 2.

Finally in Fig. 5.11 we show similar plots but for scenario 2. Surprisingly, the addition of right-
handed Majorana neutrinos to the CxSM allows us to find detectable points, if not at LISA possibly at
DECIGO or BBO. In fact, we have two points above LISA PISCs which correspond to a point with SNR
of 5 and another with SNR of 20. The only difference in scenario 2 when compared to scenario 1 is
a larger field multiplicity and a modified thermal mass due to the neutrino-Majoron Yukawa coupling
Yσ,i as shown in Eq. 5.17. Further studies of Majoron models in the context of primordial GWs were
performed in Ref. [51] and, more recently, in Ref. [82].

5.8 Conclusions on Gravitational Waves

We have discussed the observation of primordial GWs produced by shock waves originating from a
strong EW FOPT using, as a benchmark model, an extension of the SM by a complex singlet field. Two
different scenarios were analysed: scenario 1 with two vacuum configurations, one with zero scalar VEV
vσ and another with non-zero scalar vσ, the first configuration leads to the SM plus two DM candidates
that only interact via the portal coupling, and the latter to the SM with two Higgs and a dark matter
particle. Finally, scenario 2 where, besides the configuration of scenario 1 with non-zero VEV vσ, three
generations of right-handed neutrinos were added to the model. In this chapter, scenario 2 was then used
to answer some key questions that relate the Higgs potential with the detection of GWs. Our conclusion
is that the variation of the SM particle masses does indeed lead to sizeable differences both in the peak of
the GW power spectrum and in its peak frequency. This is particularly true for the Higgs and top quark
mass, the heaviest quark. The other SM masses have little to no impact on the GWs profile. We should
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underline the point that the variation of the Higgs mass within the measured experimental error can lead to
a variation of around 30%, or less, of the GWpeak density while the top quarkmasses produces a variation
of around 5%, or less. It is then crucial to increase the precision in the Higgs and top mass measurement
if this effect is to be mitigated, which can be seen as a motivation for future lepton collider machines.
Note that this is the conclusion for a particular very simple model and that there could be models with
even more dramatic changes. After concluding that the SM parameters have an impact on the detection
of GWs, it does not come as a surprise that the other parameters from the potential, including the DM
masses and the portal coupling also play a major role. The second question we wanted to answer was
whether the spontaneous symmetry breaking of a given model would lead to differences in the strength of
the GW spectrum. We concluded that indeed it does, the non-zero VEV configuration produces stronger
waves than the zero scalar VEV, although not strong enough to lead to detectable gravitational waves.
Nevertheless, the addition of right-handedMajorana neutrinos to scenario 2, leads to a possibility of GWs
detection. Hence, we believe that our study delivers two clear messages. First, any such study needs to
take into account the precision in the measurements of at least the Higgs mass and the top quark mass.
Second, even the same model, if considered in different phases at zero temperature, can exhibit a very
distinct behaviour in what concerns the detection of GWs originating from strong EW FOPTs. Finally,
we have discussed computational issues on the calculation of β/H , and how not taking proper care of
the derivative of the bounce action can lead to numerical instabilities and, consequently, to unphysical
results.
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Appendix A

Pinch technique

The aim of the pinch technique [38] is to separate in a consistent way the gauge dependence of the self
energy. In this Appendix, we will derive in detail how to reach this goal in the CxSM. Before applying
the pinch technique we will start by considering the self-energy Σhihj

and split it into a gauge dependent
part and a Feynman-t’Hooft part (ξi = 1). We define

Σtad
hihj

= Σtad
hihj

|ξ=1 +Σtad
hihj

|g.d. , (A.1)

where the subscript ξ = 1 indicates the gauge independent Feynman-t’Hooft contribution to the self-
energy and the subscript g.d. indicates that the term is gauge dependent. Without any loss of generality
we decide to split the gauge dependent part around ξ = 1 is - any other choice is possible. First, we
isolate the gauge dependent part of the self-energy as

Σtad
hihj

|g.d. = Σtad
hihj

− Σtad
hihj

|ξ=1 . (A.2)

Explicitly, the gauge dependence of the hi → hj self-energy (diagrams in Fig. A.1) is given by

Σtad
hihj

(p2)|g.d. =λZ
g2Ohihj

64π2cw

[
βZξZ + βZZ

2

(
p4 −m2

hi
m2

hj

)
− αZ

(
p2 −

m2
hi

+m2
hj

2

)]

+λW
g2Ohihj

32π2

[
βWξW + βWW

2

(
p4 −m2

hi
m2

hj

)
− αW

(
p2 −

m2
hi

+m2
hj

2

)]
(A.3)

where α and β are gauge dependent Passarino-Veltmann integrals defined in Eqs. A.8 and A.9.
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Figure A.1: Set of diagrams that contribute to the general hi → hj self-energy, in the Fleischer and
Jegerlehner tadpole scheme.
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Now we are going to discuss the main idea behind the pinch technique. It has been shown that any
element of the scattering matrix S is gauge independent at any order of perturbation theory [17]. If we
computed the scattering amplitude of µµ→ bb1 we would find it to be gauge independent. On the other
hand, we can split the contribution into diagrams with self-energies and other diagrams as

µ

µ

b

b

=
∑
i,j

µ

µ

b

b

1PI
hi hj

+ (...) (A.4)

where the 1PI also include tadpole contributions. The self-energies that we are interested in appear ex-
plicitly in the scattering amplitude. They can be extracted by removing the external fermionic legs and
cutting the hi and hj propagators. The self-energies are gauge dependent and therefore the diagrams
explicitly drawn in Eq. A.4 are gauge dependent as well. Since the left-hand side of Eq. A.4 is gauge
independent then the diagrams not drawn must cancel the gauge dependency of the self-energies. The
goal of the pinch technique is to extract this correction that ensures that the final result is gauge indepen-
dent. At start it is not clear where these corrections come from. There are complex dependencies on the
propagators and it is not very easy to see how these dependencies can cancel.

We start by noticing that the gauge bosons Z andW couplings with fermions are proportional to the
gammamatrices γµ. On the other hand, their propagators have a component proportional to its momentum
kµ. This already allows for a simplification. Suppose we have a fermionic current with an internal
propagator, with momentum p + k and a coupling with a gauge boson with momentum k. Then there
would be a term proportional to

i

/p+ /k −mf
/k =

i
(
/p+ /k −mf − (/p−mf )

)
/p+ /k −mf

= i− i
(/p−mf )

/p+ /k −mf
. (A.5)

We successfully managed to get rid of one propagator, at least partially. The first term of Eq. A.5 is
called the pinched contribution, the second term cannot be simplified further and, for that reason, it will
not have any role on cancelling the gauge dependencies of the self-energies and can be dropped. The
pinch contributions, which have no internal fermionic propagators, can be rewritten with the structure
of a self-energy, just as in Eq. A.4, and contribute to the cancellation of the gauge dependency. This is
the heart of the pinch technique. We will now go through all diagrams contributing to the scattering and
extract the pieces that have the structure of a self-energy. In the end, we sum all pinch contributions and
use them to correct the self-energy, making it gauge independent.

1We can apply the same reasoning to any other fermionic scattering.

69



Appendix A. Pinch technique

Let us define some extremely useful relations for the pinch technique

λi = 1− ξi, i = {W,Z} (W and Z boson) ,
∑
m,n

O2
hmhn

= 1 , (A.6)

where Ohmhn are couplings defined in Eq. 3.109.∑
mOhm,hm

q2 −m2
hm

=
∑
m,n

O2
hm,hn

q2 − mhm +mhn

2
(q2 −mhm)(q

2 −mhn)
, (A.7)

i

16π2
αi ≡

∫
d4k[

k2 −m2
i
] [
k2 − ξim2

i
] , , (A.8)

i

16π2
βij
(
p2
)
≡
∫

d4k[
k2 −m2

i
] [
k2 − ξim2

i
] [

(k + p)2 −m2
j

] . (A.9)

The functions αi and βij can be converted back into the Passarino-Veltmann integrals

A0

(
ξim

2
i

)
= A0(m

2
i )− λim

2
iαi , (A.10)

B0

(
p2, ξim

2
i ,m

2
j
)
= B0

(
p2,m2

i ,m
2
j
)
− λim

2
i βij

(
p2
)
. (A.11)

And finally, these non-trivial integrals are also extremely useful∫
d4k

k2 − 2p · k
[k2 −m2

i ][k
2 − ξim2

i ][(q − k)2 − ξim2
i ]

=
i

16π2

(
αi − (q2 −m2

i )βiξi

)
, (A.12)

∫
d4k

1

[k2 −m2
i ][k

2 − ξim2
i ][(q − k)2 −m2

i ][(q − k)2 − ξim2
i ]

= (A.13)

=
i

16π2
1

λim2

[
βii(q

2)− βiξi(q
2)
]
,

∫
d4k

k2 ± p · k
[k2 −m2

i ][k
2 − ξim2

i ][(q ± k)2 −m2
i ][(q ± k)2 − ξim2

i ]
= (A.14)

=
i

16π2
1

λim2

[
βii(q

2)
[
m2

i −
q2

2

]
− βiξi(q

2)
[
m2

i ξi −
q2

2

]]
.

The pinching aims at isolate all self-energy like terms. It might be a little overwhelming because
there are so many diagrams that can, in principle, contribute. We can considerably narrow the number of
diagrams once we realise that, to get the vertices proportional to the momentum we need gauge bosons
in the diagrams. In fact, all the contributions come from diagrams with gauge bosons V = Z,W and/or
goldstones S = η,G. We also define F as a placeholder for any fermion that can be in that specific
diagram. In the following sections, we explicitly write the contributions of each topology of diagrams
to the pinched self-energy. We organized the contribution by square diagrams, triangle diagrams and leg
diagrams.
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Appendix A. Pinch technique A.1. Squares

A.1 Squares

Πbox,Z
hihj

= λZ
g2

64π2c2w
(q2 −m2

hi
)(q2 −m2

hj
)Ohihj

βZZ(q
2) + βZξZ(q

2)

2
(A.15)

In the table below I specify the contribution from each diagram separately. The red part of the expression
above is the sum over each cell (or the final row All) multiplied the function in each column header.

Diagram Comments βZZ(q
2) βZξZ(q

2)

0
1

2

0
1

2

1

2
-
1

2

All 1/2 1/2

Table A.1: Pinch contributions from the square diagrams with Z bosons and η goldstone.

Πbox,W
hihj

= λW
g2

32π2
(q2 −m2

hi
)(q2 −m2

hj
)Ohihj

βWW (q2) + βWξW (q2)

2
(A.16)

Diagram Comments βWW (q2) βWξW (q2)

0
1

2

0
1

2

1

2
-
1

2

All 1/2 1/2

Table A.2: Pinch contributions from the square diagrams withW bosons and G goldstone.

71



A.2. External Legs Appendix A. Pinch technique

A.2 External Legs

There is an additional factor of 1
2 from the LSZ reduction that has to be taken into account.

Π
legs,Z
hihj

= λZ
−g2

128π2c2w
(2q2 −m2

hi
−m2

hj
)Ohihj

[
1 +

40

9
s4w − 8

3
s2w

]
αZ (A.17)

Diagram Comments αZ

1

2
+

4

9
s4w − 4

6
s2w

1

2
+ 4s4w − 2s2w

All 1 + 40/9s4w − 8/3s2w

Table A.3: Pinch contributions from the leg diagrams with Z bosons and η goldstone.

Π
legs,W
hihj

= λW
−g2

64π2
(2q2 −m2

hi
−m2

hj
)Ohihj

αZ (A.18)

Diagram Comments αW

1

2

1

2

All 1

Table A.4: Pinch contributions from the leg diagrams withW bosons and G goldstone.

A.3 Triangles

Πtri,Z
hihj

= λZ
−g2

128π2
(2q2 −m2

hi
−m2

hj
)Ohihj

[
(q2 + 2m2

Z)βZZ + q2βZξZ +
(
− 2− 40

9
s4w +

8

3
s4w

)
αW

]
(A.19)
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Appendix A. Pinch technique A.3. Triangles

Diagram Comments βZZ(q
2) βZξZ(q

2) αZ

0 0 −4

9
s4w +

2

3
s2w

0 0 −4s4w + 2s2w

Proportional to λZ 0 2q2 − 2ξZm
2
Z −2

Proportional to λZ 2m2
z 0 0

Proportional to λ2Z
q2

2
−m2

z ξZm
2
z −

q2

2
0

Proportional to λZ 2m2
z 0 0

Proportional to λ2Z
q2

2
−m2

z ξZm
2
z −

q2

2
0

All q2 + 2m2
Z q2 −2− 40

9
s4w +

8

3
s4w

Table A.5: Pinch contributions from the triangle diagrams with Z bosons and η goldstone.

Where we compressed all triangles diagrams with V and S in:

Πtri,W
hihj

= λW
−g2

64π2
(2q2 −m2

hi
−m2

hj
)Ohihj

[
(q2 + 2m2

W )βWW + q2βWξW − 2αW

]
(A.20)

73



A.4. Additional Diagrams - from ξi = 1 part of the propagators Appendix A. Pinch technique

Diagram Comments βWW (q2) βWξW (q2) αW

Proportional to λW 0 2q2 − 2ξWm
2
W −2

Proportional to λW q2/2−m2
W ξZm

2
W − q2/2 0

Proportional to λ2W 2m2
W 0 0

Proportional to λW q2/2−m2
W ξZm

2
W − q2/2 0

Proportional to λ2W 2m2
W 0 0

All q2 + 2m2
W q2 −2

Table A.6: Pinch contributions from the triangle diagrams withW bosons and G goldstone.

A.4 Additional Diagrams - from ξi = 1 part of the propagators

These contributions originate from the transformation of B0 functions with a gauge parameter, mul-
tiplied by a mass, as an argument. They come from the following diagrams

Figure A.2: Triangle diagrams with pinch contributions initially not proportional to λi (that can be re-
stored later by the B0 function).

Πadd,Z
hihj

= λZ
g2

128π2c2w
(2q2 −m2

hi
−m2

hj
)Ohihj

2m2
ZβZZ(q

2)

+
−g2

32π2c2w

(
q2 −

m2
hi

+m2
hj

2

)
Ohihj

B0(q
2,m2

Z ,m
2
Z) , (A.21)
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Appendix A. Pinch technique A.5. Pinched self-energy

Πadd,W
hihj

= λW
g2

64π2c2w
(2q2 −m2

hi
−m2

hj
)Ohihj

2m2
WβWW (q2)+

+
−g2

16π2

(
q2 −

m2
hi

+m2
hj

2

)
Ohihj

B0(q
2,m2

W ,m
2
W ) . (A.22)

A.5 Pinched self-energy

Now we can sum over all diagrams such that we get a pinch contribution that has a self-energy like
structure. We obtain the following expression

Π
pinch
hihj

(
p2
)
=Πbox,Z

hihj

(
p2
)
+Π

legs,Z
hihj

(
p2
)
+Πtri,Z

hihj

(
p2
)
+Πadd,Z

hihj

(
p2
)

+Πbox,W
hihj

(
p2
)
+Π

legs,W
hihj

(
p2
)
+Πtri,W

hihj

(
p2
)
+Πadd,W

hihj

(
p2
)

(A.23)

=− λZ
g2Ohihj

64π2cw

[
βZξZ + βZZ

2

(
p4 −m2

hi
m2

hj

)
− αZ

(
p2 −

m2
hi

+m2
hj

2

)]

− λW
g2Ohihj

32π2

[
βWξW + βWW

2

(
p4 −m2

hi
m2

hj

)
− αW

(
p2 −

m2
hi

+m2
hj

2

)]

− g2

32π2c2w

(
p2 −

m2
hi
+m2

hj

2

)
OhihjB0

(
q2;m2

Z,m
2
Z
)

− g2

16π2

(
p2 −

m2
hi
+m2

hj

2

)
OhihjB0

(
p2;m2

W,m
2
W
)
. (A.24)

One can see that the pinched terms Πpinch
hihj

precisely cancel the gauge dependency of Eq. A.3. If we
use the pinched terms to correct the self-energies we get the:

Σ
pinch
hihj

(p2) =Σtad
hihj

(p2) + Π
pinch
hihj

(
p2
)

(A.25)

=Σhihj
(p2)|ξi=1

+
−g2

32π2c2W

(
p2 −

m2
hi
+m2

hj

2

)
OhihjB0

(
q2,m2

Z,m
2
Z
)

+
−g2

16π2

(
p2 −

m2
hi
+m2

hj

2

)
OhihjB0

(
p2,m2

W,m
2
W
)
. (A.26)

which is in fact gauge independent.
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Appendix B

Right-Handed Neutrinos

In scenario 2 we added two right-handed neutrinosNR and S to each fermionic family (in the frame-
work of the CxSM model) to trigger an inverse seesaw mechanism [83] which naturally generates the
light left-handed neutrinos present in the SM. In this case the neutrinos ν (from the SM), NR and S are
considered to be Majorana neutrinos, i.e. they are their own anti-particles (CP-conjugates)

ψ = ψc ≡ −iγ2ψ∗ . (B.1)

In general, for Dirac and Majorana neutrinos we have that

(ψc)L = (ψR)
c , (B.2)

(ψc)R = (ψL)
c . (B.3)

Then it is straightforward to show that the left(right)-handed neutrino coincide with the right(left)-handed
anti neutrinos

ψR = (ψL)
c ≡ ψc

L , (B.4)

ψL = (ψR)
c ≡ ψc

R . (B.5)

Therefore, Majorana neutrinos can be written as

ψ = ψL + ψc
L = ψc

R + ψR . (B.6)

Finally, for any neutrino ψ and ϕ we have that

ψLϕR = ϕcRψ
c
L , (B.7)

which can be see from

ψLϕR =
(
ψLϕR

)T
= −ϕTRγT0 ψ∗

L

= − (ϕ∗R)
† γ0 (−iγ2) (−iγ2ψ∗

L) = (−iγ2ϕ∗R)
† γ0 (−iγ2ψ∗

L) (B.8)

= ϕcRψ
c
L .

77



Appendix B. Right-Handed Neutrinos

In scenario 2, we add two right-handed Majorana neutrinos to each fermionic family, see Ref [83] for
more details. The new contribution to the Lagrangian of interest to us is

LCxSM = (...)− YhLβΦ̃NR −MνSc
RNR − 1

2
µ̃Sc

RSRσ + h.c. , (B.9)

where we implicitly sum over fermionic families. Yh is a Yukawa-like coupling, Φ̃ is the Higgs doublet
with opposite hypercharge, Lβ is the leptonic doublet, just as in Eq. 2.53,Mν is a parameter with units of
mass and µ̃ is a dimensionless quantity. Both right-handed neutrinos are sterile (T 3 = Y = 0 =⇒ Q =

0). We could also add a Majorana mass term for NR but that would not change the core of the model
because it could be absorbed by redefining µ̃.

After spontaneous symmetry breaking we have the following mass terms

Lbilinear
CxSM = (...)−YhνL

vh√
2
NR −MνSc

RNR − 1

2
µ̃Sc

RSR
vσ√
2
+ h.c. (B.10)

= (...)−1

2

(
mDνLNR +MνSc

RNR

)
− 1

2
µSc

RSR

−1

2

(
mDN c

Rν
c
L +MνN c

RSR
)
+ h.c. , (B.11)

where in the last step we used Eq. B.7 to split the first two terms, withmD ≡ Yh
vh√
2
, µ ≡ µ̃ vσ√

2
and, for

simplicity, we assumed real Yukawa couplings and no mixing between families. We can write the mass
terms in a compact way and see that there is a mixing between the two neutrinos

Lbilinear
CxSM = (...)− 1

2

(
νL N c

R Sc
R

) 0 mD 0

mD 0 Mν

0 Mν µ


 νcL
NR

SR

 + h.c. . (B.12)

We expect µ to be very small since the Majorana term violates the leptonic number, ∆l = 2. We also
expect the Dirac term to be small since there are upper limits on the SM neutrino masses that only allow
for very small masses. For these reasons we impose a strong hierarchy in the mass parameters

Mν ≫ mD ≫ µ . (B.13)

The masses of the particles are given by the eigenvalues of the mass matrix. The hierarchy allow us to
approximately determine the lightest neutrino mass as

mν1 ≈ µ
m2

D

M2
ν

, (B.14)

which coincides with the SM neutrinos. We also have two Majorana neutrinos with large masses approx-
imately equal to

mν2 ≈Mν +
mD

2
, (B.15)

mν3 ≈Mν −
mD

2
. (B.16)
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Appendix C

Smoothing the action

The value of β/H is given by Eq. (5.28). As can be seen from this expression, the calculation involves
the derivative of the action with respect to the temperature. A possible method to calculate it numeri-
cally is to use the Difference Quotient Method (DQM) with the bounce action numerically computed by
CosmoTransitions as

β

H
= T∗

d

dT

(
Ŝ3(T )

T

)∣∣∣∣∣
T∗

≈ T∗
1

2 ·∆T

((
Ŝ3(T )

T

)∣∣∣∣∣
T=T∗+∆T

−

(
Ŝ3(T )

T

)∣∣∣∣∣
T=T∗−∆T

)
, (C.1)

where ∆T is the small step of the DQM. This method correctly calculates β/H for points with a strong
GW signal, but for weaker points, numerical errors in the calculation of Ŝ3 make the DQMnot completely
reliable. Our solution is to interpolate the action around Tn starting by samplingN = {60 , 75 , 90 , 105}
bounce actions1 inside the interval ranging from max{Tn − 30 GeV, Tn/2}, which should leave enough
room to calculate the percolation temperature, up to Tc − 3 GeV. We do not interpolate exactly up to
Tc to prevent numerical instabilities regarding the existence/location of the minimum. Moreover, for the
calculation of the percolation temperature, T∗, this truncation has a negligible effect since the biggest
contribution comes from the epoch around Tn. The 4 independent samples of N actions are linearly
distributed inside the mentioned interval, in each sample. If we calculate more than 7 bounce actions
then a degree 6 polynomial in T can be fitted that models Ŝ3/T . After this procedure the calculation of
the derivative is trivial. Applying this method to four independent samples of points allows us to calculate
β/H four times. We consider the most correct value for β/H to be the average between all 4 samples.
This allows us to estimate an error ∆(β/H) for our method which we define as the difference between
the biggest β/H and the smallest β/H divided by two,

∆(β/H) =
max{β/H} −min{β/H}

2
. (C.2)

1CosmoTransitions is not always able to calculate all of the N bounce actions. When this happens we do the fit with
whichever points it managed to calculate.
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Appendix C. Smoothing the action

The next question to ask is: which points will we consider as valid when we use this method on the
output of CosmoTransitions? In Fig. C.1 we now present a scatter plot with the GW signal h2Ωpeak

GW
as a function of the peak frequency fpeak for three different levels of constraints set upon the uncertainty
of β/H . On the left panel, a total of 14390 points are shown which are the ones with no restrictions on
∆(β/H), that is, the original set of points before the smoothing procedure is applied. Once we impose
that ∆(β/H) < 0.25 (middle panel) the number of points is reduced to 9613 and if we further restrict
the error ∆(β/H) < 0.1, the number of allowed points is reduced to 3637, that is, less than 26% of the
points remain. In the plots presented in the paper, all points have ∆(β/H) < 0.25. We did not want to
further restrict the error because it could be that we were also losing too many good points.
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Figure C.1: The peak-amplitude for the GW signal h2Ωpeak
GW as a function of the peak frequency fpeak in

logarithmic scale. The scatter plots present, in the colour bar, the strength of the phase transition α. In
the left plot, there are no restrictions related to the calculation of β/H , in the middle plot only points with
∆(β/H) < 0.25 are accepted, and in the right panel only points with∆(β/H) < 0.1 are accepted.

Our method has another benefit, the interpolation of the bounce action provides us with an approxi-
mate analytical expression for Ŝ3/T which, in turn, gives us an approximate analytical expression for the
tunnelling rate Γ(T ). This allows us to calculate the nucleation temperature and percolation temperature
with great precision and because we have 4 samples we can also estimate the error associated with our
calculation of the characteristic temperatures.
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