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"It always seems impossible until it´s done."

- Nelson Mandela

"Courage doesn’t always roar...Sometimes it’s the quiet
voice at the end of the day whispering, I will try again
tomorrow."

- Mary Anne Radmacher
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Resumo

As doenças cérebro-cardiovasculares são todas as doenças que afetam o sistema circulatório, ou seja,
o coração e os vasos sanguíneos (artérias, veias e vasos capilares). Segundo o Instituto Nacional de
Saúde Doutor Ricardo Jorge (INSA), as doenças cérebro-cardiovasculares são a maior causa de morte em
Portugal. Ao longo dos últimos anos, foram desenvolvidos diversos projetos de investigação que visam
a promoção da saúde e consciencialização da gravidade deste tipo de problemas. Para além disto, para
que o diagnóstico seja mais precoce, existe uma oferta de análises, com o objetivo de diagnosticar este
tipo de doenças ou possíveis fatores de risco. Em 2019, de acordo com relatórios do Instituto Nacional
de Estatística (INE), as doenças cérebro-cardiovasculares representaram 29.9% dos óbitos registados,
sendo que 9.8% do total de mortes foi devido a AVC e 6.4% devido a doenças isquémicas do coração e
3.8% devido a enfartes agudos do miocárdio. Estes valores são bastante preocupantes e foram o motor
de arranque para a realização deste projeto.

Um dos objetivos deste projeto passa por caracterizar a distribuição espacial e temporal das admissões
hospitalares devido às doenças cérebro-cardiovasculares e os seus fatores de risco. Para além disso, este
projeto visa a deteção e avaliação de um padrão espacial e temporal deste tipo de doenças em Portugal
Continental e identificar os regressores que melhor explicam esta variação espacial e temporal. Para
esta finalidade, o principal interesse é analisar o consumo de recursos hospitalares sob a forma de taxa
de admissão hospitalar. Neste estudo, foram considerados os dados agregados do número de admissões
hospitalares por doenças cérebro-cardiovasculares, por área demográfica (distrito e município) e unidade
temporal (ano). Em paralelo com estes dados, foram analisados dados agregados (à mesma escala terri-
torial e temporal) relativos a características sociodemográficas, acesso a serviços de saúde e fatores de
risco, que foram incluídos como covariáveis nas diversas análises. A nível do distrito considerou-se a
proporção de residentes do sexo masculino, a proporção de residentes com 65 ou mais anos, a taxa de
desemprego, a densidade populacional, a proporção de inscritos em federações e a taxa de mortalidade
por 1000 habitantes devido à diabetes. A nível do município, foram consideradas todas as variáveis
anteriormente mencionadas, exceto a proporção de inscritos em federações. No entanto, foi incluído o
número de hospitais em cada município por 1000 habitantes.

Para detetar e avaliar padrões a nível espacial e temporal, recorreu-se ao mapeamento de doenças
através de modelos bayesianos hierárquicos. Este tipo de modelos tem estado em constante crescimento,
e reconhecimento por parte de estatísticos, por ser uma ferramenta bastante útil para análises espaciais
e espaço-temporais. Como a variável de interesse é o número de admissões hospitalares, a distribuição
subjacente aos dados escolhida foi a Poisson. Toda a inferência estatística foi feita recorrendo ao package
INLA no software R.
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Desde 2010 até 2016, o distrito mais afetado por uma elevada taxa de admissões hospitalares foi
Castelo Branco. Em 2018, o distrito que se destacou foi Bragança, que é também o segundo distrito
com uma taxa de admissão mais elevada em 2012 e 2014 e o terceiro em 2010 e 2016. Para além disso,
com base neste estudo, concluiu-se que, a proporção de residentes do sexo masculino e a proporção de
residentes com 65 ou mais anos são significativas para explicar a variação na taxa de admissões hospi-
talares nos distritos ao longo do tempo. Uma vez que o coeficiente, de ambas as variáveis, é negativo,
é possível concluir que regiões com uma elevada proporção de homens e com uma elevada proporção
de idosos tendem a ter uma baixa taxa de admissões hospitalares. Esta conclusão leva-nos a crer que
as mulheres poderão ir com mais frequência ao hospital, e como tal, representam uma maior taxa de
admissões hospitalares. Posto isto, suspeita-se que o género do paciente possa ser um proxy para um
determinado comportamento face à saúde. Relativamente à proporção de residentes com mais de 65
anos, este resultado não foi o esperado, no entanto a interpretação desta conclusão deverá ser feita com
cuidado, tendo em conta que o número de observações no modelo, ao nível do distrito, é pequeno. Para
além disso, apesar da literatura afirmar que ser homem e ser idoso são fatores de risco para estas doenças,
os resultados deste estudo não são diretamente comparáveis às conclusões dos estudos da literatura, uma
vez que ser fator de risco para a propensão das doenças cérebro-cardiovasculares é diferente de ser fator
de risco para a admissão hospitalar pelo mesmo tipo de doença.

Em relação aos municípios, é no distrito de Castelo Branco que se situam os municípios com maior
taxa de admissão hospitalar desde 2010 até 2016. Em 2018, passam a ser os municípios localizados na
regiãoMédio Tejo que apresentam as taxas de admissão hospitalar mais elevadas. Com base neste estudo,
concluiu-se que, apenas as variáveis taxa de desemprego e proporção de residentes com mais de 65 anos
são significativas para explicar a variação na taxa de admissões hospitalares nos municípios ao longo do
tempo. Deste modo, como os coeficientes são positivos, regiões com uma maior taxa de desemprego e
uma maior proporção de residentes com mais de 65 anos tendem a ter uma maior taxa de admissão por
doenças cérebro-cardiovasculares. O facto de um indivíduo estar desempregado pode gerar situações de
stress, e tendo em conta a literatura, o stress é um fator de risco para este tipo de doença. Por outro
lado, de acordo com a literatura, a idade avançada também é um fator de risco para estas doenças. Estas
conclusões levam-nos a crer que estas variáveis são consideradas fatores de risco tanto para a taxa de
admissão, como para a propensão de doenças cérebro-cardiovasculares, no entanto estas conclusões não
são diretamente comparáveis, tal como foi explicado no caso dos distritos.

No entanto, quando os efeitos aleatórios (espacial, temporal e interação espaço-tempo) não são
considerados, todas as variáveis, exceto a taxa de desemprego, tornam-se significativas para a taxa de
admissão hospital a nível do distrito. Ao nível do município, todas as variáveis são significativas. De
acordo com estes resultados, e com os resultados apresentados nos últimos dois parágrafos, concluiu-
se que não são as próprias variáveis (variáveis não significativas no modelo com efeitos aleatórios e
significativas no modelo sem efeitos aleatórios) que afetam diretamente a evolução da taxa de admissões
hospitalares devido às doenças cérebro-cardiovasculares, mas sim a localização das áreas, caracterizadas
por estes valores, ao longo do tempo. Um exemplo elucidativo deste comportamento, por parte das
variáveis, pode ser dado analisando a taxa de mortalidade devido à diabetes. Uma vez que esta variável
só é significativa quando os efeitos aleatórios não são considerados, conclui-se que não é o facto de ter
diabetes num estado mais avançado (que poderá levar à morte) que se torna um fator de risco para a taxa
de admissão hospitalar por doenças cérebro-cardiovasculares, mas sim o facto deste tipo de diabéticos
viverem em áreas de risco para a taxa de admissão hospitalar por este tipo de doenças. Esta situação é
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retratada quando se considera o facto do acesso aos cuidados de saúde ser mais limitado nas áreas rurais,
e consequentemente, quando os doentes, que vivem nestas regiões, se deslocam ao hospital, apresentam
um estado de saúde mais degradado, o que pode levar à morte. Seguindo esta linha de pensamento, não
se está a descartar a associação entre a diabetes e a propensão para as doenças do aparelho circulatório,
mas sim a ponderar que não é a gravidade da diabetes (aqui representada pela taxa de mortalidade) que
está associada à taxa de admissões hospitalares por doenças cérebro-cardiovasculares, mas sim a zona de
residência dos doentes.

Palavras-chave: Doenças cérebro-cardiovasculares;Mapeamento de doenças;Modelos espaço-temporais;
Modelos bayesianos hirárquicos; INLA.
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Abstract

Cerebro-cardiovascular diseases (CCD) are all diseases that affect the circulatory system, that is, the
heart and blood vessels (arteries, veins and capillary vessels). According to the Instituto Nacional de
Saúde Doutor Ricardo Jorge (INSA), CCD are the biggest cause of death in Portugal. That said, one of the
objectives of this project is to characterise the spatial and temporal distribution of hospital admissions due
to CCD and their risk factors. In addition, this project aims to detect and assess a spatial and temporal pat-
tern of this type of disease inmainland Portugal and identify the regressors that best explain this spatial and
temporal variation. Thus, the hospital admission rate and their risk factors were analysed at spatial (dis-
trict and municipality) and temporal (year) levels by disease mapping using Bayesian hierarchical models.

Based on this study, it can be concluded that regions with a high proportion of men and a high
proportion of older residents tend to have a low hospital admission rate. This conclusion leads us to
suspected that the patient’s gender may be a proxy for a particular health-related behaviour. Regarding
the proportion of residents aged 65 years or over, this result was not as expected, since, considering the
literature, being older is a risk factor for circulatory system diseases. However, the results of this study
should be interpreted with caution because the number of observations in the model at district level is
small.

In addition, it was concluded that municipalities with a high unemployment rate and high proportion
of residents aged 65 or over tend to have a high hospital admission rate for CCD. Considering the liter-
ature, stress and advanced age are risk factors for this type of disease. Furthermore, the findings of this
study and the literature cannot be directly compared, since being a risk factor for the propensity for CCD
is different from being a risk factor for hospital admission.

Regarding the remaining variables under study (non-significant variables in the model with random
effects and significant in the model without random effects), it was concluded that it is not the variables
that directly affect the evolution of the hospital admission rate due to CCD, but rather the location of the
areas characterised by the values of these variables over time.

Keywords: Cerebro-cardiovascular diseases; Disease mapping; Spatio-temporal models; Bayesian hi-
erarchical models; INLA.
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1. Introduction

Cerebro-cardiovascular diseases (CCD) are all those that affect the circulatory system, that is, the
heart and blood vessels (arteries, veins and capillary vessels). According to the Instituto Nacional de
Saúde Doutor Ricardo Jorge (Bourbon et al. (n.d.)), diseases of the circulatory system “may be of various
types, the most concerning being the coronary artery disease (heart arteries) and the brain artery disease”.

According to Ferreira et al. (2016), the cerebro-cardiovascular diseases are the main cause of death in
Portugal. In 2019, the Instituto Nacional de Estatística (INE) advance that the CCD represented 29.9%
of the total number of deaths, being that 9.8% of the total deaths in the country were due to strokes,
6.4% due to isquemic heart diseases and 3.8% due to acute myocardial infarction. These values justify
the prioritisation of CCD in health planning and motivate the analysis of the impact of these diseases on
Portuguese citizens. Furthermore, the best way to prevent these types of diseases is to control or prevent
the associated risk factors, which may be modifiable or non-modifiable (Bourbon et al., n.d., Gulbenkian
Descobrir and Maratona da Saúde, 2016 and Médis, 2018):

Modifiable risk factors:

• Diabetes

• High cholesterol

• Overweight

• Smoking

• Alcoholism

• Stress

• Sedentarism

Non-modifiable risk factors:

• Age (according to the Ferreira et al. (2016) there is a higher incidence in the 65 or over age group)

• Gender (according to Bourbon et al. (n.d.) and Ferreira et al. (2016), in Portugal, the CCD affecting
mostly men)

• Genetics

The initial database provided by the Administração Central do Sistema de Saúde, I.P (ACSS) for
this project had all the hospital admissions (all diseases) for the regions of mainland Portugal for the
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years 2010-2019. The database to be worked on will include only the main coded diagnoses belonging
to the group of CCD according to the 9th revision (ICD-9-CM) for the years between 2010 and 2016
or according to the 10th revision (ICD-10-CM) for the years from 2017 onwards (Pires (2018)). The
aim of this study is to analyse how the number of hospital admissions is distributed in space and time
(spatio-temporal analysis) and to identify which regressors best explain the spatial and temporal variation.
The spatial analysis will take into account districts and municipalities (see the Figure 1.1 below and the
Figure 17 in Attachments, respectively). Thus, the database at district and municipality level is composed
of variables specifying the patient’s area, the number of hospital admissions due to CCD at area level and,
in addition, variables provided by INE, which were considered risk factors for CCD hospital admissions,
were also introduced.

Figure 1.1: Districts of mainland Portugal.

In this type of studies, the regions are not independent, so it is normal that closer regions are more
similar to each other compared to more distant regions and the same is true for years. That said, it is
necessary to consider a possible spatial and/or temporal correlation. As the data are aggregated and
the number of hospital admissions due to CCD (response variable) belongs to a Poisson distribution
(a distribution that belongs to the exponential family), the Generalised Linear Mixed Models (GLMM)
would be a good approach (Cadima (2015), M. Antônia Amaral Turkman and Silva (2000), Dobson
(2002), Kleinschmidt et al. (2001), Oliveira (2018) and Kleinman et al. (2004)). This type of models
allows the incorporation of fixed effects associated with socio-demographic and clinical variables and
random effects that explain spatial and/or temporal influences, characterised by districts/municipalities
and years.
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For this purpose, both classical and Bayesian approaches can be used, however the latter is more flex-
ible and has been more explored in recent times (Bermudez (2021), Lawson (2008) and Juárez (2018)).
Therefore, the Bayesian approach under Integrated Nested Laplace Approximation (INLA) will be used
to analyse the data of this project. According to Lindgren and Rue (2015), this methodology "is designed
for latent Gaussian models, a very wide and flexible class of models ranging from Generalized Linear
Mixed to spatial and spatio-temporal models".

Chapter 2 will describe all the methodologies studied and applied to the data under study. Chapter 3
describes the cleaning of the initial data provided by ACSS, the introduction of the potential risk factors
of INE and finally the set of variables that will be analysed in this project. Furthermore, Chapter 3 will
show the explanatory analysis of the data. Chapter 4 will show the results of applying the methodologies
described in Chapter 2. Finally, Chapter 5 will present the discussion and the main conclusions.
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2. Methods

2.1 Missing data

Missing values are very common in epidemiological studies. Rubin (1976) classified the pattern of
missing values into three categories:

• Missing completely at random (MCAR) - the probability of a value being missing is the same in
all cases, that is, the cause of omission of information is not associated with the data.

• Missing at random (MAR) - the probability of missing information depends on the values of the
observed variables.

• Not missing at random (NMAR) - the values are not omitted at random.

In the case of this study, the pattern of missing values is not NMAR since there is no specific reason
why the missing values correspond to the respective municipalities. Furthermore, the pattern of missing
values should not be MCAR, since there is a higher probability that data were not collected in less
developed and less populated municipalities. Thus, the pattern of missing values is assumed to be MAR.

According to Katitas (2019), there are three ways to address these missing values:

• Remove rows containing missing data: If the amount of missing data is very small, this may be
the best option to ensure that the analysis is not biased. However, deleting data means that the user
may not have access to important information, especially if the sample size is small.

• Replace the missing values with the median or mean of the data: As the missing values are
substituted by a constant (mean or median), this option may cause bias since it decreases the
variance.

• Multiple imputation: The observed data/variables distribution is used to estimate plausible values,
which will replace the missing values.

Multiple imputation (MI) was the method chosen to impute missing values from the raw data, as this
method has become a very popular tool in replacing missing values in recent years.

2.1.1 Multiple Imputation

Multiple imputation is a method that works on databases with incomplete data, where missing values
may occur in one or more variables. There are two approaches for imputing multivariate data (Stuart
et al. (2009) and Buuren (2007)):
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• Joint modeling (JM) - assumes that incomplete variables belong to a specific multivariate dis-
tribution (usually a multivariate normal distribution) and consequently imputations are extracted
from their conditional distributions by Markov chain Monte Carlo (MCMC). If the imputed values
do not belong to the same distribution as the non-missing values, they are incorrect and this is the
main problem with this approach.

• Fully conditional specification (FCS), also known as Multivariate Imputation by Chained
Equations (MICE) - impute the missing values using univariate conditional distributions to each
incomplete variable, given all the others. From an initial imputation, this approach extracts
imputations iteratively over the conditional densities.

The MICE was used to impute missing values. According to Buuren and Groothuis-Oudshoorn
(2011), in the multiple imputation there are three steps:

1. Imputation - The imputation process starts with an incomplete dataset, that is, a dataset with
missing values. In this step several imputed versions of the data (m) are created, where the missing
values are replaced by plausible imputed values. Themissing values belong to a specific distribution
and the imputed values are drawn according to this distribution. Thus, these datasets are copies of
the original dataset, but in place of the initial missing values are now the imputed values. In the
example of Figure 2.1, three datasets (< = 3) were created, each with the missing values replaced
by plausible imputed values. Once the imputed values are generated, there is uncertainty on the
actual value of those missing values.

2. Analysis - In this step the analysis of each set of imputed data is performed, and this analysis must
be equal to the analysis that would be performed if the data were complete. Thus, m different
analyses and m different coefficients of determination result from this step, since each data set has
different imputed values.

3. Pooling - In this final step, them results found in previous step are pooled to obtain the final analysis
of data.

All this steps are represented in the figure below, based on Buuren and Groothuis-Oudshoorn (2011).

Figure 2.1: Steps of multiple imputation.

More details on the multiple imputation procedure are in Buuren and Groothuis-Oudshoorn (2011)
and Buuren (2007).
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2.1.1.1 Tools for Multiple imputation

In software R, the package used for multiple imputation is mice. For the first step, the function used
to generate imputed values from a distribution specifically modelled for each missing entry is mice().
This function has several parameters:

1. data is the dataset with missing values;

2. m is the number of complete datasets created;

3. maxit is the number of iterations. According to Buuren and Groothuis-Oudshoorn (2011) to obtain
the good values, in general, it is only necessary to select between 10 and 20 iterations;

4. method is the method used to generate values;

5. predictorMatrix is the predictor matrix. The rows of the predictor matrix represent the incom-
plete variables and the columns represent all the variables in the original dataset. This matrix is
filled with 0 and 1, and as mentioned in Buuren and Groothuis-Oudshoorn (2011), "the value 1
indicates that a column variable is used as a predictor to impute the row variable, and a 0 means
that it is not used. The diagonal is 0, since a variable cannot predict itself."

Firstly, themice() function is used onlywith argumentdata and then is extracted thepredictorMatrix
of this function. After the extraction of the predictor matrix, the mice() function is used again but now
the parameters m, maxit, method and predictorMatrix are included in order to create imputations.
The imputed values are stored in an object of class mids - multiply imputed dataset. An important step in
MI is to assess whether the imputed values are plausible. The imputations should be values that could have
been obtained if they not were missing. To ensure that the final dataset is plausible, the imputed values
that are clearly impossible (for example negative counts for this specified study) should not be included
in the domain of the plausible values which could be used in MI. The command scripplot(imp) is
useful to visualize the observed and imputed values and to conclude if is necessary to filter the domain
of imputations. Finally, through function complete() it is possible to see the datasets with imputed and
observed values, that is, the complete datasets.

In the second step, the analysis of m datasets is made through the command with(). The coefficient
of determination '2 is calculated through function pool.r.squared(). The results of this step are
stored in class mira - multiply imputed repeated analysis.

In the third step, the m regression models are aggregated in the only model through command pool().
The argument of function pool() is the object created in the last step with function with(). The results
are stored as a multiple imputed pooled outcomes object - mipo.

For more details on the mice package, see Buuren and Groothuis-Oudshoorn (2011) and Buuren
(2007).

2.2 Bayesian inference

Statistical inference is the science that allows users to draw conclusions about a population from a
sample taken from that same population. According to M. Antónia Amaral Turkman and Paulino (2015),
statistical inference can be performed using two main approaches: classical approach and Bayesian ap-
proach.
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In the classical approach, the repeated sampling principle is used, that is, it is necessary to repeat
an event A several times to obtain the probability of its occurrence. Furthermore, only the information
obtained through observation of the sample data is used, that is, all external information is ignored.
Summarily, the data HHH are observed, the model is chosen - ?(HHH |\) - and, finally, the parameter \ is often
estimated by maximum likelihood estimation. Thus, the model parameters are unknown and fixed, and
the data are random (Bermudez, 2021). In the Bayesian approach, the probability of occurrence of an
event A corresponds to measure of degree of credibility that the user has in this event. In this approach all
information is considered necessary, so information from the sample can be combined with information
already available or with information obtained through expert opinion or past experience (Bermudez,
2021). Thus, in Bayesian inference there are three important concepts: likelihood, prior and posterior.
Statisticians’ beliefs or past experiences about the parameter distribution are called prior information, but
first, to understand this concept it is necessary to know Bayes’ theorem in its simple form. Let A and B
be two events with %(�) ≠ 0:

%(�|�) = %(�|�)%(�)
%(�) (2.1)

2.2.1 Likelihood function and prior and posterior distributions

Considering a random variable Y (discrete or continuous), the distribution of data under the parameter
\ (mass function or the distribution function, respectively) is:

?(HHH |\) (2.2)

and this is called likelihood function, which here is denoted in terms of the sampling distribution. As \
is the unknown parameter, its prior distribution has to be specified with the aim to obtain the posterior
distribution. This parameter is specified before the knowledge of the data, so the prior distribution is
represented by ?(\). Let Θ the support of distribution, then:

Θ = {\ : ?(\) > 0}. (2.3)

Note that ?(\) reflects the prior belief. In turn, the parameters that allow explaining the param-
eter/vector of parameters of interest are called hyperparameters. This dependence structure between
data and parameters and, consequently, between parameters and hyperparameters is called hierarchical
structure. Thus, in the presence of hierarchical structure, e.g., spatial and/or temporal dependence in the
data, the knowledge about \ is expressed through kkk (vector of hyperparameters) and, consequently, the
prior distribution of the hyperparameters will be ?(kkk):

?(\\\) =
∫

?(\\\ |kkk)?(kkk)3kkk. (2.4)

Finally, in order to update the prior information with the information from the data, it is necessary to
resort to Bayes’ theorem:

?(\ |HHH) = ?(H
HH |\)?(\)
?(HHH) (2.5)

and this is the posterior distribution of \ (combines the prior information about the parameter vector
\\\ contained in the distribution ?(\) with the information about the data HHH contained in the likelihood
function ?(H |\)). As the denominator is the marginal distribution of the data, it will be a constant, and as
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it does not depend on \, it is possible to remove it from the equation and obtain an equation proportional
to 2.5 (Besag et al. (1991) and Blangiardo and Cameletti (2015)):

?(\ |HHH) ∝ ?(HHH |\)?(\). (2.6)

However, the formulation of ?(HHH) depends on the nature of \, that is, if \ assumes discrete values in
Θ:

?(HHH) =
∑
\ ∈Θ

?(HHH |\)?(\). (2.7)

On the other hand, if \ is a continuous variable:

?(HHH) =
∫
\ ∈Θ

?(HHH |\)?(\)3\. (2.8)

When we work with complex models, it is not possible to obtain the analytical expression of the
posterior distribution. However, according to Blangiardo and Cameletti (2015), it is possible to obtain
some information from the posterior distribution (empirical measures calculated on the modelled values
of the posterior distributions), such as:

• Posterior mean

For continuous \ :
� (\ |HHH) =

∫
\ ∈Θ

\?(\ |HHH)3\ (2.9)

For discrete \ :
� (\ |HHH) =

∑
\ ∈Θ

\?(\ |HHH) (2.10)

• Posterior median
?(\ ≤ \0.5 |HHH) = 0.5 and ?(\ ≥ \0.5 |HHH) = 0.5 (2.11)

• (1−U) ×100% credibility interval (CI)

?(\ ≤ \U/2 |HHH) = U/2 and ?(\ ≥ \1−U/2 |HHH) = U/2 (2.12)

Choice of prior distribution

When the researcher chooses the prior distribution, the nature of the parameters and of the hyper-
parameters, which allows estimating \, must be taken into account. About the nature of parameters,
their support should be taken into account, that is, if the parameter represents a proportion (for instance,
probability of death by stroke) the distribution under this parameter should have the support between 0
and 1. In the other hand, if the parameter represents the average body mass index (BMI) in the Portuguese
citizens, the support of prior distribution should be between 0 and +∞.

Given the likelihood ?(HHH |\), if the posterior ?(\ |HHH) (Equation 2.5) belongs to the same family as
the prior, then ?(\) is a conjugate prior. Thus, it is said that the prior is conjugated to the likelihood.
This property is very useful when the functional form of the posterior distribution is known and its
hyperparameters as well. However, in many cases it will not be possible to find a conjugate prior and in
these cases it is necessary to resort to a computational method, as will be seen in Section 2.2.2.
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Informative or noninformative prior

The prior distribution parameters should be defined according to the type of existing knowledge
about them: informative or noninformative prior. For example, when the researcher has information
derived from previous experiments, on the problem at hand, this is called the informative prior and this
information should be included in the model.

When parameter information is missing, a non-informative prior is often used to let the data speak for
themselves. One procedure that allows the construction of noninformative priorswas proposed by Jeffrey
(1946). As reported by Bermudez (2021), the Jeffrey’s prior are invariant under injective transformations.
So, in the case where \ is a scalar (: = 1), the Jeffrey’s prior is:

?(\) ∝ � (\)1/2, (2.13)

where

� (\) = �- |\

[(
3 log ?(H |\)

3\

)2
]
. (2.14)

If \\\ = (\1, . . . , \:), so the prior distributions of Jeffrey is:

?(\\\) ∝ |� (\\\) |1/2, (2.15)

where |� (\\\) | is the determinant of the expected value of the Fisher information matrix, whose element
(8, 9) is given by:

�8 9 (\\\) = −�- |\\\

[
m2

m\8m\ 9
log ?(H |\\\)

]
. (2.16)

If the integral of this prior is different from 1 (it is not a probability distribution), the prior is called
improper prior. If the posterior is also improper, there are complex problems that will lead to an incorrect
analysis of the data.

Other way to build a noninformative prior distribution is to resort to the so-called vague prior. In
this case, the prior distribution function is flat in the local where the likelihood function reaches the
maximum. According to Blangiardo and Cameletti (2015), a Normal distribution with mean 0 and large
variance, for instance, Normal(0,106), can be used as prior for a mean or regression parameter. A similar
case is the Beta(1,1) or Gamma(0.01,0.01) for the inverse of variance. The Figure 2.2 is inspired in
Blangiardo and Cameletti (2015) and show an example of a noninformative prior.
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Figure 2.2: Example of noninformative prior.

2.2.2 Bayesian computing

In the "Choice of prior distribution" part of Section 2.2 conjugate models were presented, however
the functional form is frequently unknown (when the conjugacy is not appropriate), not being possible
to manipulate the posterior distribution analytically. However, there are simulation methods that can be
used to overcome this obstacle.

The first two methods of simulation presented generate values from the posterior distribution and
are called Monte Carlo (MC) and Markov chain Monte Carlo (MCMC). The MC assumes that the
posterior distribution has a known form, via conjugate models, and generates independent values through
this distribution. The MCMC combines the MC approach and the Markov chains, where the posterior
distribution is not known and generates approximate values, by means of two methods: Gibbs sampler
or Metropolis-Hastings algorithm. However, MC and MCMC are algorithms with limitations in terms
of computational load, and given that the dataset is currently quite extensive and taking into account
the spatial and spatio-temporal dependencies, it becomes too complex for this approach. According
to Lindgren and Rue (2015), INLA (Integrated Nested Laplace Approximation) is a computationally
efficient method and an alternative to MC and MCMC capable of overcoming computational limitations.
As this method provides fast results, it will be used in this analysis.

2.2.2.1 The Integrated Nested Laplace Approximation

Asmentioned in the previous paragraph, INLA is a methodology used to overcome the computational
flaws present in the other methodologies. This approach allows the user to obtain an approximation of
the posterior marginal distribution for each element of the vector of the parameters of interest with the
implementation of Latent Gaussian Models (LGM).
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According to Blangiardo and Cameletti (2015), the class of LGM can be represented by a three-level
hierarchical structure:

1. Data|Parameters: Identify the distribution of observed data HHH = (H1, . . . , H=) through likelihood
function:

?(HHH |\\\,kkk) =
=∏
8=1

?(H8 |\8 ,kkk), (2.17)

being that the distribution is characterized by a parameter W8 . This parameter is linked to structured
additive predictor [8 through a link function 6(.), that is, 6(W8) = [8 , where [8 is defined as:

[8 = V0 +
�∑
9=1
V 9G 98 +

 ∑
:=1

5: (I:8), (2.18)

where V0 is the intercept; VVV = (V1, . . . , V� ) is the vector with coefficients that quantify the linear
effects of the covariates GGG; 555 = ( 51(.), . . . , 5 (.)) are the functions of covariates III = (I1, . . . , I )
that can assume different forms: smooth, nonlinear effects of covariates, time and seasonal trends
and temporal or spatial random effects. By this enumeration, it can be stated that the LGM are very
flexible and encompass a diverse range of models (including spatial and spatio-temporal models).

2. Parameters|Hyperparameters

Thus, the set of parameters composed by the latent components of interest for the inference is
defined as \\\ = {V0, VVV, 555 }. As said in Section 2.2.1, \\\ is explained by means the hyperparameters,
presented in the vector kkk, so:

\\\ |kkk ∼ Normal(0,&&&−1(kkk)), (2.19)

and the density function is:

?(\\\ |kkk) = (2c)− =
2 |&&&(kkk) | 12 exp

(
− 1

2
\\\)&&&(kkk)\\\

)
. (2.20)

&&&(kkk) is a sparse precision matrix, since the componentes of \\\ are supposed to be conditionally
independent. Thus, \\\ is modelled by a Gaussian Markov Random Field (GMRF).

3. Hyperparameters

In turn, the vector of the L hyperparameters is characterized by kkk = (k1, . . . ,k!) and

kkk ∼ ?(kkk). (2.21)

Therefore, the joint distribution of \\\ and kkk is given by product of prior distribution of hyperpa-
rameters (2.21), of GMRF density (2.20) and of likelihood function (2.17):
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2.2 Bayesian inference

?(\\\,kkk |HHH) ∝ ?(kkk) × ?(\\\ |kkk) × ?(HHH |\\\,kkk)

∝ ?(kkk) × |&&&(kkk) | 12 exp

(
− 1

2
\\\)&&&(kkk)\\\

)
×

=∏
8=1

?(H8 |\8 ,kkk)

∝ ?(kkk) × |&&&(kkk) | 12 exp

(
− 1

2
\\\)&&&(kkk)\\\

)
×

=∏
8=1

exp(log(?(H8 |\8 ,kkk)))

∝ ?(kkk) × |&&&(kkk) | 12 exp

(
− 1

2
\\\)&&&(kkk)\\\ +

=∑
8=1

log(?(H8 |\8 ,kkk))
)
.

(2.22)

In turn, the aim of INLA is to obtain analytical approximations for the marginal posterior distributions
for the parameters:

?(\8 |HHH) =
∫

?(\8 ,kkk |HHH)3kkk =
∫

?(\8 |kkk, HHH)?(kkk |H)3kkk, (2.23)

and for the hyperparameters:

?(k; |HHH) =
∫

?(kkk |HHH)3k−;, (2.24)

where k−; represents the vector kkk without the element k;.

Note that both the marginals distributions depend on ?(kkk |HHH). For this reason it is necessary to specify
this component:

?(kkk |HHH) = ?(\
\\,kkk |HHH)

?(\\\ |kkk, HHH) . (2.25)

Considering the first line of the demonstration of ?(\\\,kkk |HHH) in Equation 2.22:

?(kkk |HHH) ∝ ?(k
kk) × ?(\\\ |kkk) × ?(HHH |\\\,kkk)

?(\\\ |kkk, HHH)

≈ ?(k
kk) × ?(\\\ |kkk) × ?(HHH |\\\,kkk)

?̃(\\\ |kkk, HHH)

�����
\\\=\\\∗ (kkk)

(2.26)

where ?̃(\\\ |kkk, HHH) is the Gaussian approximation of ?(\\\ |kkk, HHH), given by Laplace method and \\\∗(kkk) is the
mode for a given kkk.

The expression ?(\8 |kkk, HHH) can be approximated in three ways:

• Approximate ?(\8 |kkk, HHH) directly as the marginals from ?̃(\\\ |kkk, HHH) by using the Normal distribution,
where the precision matrix is defined through the Cholesky decomposition. This procedure is very
fast, however the approximation is not very good.

• Considering \\\ = (\8 , \\\−8) and using the Laplace approximation (more developments of this method
in Blangiardo and Cameletti, 2015):

13



2. METHODS

?(\8 |kkk, HHH) =
?((\8 , \\\−8) |kkk, HHH)
?(\\\−8 |\8 ,kkk, HHH)

∝ ?(\\\,kkk |HHH)
?(\\\−8 |\8 ,kkk, HHH)

≈ ?(\\\,kkk |H)
?̃(\\\−8 |\8 ,kkk, HHH)

����
\\\−8=\\\

∗
−8 (\8 ,kkk)

(2.27)

where ?̃(\\\−8 |\8 ,kkk, HHH) is the Laplace approximation of ?(\\\−8 |\8 ,kkk, HHH) and \\\∗−8 (\8 ,kkk) is its mode.
As usually the random variables \8 |\\\−8 ,kkk, HHH belong to a Normal distribution, the approximation
shown in this item works well, however is very expensive in terms of computation.

• Use the simplified Laplace approximation which is based on Taylor’s series expansion of Equation
2.27. This approach is reasonable in many cases and uses a short computational time.

Finally, considering the approximation of ?(kkk |HHH) (Equation 2.26) and the approximation of ?(\8 |kkk, HHH)
by one of the procedures explained above, the posterior marginal distribution equation for each element
of the parameter vector (Equation 2.23) is:

?̃(\8 |HHH) ≈
∫

?̃(\8 |kkk, HHH) ?̃(kkk |HHH)3kkk. (2.28)

More details on the development of these approaches are available in Blangiardo and Cameletti
(2015). In software R, to implement this approach, the INLA package was used.

2.2.3 Bayesian Hierarchical Models

As explained in Section 2.2.1, Bayesian models with a hierarchical structure are called Bayesian
hierarchical models, as is the case for models with spatial dependence and/or temporal dependence.

2.2.3.1 Spatial Models

Several areas of science, such as epidemiology and ecology, have increasingly used models that
encompass the geographical location of the data under study. Thus, spatial data present a spatial structure
between regions and are described as realizations of stochastic processes indexed by space:

. (B) ≡ {H(B), B ∈ D}, (2.29)

where D is a fixed subset of R3 .

According to Banerjee et al. (2004), Cressie (1993), and Gelfand et al. (2010) there are three types of
spatial data:

1. Area data: D is a fixed subset well defined by the area unit s through its boundaries.

2. Point-referenced (or geostatistical) data: H(B) is the random outcome at a specific location s, where
s can vary continuously in the fixed domain D.

3. Spatial point patterns: H(B) is equal to 1 if B ∈ R3 and 0 otherwise, that is, if the event occurs or
not.
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2.2 Bayesian inference

This project considers area data, since district and municipality level records of each patient, who is
admitted to the hospital due to CCD, will be modelled. Therefore, only area data will be presented in this
section, however further explanations on this topic are given in the Blangiardo and Cameletti (2015).

Area data models

When the data under study are spatial data, all areas have neighbours, therefore the spatial dependence
between observations is taken into account. According to Zuur et al. (2009), in area data models, this
spatial dependence is introduced through random effects based in the neighbourhood structure.

Based on Blangiardo and Cameletti (2015), considering the area i, there are first-order neighbours,
that share borders with the area i and there are second-order neighbours that share borders with first-order
neighbours of the area i.

Figure 2.3: Neighboring structure: first-order neighbours and second-order neighbours.

One approach using area data is disease mapping, whose aim is to assess the spatial pattern of a
specific disease and identify areas of high or low relative risk (Lawson (2008), Lawson and Williams
(2001)). In most cases, the data represent illness counts, admissions to hospitals/other health areas or
deaths and therefore the nature of the data is discrete.

Considering the study data, let . = (H1, . . . , H=) be the number of hospital admissions due to cerebro-
cardiovascular diseases in areas of Portugal and �8 the number of exposed in the area i. Thus, the aim
of the study is to assess the spatial pattern of hospital admissions. To this end, since the data represent
counts, the Poisson model will be used:

.8 ∼ Poisson(_8), 8 = 1, . . . , =. (2.30)

The interest of this study falls on the incidence rate in each region, since Y represents raw counts,
made under different population sizes (each region has a different number of people likely to have the
disease under study). Thus, the parameter _8 can be written as ?8�8 , where �8 represents the exposed
individuals in the area i and ?8 is the incidence rate in the area i. Thus,

_8 = ?8�8 ⇐⇒ ?8 =
_8

�8
.

Note that, this formulation is typically used when the parameter of interest is relative risk.
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2. METHODS

The linking of the explanatory variables and the response variable is done through a link function.
In this case, as the parameters of ___ are strictly positive, the link function used is the logarithm (Fox and
Weisberg, 2015):

log(_8) = [8 . (2.31)

The logarithm of the expected number of cases for each region (log(�8)) is the offset and represents
the exposed population in the region i. Thus, the offset is included in the linear predictor [8 , and the
parameters can be interpreted on the logarithm relative risk scale:

log(_8) = 10 +
=V∑
9=1
V 9G 98 +D8 + E8 + log(�8), (2.32)

where 10 is the intercept and represents the average rate across all study regions when the explanatory
variables are null; V = (V1, . . . , V=V ) is the vector with the linear effects of the regressors G; E8 is the
area-specific effect modelled as exchangeable (the random effect associated with regions without taking
into account the spatial dependence, that is, not take into account that what happens in the region i
depends on what happens in its neighbourhood); D8 is another area-specific effect modelled as spatially
structured (is the random effect associated to the regions, taking into account the spatial dependence, that
is, taking into account what happens in the neighbourhood).

The assumptions of this model are:

• E8 ∼ Normal(0,f2
E )

• D8 is modelled as an intrinsic conditional autoregressive (iCAR) process, presented by Besag et al.
(1991) with the following specification:

D8 |DDD−8 ∼ Normal
(

1
N8

=∑
9=1
08 9D 9 , B

2
8

)
. (2.33)

where DDD−8 is the vector with all the elements of DDD except the 8Cℎ element; 08 9 = 1 if the areas i and j
are neighbours and 08 9 = 0 otherwise; B2

8
= f2

D/N8 is the variance for the area i, whereN8 = #N (8).
According to Blangiardo and Cameletti (2015), B2

8
informs that in the presence of powerful spatial

correlation, the more neighbours an area has, the more information there is in the data about the
value of its random effect D8 and f2

D controls the quantity of variance between partially structured
random effects.

The random spatial effect under the iCAR process associated with the exchangeable random spatial
effect (E8) gives rise to the Besag-York-Molliè (BYM) model. In Sections 4.1 and 4.2 it is possible to see
models with the unstructured random effect E8 , modelled as exchangeable (i.i.d model), models with the
structured random effect D8 as an iCAR (Besag model) and finally models with the unstructured random
effect E8 and with the structured random effect D8 as an iCAR (BYM model).

2.2.3.2 Spatio-temporal Models

Models suitable for investigating a spatial pattern over time are spatio-temporal models. Spatial
models are simply extended to spatio-temporal models and are used in disease mapping combined with

16



2.2 Bayesian inference

surveillance studies, that is, the aim is to identify the spatial and temporal pattern of diseases. Updating
the example from the previous section, the focus is now on evaluating the spatial pattern of hospital
admissions due to cerebro-cardiovascular diseases in areas of Portugal for the years 2010-2019. Hence,
the model of Section 2.2.3.1 was updated where H8C is the number of observed cases in area i and time t
and �8C is the number of expected cases in area i and time t:

.8C ∼ Poisson(_8C ) with _8C = �8C ?8C , 8 = 1, . . . , = and C = 1, ...,) ; (2.34)

log(_8C ) = [8C

log(_8C ) = 10 +
=V∑
9=1
V 9G 98C +D8 + E8 +TemporalC + log(�8C ), (2.35)

where TemporalC may represent several terms, depending on the type of analysis, as shown below. The
logarithm of the expected number of cases for region i and year t (log(�8C )) is the offset and represents
the exposed population in region i in year t.

Starting with a simple model and assuming that spatial and temporal effects are present but are
independent of each other (there is no spatio-temporal relationship), the linear predictor can be written
as:

[8C = 10 + D8 + E8︸︷︷︸
spatial effect

+ WC +qC︸ ︷︷ ︸
temporal effect

, (2.36)

where D8 (specified in Equation 2.33) and WC are structured effects and E8 and qC are unstructured effects.

Thus, there is an impact of space and an impact of time, and when the two are joint the result is
additive. As WC represents the temporal correlation between the years, it can be specified using random
walk (RW) of order 1 or 2 (Blangiardo and Cameletti, 2015):

• RW of order 1: WC |WC−1 ∼ Normal(WC−1,f
2)

• RW of order 2: WC |WC−1, WC−2 ∼ Normal(2WC−1 +WC−2,f
2)

In turn, the temporal unstructured effect qC is specified by means of a Gaussian exchangeable prior,

qC ∼ Normal
(
0,

1
gq

)
(Blangiardo and Cameletti, 2015).

If the interaction between area and time is considered, the model described in Equation 2.36 will
contain one more component:

[8C = 10 + D8 + E8︸︷︷︸
spatial effect

+ WC +qC︸ ︷︷ ︸
temporal effect

+ X8C︸︷︷︸
interaction

, (2.37)

• X8C ∼ Normal
(
0,

1
gX'''X

)
• gX is an unknown scalar

• '''X is the structure matrix, that identify the type of spatial and/or temporal dependence between
the elements of X.
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2. METHODS

Thus, '''X results from calculating the Kronecker product of the interacting random effects matrices.
As Blangiardo and Cameletti (2015) show, there are four types of interaction taking into account what
happens with space and time:

Type I interaction: assumes that the unstructured effect E8 and the unstructured effect qC interact:

'''X = '''E ⊗ '''q = ��� ⊗ ��� = ��� (2.38)

Thus, there is no a spatial or temporal structure on the interaction, so the elements of X8C are iid and

X8C ∼ Normal
(
0,

1
gX

)
. Thus, the matrix '''X has a rank of =) .

Type II interaction: assumes that the unstructured effect E8 (there is no spatial structure) and the
structured effect WC (there is temporal structure) interact:

'''X = '''E ⊗ '''W , (2.39)

where '''E = ��� and '''W is the neighborhood structure specified using a first or second-order random walk.
Thus, the matrix '''X has a rank of =() − 1) for a first-order RW and =() − 2) for a second-order RW.
In this case, the temporal dependence structure for each area is independent of the temporal dependence
structure of other areas.

Type III interaction: assumes that the structured effect D8 (there is spatial structure) and the unstruc-
tured effect qC (there is no temporal structure) interact:

'''X = '''D ⊗ '''q, (2.40)

where '''q = ��� and '''D is the neighboring structure defined through the CAR specification. Thus, the
matrix '''X has a rank of ) (=− 1). In this case, the spatial dependence structure for each time point is
independent of the spatial dependence structure of other time points.

Type IV interaction: assumes that the structured effect D8 (there is spatial structure) and the structured
effect WC (there is temporal structure) interact:

'''X = '''D ⊗ '''W , (2.41)

where '''D is the neighbouring structure defined by applying the iCAR specification and '''W is specified
using a first or second-order random walk. Thus, the matrix '''X has a rank of (= − 1) () − 1) for a
first-order RW and (=−1) () −2) for a second-order RW. In summary, in the present case, the temporal
dependence structure for each area depends on the temporal dependence structure of other areas.
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2.2 Bayesian inference

This synthesised information is presented in the following table (Blangiardo and Cameletti, 2015):

Table 2.1: Summary of types of interaction.

Interaction Parameter interaction Rank

I E8 and qC =)

II E8 and WC
=() −1) for RW1

=() −2) for RW2

III D8 and qC (=−1))

IV D8 and WC
(=−1) () −1) for RW1

(=−1) () −2) for RW2

2.2.4 Model checking and selection

In Bayesian modelling, according to Blangiardo and Cameletti (2015), it is crucial to check the
plausibility and fit of the model. To this end, the evaluation of the variables that should be included in
the model to define the best fit for the data in question, the comparison of models with different variables
and the distribution of parameters and hyperparameters are highlighted. However, in practice, there are
two commonly used methods to check models: methods based on the predictive distribution and methods
based on the deviance.

2.2.4.1 Methods based on the predictive distribution

In this approach, the sample HHH is divided in two groups, so that HHH = (HHH0, HHH1). The first group HHH0 is
used to fit the model and to estimate the posterior distribution of the parameters, and the second group HHH1
is used to perform the model criticism. Furthermore, there are two procedures to create these two groups,
to assess the plausibility of the model assumptions and to detect the presence of outliers: cross-validation
and posterior predictive check.

Cross-validation

In the cross-validation procedure, each observation will belong to one of the groups HHH0 or HHH1. After
obtaining the two groups, cross-validation is based on two quantities, in order to assess the quality of the
model (considering that HHH0 = H−8 and HHH1 = H8):

1. the conditional predictive ordinate (CPO):

CPO8 = ?(H∗8 |HHH0) = ?(H∗8 |HHH−8).

If the sum of the log of the values of CPO is a large number, it means that the quality of the
predictive model is good. Thus, when analysing competitive models, the one with the highest value
shows a better fit.
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2. the probability integral transform (PIT):

PIT8 = ?(H∗8 ≤ H8 |HHH0) = ?(H∗8 ≤ H8 |HHH−8) if HHH comes from continuous distributions,

PIT03 9
8

= PIT8 + 0.5× ?(H∗
8
= H8 |HHH0) = PIT8 + 0.5× ?(H∗

8
= H8 |HHH−8) if HHH comes from discrete

distributions.

In relation to the PIT, if the empirical distribution is Uniform (see the histogram of the PIT), it
means that the predictive distribution is consistent with the data.

Posterior predictive check

The posterior predictive check highlights that HHH0 = HHH1 = HHH, so all the observations are used to fit the
model and to estimate the posterior distribution of the parameters and to perform the model criticism. In
this approach are considering two quantities:

1. the posterior predictive distribution:

?(H∗8 |HHH) =
∫

?(H∗8 |\8)?(\8 |HHH)3\8 .

If ?(H∗
8
|HHH) is a small value, the observations are located in the tails of the distribution and can be

classified as outliers. In addition to this, if there are many small values, the model is not adequate
for the data in question.

2. the posterior predictive p-value:
?(H∗8 ≤ H8 |HHH).

If the values of ?(H∗
8
≤ H8 |HHH) were close to 0 or 1 it means that the model does not fit the data

adequately.

On top of that, there are two summary indices that allows assessing of the goodness of fit of the
model:

1. mean squared error (MSE):

MSE =
1
=

=∑
8=1
(H8 − H∗8 )2.

2. R squared ('2):

R2 =

∑=
8=1(H∗8 − H̄)2∑=
8=1(H8 − H̄)2

.

2.2.4.2 Methods based on the deviance

A alternative to the above mentioned methods is the method based on the deviance. Firstly, it is
necessary to understand how to calculate the deviance:

� (\) = −2 log (?(HHH |\\\)). (2.42)
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2.2 Bayesian inference

Considering the example presented in Blangiardo and Cameletti (2015), let HHH be a sample such that:

.8 ∼ Poisson(_).

So the likelihood of this model is:

?(HHH |_) =
=∏
8=1

4−__H8

H8!
,

and the deviance is equal to:

� (_) = −2
( =∑
8=1

H8 log(_) −=_−
=∑
8=1

log(H8!)
)
.

Deviance information criterion (DIC)

Blangiardo and Cameletti (2015) explain that the deviance information criterion is the most frequently
used measure of model fit. The DIC is a generalisation of the well-known Akaike information criterion
(AIC), which is used formodel comparison. Specifically, theDIC results from the sumof two components:
the first corresponds to the posterior expectation of the deviance � (\\\) and the second corresponds to the
effective number of parameters. So, the DIC is given by:

��� = �̄ + ?� , (2.43)

where

?� = �\\\ |HHH (� (\\\)) −� (�\\\ |HHH (\\\)) = �̄ −� (\̄\\).

Thus, the model with the lowest DIC fits the data better.

2.2.5 Tools for Bayesian inference

In software R, the package used for Bayesian inference using the INLA approach is INLA. A brief
description of the use of this package will be given below (according to Blangiardo and Cameletti (2015)
and Blangiardo, Cameletti, et al. (n.d.)). The model formula is built in the same way as the equation for
regression models, however in Bayesian inference it is possible to include random effects for both area
and time through the function f(.). Considering two covariates G1 and G2 and the random effect I1, an
general form of the formula is:

formula <- y~x1+x2+f(z1,model = "")

By default, the argument model is equal to iid and it should be applied when the random effect z1
is independent and Gaussian distributed. The list of the other alternatives are present in Blangiardo and
Cameletti (2015).

Then, through the function inla(), it is run the INLA algorithm:

model <- inla(formula, family="", offset, data)
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The argument family is a string that specifies the distribution of the data and in the case of this study,
the distribution of the number of hospital admissions is Poisson.

Then, with the aim of choosing the model that better explains the data in study, the DIC is observed in
the output of summary(model) (a model with the lowest DIC is the best model). This output has also the
posterior mean, the standard deviation and the quartiles of the fixed effects (in this case is V0, V1 and V2)
and the random effects. The posterior mean for the response variable is obtained through the command
model$summary.fitted.values$mean .

Finally, with the aim of checking the plausibility and fit of the model, some methods can be used. The
approach used in this analysis was the posterior predictive check. The posterior predictive distribution is
represented by the scatter plot of the posterior mean for the predictive distributions against the observed
values and posterior predictive p-values are represented in a histogram. Thus, this two representations
are obtained through the following commands, respectively:

plot(data$y,model$summary.fitted.values$mean,

xlab="Observed values",ylab="Mean Post. Pred. Distr.")

predicted.p.value<-c()

for(i in (1:n)) {

predicted.p.value[i] <- inla.pmarginal(q=data$y[i],

marginal=model$marginals.fitted.values[[i]])

}

hist(predicted.p.value,main="",xlab="Posterior predictive p-value")

Note that, if the distribution of the points in the scatter plot is similar to a straight line, it is possible
to conclude that, on average, the prediction is very close to the observed values. On the other hand, if
there is a high number of areas with p-values close to 0.5 (in the middle of the histogram) and few areas
whose p-value is very low or high, it is possible to conclude that the model fits the data well.
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3. Exploratory data analysis

3.1 The data

The data used in this project relate to hospital admissions records in mainland Portugal, provided by
the Administração Central do Sistema de Saúde, I.P (ACSS) of the Ministério da Saúde. To obtain a
database with only the necessary information, a process of cleaning and organising the available data was
carried out:

1. The Diagnosis and Episodes files of the various periods of each year were aggregated, and duplicate
observations were eliminated (some periods overlap and, therefore, repeated observations were
discarded).

2. Filter the CCD by principal diagnosis code according to the 9th revision (ICD-9-CM) for years
between 2010 and 2016 or the 10th revision (ICD-10-CM) from 2017 onwards.

3. Remove individuals whose diagnosis by CCD is not the principal diagnosis.

4. Remove individuals whose district does not belong to mainland Portugal.

5. Remove individuals whose district code is "99" (the proportion of these cases is less than 0.001).

6. Remove the individuals whose fictitious patient number was negative.

After cleaning and organising the data, it was found that the sample sizes were very distinct. The
years 2011, 2013, 2015, 2017 and 2019 had about half of the observations compared to the other years.
As it was not possible to solve this matter in time for the delivery of this project, only the years 2010,
2012, 2014, 2016 and 2018 are plausible for the analysis. Considering only these five years, the sample
size is 701 786, and it is divided as follows:

• 2010: = = 144 533

• 2012: = = 145 618

• 2014: = = 146 254

• 2016: = = 132 631

• 2018: = = 132 750
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3. EXPLORATORY DATA ANALYSIS

From these databases, the number of hospital admissions due to CCD at the area level was extracted.
In addition, the district code, the district name, the municipality code and the municipality name were
also extracted in order to specify the patient’s area.

In addition to these variables, variables related to risk factors for CCD and some factors affecting
good hospital functioning at area level were introduced. These variables were obtained from INE at
municipality level. To build the database at district level, these variables were aggregated at district level.
Furthermore, these variables are classified as follows:

• Socio-demographic risk factors: proportion of residents aged 65 or over, proportion of male
residents, population density and unemployment rate;

• Clinical risk factors: mortality rate per 1000 inhabitants due to diabetes.

At district level, the proportion of members in federations (proportion of individuals who attend
sports academies, that is, it is an indicator variable of the sedentarism of individuals) was also extracted
from INE and considered as a risk factor, as well as the number of hospitals per 1000 inhabitants, at
municipality level. The total population was also extracted from INE to be used as an offset in the models
used later.

Thus, the database, with the combination of variables from the databases provided by ACSS and the
variables extracted from INE, is composed by the following variables:

• Socio-demographic variables: district code and district name (for the database at district level)
or municipality code and municipality name (for the database at municipality level), proportion of
residents aged 65 or over, proportion of male residents, population density, unemployment rate,
proportion of members in federations (district level only) and total population.

• Clinical variables: number of admissions due to cerebro-cardiovascular diseases, number of
hospitals per 1000 inhabitants (municipality level only) and mortality rate per 1000 inhabitants due
to diabetes.

As already mentioned, all these variables are aggregated by demographic area (districts and munici-
palities) and by time unit (year) and will be included as covariates in the models described and analysed
below. Note that the size of the final database at district level is 90 (18 districts × 5 years) and the size
of the database at municipality level is 1390 (278 municipalities × 5 years). These data will be used to
study cerebro-cardiovascular diseases and their risk factors.

3.1.1 Multiple imputation

The variable mortality rate per 1000 inhabitants due to diabetes was created using the number of
deaths due to diabetes per municipality, available in INE. Since it had missing values, the following
boxplots show the distribution of values of the remaining variables in the group of municipalities with
missing values and in the one without missing values.
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3.1 The data

Figure 3.1: Boxplots of the remaining variables taking into account the missing and non-missing values of the variable number
of deaths due to diabetes.

When analysing the boxplots, it can be concluded that municipalities, whose number of deaths due
to diabetes is missing, have a higher unemployment rate, a lower population density, a lower number
of hospitals per 1000 inhabitants and a higher proportion of residents aged 65 or over. In Section 2.1,
the suspicion that the missing values corresponded mostly to municipalities in the interior of Portugal
was mentioned, and the conclusion drawn from the boxplots analysis, on the characteristics of these
municipalities, is in accordance with this suspicion.

Since there is only one variable (candidate explanatory variable) with missing values, whose percent-
age is very low (about 5%), it seems wise to use multiple imputation. Therefore, the missing values of the
variable number of deaths due to diabetes were imputed using multiple imputation. It should be noted
that, as this method is not compatible with Bayesian models, the second (analysis) and third (pooled) steps
of multiple imputation were not implemented. Thus, the final data with imputed values were obtained by
the average of the five imputed datasets (m parameters chosen).
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3. EXPLORATORY DATA ANALYSIS

3.2 Descriptive analysis of the study variables

In this chapter, the explanatory analysis of all the variables, described in Section 3.1, was done at
year, district and municipality level. Tables of the descriptive values of the hospital admission rate and
INE variables at annual level are presented in Appendice A. The variation of the hospital admission rate
due to CCD and INE variables, over time, are expressed in the following graphs:

Figure 3.2: Temporal evolution of the study variables at year level.
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Analysing the Figure 3.2, it can be concluded that the hospital admission rate increased slightly from
2010 to 2014, where it reached a maximum of 14.818 admissions per 1000 inhabitants. From 2014 there
was a decrease until 2016, where it reached a minimum of 13.521 admissions per 1000 inhabitants, and
then remained practically constant until 2018. In relation to mainland Portugal, the population density
decreased slightly from 2010 to 2018 from 112.9 to 109.8 inhabitants per :<2. The proportion of
members in federations appears to have increased exponentially from 2010 to 2018, where it reached the
maximum of 0.063. The proportion of male residents decreased slightly from 2010 to 2018, where it
reached the minimum of 0.472, however the values were very similar in all years. The mortality rate per
1000 inhabitants due to diabetes suffered an increase from 2010 to 2012, where it reached a maximum
of 0.472 deaths per 1000 inhabitants. After 2012, there was a decrease until 2016, where it reached a
minimum of 0.423 deaths per 1000 inhabitants. Then remained practically constant until 2018. The
unemployment rate experienced an increase from 2010 to 2012, where it peaked at 9.602 and then there
was a decrease until 2018, where it reached a low of 5.307. The proportion of residents aged 65 or
over increased at a certain rate until 2018, where it reached a maximum of 0.222. Finally, the number
of hospitals did not change from 2010 to 2016, where there were 0.021 hospitals per 1000 inhabitants.
However, in 2018, there were 0.022 hospitals per 1000 inhabitants.

At district level, the tables of the descriptive values of the hospital admission rate and INE variables
are presented in Appendice A. The maps of the study variables from 2010 to 2016 are presented in
Appendice B. In addition, the scatter plots of the same set of variables versus variable of interest (hospital
admission rate) are also presented in Appendice B, in order to analyse the relationship between each
candidate explanatory variable and the response variable. The same scheme was used at municipality
level.

Considering the year 2018 (the year used in the spatial analysis), Table 6 (presented in Appendice A)
and Figures 3.3 to 3.6 are considered. Note that, 2018 was the year chosen since it is the most recent year
and as such is the most interesting to analyse. The maps below represent the data at district level:
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3. EXPLORATORY DATA ANALYSIS

Figure 3.3: Maps at district level of the hospital admission rate and the variables from INE in 2018.

In 2018, the districts with the lowest hospital admission rate were Porto, Viseu and Faro. Castelo
Branco was the district with the highest hospital admission rate in previous years, but in 2018 Bragança
becomes the district with the highest rate, followed by Santarém and Vila Real. Regarding the variables
from INE, Lisboa and Porto were the two districts with the highest population density in all years. The
unemployment rate was the lowest in Viana do Castelo, Leiria and Santarém (the second district with
the highest admission rate) and the highest in Vila Real, Bragança (the third and first districts with the
highest admission rate) and Porto (the district with the lowest admission rate). The proportion of male
residents was practically constant throughout all districts (approximately half of the residents), and this
happens in all years. However, Beja stood out for having the highest proportion of men in all years. The
mortality rate due to diabetes was the lowest in Braga and Porto (the district with the lowest admission
rate) and the highest in Portalegre. The proportion of members in federations was the lowest in Bragança
(the district with the highest admission rate) and the highest in Viana do Castelo, Faro and Viseu (the last
two being the third and second districts with the lowest admission rate). Considering the population aged
65 or over, Braga and Porto (the district with the lowest admission rate) were the districts with the lowest
proportion of older residents and Bragança was the district with the highest proportion of older residents
and the district with the highest admission rate.
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3.2 Descriptive analysis of the study variables

The scatter plots at district level are represented below:

Figure 3.4: Scatter plots of the hospital admission rate vs all the variables at district level for 2018 and the respective regression
line of the GLM model.

Observing the graphs in Figure 3.4, there seems to be a positive correlation between the variable
hospital admission rate due to CCD and the variables proportion of residents aged 65 or over and mor-
tality rate per 1000 inhabitants due to diabetes. This means that when the proportion of older residents
increases, the hospital admission rate due to CCD also increases. In turn, high mortality rates due to
diabetes correspond to high hospital admission rates due to CCD. In addition, there seems to be a negative
correlation between the hospital admission rate and the variables proportion of members in federations
and population density, that is, as the proportion of players and population density increase, the hospital
admission rate decreases. Furthermore, there appears to be a slight negative correlation between the
admission rate and the proportion of male residents, that is, as this variable increases, the admission
rate declines. Finally, the correlation between the hospital admission rate and the unemployment rate is
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3. EXPLORATORY DATA ANALYSIS

apparently null.

At municipality level, the maps are expressed in the graphs below:

Figure 3.5: Maps at municipality level of the hospital admission rate and the variables from INE in 2018.

In 2018, themunicipalitieswith the lowest hospital admission ratewereMortágua (0.226) andMiranda
do Corvo (0.473), and the municipalities with the highest hospital admission rate were Mação (31.631)
and Sardoal (31.292) (two municipalities that belong to Santarém). Concerning the INE variables, the
municipalities with the highest population density were located in Lisboa and Porto in every year. The
unemployment rate showed to be mostly higher in municipalities in the South and North of Portugal.
However, Ourém, Batalha and Vila de Rei were the municipalities with the lowest unemployment rate,
while Vila de Rei was the fifth municipality with the highest hospital admission rate. The proportion of
male residents is practically constant throughout all municipalities (approximately half of the residents),
and this happens in each year. The mortality rate due to diabetes was the highest in Monforte and
Constância. The municipalities with the highest number of hospitals per 1000 inhabitants were Monforte
(Portalegre) and Constância (Santarém), in all years. Regarding the proportion of residents aged 65 or
over, it is the highest in Alcoutim, Vinhais and Idanha-a-Nova.
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3.2 Descriptive analysis of the study variables

Finally, the scatter plots at municipality level for 2018 are represented below:

Figure 3.6: Scatter plots of the hospital admission rate vs all the variables at municipality level for 2018 and the respective
regression line of the GLM model.

Analysing the scatter plots in Figure 3.6, there seems to be a positive correlation between the variable
hospital admission rate due to CCD and the variable proportion of residents aged 65 or over, that is,
when the proportion of older residents increase, the hospital hospital admission rate also increase. The
regression line of the scatter plot of the mortality rate per 1000 inhabitants due to diabetes has a positive
slope, however, it is difficult to analyse the data as there are many municipalities whose mortality rate
is between 0 and 2.5 (which causes a large concentration of points at the beginning of the graph) and
only three municipalities whose mortality rate is above 3 (these were considered to be influential values).
There seems to be a slight positive correlation between the hospital admission rate and the proportion of
male residents. The same is true for the unemployment rate (opposite of other years). Thus, when the
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3. EXPLORATORY DATA ANALYSIS

proportion of males and the unemployment rate increase, the hospital admission rate also goes up. The
regression line of the scatter plot of the population density has a negative slope, but nevertheless, it is
difficult to analyse the data, as there are many municipalities with very low population density (which
causes a large concentration of points at the beginning of the graph). The same is true for the variable
number of hospitals per 1000 inhabitants, since there are many municipalities without hospitals in all
years. However, the correlation between the hospital admission rate and the number of hospitals appears
to be slightly negative.
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4. Application to the BDMH-ACSS data

The aim of this study is to analyse the regressors that best explain the number of hospital admissions
due to CCD in Portugal over five years. To this end, we will perform two analyses, a spatial analysis and
a spatio-temporal analysis, as explained below:

1. Spatial analysis - study the variation of admissions in different regions in a specific year (2018, in
the case of this study), considering the spatial organisation of the areas and the fact that the areas
are not independent of each other. This spatial structure is represented in the model by introducing
structured random effects;

2. Spatio-temporal analysis - analyse the evolution of admissions in the regions over time. Thus,
the spatial and temporal structure are considered and these two components are introduced in the
model through the so-called structured random effects. Therefore, it is possible to have a space-time
interaction.

For these analyses, generalised linear mixed models on the Bayesian hierarchical approach were used
to model the number of hospital admissions, using the Poisson model. This procedure was described in
Section 2. Consequently, the number of hospital admissions was modelled at area and time level using
the package INLA of the software R Studio ®.

4.1 Spatial analysis

As previously mentioned, the first aim of this study is to analyse how the hospital admission rate is
distributed in space and to identify which regressors best explain this spatial variation.

4.1.1 Data at district level

In the spatial analysis, the parameters associated with the regressors mentioned in Section 3.1 are as
follows:

• V1: Population density

• V2: Unemployment rate

• V3: Proportion of male residents

• V4: Mortality rate per 1000 inhabitants due to diabetes

• V5: Proportion of members in federations

• V6: Proportion of residents aged 65 or over
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4. APPLICATION TO THE BDMH-ACSS DATA

In statistics, to interpret variables expressed on different scales, it is necessary to standardise them.
Considering the observed values related to variable - , the standardized data I is obtained taking into
account the following formula:

I =
G− Ḡ
B
. (4.1)

Thus, the standardized values have mean 0 and standard deviation 1.

After the standardisation of the variables, the number of hospital admissions will be modelled under
the latest available year (2018). As the response variable is a count, the distribution chosen was Poisson:

.8 ∼ Poisson(_8), 8 = 1, ...,18,

log(_8) = [8 . (4.2)

The initial model, without taking into account the spatial component (without random effects), is
defined as follows:

[8 = 10 + V1G18 + V2G28 + V3G38 + V4G48 + V5G58 + V6G68 +offset8 , 8 = 1, ...,18, (4.3)

As explained in Section 2.2.3.1, to include the spatial variation and the spatial dependence between
areas, random effects must be incorporated into the model. Note that E8 is the unstructured effect and D8
is the structured effect.

Thus, the model with the unstructured effect (i.i.d model) is defined as follows:

[8 = 10 + V1G18 + V2G28 + V3G38 + V4G48 + V5G58 + V6G68 + E8 +offset8 , 8 = 1, ...,18, with (4.4)

E8 ∼ Normal(0,f2
E ).

The model with the structured effect (Besag model) is defined in the following way:

[8 = 10 + V1G18 + V2G28 + V3G38 + V4G48 + V5G58 + V6G68 +D8 +offset8 , 8 = 1, ...,18 with (4.5)

D8 |gD ∼ iCAR(gD),

that is, D8 is modelled as a intrinsic conditional autoregressive (Equation 2.33).

Finally, the model with the unstructured and structured effects (BYMmodel) is represented as follows:

[8 = 10 + V1G18 + V2G28 + V3G38 + V4G48 + V5G58 + V6G68 + E8 +D8 +offset8 , 8 = 1, ...,18, (4.6)

where E8 and D8 were defined in the previous models.
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4.1 Spatial analysis

Thus, by default, the priors for the hyperparameters are specified as follows:

10 ∼ Normal(0,106),
V 9 ∼ Normal(0,106), 9 = 1, . . . ,6,

log(gE ) ∼ logGamma(1,0.0005),
log(gD) ∼ logGamma(1,0.0005).

The best model was chosen using the variable selection process under the DIC criterion (note that the
model with the lowest DIC is better). The DIC decreased considerably with the inclusion of all variables
and, consequently, with the inclusion of random effects. The model with the unstructured random effect
and the model with the structured and unstructured random effects have the same DIC (222.53). That
said, the model chosen at district level is the simplest model, that is, the model with only the unstructured
random effect (i.i.d model).

Table 4.1 presents the summary of the posterior statistics for the fixed and random effects of the
spatial model at district level.

Table 4.1: Posterior mean, posterior standard deviation and posterior 95% credibility interval for the parameters and hyperpa-
rameters of the spatial model at district level.

Parameter Mean Standard deviation 2.5% Quantile 97.5% Quantile

(Intercept) -4.255 0.050 -4.355 -4.156

Population density (V1) -0.036 0.086 -0.206 0.135

Unemployment rate (V2) -0.030 0.059 -0.148 0.088

Prop. male residents (V3) -0.049 0.078 -0.203 0.105

‰ of mort. due to diabetes (V4) 0.063 0.092 -0.120 0.246

Prop. members federations (V5) -0.069 0.057 -0.181 0.044

Prop. residents +65 (V6) 0.012 0.121 -0.229 0.253

gE 26.65 10.25 10.41 50.21

As can be seen from the table above, there are no significant variables for the model. However, the
random effect is significant, meaning that this model takes into account that the districts are different
from each other with respect to the study data.

Figure 4.1 represents the posterior mean of the unstructured spatial random effect E8 . The unstructured
spatial random effect (there is no spatial correlation in the way the hospital admission rate is modelled)
can be seen as the variation in the hospital admission rate explained by the spatial distribution of districts.
Since the districts are coloured with different colours, the introduction of the random effect in the model
is justified, so spatial differences in the hospital admission rate between districts can be noted.
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4. APPLICATION TO THE BDMH-ACSS DATA

Figure 4.1: Posterior mean of the unstructured spatial random
effect in the spatial model for data at district in 2018.

Figure 4.2: Maps of observed and fitted values of the hospital
admission rate in 2018 at district level.

Figure 4.2 shows the observed values of the hospital admission rate (left) and the fitted values of the
hospital admission rate (right) in 2018 at district level, given by [8 (Equation 4.4). These fitted values
are the posterior mean of the hospital admission rate for each district, according to the model chosen. As
the map on the left in the Figure 4.2 shows, in 2018, the districts with the highest hospital admission rate
due to CCD were Bragança (20.647), Santarém (19.599) and Vila Real (19.973) and the districts with
the lowest relative risk were Porto, Viseu and Faro (all around 10). Furthermore, the map on the right in
Figure 4.2 reveals that the difference between the observed and fitted values is very small, so it is possible
to conclude a good fit of the model to the data at district level for 2018.

4.1.2 Data at municipality level

At municipality level, the regressors of the model are defined as follows:

• V1: Population density

• V2: Unemployment rate

• V3: Proportion of male residents

• V4: Mortality rate per 1000 inhabitants due to diabetes

• V5: Number of hospitals per 1000 inhabitants

• V6: Proportion of residents aged 65 or over

Note that standardisation was also used in this set of variables, as it was in the variables at district level.

That said, the models at municipality level that include the unstructured, structured or both random
effects are described in the same way as the models at district level, but i is defined from 1 to 278 (number
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4.1 Spatial analysis

of municipalities). The best model was also chosen using the variable selection process under the DIC
criterion. The DIC decreased, again, with the inclusion of all variables and, consequently, with the
inclusion of random effects. The model with the structured random effect has the lowest DIC (2549.63),
so it was the model chosen (Besag model).

Table 4.2 shows the summary of the posterior statistics for the fixed and random effects of the spatial
model at municipality level.

Table 4.2: Posterior mean, posterior standard deviation and posterior 95% credible interval for the parameters and hyperparam-
eters of the spatial model for the data at municipality level.

Parameter Mean Standard deviation 2.5% Quantile 97.5% Quantile

(Intercept) -4.428 0.006 -4.439 -4.416

Population density (V1) -0.018 0.042 -0.102 0.065

Unemployment rate (V2) 0.020 0.037 -0.052 0.092

Prop. male residents (V3) -0.001 0.028 -0.055 0.053

‰ of mortality due to diabetes (V4) 0.036 0.031 -0.026 0.097

Hospitals per 1000 inhab. (V5) -0.032 0.030 -0.090 0.027

Prop. residents +65 (V6) 0.097 0.035 0.028 0.165

gD 1.690 0.163 1.390 2.030

Through the previous table, it is concluded that the variable proportion of residents aged 65 or over
is significant to explain the variation in the hospital admission rate due to CCD at municipality level,
accounting for the effect of spatial dependence. As the coefficient is positive, it can be concluded that
regions with a high proportion of residents aged 65 or over tend to have a high hospital admission rate, so
the proportion of residents aged 65 or over is a risk factor at municipality level. In addition, the random
spatial effect is also significant for the model, that is, the spatial correlation is significant in explaining
the variation in the hospital admission rate, which is not explained by the covariates.

Figure 4.3 represents the posterior mean of the structured spatial random effect D8 , that is, the spatial
neighbouring structure is taken into account. The structured spatial random effect can be seen as the
variation in the hospital admission rate explained by the correlation spatial. As the districts are coloured
with different colours, it is justified to introduce the random effect in the model, that is, there is a spatial
correlation between the municipalities in relation to the hospital admission rate due to CCD.

Figure 4.4 displays the observed values of the hospital admission rate (left) and the fitted values of the
hospital admission rate (right) in 2018 at municipality level. These fitted values are the posterior mean
of the hospital admission rate for each municipality, according to the model chosen. According to the
map on the left in Figure 4.4, in 2018, the municipalities with the highest hospital admission rate due to
CCD were located in the Médio Tejo region and in Bragança. The municipalities with the lowest hospital
admission rate were located in Viseu, Coimbra, Aveiro and Castelo Branco. The map on the right in
Figure 4.4 shows that the difference between the observed and fitted values is very small (the colors of
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4. APPLICATION TO THE BDMH-ACSS DATA

Figure 4.3: Posterior mean of the spatial random effect in the
spatial model for data in 2018 at municipality level.

Figure 4.4: Maps of observed and fitted values of the hospital
admission rate in 2018 at municipality level.

the map on the right are slightly lighter, that is, the fitted values are smaller), so it is possible to conclude
a good fit of the model to the data at municipality level for 2018.

4.1.3 Diagnosis

As explained in Section 2.2.4 there are some methods to check and select the best model. The
Deviance Information Criteria (DIC) (a method based on the deviance) for each model was specified
throughout the spatial and spatio-temporal analysis without/with interaction. Note that models with
smaller DIC are better supported by the data. However, in this chapter, the posterior predictive check will
be used in order to analyse the fit of the models to the data. In accordance with this method, there are
two quantities of interest: the posterior predictive distribution and the posterior predictive p-value. The
posterior predictive distribution is represented by a scatter plot of the posterior mean for the predictive
distributions against the observed values. So that the respective model fits the data reasonably well,
the distribution of values in the scatter plot should be similar to a straight line. On the other hand, the
representation of the predictive p-values is done by means of a histogram of the values. According to
Blangiardo and Cameletti (2015), values of ?(H∗

8
≤ H8 |HHH) near to 0 or 1 indicate that the model fails to fit

the data, that is, the closer they are to 0.5 the better.

The Figures 4.5 and 4.6 show the scatter plots of the posterior mean for the predictive distributions
against the observed values (left) and the histogram of the posterior predictive p-value (right) for the
spatial model at district level and at municipality level, respectively.
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Figure 4.5: Scatter plot of the posterior mean for the predictive distributions against the observed values (left) and the histogram
of the posterior predictive p-value (right) - spatial model at district level

Figure 4.6: Scatter plot of the posterior mean for the predictive distributions against the observed values (left) and the histogram
of the posterior predictive p-value (right) - spatial model at municipality level

As the distribution of the points in the scatter plots is similar to a straight line, it is possible to conclude
that, on average, the prediction is very close to the observed values. On the other hand, there is a high
number of areas with p-values close to 0.5 (in the middle of the histograms) and few areas whose p-value
is very low or high. Thus, these graphs in Figures 4.5 and 4.6 suggest that the spatial model at district
level and the spatial model at municipality level fit the data well.

4.2 Spatio-temporal analysis

As mentioned before, the second aim of this study is to analyse how the hospital admission rate
is distributed in space and time and to identify which regressors best explain this spatial and temporal
variation. As explained in Section 2.2.3.2, to investigate a spatial pattern over time, spatio-temporal
models are used. In this type of models, the spatial and temporal variation and the spatial and temporal
dependence between areas and years, respectively, must be included in the model. For this purpose,
random effects will be incorporated in the model: E8 and qC are the unstructured effects for area and time,
respectively, and D8 and WC are the structured effects for area and time, respectively.
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4.2.1 Data at district level

Applying it to the case study, the number of hospital admissions in area i and time t is modelled
according to the Poisson distribution:

.8C ∼ Poisson(_8C ), 8 = 1, . . . ,18 and C = 1, . . . ,5,

log(_8C ) = [8C . (4.7)

Considering that the best spatial model is the i.i.d model (see the model in Equation 4.4), the model
with the unstructured temporal random effect is defined as follows:

[8C = 10 + V1G18C + V2G28C + V3G38C + V4G48C + V5G58C + V6G68C + E8 +qC +offset8C ,
8 = 1, ...,18 and C = 1, ...,5, with

(4.8)

E8 ∼ Normal(0,f2
E ),

qC ∼ Normal(0,f2
q).

For the temporal structured random effect, the model is as follows:

[8C = 10 + V1G18C + V2G28C + V3G38C + V4G48C + V5G58C + V6G68C + E8 +WC +offset8C ,
8 = 1, ...,18 and C = 1, ...,5, with

(4.9)

WC |WC−1 ∼ Normal(WC+1,f2), if RW of order 1,
WC |WC−1, WC−2 ∼ Normal(2WC+1 +WC−2,f

2), if RW of order 2.

Finally, the model with the two temporal random effects is the following:

[8C = 10 + V1G18C + V2G28C + V3G38C + V4G48C + V5G58C + V6G68C + E8 +qC +WC +offset8C ,
8 = 1, ...,18 and C = 1, ...,5,

(4.10)

where qC and WC were defined in the previous models.

Thus, the priors for the hyperparameters are specified as follows:

10 ∼ Normal(0,106),
V 9 ∼ Normal(0,106), 9 = 1, . . . ,6,

log(gE ) ∼ logGamma(1,0.0005),
log(gq) ∼ logGamma(1,0.0005),
log(gW) ∼ logGamma(1,0.0005).

The following table shows the process of including temporal random effects in the model chosen in
the spatial analysis at district level.
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4.2 Spatio-temporal analysis

Table 4.3: Process of inclusion of temporal random effects in the spatio-temporal model for the data at district level and the
respective DIC.

Type of model

for random

effects

Model DIC

I.I.D [8C = 10 + V1G18C + V2G28C + V3G38C + V4G48C + V5G58C + V6G68C + E8 +qC +offset8C 2951.64

RW1 [8C = 10 + V1G18C + V2G28C + V3G38C + V4G48C + V5G58C + V6G68C + E8 +WC +offset8C 2942.30

RW2 [8C = 10 + V1G18C + V2G28C + V3G38C + V4G48C + V5G58C + V6G68C + E8 +WC +offset8C 2934.61

I.I.D and RW1 [8C = 10 + V1G18C + V2G28C + V3G38C + V4G48C + V5G58C + V6G68C + E8 +qC +WC +offset8C 2943.82

I.I.D and RW2 [8C = 10 + V1G18C + V2G28C + V3G38C + V4G48C + V5G58C + V6G68C + E8 +qC +WC +offset8C 2935.64

As can be seen in Table 4.3, the model with the lowest DIC is the model that takes into account that
the hospital admission rate is different across districts (unstructured spatial random effect) and that there
are temporal correlation between years (structured temporal randomeffect defined byRW2 -Equation 4.9).

Table 4.4 presents the summary of the posterior statistics for the fixed and random effects of the
spatio-temporal model without interaction at district level.

Table 4.4: Posterior mean, posterior standard deviation and posterior 95% credible interval for the parameters and hyperparam-
eters of the spatio-temporal model without interaction for the data at district level.

Parameter Mean Standard deviation 2.5% Quantile 97.5% Quantile

(Intercept) -4.182 0.456 -5.087 -3.278

Population density (V1) 1.787 0.122 1.548 2.026

Unemployment rate (V2) 0.001 0.006 -0.010 0.012

Prop. male residents (V3) -0.076 0.011 -0.099 -0.054

‰ of mortality due to diabetes (V4) -0.050 0.006 -0.063 -0.038

Prop. members federations (V5) -0.039 0.004 -0.047 -0.031

Prop. residents +65 (V6) 0.045 0.021 0.004 0.087

gE 0.302 0.106 0.140 0.552

gW 292.383 192.181 59.70 784.231

Through the previous table, it is concluded that the variables population density, proportion of male
residents, mortality rate per 1000 inhabitants due to diabetes, proportion of members in federations and
proportion of residents aged 65 or over are significant to explain the variation in the hospital admission
rate due to CCD at district level, accounting for the effect of spatial variation and temporal dependence.
As the coefficients of population density and the proportion of residents aged 65 or over are positive, it
can be concluded that regions with a high population density and a high proportion of residents aged 65 or
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over tend to have a high hospital admission rate. Thus, these two variables are risk factors for the hospital
admission rate due to CCD at district level over the years. In turn, since the coefficients of the proportion
of male residents, the mortality rate per 1000 population due to diabetes and the proportion of members
in federations are negative, it can be concluded that regions with high values of these variables tend to
have low hospital admission rates. Furthermore, the spatial random effect is also significant, that is, the
variation in the hospital admission rate due to CCD is different across districts, but these differences
are maintained over time. In addition, the temporal random effect is also significant in explaining the
admission rate, that is, there is a temporal correlation between years that is not related to the distribution
of areas.

Figure 4.7: Posterior mean of the spatial random effect in the
spatio-temporal model at district level.

Figure 4.8: Posterior mean of the temporal random effect in
the spatio-temporal model at district level.

Figure 4.7 represents the posterior mean of the unstructured spatial random effect E8 but now taking
into account the insertion of the temporal structured component in the model. Through of this map it is
possible to observe that there is not so much diversity of tones as in the map in Figure 4.1. These changes
are justified by the insertion of the temporal structured component, which dissolves part of the variabil-
ity previously explained only by the spatial component. Thus, the variability of the admission rate in
some districts, whichwas previously explained by their location, is now explained by temporal correlation.

In turn, Figure 4.8 exposes the posterior mean of the structured temporal random effect WC . As all
years are different from each other, it is justified to introduce the temporal random effect in the model,
that is, the hospital admission rate due to CCD varies over time.
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4.2 Spatio-temporal analysis

Figure 4.9: Spatial and temporal distribution of the hospital admission rate at district level - without interaction.

Figure 4.9 demonstrates the fitted values and the observed values of the hospital admission rate for
all years at district level. These fitted values are the posterior mean of the hospital admission rate for each
district and for each year, according to the model chosen. According to the maps of observed values,
Castelo Branco was the district with the highest hospital admission rate due to CCD from 2010 to 2016.
In 2016, it is possible to see a slight decrease in the hospital admission rates in the districts overall,
comparing with previously years. In 2018, an increase in the hospital admission rate could again be
observed in Bragança (the second district with the highest rate in 2012 and 2014 and the third district
with the highest rate in 2010 and 2016), Santarém and Évora and a decrease in the rate in other districts
in general. This decreased is specifically highlighted in Castelo Branco, where the hospital admission
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rate decreased from 22.953 to 11.266, suffering a decline by half. In addition, Braga was the district
with the lowest admission rate in 2010, Faro was the district with the lowest rate in 2012 and 2014 and
Porto in 2016 and 2018. Regarding the fitted values, the maps are very similar to the maps of observed
values from 2010 to 2016, so it is possible to conclude a good fit of the model to the data at district
level from 2010 to 2016. However, the map of fitted values for 2018 is very different from the map of
observed values. This difference is quite visible in Castelo Branco, which became the district with the
lowest admission rate and in previous years was the district with the highest rate. Therefore, there is a
suspicion of a poor fit of the model (with spatial and temporal components) at district level for 2018.

4.2.1.1 Space-time interactions

The models explained above can be extended through the interaction between space and time. At
district level, the best spatial model is the i.i.d. model. Consequently, the best spatio-temporal model is the
model whose spatial variation is defined by the unstructured random effect and whose time dependence
is defined by the structured random effect, modelled as RW2. Therefore, the natural interaction between
space and time is the type II interaction (explained in the Equation 2.39). According to the study data,
the model with the type II interaction is described as follows:

[8C = 10 + V1G18C + V2G28C + V3G38C + V4G48C + V5G58C + V6G68C + E8 +WC + X8C +offset8C ,
8 = 1, ...,18 and C = 1, ...,5,

(4.11)

where X8C is defined concerning the equation mentioned in the before paragraph.

In the following table is represented the DIC for the defined model:

Table 4.5: DIC of the spatio-temporal model with interaction term for data at district level.

Interaction Parameter interaction DIC

II E8 and WC 1121.19

The posterior mean of the parameters and hyperparameters of themodel chosen, the posterior standard
deviation and the posterior 2.5% and 97.5% quantiles are presented in Table 4.6.

Table 4.6: Posterior mean, posterior standard deviation and posterior 95% credible interval for the parameters and hyperparam-
eters of the spatio-temporal model with interaction for the data at district level.

Parameter Mean Standard deviation 2.5% Quantile 97.5% Quantile

(Intercept) 0.148 5792.620 -11372.717 11363.523

Population density (V1) 0.722 2.467 -4.129 5.566

Unemployment rate (V2) 0.007 0.047 -0.086 0.100

Prop. male residents (V3) -0.279 0.118 -0.511 -0.048

‰ of mortality due to diabetes (V4) 0.017 0.026 -0.034 0.067

Prop. members federations (V5) -0.019 0.040 -0.099 0.060

Prop. residents +65 (V6) -1.192 0.572 -2.315 -0.069
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gE 67.31 0.142 67.00 67.62

gW 106.61 0.292 105.90 107.19

gX 178.10 0.488 176.89 179.08

From the table above, it can be concluded that the variables proportion ofmale residents and proportion
of residents aged 65 or over are significant to explain the variation in the hospital admission rate due
to CCD at district level over time, accounting for the effect of spatial variation, temporal dependence
and interaction effect. Since the coefficients are negative, it can be concluded that regions with a high
proportion of male residents and a high proportion of residents aged 65 or over tend to have a low hospital
admission rate. In addition, the random effects are also significant for the model, that is, the spatial
variation, the temporal correlation and the interaction space-time are significant to explain the variation
in the hospital admission rate due to CCD at district level over time.

Figure 4.10: Posteriormean of the temporal random effect
in the spatio-temporal model with interaction space-time
at district level.

Figure 4.11: Posterior mean of the interaction random effect in the
spatio-temporal model with interaction space-time at district level.

Despite being significant for the model, the posterior mean of the spatial and temporal random effects
of the spatio-temporal model with interaction are almost zero. However the temporal random effect
exhibits a small heterogeneity. Thus, there is a small variation in the admission rate explained only by the
temporal effect. In turn, the posterior mean of the interaction random effect is represented in Figure 4.11.
Since the districts are coloured with different colours in all years, the relationship between the districts
varies over time, so it is justified to introduce the space-time interaction in the model. Thus, it is possible
to conclude that the variation in the hospital admission rate, which is not explain by the covariates, is
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mostly explain by the combined space-time effect.

The difference between this model and the spatio-temporal model without interaction is that when
the interaction term is introduced in the model, the variability that was previously accommodated in the
spatial and temporal effects, is now accommodated mainly in the space-time interaction. Thus, in most
cases, the hospital admission rate is different across districts, and this difference varies over time.

Figure 4.12: Spatial and temporal distribution of the hospital admission rate at district level - with interaction.

The Figure 4.12 shows the fitted values and the observed values of the hospital admission rate for all
years at district level. These fitted values are the posterior mean of the hospital admission rate for each
district and year, according to the model for the data at district level with the unstructured random effect

46



4.2 Spatio-temporal analysis

for area, the structured random effect for time (defined by RW2) and the interaction term between the
latter two random effects. Concerning the maps of observed values, the conclusions are the same as in
Figure 4.9. The maps of the fitted values are very similar with the maps of the observed values in all
years, contrary to what happened in 4.9. Thus, it is possible to conclude a good fit of the model to the
data at district level from 2010 to 2018.

4.2.1.2 Diagnosis

The Figures 4.13 and 4.14 present the scatter plots of the posterior mean for the predictive distributions
against the observed values (left) and the histogramof the posterior predictive p-value (right) for the spatio-
temporal model without interaction and for the spatio-temporal model with interaction at district level,
respectively.

Figure 4.13: Scatter plot of the posterior mean for the predictive distributions against the observed values (left) and the histogram
of the posterior predictive p-value (right) - spatio-temporal model at district level

Although the distribution of the points in Figure 4.13 looks like a straight line, this distribution is not
as linear as in Figure 4.5. However, it is possible to conclude that, on average, the prediction is close to
the observed values. On the other hand, by observing the histogram it is possible to see that there is a
high number of areas with low and high p-values. Thus, the histogram in Figure 4.13 suggests that the
spatio-temporal model without interaction at district level does not fit the data well.

Figure 4.14: Scatter plot of the posterior mean for the predictive distributions against the observed values (left) and the histogram
of the posterior predictive p-value (right) - spatio-temporal model with interaction at district level

As the distribution of the points in the scatter plot in Figure 4.14 is similar to a straight line, it is pos-
sible to conclude that, on average, the prediction is very close to the observed values. On the other hand,
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there is a high number of areas with p-values close to 0.5 (in the middle of the histogram) and few areas
whose p-value is very low or high. Thus, these graphs in Figure 4.14 suggest that the spatio-temporal
model with interaction at district level fits the data well.

Consequently, the best spatio-temporal model, for the data at district level, is the model with interac-
tion, defined by the Equation 4.11.

4.2.2 Data at municipality level

The number of hospital admissions in area i and year t is modelled according to the Poisson distribu-
tion:

.8C ∼ Poisson(_8C ), 8 = 1, . . . ,278 and C = 1, . . . ,5,

log(_8C ) = [8C . (4.12)

Since the best spatial model is the Besag model, the model with the unstructured temporal random
effect is defined as follows:

[8C = 10 + V1G18C + V2G28C + V3G38C + V4G48C + V5G58C + V6G68C +D8 +qC +offset8C ,
8 = 1, ...,278 and C = 1, ...,5, with

(4.13)

D8 |gD ∼ iCAR(gD),
qC ∼ Normal(0,f2

q).

For the structured random effect, the model is the following:

[8C = 10 + V1G18C + V2G28C + V3G38C + V4G48C + V5G58C + V6G68C +D8 +WC +offset8C ,
8 = 1, ...,278 and C = 1, ...,5, with

(4.14)

WC |WC−1 ∼ Normal(WC+1,f2), if RW of order 1,
WC |WC−1, WC−2 ∼ Normal(2WC+1 +WC−2,f

2), if RW of order 2.

Finally, the model with the two temporal random effects is as follows:

[8C = 10 + V1G18C + V2G28C + V3G38C + V4G48C + V5G58C + V6G68C +D8 +qC +WC +offset8C ,
8 = 1, ...,278 and C = 1, ...,5,

(4.15)

where qC is the unstructured random effect and WC is the structured random effect, defined previously.
The priors for the hyperparameters were specified in Section 4.2.1.

In the following table is represented the process of inclusion of the temporal random effects in the
model chosen in the spatial analysis, with data at municipality level.

48



4.2 Spatio-temporal analysis

Table 4.7: Process of inclusion of random effects in the spatio-temporal model for the data at municipality level and the
respective DIC.

Type of model

for random

effects

Model DIC

I.I.D [8C = 10 + V1G18C + V2G28C + V3G38C + V4G48C + V5G58C + V6G68C +D8 +qC +offset8C 25148.59

RW1 [8C = 10 + V1G18C + V2G28C + V3G38C + V4G48C + V5G58C + V6G68C +D8 +WC +offset8C 25168.60

RW2 [8C = 10 + V1G18C + V2G28C + V3G38C + V4G48C + V5G58C + V6G68C +D8 +WC +offset8C 25150.00

I.I.D and RW1 [8C = 10 + V1G18C + V2G28C + V3G38C + V4G48C + V5G58C + V6G68C +D8 +qC +WC +offset8C 25148.87

I.I.D and RW2 [8C = 10 + V1G18C + V2G28C + V3G38C + V4G48C + V5G58C + V6G68C +D8 +qC +WC +offset8 25150.28

As can be seen in Table 4.7, the model with the lowest DIC is the model that takes into account
the spatial correlation between municipalities (structured spatial random effect) and that the hospital
admission rate is different over time (unstructured temporal random effect).

Table 4.8: Posterior mean, posterior standard deviation and posterior 95% credible interval for the parameters and hyperparam-
eters of the spatio-temporal model without interaction for the data at municipality level.

Parameter Mean Standard deviation 2.5% Quantile 97.5% Quantile

(Intercept) -4.201 0.051 -4.304 -4.099

Population density (V5) -0.009 0.007 -0.022 0.004

Unemployment rate (V3) -0.029 0.004 -0.037 -0.021

Prop. male residents (V6) -0.093 0.008 -0.108 -0.077

‰ of mortality due to diabetes (V4) 0.002 0.004 -0.006 0.010

Hospitals per 1000 inhab. (V2) -0.012 0.006 -0.024 0.000

Prop. residents +65 (V1) -0.013 0.013 -0.038 0.011

gD 8.63 0.919 6.95 10.56

gq 113.94 66.436 28.22 280.90

Through the Table 4.8, it is concluded that the variables unemployment rate and proportion of male
residents are significant to explain the variation in the hospital admission rate due to CCD at municipality
level, accounting for the effect of spatial dependence and temporal variation. Since the coefficients are
negative, it can be concluded that regions with high unemployment rates and high proportions of male
residents tend to have low hospital admission rates at municipality level over the years. Moreover, the
spatial random effect is significant for the model, that is, there is a spatial correlation between districts
that is not related to the years. In addition, the temporal random effect is also significant in explaining the
admission rate, that is, the variation in the hospital admission rate due to CCD is different across years,
but these differences are kept over districts.
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Figure 4.15: Posterior mean of the spatial random effect in the
spatio-temporal model at municipality level.

Figure 4.16: Posterior mean of the temporal random effect in
the spatio-temporal model at district level.

Figure 4.15 represents the posterior mean of the structured spatial random effect D8 but now taking
into account the insertion of the temporal unstructured component in the model. This map shows a great
diversity of colours, in contrast to the map in Figure 4.3. Thus, it is possible to conclude that a high
part of the variability of the admission rate, which is not explained by the covariates, is explained by the
spatial random effect.

In turn, Figure 4.16 exhibits the posterior mean of the unstructured temporal random effect qC . As
all years are different from each other, it is justified to introduce the temporal random effect in the model,
that is, the hospital admission rate due to CCD varies with time.
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Figure 4.17: Spatial and temporal distribution of the hospital admission rate at municipality level - without interaction.

Figure 4.17 shows the fitted and observed values of the hospital admission rate for all years at
municipality level. These fitted values are the posterior mean of the hospital admission rate for each
municipality and for each year, according to the model chosen. In relation to the maps of observed
values, Covilhã and Fundão, located in Castelo Branco, were the municipalities with the highest hospital
admission rate due to CCD from 2010 to 2014. In 2016, a slight decrease in hospital admission rates was
observed in most municipalities compared to previous years. However, Covilhã and Vila Real, located
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in Castelo Branco, were the municipalities with the highest admission rates in 2016. In 2018, there was
again an increase in hospital admission rate in some municipalities located in Bragança and Santarém,
more specifically Mação, Sardoal and Gavião. Nevertheless, in general, a decrease in the rate is observed
in the remaining municipalities. This decrease is very accentuated in the municipalities located in Castelo
Branco and Coimbra. Regarding the fitted values, the maps are very similar to the maps of observed
values from 2010 to 2016, with the fitted values being slightly lower than the observed values. Thus,
it is possible to conclude a good fit of the model to the data at municipality level from 2010 to 2016.
Meanwhile, the map of fitted values for 2018 is very different to the map of observed values, so there is
suspicion of a poor model fit (with spatial and temporal components) at municipality level for 2018.

4.2.2.1 Space-time interactions

As seen in previous sections, the best spatial model, at municipality level, is the Besag model
(model with structured random effect). Consequently, the best spatio-temporal model is the model whose
spatial dependence is defined by the structured random effect and whose time variation is defined by
the unstructured random effect. Therefore, the natural interaction between space and time is the type III
interaction (explained in Equation 2.40). Adapting to the study data, the model with type III interaction
is described as follows:

[8C = 10 + V1G18C + V2G28C + V3G38C + V4G48C + V5G58C + V6G68C +D8 +qC + X8C
+offset8C , 8 = 1, ...,278 and C = 1, ...,5,

(4.16)

where X8C is defined concerning the equation mentioned in the above paragraph.

In the following table is represented the DIC for the explained model:

Table 4.9: DIC of the spatio-temporal model with interaction term for data at municipality level.

Interaction Parameter interaction DIC

III D8 and qC 12914.28

The posterior mean of the parameters and hyperparameters of themodel chosen, the posterior standard
deviation and the posterior 2.5% and 97.5% quantiles are presented in Table 4.10.

Table 4.10: Posterior mean, posterior standard deviation and posterior 95% credible interval for the parameters and hyperpa-
rameters of the spatio-temporal model with interaction for the data at municipality level.

Parameter Mean Standard deviation 2.5% Quantile 97.5% Quantile

(Intercept) 0.029 2300.560 -4516.844 4512.727

Population density (V5) -0.001 0.0165 -0.032 0.031

Unemployment rate (V3) 0.025 0.012 0.002 0.048

Prop. male residents (V6) -0.012 0.011 -0.034 0.009

‰ of mortality due to diabetes (V4) 0.010 0.007 -0.004 0.025
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Hospitals per 1000 inhab. (V2) -0.004 0.009 -0.021 0.013

Prop. residents +65 (V1) 0.117 0.014 0.090 0.144

gD 17.458 2.454 13.542 23.110

gq 0.394 0.477 0.001 1.660

gX 15.579 0.810 14.062 17.250

As shown in Table 4.10, it is concluded that the variables unemployment rate and proportion of
residents aged 65 or over are significant to explain the variation in the hospital admission rate due to
CCD at municipality level, accounting for the effect of spatial dependence, temporal variation and the
effect of space-time interaction. As the coefficients are positive, it can be concluded that regions with
high unemployment rates and high proportions of residents aged 65 or over tend to have high hospital
admission rates. Thus, these two variables are risk factors for the hospital admission rate due to CCD
at municipality level over the years. Moreover, the random effects are also significant to explain the
variation in the hospital admission rate due to CCD at municipality level over time.

Figure 4.18: Posterior mean of the spatial random effect in the spatio-temporal model with interaction at municipality level.

Figure 4.18 represents the posterior mean of the structured spatial random effect D8 but now taking
into account the insertion of the temporal unstructured component and the interaction in the model. Since
the municipalities are coloured with different colours, there are a spatial correlation between the areas.
Despite of the temporal effect being significant for the model, the posterior mean is almost zero, that is,
there is a very small variation in the admission rate explained only by the temporal effect.
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Figure 4.19: Posterior mean of the interaction random effect in the spatio-temporal model with interaction space-time at
municipality level.

Figure 4.19 shows the posterior mean of the interaction random effect. Since the color of some
districts varies over time, it is possible to conclude that the relationship between the districts varies with
time. Therefore, it is justified to introduce the space-time interaction in the model. Thus, it is can to
conclude that the variation in the hospital admission rate, which is not explain by the covariates, is explain
by the spatial correlation and by space-time combined effect.

The difference between this model and the spatio-temporal model without interaction is that when
the interaction term is introduced in the model, the variability that was previously accommodated only in
the spatial effect and the temporal effect is now mainly accommodated in the spatial random effect (part
of the variation in the admission rate is explained only by space, that is, it remains unchanged over time)
and in the interaction random effect (part of the variation in the hospital admission rate is explained by
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the space-time combined effect, that is, the rate is different across districts, and this difference varies over
time).

Figure 4.20: Spatial and temporal distribution of the hospital admission rate at municipality level - with interaction.

Figure 4.20 shows the observed values and the fitted values obtained from the model, for the data at
municipality level, with the structured random effect for area, the unstructured random effect for time and
the interaction term between the latter two random effects. According to the maps of observed values,

55



4. APPLICATION TO THE BDMH-ACSS DATA

the conclusions are the same as the Figure 4.17. Regarding the fitted values, all maps are very similar to
the observed maps, contrary to what happened in Figure 4.17. Thus, it is possible to conclude a good fit
of the model to the data at municipality level from 2010 to 2018.

4.2.2.2 Diagnosis

The Figures 4.21 and 4.22 show the scatter plots of the posterior mean for the predictive distributions
against the observed values (left) and the histogramof the posterior predictive p-value (right) for the spatio-
temporal model without interaction and for the spatio-temporal model with interaction at municipality
level, respectively.

Figure 4.21: Scatter plot of the posterior mean for the predictive distributions against the observed values (left) and the histogram
of the posterior predictive p-value (right) - spatio-temporal model at municipality level

Although the distribution of the points in Figure 4.21 looks like a straight line, this distribution is not
as linear as in Figure 4.6. However, it is possible to conclude that, on average, the prediction is close to
the observed values. On the other hand, by observing the histogram it is possible to see that there is a
high number of areas with low and high p-values. Thus, the histogram in Figure 4.21 suggests that the
spatio-temporal model without interaction, at municipality level, does not fit the data well.

Figure 4.22: Scatter plot of the posterior mean for the predictive distributions against the observed values (left) and the histogram
of the posterior predictive p-value (right) - spatio-temporal model with interaction at municipality level

As the distribution of the points in the scatter plot in Figure 4.22 is similar to a straight line, it is pos-
sible to conclude that, on average, the prediction is very close to the observed values. On the other hand,
there is a high number of areas with p-values close to 0.5 (in the middle of the histogram) and few areas
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whose p-value is very low or high. Thus, these graphs in Figure 4.22 suggest that the spatio-temporal
model with interaction, at municipality level, fits the data well.

Consequently, the best spatio-temporal model, for the data at municipality level, is the model with
interaction, defined by the Equation 4.16.
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All previous studies carried out in Portugal only analyse the mortality rate due to some cerebro-
cardiovascular diseases, in particular stroke and myocardial infarction, and the associated risk factors.
The DGS reports present the mortality rate caused by cerebrovascular diseases and cardiovascular dis-
eases, separately. In addition, these reports present the spatial distribution of the percentage of admissions
that arrived at the hospital through the "vias verdes" of stroke units. The Centre and Alentejo regions
are the most problematic. Although these results only include strokes, it is also in these regions that the
highest rate of hospital admission due to CCD is recorded (taking into account the results of this analysis).

Since cerebro-cardiovascular diseases are the main cause of death in Portugal, it is imperative to study
all diseases in this group, and not only the main ones. Thus, this study aims to characterise the spatial
and temporal distribution of the admissions due to CCD and their risk factors and to detect and assess the
spatial and/or temporal patterns of consumption of hospital resources and identify which regressors best
explain the spatial and temporal variation. For this purpose, the consumption of hospital resources was
studied in the form of hospital admission rate at spatial and temporal level. Therefore, this study differs
from the others because it includes all the diseases in the CCD group and analyses the spatial distribution
of admissions in districts and municipalities over time. The second focus of this study was to analyse the
risk factors for the hospital admission rate due to CCD.

Given the real-life scenario, the interest lies in the space-time analysis. Thus, the goal of the study
is to analyse the spatio-temporal model with space-time interaction, which is the best spatio-temporal
model, both at district and municipality level.

That said, taking into account the random effects plots at the district level, the hospital admission rate
varies mainly across districts over time. However, a small variation in the admission rate is explained only
by the temporal dependence, that is, there is still a slight dependence between the years that is maintained
across districts. In terms of hospital admission rate values, Castelo Branco was the district with the
highest rate from 2010 to 2016. In 2018, Bragança stood out, which is also the second district with the
highest hospital admission rate in 2012 and 2014 and the third district with the highest rate in 2010 and
2016. On the other hand, Braga, Porto and Faro were the districts with the lowest hospital admission
rate in 2010, 2012 and 2016. In 2014, Faro, Braga and Aveiro were the three districts with the lowest
rate and in 2018 they were Porto, Viseu and Faro. At district level, the proportion of male residents and
the proportion of residents aged 65 or over are the significant risk factors in explaining the variation in
the hospital admission rate across space and time, accounting for the effect of spatial variation, temporal
dependence and interaction effect. Since the coefficients are negative, it can be concluded that regions
with a high proportion of male residents and a high proportion of older residents tend to have a low
hospital admission rate. Consequently, it is suspected that women may go to hospital more frequently,

58



and therefore represent a higher percentage of hospital admissions. Thus, we suspect that the patient’s
gender may be a proxy for a certain behaviour regarding health. Regarding the proportion of residents
aged 65 years or over, this result was not as expected, but this finding should be interpreted with caution
because the number of observations in the model at district level is small. Furthermore, although being
male and being older are risk factors for circulatory system diseases (given the literature), these results
cannot be directly related, as being a risk factor for CCD is different from being a risk factor for being
admitted to hospital.

However, when spatial and temporal effects and the combined effect of both are not taken into ac-
count, all variables are significant for the hospital admission rate due to CCD at district level, except the
unemployment rate. According to these results, and to the results presented in the last paragraph, we
conclude that it is not the values of population density, the proportion of members in federations and the
mortality rate due to diabetes that directly affect the evolution of the hospital admission rate due to CCD,
but rather the location of the areas characterised by these values over time. An illustrative example of the
behaviour shown by these variables can be given by analysing the mortality rate due to diabetes. As this
variable is no longer significant when random effects are considered, it is concluded that it is not the fact
of having diabetes in a more advanced state (which could lead to death) that becomes a risk factor for the
hospital admission rate due to CCD, but rather the fact that this type of diabetics live in risk areas for the
hospital admission rate, for this type of disease. This situation is portrayed when considering the fact that
access to healthcare is more limited in rural areas, and consequently, when patients living in these regions
go to hospital, they present a more degraded state of health, which can lead to death. Following this
line of thought, one is not dismissing the association between diabetes and the propensity for circulatory
system diseases, but rather considering that it is not the severity of diabetes (here represented by the
mortality rate) that is associated with the hospital admission rate due to CCD, but rather the patients’ area
of residence.

At municipality level, taking into account the random effects plots, part of the evolution of the hospital
admission rate is explained by the space-time combined effect, that is, the hospital admission rate varies
from municipality to municipality over time. Meanwhile, the other part of the variation in the hospital
admission rate, which is not explained by the covariates, is only explained by the spatial dependence, that
is, there is a dependence between municipalities is maintained over time. Regarding the rate values, Cov-
ilhã and Fundão, located in Castelo Branco, were the municipalities with the highest hospital admission
rate from 2010 to 2014. In 2016, it was possible to observe a slight decrease in the hospital admission rate
in most municipalities, compared to previous years. However Covilhã and Vila Real, located in Castelo
Branco, were the municipalities with the highest admission rates. In 2018, there was again an increase
in the hospital admission rate in some municipalities located in Bragança and Santarém. Nevertheless, a
decrease in the rate was observed in other municipalities in general. This decrease was very accentuated
in the municipalities located in Castelo Branco and Coimbra. In addition, the unemployment rate and
the proportion of residents aged 65 or over are the significant variables to explain the evolution of the
admission rate in space and time, accounting for the effect of spatial dependence, temporal variation and
interaction effect. Since the coefficients are positive, it can be stated that regions with high unemployment
rates and high proportions of residents aged 65 or over tend to have high hospital admission rates. This
finding is in accordance with the facts found in the literature, as being older is a risk factor for circulatory
system diseases. On the other hand, being unemployed can cause stress in an individual, which becomes
a risk factor for CCD, as suspected in the literature. Thus, it leads us to believe that these variables are
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considered risk factors for both hospital admission rate and propensity for CCD, however, these results
cannot be fully compared since the response variables are different, as explained for the districts.

Moreover, without considering spatial and temporal effects and the interaction between the two, all
variables are significant for the hospital admission rate due to CCD. Hence, according to these results, it
is not the values of the proportion of male residents, the population density, the number of hospitals and
the mortality rate due to diabetes in each area that directly affect the evolution of the hospital admission
rate, but rather the geographical location of the areas characterised by these values over time.

In summary, it is not possible to directly compare this study with the other studies presented in the
literature because this one analyses the risk factors for the hospital admission rate due to CCD and the
others analyse the propensity for CCD. Additionally, for variables that are not significant when random
effects are taken into account, the models indicate that differences in hospital admission rates due to CCD
stem from the location of the regions over time, rather than from population characteristics.

Finally, the models were built given the limitations of the data, essentially present in odd years. The
sample size of odd years is half the sample size of even years, which makes us doubt the credibility of
the data. Although to the odd years have been excluded to the study data, these results should not be
taken as absolute certainty because of all the limitations of the data. In addition, there are important risk
factors that were not included in the models (e.g. smoking and alcoholism) as they are not available at
the intended area level (district and municipality).

In the future, I would like to replicate this study, but using a database with patient health-level
characteristics to profile the population admitted to hospitals due to CCD, in order to identify the
risk factors associated with these patients, so as to control this disease and avoid hospital admissions.
Furthermore, I would like to divide this group of diseases into two subgroups: one group composed of the
diseases with high hospital admission (e.g. stroke) and another group with diseases with low probability
of taking an individual to hospital, that is, more controlled diseases. Thus, I intended to see if the results
would be different, taking into account that these two groups are very different in relation to the health
status of individuals and the associated risk.
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A Tables of exploratory analysis

Table 1: Descriptive values of the variables per year.

Years
‰ of hospital
admissions

Population
density

% of unem-
ployment

Proportion of
male residents

‰ of mortality
due to diabetes

Proportion of mem-
bers in federations

Proportion of residents
aged 65 or over

Hospitals per
1000 inhab.

2010 14.370 112.900 7.991 0.478 0.451 0.048 0.190 0.021
2012 14.596 112.300 9.602 0.476 0.472 0.049 0.197 0.021
2014 14.818 111.000 9.343 0.474 0.433 0.051 0.206 0.021
2016 13.521 110.300 7.738 0.473 0.423 0.056 0.214 0.021
2018 13.574 109.800 5.307 0.472 0.429 0.063 0.222 0.022
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A Tables of exploratory analysis

Table 2: Descriptive values of the study variables per district in 2010.

Districts
‰ of hospital
admissions

Population
density

% of unem-
ployment

Proportion of
male residents

‰ of mortality
due to diabetes

Proportion of mem-
bers in federations

Proportion of residents
aged 65 or over

Aveiro 13.941 255.213 8.051 0.481 0.443 0.056 0.173
Beja 15.991 14.916 8.159 0.492 0.705 0.045 0.248
Braga 12.061 313.630 9.161 0.482 0.257 0.040 0.140

Bragança 17.571 20.700 8.330 0.482 0.681 0.030 0.282
Castelo Branco 24.823 29.694 8.373 0.477 0.595 0.031 0.269

Coimbra 16.305 108.441 6.402 0.473 0.388 0.049 0.221
Évora 16.539 22.587 7.054 0.482 0.976 0.047 0.240
Faro 12.739 90.319 8.555 0.488 0.348 0.059 0.191

Guarda 16.500 29.157 7.302 0.474 0.558 0.051 0.275
Leiria 16.880 134.521 6.384 0.481 0.543 0.048 0.199
Lisboa 14.290 803.183 6.705 0.472 0.422 0.044 0.189

Portalegre 17.643 19.535 8.844 0.479 1.001 0.053 0.265
Porto 12.265 780.004 10.404 0.478 0.346 0.056 0.152

Santarém 16.777 67.642 6.630 0.478 0.744 0.044 0.227
Setúbal 13.610 163.384 7.343 0.481 0.433 0.048 0.179

Viana do Castelo 15.621 110.557 6.843 0.467 0.465 0.050 0.225
Vila Real 15.929 48.081 8.956 0.478 0.604 0.041 0.236
Viseu 14.581 75.499 7.812 0.477 0.545 0.047 0.221



67

A Tables of exploratory analysis

Table 3: Descriptive values of the study variables per district in 2012.

Districts
‰ of hospital
admissions

Population
density

% of unem-
ployment

Proportion of
male residents

‰ of mortality
due to diabetes

Proportion of mem-
bers in federations

Proportion of residents
aged 65 or over

Aveiro 13.423 253.467 8.748 0.479 0.490 0.059 0.181
Beja 16.615 14.666 10.107 0.491 0.857 0.044 0.246
Braga 12.351 312.797 10.627 0.481 0.326 0.043 0.147

Bragança 18.562 20.207 9.714 0.481 0.765 0.031 0.285
Castelo Branco 25.309 28.927 9.603 0.475 0.699 0.032 0.272

Coimbra 16.930 106.352 8.375 0.471 0.412 0.047 0.228
Évora 14.471 22.179 9.100 0.480 0.890 0.048 0.244
Faro 12.064 88.935 10.707 0.484 0.358 0.059 0.198

Guarda 17.034 28.306 8.548 0.472 0.715 0.059 0.279
Leiria 16.211 133.306 7.835 0.479 0.663 0.053 0.206
Lisboa 14.503 800.872 8.321 0.471 0.420 0.046 0.198

Portalegre 17.050 19.010 9.990 0.478 0.856 0.042 0.265
Porto 13.039 775.434 12.298 0.476 0.350 0.054 0.161

Santarém 17.471 66.880 8.553 0.476 0.774 0.045 0.232
Setúbal 14.225 163.809 8.965 0.479 0.464 0.047 0.188

Viana do Castelo 15.614 109.137 8.304 0.466 0.500 0.046 0.229
Vila Real 15.741 47.180 10.080 0.477 0.566 0.039 0.240
Viseu 15.009 74.327 9.434 0.475 0.454 0.051 0.225
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A Tables of exploratory analysis

Table 4: Descriptive values of the study variables per district in 2014.

Districts
‰ of hospital
admissions

Population
density

% of unem-
ployment

Proportion of
male residents

‰ of mortality
due to diabetes

Proportion of mem-
bers in federations

Proportion of residents
aged 65 or over

Aveiro 13.227 250.965 8.138 0.476 0.437 0.065 0.191
Beja 16.702 14.351 9.410 0.488 0.726 0.043 0.249
Braga 13.139 310.276 9.514 0.479 0.295 0.047 0.157

Bragança 19.097 19.672 9.735 0.478 0.686 0.031 0.292
Castelo Branco 24.819 28.190 9.408 0.475 0.674 0.033 0.277

Coimbra 17.281 104.341 8.440 0.470 0.379 0.052 0.239
Évora 15.451 21.622 9.036 0.478 0.732 0.058 0.249
Faro 11.346 88.351 9.164 0.482 0.392 0.061 0.206

Guarda 17.463 27.508 7.846 0.470 0.782 0.076 0.286
Leiria 15.916 131.799 7.040 0.477 0.630 0.061 0.214
Lisboa 14.685 793.769 8.302 0.470 0.368 0.046 0.207

Portalegre 18.968 18.422 9.638 0.476 1.142 0.041 0.268
Porto 13.536 767.211 12.599 0.474 0.282 0.053 0.173

Santarém 17.533 65.759 7.468 0.475 0.634 0.046 0.239
Setúbal 14.130 163.500 8.792 0.477 0.482 0.046 0.199

Viana do Castelo 15.748 107.261 7.959 0.464 0.387 0.045 0.237
Vila Real 17.233 46.113 10.578 0.475 0.604 0.047 0.248
Viseu 15.207 73.009 10.104 0.474 0.506 0.066 0.233
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A Tables of exploratory analysis

Table 5: Descriptive values of the study variables per district in 2016.

Districts
‰ of hospital
admissions

Population
density

% of unem-
ployment

Proportion of
male residents

‰ of mortality
due to diabetes

Proportion of mem-
bers in federations

Proportion of residents
aged 65 or over

Aveiro 13.113 249.527 6.487 0.476 0.298 0.067 0.201
Beja 16.708 14.025 9.025 0.487 0.827 0.052 0.251
Braga 12.543 307.675 7.167 0.478 0.258 0.045 0.168

Bragança 17.831 19.166 9.460 0.477 0.704 0.032 0.300
Castelo Branco 22.953 27.630 7.968 0.474 0.612 0.038 0.283

Coimbra 16.513 103.263 7.109 0.470 0.405 0.060 0.247
Évora 12.836 21.128 7.808 0.478 1.043 0.066 0.255
Faro 10.787 88.351 6.936 0.479 0.340 0.076 0.211

Guarda 18.273 26.832 6.788 0.470 0.660 0.072 0.290
Leiria 16.203 131.045 5.369 0.477 0.629 0.071 0.220
Lisboa 13.247 798.242 6.949 0.469 0.372 0.047 0.215

Portalegre 14.357 17.847 9.030 0.476 0.884 0.053 0.270
Porto 10.247 761.715 10.483 0.473 0.303 0.062 0.185

Santarém 16.399 64.843 6.099 0.474 0.601 0.052 0.244
Setúbal 14.348 163.295 7.532 0.475 0.504 0.048 0.207

Viana do Castelo 14.858 105.376 6.292 0.464 0.475 0.056 0.245
Vila Real 16.507 45.130 9.892 0.474 0.504 0.066 0.258
Viseu 13.532 71.968 8.576 0.473 0.485 0.069 0.240
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A Tables of exploratory analysis

Table 6: Descriptive values of the study variables per district in 2018.

Districts
‰ of hospital
admissions

Population
density

% of unem-
ployment

Proportion of
male residents

‰ of mortality
due to diabetes

Proportion of mem-
bers in federations

Proportion of residents
aged 65 or over

Aveiro 14.929 248.381 4.368 0.474 0.335 0.071 0.211
Beja 14.011 13.756 6.492 0.486 0.857 0.064 0.254
Braga 14.804 306.211 4.880 0.476 0.273 0.047 0.178

Bragança 20.647 18.879 6.782 0.473 0.779 0.035 0.306
Castelo Branco 11.266 27.014 5.571 0.473 0.681 0.044 0.290

Coimbra 13.233 101.987 4.814 0.470 0.442 0.068 0.255
Évora 16.649 20.676 4.894 0.477 0.864 0.072 0.261
Faro 10.664 87.830 4.733 0.478 0.335 0.089 0.216

Guarda 16.072 26.079 5.138 0.469 0.845 0.077 0.294
Leiria 13.698 129.670 3.558 0.476 0.576 0.072 0.228
Lisboa 14.612 806.706 4.635 0.468 0.386 0.055 0.220

Portalegre 14.733 17.336 6.521 0.475 1.195 0.068 0.274
Porto 10.356 762.609 7.183 0.471 0.312 0.071 0.195

Santarém 19.599 63.962 4.195 0.473 0.624 0.057 0.249
Setúbal 12.031 163.467 5.306 0.473 0.424 0.051 0.214

Viana do Castelo 14.838 104.087 3.546 0.462 0.476 0.089 0.251
Vila Real 17.973 44.549 7.836 0.471 0.479 0.073 0.266
Viseu 10.382 70.752 6.440 0.472 0.454 0.077 0.248



B Explanatory analysis - scatter plots and maps

B Explanatory analysis - scatter plots and maps

Figure 1: Maps at district level of the hospital admission rate and the variables from INE in 2010.
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Figure 2: Scatter plot of the hospital admission rate vs all the variables at district level for 2010 and the respective regression
line of the GLM model.
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B Explanatory analysis - scatter plots and maps

Figure 3: Maps at municipality level of the hospital admission rate and the variables from INE in 2010.
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Figure 4: Scatter plot of the hospital admission rate vs all the variables at municipality level for 2010 and the respective
regression line of the GLM model.
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B Explanatory analysis - scatter plots and maps

Figure 5: Maps at district level of the hospital admission rate and the variables from INE in 2012.
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Figure 6: Scatter plot of the hospital admission rate vs all the variables at district level for 2012 and the respective regression
line of the GLM model.
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B Explanatory analysis - scatter plots and maps

Figure 7: Maps at municipality level of the hospital admission rate and the variables from INE in 2012.
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Figure 8: Scatter plot of the hospital admission rate vs all the variables at municipality level for 2012 and the respective
regression line of the GLM model.
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B Explanatory analysis - scatter plots and maps

Figure 9: Maps at district level of the hospital admission rate and the variables from INE in 2014.
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Figure 10: Scatter plot of the hospital admission rate vs all the variables at district level for 2014 and the respective regression
line of the GLM model.
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B Explanatory analysis - scatter plots and maps

Figure 11: Maps at municipality level of the hospital admission rate and the variables from INE in 2014.
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Figure 12: Scatter plot of the hospital admission rate vs all the variables at municipality level for 2014 and the respective
regression line of the GLM model.
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B Explanatory analysis - scatter plots and maps

Figure 13: Maps at district level of the hospital admission rate and the variables from INE in 2016.
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Figure 14: Scatter plot of the hospital admission rate vs all the variables at district level for 2016 and the respective regression
line of the GLM model.
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B Explanatory analysis - scatter plots and maps

Figure 15: Maps at municipality level of the hospital admission rate and the variables from INE in 2016.
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Figure 16: Scatter plot of the hospital admission rate vs all the variables at municipality level for 2016 and the respective
regression line of the GLM model.
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C R-code for Multiple Imputation

C R-code for Multiple Imputation

library(finalfit)

library(mice)

library(readxl)

library(data.table)

library(stringr)

library(dplyr)

library(tidyr)

library(ggplot2)

library(lattice)

data<-cbind(BD_concelhos_without_diabetes[,-c(1:6)],N_mortes_diabetes)

md.pattern(data)

p <- md.pairs(data);p

p_missing <- unlist(lapply(data, function(x) sum(is.na(x))))/nrow(data)

sort(p_missing[p_missing > 0], decreasing = TRUE)

init = mice(data,print=FALSE)

as.character(init$loggedEvents[, "out"])

predM = init$predictorMatrix

predM[, c("Prop_males")]<-0

imp_pmm_5 <- mice(data,predictorMatrix=predM, m = 5, maxit = 20,

seed = 30031, print=FALSE)

stripplot(imp_pmm_5,pch = 20, cex = 1.2)

#the imputed values are plausible

plot(imp_pmm_5, c("N_mortes_diabetes"))

#healthy convergence

imp1_pmm<-complete(imp_pmm_5,1)

imp2_pmm<-complete(imp_pmm_5,2)

imp3_pmm<-complete(imp_pmm_5,3)

imp4_pmm<-complete(imp_pmm_5,4)

imp5_pmm<-complete(imp_pmm_5,5)
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#Table with final data

BD_concelhos_with_diabetes<-cbind(BD_concelhos_without_diabetes,

c(apply(cbind(imp1_pmm$N_mortes_diabetes,

imp2_pmm$N_mortes_diabetes,

imp3_pmm$N_mortes_diabetes,

imp4_pmm$N_mortes_diabetes,

imp5_pmm$N_mortes_diabetes),1,mean)))

names(BD_concelhos_with_diabetes)[12]<-"N_mortes_diabetes"

BD_concelhos_with_diabetes$N_mortes_diabetes<-

round(BD_concelhos_with_diabetes$N_mortes_diabetes,0)

grafico_imput = function(real,imputado,x){

data.frame("Antes de imputar" = real,

"Depois de imputar" = imputado) %>%

pivot_longer(everything()) %>%

na.omit() %>%

ggplot(mapping = aes(value,col= name))+

geom_density()+

theme_minimal()+

xlab(x)+

ylab("Density")+

theme(panel.border =

element_rect(colour = "black", fill = NA, size = 0.2))+

scale_color_manual(values = c("red", "blue"),

labels = c("Before imputation","After imputation"))+

guides(color=guide_legend(title=""))

}

grafico_imput(data$N_mortes_diabetes,

BD_concelhos_with_diabetes$N_mortes_diabetes,

"Number of deaths due to diabetes")

#As the densities are quite similar, it follows that the

imputation was plausible.

D R-code for Bayesian approach

D.1 Packages

library(tidyverse)

library(fields)
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D R-code for Bayesian approach

library(maps)

library(rgdal)

library(broom)

library(rgeos)

library(ggpubr)

library(spdep)

library(INLA)

library(maptools)

library(ggregplot)

D.2 Spatial analysis at district level

D.2.1 Data preparation

Dist_mapas<-readOGR("Dist.shp")

Dist_mapas<-Dist_mapas[1:18,] #remove the islands

Dist_mapas_s<-gSimplify(Dist_mapas,tol=50)

Dist_mapas_dt<-tidy(Dist_mapas_s)

temp<-poly2nb(Dist_mapas)

nb2INLA("Dist.graph", temp)

Dist.adj <- paste(getwd(),"/Dist.graph",sep="")

#NEIGHBOURHOOD PLOT

H<-inla.read.graph(filename="Dist.graph")

image(inla.graph2matrix(H),xlab="",ylab="")

BD_final_distrito_MI<-readRDS("BD_final_distrito_MI.rds")

BD_final_distrito_MI<-BD_final_distrito_MI[BD_final_distrito_MI$Year

%in% c("2010","2012","2014","2016",

"2018"),]

names(BD_final_distrito_MI)[1]<-"ID.area"

ano_2018_MI<-BD_final_distrito_MI[BD_final_distrito_MI$Year==2018,]

ano_2018_MI$ID.area<-as.numeric(ano_2018_MI$ID.area)

D.2.2 Models

#IID MODEL

formula_iid<-N_admissions~scale(Density_pop)+scale(Unemployment_rate)+

scale(Prop_males)+scale(Mort_rate_diabetes_1000)+
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scale(Prop_pract_federations)+scale(Prop_residents_65)+

f(ID.area,model="iid",graph = Dist.adj)

model_iid <- inla(formula_iid,family="poisson",data=ano_2018_MI,

offset=log(Total_inhabitants),

control.predictor=list(compute=TRUE),

control.compute=list(dic=TRUE,cpo=TRUE))

summary(model_iid)

#BESAG MODEL

formula_besag<-N_admissions~scale(Density_pop)+scale(Unemployment_rate)+

scale(Prop_males)+scale(Mort_rate_diabetes_1000)+

scale(Prop_pract_federations)+scale(Prop_residents_65)+

f(ID.area,model="besag",graph = Dist.adj)

model_besag <- inla(formula_besag,family="poisson",data=ano_2018_MI,

offset=log(Total_inhabitants),

control.predictor=list(compute=TRUE),

control.compute=list(dic=TRUE,cpo=TRUE))

summary(model_besag)

#BYM MODEL

formula_bym<-N_admissions~scale(Density_pop)+scale(Unemployment_rate)+

scale(Prop_males)+scale(Mort_rate_diabetes_1000)+

scale(Prop_pract_federations)+scale(Prop_residents_65)+

f(ID.area,model="bym",graph = Dist.adj)

model_bym <- inla(formula_bym,family="poisson",data=ano_2018_MI,

offset=log(Total_inhabitants),

control.predictor=list(compute=TRUE),

control.compute=list(dic=TRUE,cpo=TRUE))

summary(model_bym)

D.2.3 Graphs of the random effect models

id_maps <-rep(0:17)

posterior_spatial_random_2018<-model_iid$summary.random$ID.area$mean

BD_spatial_random_effect_2018<-data.frame(id_maps=as.factor(id_maps),

posterior_spatial_random_2018)

BD_spatial_random_effect_2018_maps<-left_join(Dist_mapas_dt,

BD_spatial_random_effect_2018,by=c("id"="id_maps"))

ggplot(data=BD_spatial_random_effect_2018_maps,aes(x=long,y=lat))+

geom_polygon(aes(group=group, fill=posterior_spatial_random_2018),

colour="black")+

xlab("Longitude") + ylab("Latitude") +
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D R-code for Bayesian approach

labs(fill = "")+

scale_fill_gradient(low="blue", high="yellow")+

coord_fixed(1.1)

D.2.4 Graphs of the observed and fitted values

id_maps <-rep(0:17)

rate_admission_observed<-(ano_2018_MI$N_admissions/

ano_2018_MI$Total_inhabitants)*1000

ano_2018_MI<-cbind(id_maps=as.factor(id_maps),ano_2018_MI,

rate_admission_observed)

observed_data_2018<-left_join(Dist_mapas_dt,ano_2018_MI,by=c("id"="id_maps"))

ggplot(data=observed_data_2018,aes(x=long,y=lat))+

geom_polygon(aes(group=group, fill=rate_admission_observed),

colour="black")+

xlab("Longitude") + ylab("Latitude") +

scale_fill_gradient(low="blue", high="yellow",limits=c(10,21))+

coord_fixed(1.1)

rate_admission_fitted<-(model_iid$summary.fitted.values$mean/

ano_2018_MI$Total_inhabitants)*1000

BD_fitted_rate<-data.frame(id_maps=as.factor(id_maps),ano_2018_MI$District,

rate_admission_fitted)

BD_fitted_data_2018<-left_join(Dist_mapas_dt,

BD_fitted_rate,by=c("id"="id_maps"))

ggplot(data=BD_fitted_data_2018,aes(x=long,y=lat))+

geom_polygon(aes(group=group, fill=rate_admission_fitted),

colour="black")+

xlab("Longitude") + ylab("Latitude") +

scale_fill_gradient(low="blue", high="yellow",limits=c(10,21))+

coord_fixed(1.1)

D.3 Spatial analysis at municipality level

D.3.1 Data preparation

Mun_mapas<-readOGR("Mun.shp")

Mun_mapas<-Mun_mapas[1:278,] #remove the islands

Mun_mapas_s<-gSimplify(Mun_mapas,tol=50)

Mun_mapas_dt<-tidy(Mun_mapas_s)
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temp<-poly2nb(Mun_mapas)

nb2INLA("Conc.graph", temp)

Conc.adj <- paste(getwd(),"/Conc.graph",sep="")

#NEIGHBOURHOOD PLOT

H<-inla.read.graph(filename="Conc.graph")

image(inla.graph2matrix(H),xlab="",ylab="")

BD_final_concelhos_MI<-readRDS("BD_final_concelhos_MI.rds")

BD_final_concelhos_MI<-BD_final_concelhos_MI[BD_final_concelhos_MI$Year %in%

c("2010","2012","2014","2016",

"2018"),]

names(BD_final_concelhos_MI)[1]<-"ID.area"

ano_2018_conc_MI<-BD_final_concelhos_MI[BD_final_concelhos_MI$Year==2018,]

ano_2018_conc_MI$ID.area<-as.integer(ano_2018_conc_MI$ID.area)

D.3.2 Models

#IID MODEL

formula_conc_iid<-N_admissions~scale(Density_pop)+scale(Unemployment_rate)+

scale(Prop_males)+scale(Mort_rate_diabetes_1000)+scale(Hospitals_1000)+

scale(Prop_residents_65)+

f(ID.area,model="iid",graph = Conc.adj)

model_conc_iid <- inla(formula_conc_iid,family="poisson",

data=ano_2018_conc_MI,

offset=log(Total_inhabitants),

control.predictor=list(compute=TRUE),

control.compute=list(dic=TRUE,cpo=TRUE))

summary(model_conc_iid)

#BESAG MODEL

formula_conc_besag<-N_admissions~scale(Density_pop)+scale(Unemployment_rate)+

scale(Prop_males)+scale(Mort_rate_diabetes_1000)+scale(Hospitals_1000)+

scale(Prop_residents_65)+

f(ID.area,model="besag",graph = Conc.adj)

model_conc_besag <- inla(formula_conc_besag,family="poisson",

data=ano_2018_conc_MI,

offset=log(Total_inhabitants),

control.predictor=list(compute=TRUE),

control.fixed=list(mean=list(0),prec=list(0.0001),

mean.intercept=0,
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D R-code for Bayesian approach

prec.intercept=0.0001),

control.compute=list(dic=TRUE,cpo=TRUE))

summary(model_conc_besag)

#BYM MODEL

formula_conc_bym<-N_admissions~scale(Density_pop)+scale(Unemployment_rate)+

scale(Prop_males)+scale(Mort_rate_diabetes_1000)+scale(Hospitals_1000)+

scale(Prop_residents_65)+

f(ID.area,model="bym",graph = Conc.adj)

model_conc_bym <- inla(formula_conc_bym,family="poisson",

data=ano_2018_conc_MI,

offset=log(Total_inhabitants),

control.predictor=list(compute=TRUE),

control.compute=list(dic=TRUE,cpo=TRUE))

summary(model_conc_bym)

D.3.3 Graphs of the random effect models

id_maps <-rep(0:277)

posterior_spatial_random_2018_conc<-

model_conc_besag$summary.random$ID.area$mean

BD_spatial_random_effect_2018_conc<-data.frame(id_maps=as.factor(id_maps),

posterior_spatial_random_2018_conc)

BD_spatial_random_effect_2018_conc_maps<-left_join(Mun_mapas_dt,

BD_spatial_random_effect_2018_conc,

by=c("id"="id_maps"))

ggplot(data=BD_spatial_random_effect_2018_conc_maps,aes(x=long,y=lat))+

geom_polygon(aes(group=group, fill=posterior_spatial_random_2018_conc),

colour="black")+

xlab("Longitude") + ylab("Latitude") +

labs(fill = "")+

scale_fill_gradientn(colours=tim.colors(99), limits=c(-2.56,1))+

coord_fixed(1.1)

D.3.4 Graphs of the observed and fitted values

id_maps <-rep(0:277)

rate_admission_observed_2018_conc<-(ano_2018_conc_MI$N_admissions/

ano_2018_conc_MI$Total_inhabitants)*1000

ano_2018_conc_MI<-cbind(id_maps=as.factor(id_maps),ano_2018_conc_MI,

rate_admission_observed_2018_conc)

BD_observed_rate_2018_conc_maps<-left_join(Mun_mapas_dt,ano_2018_conc_MI,
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by=c("id"="id_maps"))

ggplot(data=BD_observed_rate_2018_conc_maps,aes(x=long,y=lat))+

geom_polygon(aes(group=group, fill=rate_admission_observed_2018_conc),

colour="black")+

xlab("Longitude") + ylab("Latitude") +

labs(fill = "")+

scale_fill_gradientn(colours=tim.colors(99),limits=c(0,32)) +

coord_fixed(1.1)

rate_admission_fitted_conc<-(model_conc_besag$summary.fitted.values$mean/

ano_2018_conc_MI$Total_inhabitants)*1000

BD_fitted_rate_conc<-data.frame(id_maps=as.factor(id_maps),

ano_2018_conc_MI$Municipalities,

rate_admission_fitted_conc)

names(BD_fitted_rate_conc)<-c("id_maps","Municipalities",

"Rate_admission_fitted")

BD_fitted_rate_2018_conc_maps<-left_join(Mun_mapas_dt,BD_fitted_rate_conc,

by=c("id"="id_maps"))

ggplot(data=BD_fitted_rate_2018_conc_maps,aes(x=long,y=lat))+

geom_polygon(aes(group=group, fill=Rate_admission_fitted),

colour="black")+

xlab("Longitude") + ylab("Latitude") +

labs(fill = "")+

scale_fill_gradientn(colours=tim.colors(99),limits=c(0,32))+

coord_fixed(1.1)

D.4 Diagnosis of the spatial models chosen

#DISTRICT LEVEL

model_iid <- inla(formula_iid,family="poisson",data=ano_2018_MI,

offset=log(Total_inhabitants),

control.predictor=list(link=1,compute=TRUE),

control.fixed=list(mean=0,prec=0.00001),

control.compute=list(return.marginals.predictor=TRUE))

par(mfrow=c(1,2))

plot(ano_2018_MI$N_admissions,model_iid$summary.fitted.values$mean,

xlab="Observed values",ylab="Mean Post. Pred. Distr.")
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D R-code for Bayesian approach

predicted.p.value<-c()

for(i in (1:18)) {

predicted.p.value[i] <- inla.pmarginal(q=ano_2018_MI$N_admissions[i],

marginal=model_iid$marginals.fitted.values[[i]])

}

hist(predicted.p.value,main="",

xlab="Posterior predictive p-value",

breaks=5,xlim=c(0.4,0.6))

#MUNICIPALITY LEVEL

model_conc_besag <- inla(formula_conc_besag,family="poisson",

data=ano_2018_conc_MI,

offset=log(Total_inhabitants),

control.predictor=list(link=1,compute=TRUE),

control.fixed=list(mean=0,prec=0.00001),

control.compute=list(return.marginals.predictor=TRUE))

par(mfrow=c(1,2))

plot(ano_2018_conc_MI$N_admissions,

model_conc_besag$summary.fitted.values$mean,

xlab="Observed values",ylab="Mean Post. Pred. Distr.")

predicted.p.value<-c()

for(i in (1:278)) {

predicted.p.value[i] <- inla.pmarginal(q=ano_2018_conc_MI$N_admissions[i],

marginal=model_conc_besag$marginals.fitted.values[[i]])

}

hist(predicted.p.value,main="",

xlab="Posterior predictive p-value",

breaks=9,xlim=c(0,1.0),ylim=c(0,100))

D.5 Spatio-temporal analysis without interaction at district level

D.5.1 Models

ID.area<-rep(1:18,each=5)

ID.year<-rep(1:5,18)

ID.year1<-ID.year

formula_year_iid<-N_admissions~scale(Density_pop)+scale(Unemployment_rate)+

scale(Prop_males)+scale(Mort_rate_diabetes_1000)+

scale(Prop_pract_federations)+scale(Prop_residents_65)+

f(ID.area,model="iid",graph = Dist.adj)+f(ID.year,model="iid")
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model_year_iid <- inla(formula_year_iid,family="poisson",

data=BD_final_distrito_MI,

offset=log(Total_inhabitants),

control.predictor=list(compute=TRUE),

control.compute=list(dic=TRUE,cpo=TRUE))

summary(model_year_iid)

formula_year_rw1<-N_admissions~scale(Density_pop)+scale(Unemployment_rate)+

scale(Prop_males)+scale(Mort_rate_diabetes_1000)+

scale(Prop_pract_federations)+scale(Prop_residents_65)+

f(ID.area,model="iid",graph = Dist.adj)+f(ID.year,model="rw1")

model_year_rw1 <- inla(formula_year_rw1,family="poisson",

data=BD_final_distrito_MI,

offset=log(Total_inhabitants),

control.predictor=list(compute=TRUE),

control.compute=list(dic=TRUE,cpo=TRUE))

summary(model_year_rw1)

formula_year_rw2<-N_admissions~scale(Density_pop)+scale(Unemployment_rate)+

scale(Prop_males)+scale(Mort_rate_diabetes_1000)+

scale(Prop_pract_federations)+scale(Prop_residents_65)+

f(ID.area,model="iid",graph = Dist.adj)+f(ID.year,model="rw2")

model_year_rw2 <- inla(formula_year_rw2,family="poisson",

data=BD_final_distrito_MI,

offset=log(Total_inhabitants),

control.predictor=list(compute=TRUE),

control.compute=list(dic=TRUE,cpo=TRUE))

summary(model_year_rw2)

formula_year_iid_rw1<-N_admissions~scale(Density_pop)+

scale(Unemployment_rate)+scale(Prop_males)+

scale(Mort_rate_diabetes_1000)+scale(Prop_pract_federations)+

scale(Prop_residents_65)+

f(ID.area,model="iid",graph = Dist.adj)+

f(ID.year,model="rw1")+f(ID.year1,model="iid")

model_year_iid_rw1 <- inla(formula_year_iid_rw1,family="poisson",

data=BD_final_distrito_MI,

offset=log(Total_inhabitants),

control.predictor=list(compute=TRUE),

control.compute=list(dic=TRUE,cpo=TRUE))

summary(model_year_iid_rw1)

formula_year_iid_rw2<-N_admissions~scale(Density_pop)+
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D R-code for Bayesian approach

scale(Unemployment_rate)+scale(Prop_males)+

scale(Mort_rate_diabetes_1000)+scale(Prop_pract_federations)+

scale(Prop_residents_65)+

f(ID.area,model="iid",graph = Dist.adj)+

f(ID.year,model="rw2")+f(ID.year1,model="iid")

model_year_iid_rw2 <- inla(formula_year_iid_rw2,family="poisson",

data=BD_final_distrito_MI,

offset=log(Total_inhabitants),

control.predictor=list(compute=TRUE),

control.compute=list(dic=TRUE,cpo=TRUE))

summary(model_year_iid_rw2)

D.5.2 Graphs of the random effect models

#Map of spatial random effect

id_maps <-rep(0:17)

posterior_spatial_random_years<-model_year_rw2$summary.random$ID.area$mean

BD_spatial_random_effect_years<-data.frame(id_maps=as.factor(id_maps),

posterior_spatial_random_years)

BD_spatial_random_effect_years_maps<-left_join(Dist_mapas_dt,

BD_spatial_random_effect_years,

by=c("id"="id_maps"))

ggplot(data=BD_spatial_random_effect_years_maps,aes(x=long,y=lat))+

geom_polygon(aes(group=group, fill=posterior_spatial_random_years),

colour="black")+

xlab("Longitude") + ylab("Latitude") +

labs(fill = "")+

scale_fill_gradient(low="blue", high="yellow")+

coord_fixed(1.1)

#Map of temporal random effect

years<-c(2010,2012,2014,2016,2018)

plot(years,model_year_rw2$summary.random$ID.year$mean,

xlab="t",ylab=expression(paste(gamma[t])),cex=0)

lines(years,model_year_rw2$summary.random$ID.year$mean,

xlab="t",ylab=expression(paste(gamma[t])),cex=0)

D.5.3 Graphs of the observed and fitted values

rate_admission_observed_temp<-(BD_final_distrito_MI$N_admissions/

BD_final_distrito_MI$Total_inhabitants)*1000
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rate_admission_fitted_temp<-(model_year_rw2$summary.fitted.values$mean/

BD_final_distrito_MI$Total_inhabitants)*1000

rate_observed_fitted_without_int<-c(rate_admission_observed_temp,

rate_admission_fitted_temp)

BD_observed_fitted_rate_temp<-data.frame(rep(rep(0:17,each=5),2),

rep(BD_final_distrito_MI$District,2),

c(rep(c("2010_observed","2012_observed",

"2014_observed","2016_observed",

"2018_observed"),18),

rep(c("2010_fitted","2012_fitted",

"2014_fitted","2016_fitted",

"2018_fitted"),18)),

rate_observed_posterior_without_int)

names(BD_observed_fitted_rate_temp)<-c("id_maps","District","Year",

"Rate_admission")

BD_observed_fitted_rate_temp_maps<-left_join(Dist_mapas_dt,

BD_observed_fitted_rate_temp,

by=c("id"="id_maps"))

ggplot(data=BD_observed_fitted_rate_temp_maps, aes(x=long,y=lat))+

geom_polygon(aes(group=group, fill=Rate_admission),

colour="black")+

coord_equal() +

labs(fill = "")+

scale_fill_gradient(low="blue", high="yellow", limits=c(10,25.5))+

facet_wrap(~BD_observed_fitted_rate_temp_maps$Year)

D.6 Spatio-temporal analysis with interaction at district level

D.6.1 Models

ID.area.year<-1:(18*5) #18 districts x 5 years

formula_int_type_I<-N_admissions~scale(Density_pop)+

scale(Unemployment_rate)+scale(Prop_males)+

scale(Mort_rate_diabetes_1000)+scale(Prop_pract_federations)+

scale(Prop_residents_65)+

f(ID.area,model="iid",graph = Dist.adj)+f(ID.year,model="rw2")+

f(ID.area.year,model="iid")

model_int_type_I <- inla(formula_int_type_I,family="poisson",
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data=BD_final_distrito_MI,

offset=log(Total_inhabitants),

control.predictor=list(compute=TRUE),

control.compute=list(dic=TRUE,cpo=TRUE))

summary(model_int_type_I)

ID.area.int<-ID.area

ID.year.int<-ID.year

formula_int_type_II<-N_admissions~scale(Density_pop)+

scale(Unemployment_rate)+scale(Prop_males)+

scale(Mort_rate_diabetes_1000)+scale(Prop_pract_federations)+

scale(Prop_residents_65)+

f(ID.area,model="iid",graph = Dist.adj)+f(ID.year,model="rw2")+

f(ID.area.int,model="iid",group=ID.year.int,

control.group = list(model="rw2"))

model_int_type_II <- inla(formula_int_type_II,family="poisson",

data=BD_final_distrito_MI,

offset=log(Total_inhabitants),

control.predictor=list(compute=TRUE),

control.compute=list(dic=TRUE,cpo=TRUE))

summary(model_int_type_II)

formula_int_type_III<-N_admissions~scale(Density_pop)+

scale(Unemployment_rate)+scale(Prop_males)+

scale(Mort_rate_diabetes_1000)+scale(Prop_pract_federations)+

scale(Prop_residents_65)+

f(ID.area,model="iid",graph = Dist.adj)+f(ID.year,model="rw2")+

f(ID.year.int,model="iid",group=ID.area.int,

control.group = list(model="iid"))

model_int_type_III <- inla(formula_int_type_III,family="poisson",

data=BD_final_distrito_MI,

offset=log(Total_inhabitants),

control.predictor=list(compute=TRUE),

control.compute=list(dic=TRUE,cpo=TRUE))

summary(model_int_type_III)

formula_int_type_IV<-N_admissions~scale(Density_pop)+

scale(Unemployment_rate)+scale(Prop_males)+

scale(Mort_rate_diabetes_1000)+scale(Prop_pract_federations)+

scale(Prop_residents_65)+

f(ID.area,model="iid",graph = Dist.adj)+f(ID.year,model="rw2")+

f(ID.area.int,model="iid",group=ID.year.int,

control.group = list(model="rw2"))
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model_int_type_IV <- inla(formula_int_type_IV,family="poisson",

data=BD_final_distrito_MI,

offset=log(Total_inhabitants),

control.predictor=list(compute=TRUE),

control.compute=list(dic=TRUE,cpo=TRUE))

summary(model_int_type_IV)

D.6.2 Graphs of the random effect models

#Map of spatial random effect

id_maps <-rep(0:17)

posterior_spatial_random_int<-model_int_type_II$summary.random$ID.area$mean

BD_spatial_random_effect_int<-data.frame(id_maps=as.factor(id_maps),

posterior_spatial_random_int)

BD_spatial_random_effect_int_maps<-left_join(Dist_mapas_dt,

BD_spatial_random_effect_int,

by=c("id"="id_maps"))

ggplot(data=BD_spatial_random_effect_int_maps,aes(x=long,y=lat))+

geom_polygon(aes(group=group, fill=posterior_spatial_random_int),

colour="black")+

xlab("Longitude") + ylab("Latitude") +

labs(fill = "")+

scale_fill_gradient(low="coral", high="darkred")+

coord_fixed(1.1)

#Map of temporal random effect

years<-c(2010,2012,2014,2016,2018)

plot(years,model_int_type_II$summary.random$ID.year$mean,

xlab="t",ylab=expression(paste(gamma[t])),cex=0)

lines(years,model_int_type_II$summary.random$ID.year$mean,

xlab="t",ylab=expression(paste(gamma[t])),cex=0)

#Map for interaction random effect

posterior_interaction_random<-

model_int_type_II$summary.random$ID.area.int$mean

BD_posterior_interaction<-data.frame(rep(0:17,each=5),

BD_final_distrito_MI$District,

BD_final_distrito_MI$Year,

posterior_interaction_random)

names(BD_posterior_interaction)<-c("id_maps","District","Year",
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"Posterior_interaction")

BD_posterior_interaction_maps<-left_join(Dist_mapas_dt,

BD_posterior_interaction,

by=c("id"="id_maps"))

ggplot(data=BD_posterior_interaction_maps, aes(x=long,y=lat))+

geom_polygon(aes(group=group, fill=Posterior_interaction),

colour="black")+

coord_equal() +

labs(fill = "")+

scale_fill_gradient(low="blue", high="yellow")+

facet_wrap(BD_posterior_interaction_maps$Year)

D.6.3 Graphs of the observed and fitted values

rate_admission_observed_with_int<-(BD_final_distrito_MI$N_admissions/

BD_final_distrito_MI$Total_inhabitants)*1000

rate_admission_fitted_with_int<-

(model_int_type_II$summary.fitted.values$mean/

BD_final_distrito_MI$Total_inhabitants)*1000

rate_observed_fitted_with_int<-c(rate_admission_observed_with_int,

rate_admission_fitted_with_int)

BD_observed_fitted_rate_with_int<-data.frame(rep(rep(0:17,each=5),2),

rep(BD_final_distrito_MI$District,2),

c(rep(c("2010_observed","2012_observed",

"2014_observed","2016_observed",

"2018_observed"),18),

rep(c("2010_fitted","2012_fitted",

"2014_fitted","2016_fitted",

"2018_fitted"),18)),

rate_observed_fitted_with_int)

names(BD_observed_fitted_rate_with_int)<-c("id_maps","District","Year",

"Rate_admission")

BD_observed_fitted_rate_with_int_maps<-left_join(Dist_mapas_dt,

BD_observed_fitted_rate_with_int,

by=c("id"="id_maps"))

ggplot(data=BD_observed_fitted_rate_with_int_maps, aes(x=long,y=lat))+

geom_polygon(aes(group=group, fill=Rate_admission),

colour="black")+
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coord_equal() +

labs(fill = "")+

scale_fill_gradient(low="blue", high="yellow")+

facet_wrap(~BD_observed_fitted_rate_with_int_maps$Year)

D.7 Diagnosis of the spatio-temporal models chosen at district level

model_year_rw2 <- inla(formula_year_rw2,family="poisson",

data=BD_final_distrito_MI,

offset=log(Total_inhabitants),

control.predictor=list(link=1,compute=TRUE),

control.fixed=list(mean=0,prec=0.00001),

control.compute=list(return.marginals.predictor=TRUE))

model_int_type_II <- inla(formula_int_type_II,family="poisson",

data=BD_final_distrito_MI,

offset=log(Total_inhabitants),

control.predictor=list(link=1,compute=TRUE),

control.fixed=list(mean=0,prec=0.00001),

control.compute=list(return.marginals.predictor=TRUE))

par(mfrow=c(1,2))

#SPATIO-TEMPORAL WITHOUT INTERACTION

plot(BD_final_distrito_MI$N_admissions,

model_year_rw2$summary.fitted.values$mean,

xlab="Observed values",ylab="Mean Post. Pred. Distr.")

predicted.p.value<-c()

for(i in (1:90)) {

predicted.p.value[i]<-inla.pmarginal(q=BD_final_distrito_MI$N_admissions[i],

marginal=model_year_rw2$marginals.fitted.values[[i]])

}

hist(predicted.p.value,main="",

xlab="Posterior predictive p-value",

breaks=5,xlim=c(0,1.0),ylim=c(0,50))

#SPATIO-TEMPORAL WITH INTERACTION

plot(BD_final_distrito_MI$N_admissions,

model_int_type_II$summary.fitted.values$mean,

xlab="Observed values",ylab="Mean Post. Pred. Distr.")
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predicted.p.value<-c()

for(i in (1:90)) {

predicted.p.value[i]<-inla.pmarginal(q=BD_final_distrito_MI$N_admissions[i],

marginal=model_int_type_II$marginals.fitted.values[[i]])

}

hist(predicted.p.value,main="",

xlab="Posterior predictive p-value",

breaks=5,ylim=c(0,35))

D.8 Spatio-temporal analysis without interaction at municipality level

D.8.1 Models

ID.area.conc<-rep(1:278,5)

ID.year.conc<-rep(1:5,each=278)

ID.year1.conc<-ID.year.conc

formula_year_iid_conc<-N_admissions~scale(Density_pop)+

scale(Unemployment_rate)+scale(Prop_males)+

scale(Mort_rate_diabetes_1000)+scale(Hospitals_1000)+

scale(Prop_residents_65)+

f(ID.area.conc,model="besag",graph = Conc.adj)+f(ID.year.conc,model="iid")

model_year_iid_conc <- inla(formula_year_iid_conc,family="poisson",

data=BD_final_concelhos_MI,

offset=log(Total_inhabitants),

control.predictor=list(compute=TRUE),

control.compute=list(dic=TRUE,cpo=TRUE))

summary(model_year_iid_conc)

formula_year_rw1_conc<-N_admissions~scale(Density_pop)+

scale(Unemployment_rate)+scale(Prop_males)+

scale(Mort_rate_diabetes_1000)+scale(Hospitals_1000)+

scale(Prop_residents_65)+

f(ID.area.conc,model="iid",graph = Conc.adj)+f(ID.year.conc,model="rw1")

model_year_rw1_conc <- inla(formula_year_rw1_conc,family="poisson",

data=BD_final_concelhos_MI,

offset=log(Total_inhabitants),

control.predictor=list(compute=TRUE),

control.compute=list(dic=TRUE,cpo=TRUE))

summary(model_year_rw1_conc)

formula_year_rw2_conc<-N_admissions~scale(Density_pop)+
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scale(Unemployment_rate)+scale(Prop_males)+

scale(Mort_rate_diabetes_1000)+scale(Hospitals_1000)+

scale(Prop_residents_65)+

f(ID.area.conc,model="besag",graph = Conc.adj)+f(ID.year.conc,model="rw2")

model_year_rw2_conc <- inla(formula_year_rw2_conc,family="poisson",

data=BD_final_concelhos_MI,

offset=log(Total_inhabitants),

control.predictor=list(compute=TRUE),

control.compute=list(dic=TRUE,cpo=TRUE))

summary(model_year_rw2_conc)

formula_year_iid_rw1_conc<-N_admissions~scale(Density_pop)+

scale(Unemployment_rate)+scale(Prop_males)+

scale(Mort_rate_diabetes_1000)+scale(Hospitals_1000)+

scale(Prop_residents_65)+

f(ID.area.conc,model="besag",graph = Conc.adj)+f(ID.year.conc,model="rw1")+

f(ID.year1.conc,model="iid")

model_year_iid_rw1_conc <- inla(formula_year_iid_rw1_conc,family="poisson",

data=BD_final_concelhos_MI,

offset=log(Total_inhabitants),

control.predictor=list(compute=TRUE),

control.compute=list(dic=TRUE,cpo=TRUE))

summary(model_year_iid_rw1_conc)

formula_year_iid_rw2_conc<-N_admissions~scale(Density_pop)+

scale(Unemployment_rate)+scale(Prop_males)+

scale(Mort_rate_diabetes_1000)+scale(Hospitals_1000)+

scale(Prop_residents_65)+

f(ID.area.conc,model="besag",graph = Conc.adj)+f(ID.year.conc,model="rw2")+

f(ID.year1.conc,model="iid")

model_year_iid_rw2_conc <- inla(formula_year_iid_rw2_conc,family="poisson",

data=BD_final_concelhos_MI,

offset=log(Total_inhabitants),

control.predictor=list(compute=TRUE),

control.compute=list(dic=TRUE,cpo=TRUE))

summary(model_year_iid_rw2_conc)

D.8.2 Graphs of the random effect models

#Map of spatial random effect

id_maps <-rep(0:277)

posterior_spatial_random_years_conc<-

model_year_iid_conc$summary.random$ID.area$mean
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D R-code for Bayesian approach

BD_spatial_random_effect_years_conc<-data.frame(id_maps=as.factor(id_maps),

posterior_spatial_random_years_conc)

BD_spatial_random_effect_years_conc_maps<-left_join(Mun_mapas_dt,

BD_spatial_random_effect_years_conc,by=c("id"="id_maps"))

summary(posterior_spatial_random_years_conc)

ggplot(data=BD_spatial_random_effect_years_conc_maps,aes(x=long,y=lat))+

geom_polygon(aes(group=group, fill=posterior_spatial_random_years_conc),

colour="black")+

xlab("Longitude") + ylab("Latitude") +

labs(fill = "")+

scale_fill_gradientn(colours=tim.colors(99),limits=c(-0.60,0.65))+

coord_fixed(1.1)

#Map of temporal random effect

years<-c(2010,2012,2014,2016,2018)

plot(years,model_year_iid_conc$summary.random$ID.year$mean,

xlab="t",ylab=expression(paste(phi[t])),cex=0,cex.lab=1.5,cex.axis=1.25)

lines(years,model_year_iid_conc$summary.random$ID.year$mean,

xlab="t",ylab=expression(paste(phi[t])),cex=0)

D.8.3 Graphs of the observed and fitted values

rate_admission_observed_temp<-(BD_final_concelhos_MI$N_admissions/

BD_final_concelhos_MI$Total_inhabitants)*1000

rate_admission_fitted_temp<-(model_year_iid_conc$summary.fitted.values$mean/

BD_final_concelhos_MI$Total_inhabitants)*1000

rate_observed_fitted_without_int<-c(rate_admission_observed_temp,

rate_admission_fitted_temp)

BD_observed_fitted_rate_temp<-data.frame(rep(0:277,10),

rep(BD_final_concelhos_MI$Municipalities,2),

c(rep(c("2010_observed","2012_observed",

"2014_observed","2016_observed",

"2018_observed"),each=278),

rep(c("2010_fitted","2012_fitted",

"2014_fitted","2016_fitted",

"2018_fitted"),each=278)),

rate_observed_fitted_without_int)

names(BD_observed_fitted_rate_temp)<-c("id_maps","Municipalities","Year",
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"Rate_admission")

BD_observed_fitted_rate_temp_maps<-left_join(Mun_mapas_dt,

BD_observed_fitted_rate_temp,

by=c("id"="id_maps"))

ggplot(data=BD_observed_fitted_rate_temp_maps, aes(x=long,y=lat))+

geom_polygon(aes(group=group, fill=Rate_admission),

colour="black")+

coord_equal() +

labs(fill = "")+

scale_fill_gradientn(colours=tim.colors(99))+

facet_wrap(~BD_observed_fitted_rate_temp_maps$Year)

D.9 Spatio-temporal analysis with interaction at municipality level

D.9.1 Models

ID.area.year.conc<-1:(278*5) #278 municipalities x 5 years

ID.area.int.conc<-ID.area.conc

ID.year.int.conc<-ID.year.conc

formula_int_type_I<-N_admissions~Doctors_1000+Mort_rate_circ+Nurses_1000+

Mort_rate_diabetes+Density_pop+Hospitals_1000+Pharmacies_1000+Prop_males+

Prop_residents_65+f(ID.area,model="iid",graph = Conc.adj)+

f(ID.year,model="rw2")+f(ID.area.year,model="iid")

model_int_type_I <- inla(formula_int_type_I,family="poisson",

data=BD_final_concelhos_MI,

offset=log(Total_inhabitants),

control.predictor=list(compute=TRUE),

control.compute=list(dic=TRUE,cpo=TRUE))

summary(model_int_type_I)

formula_int_type_II<-N_admissions~Doctors_1000+Mort_rate_circ+Nurses_1000+

Mort_rate_diabetes+Density_pop+Hospitals_1000+Pharmacies_1000+Prop_males+

Prop_residents_65+f(ID.area,model="iid",graph = Conc.adj)+

f(ID.year,model="rw2")+f(ID.area.int,model="iid",group=ID.year.int,

control.group = list(model="rw2"))

model_int_type_II <- inla(formula_int_type_II,family="poisson",

data=BD_final_concelhos_MI,

offset=log(Total_inhabitants),

control.predictor=list(compute=TRUE),

control.compute=list(dic=TRUE,cpo=TRUE))

summary(model_int_type_II)
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D R-code for Bayesian approach

formula_int_type_III<-N_admissions~scale(Density_pop)+

scale(Unemployment_rate)+scale(Prop_males)+

scale(Mort_rate_diabetes_1000)+scale(Hospitals_1000)+

scale(Prop_residents_65)+

f(ID.area.conc,model="besag",graph = Conc.adj)+

f(ID.year.conc,model="iid")+f(ID.year.int.conc,model="iid",

group=ID.area.int.conc,

control.group = list(model="besag",

graph=Conc.adj))

model_int_type_III <- inla(formula_int_type_III,family="poisson",

data=BD_final_concelhos_MI,

offset=log(Total_inhabitants),

control.predictor=list(compute=TRUE),

control.compute=list(dic=TRUE,cpo=TRUE))

summary(model_int_type_III)

formula_int_type_IV<-N_admissions~Doctors_1000+Mort_rate_circ+Nurses_1000+

Mort_rate_diabetes+Density_pop+Hospitals_1000+Pharmacies_1000+Prop_males+

Prop_residents_65+f(ID.area.conc,model="besag",graph = Conc.adj)+

f(ID.year.conc,model="rw1")+f(ID.area.int.conc,model="besag",

graph = Conc.adj,

group=ID.year.int.conc,

control.group = list(model="rw1"))

model_int_type_IV <- inla(formula_int_type_IV,family="poisson",

data=BD_final_concelhos_MI,

offset=log(Total_inhabitants),

control.predictor=list(compute=TRUE),

control.compute=list(dic=TRUE,cpo=TRUE))

summary(model_int_type_IV)

D.9.2 Graphs of the random effect models

#Map of spatial random effect

id_maps <-rep(0:277)

posterior_spatial_random_int_conc<-

model_int_type_III$summary.random$ID.area.conc$mean

BD_spatial_random_effect_int_conc<-data.frame(id_maps=as.factor(id_maps),

posterior_spatial_random_int_conc)

BD_spatial_random_effect_int_conc_maps<-left_join(Mun_mapas_dt,

BD_spatial_random_effect_int_conc,

by=c("id"="id_maps"))

summary(posterior_spatial_random_int_conc)
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ggplot(data=BD_spatial_random_effect_int_conc_maps,aes(x=long,y=lat))+

geom_polygon(aes(group=group, fill=posterior_spatial_random_int_conc),

colour="black")+

xlab("Longitude") + ylab("Latitude") +

labs(fill = "")+

scale_fill_gradientn(colours=tim.colors(99),limits=c(-0.37,0.62))+

coord_fixed(1.1)

#Map of temporal random effect

years<-c(2010,2012,2014,2016,2018)

plot(years,model_int_type_III$summary.random$ID.year.conc$mean,

xlab="t",ylab=expression(paste(phi[t])),cex=0,cex.lab=1.5,cex.axis=1.25)

lines(years,model_int_type_III$summary.random$ID.year.conc$mean,

xlab="t",ylab=expression(paste(phi[t])),cex=0)

#Map for interaction random effect

posterior_interaction_random_conc<-

model_int_type_III$summary.random$ID.year.int.conc$mean

BD_posterior_interaction_conc<-data.frame(rep(0:277,5),

BD_final_concelhos_MI$Municipalities,

BD_final_concelhos_MI$Year,

posterior_interaction_random_conc)

names(BD_posterior_interaction_conc)<-c("id_maps","Municipalities","Year",

"Posterior_interaction")

BD_posterior_interaction_conc_maps<-left_join(Mun_mapas_dt,

BD_posterior_interaction_conc,

by=c("id"="id_maps"))

summary(BD_posterior_interaction_conc)

ggplot(data=BD_posterior_interaction_conc_maps, aes(x=long,y=lat))+

geom_polygon(aes(group=group, fill=Posterior_interaction),

colour="black")+

coord_equal() +

labs(fill = "")+

scale_fill_gradientn(colours=tim.colors(99))+

facet_wrap(BD_posterior_interaction_conc_maps$Year)
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D R-code for Bayesian approach

D.9.3 Graphs of the observed and fitted values

rate_admission_observed_int<-(BD_final_concelhos_MI$N_admissions/

BD_final_concelhos_MI$Total_inhabitants)*1000

rate_admission_fitted_int<-(model_int_type_III$summary.fitted.values$mean/

BD_final_concelhos_MI$Total_inhabitants)*1000

rate_observed_fitted_without_int<-c(rate_admission_observed_int,

rate_admission_fitted_int)

BD_observed_fitted_rate_int<-data.frame(rep(0:277,10),

rep(BD_final_concelhos_MI$Municipalities,2),

c(rep(c("2010_observed","2012_observed",

"2014_observed","2016_observed",

"2018_observed"),each=278),

rep(c("2010_fitted","2012_fitted",

"2014_fitted","2016_fitted",

"2018_fitted"),each=278)),

rate_observed_fitted_without_int)

names(BD_observed_fitted_rate_int)<-c("id_maps","Municipalities","Year",

"Rate_admission")

BD_observed_fitted_rate_int_maps<-left_join(Mun_mapas_dt,

BD_observed_fitted_rate_int,

by=c("id"="id_maps"))

ggplot(data=BD_observed_fitted_rate_int_maps, aes(x=long,y=lat))+

geom_polygon(aes(group=group, fill=Rate_admission),

colour="black")+

coord_equal() +

labs(fill = "")+

scale_fill_gradientn(colours=tim.colors(99))+

facet_wrap(~BD_observed_fitted_rate_int_maps$Year)

D.10 Diagnosis of the spatio-temporal models chosen at municipality level

model_year_iid_conc <- inla(formula_year_iid_conc,family="poisson",

data=BD_final_concelhos_MI,

offset=log(Total_inhabitants),

control.predictor=list(link=1,compute=TRUE),

control.fixed=list(mean=0,prec=0.00001),

control.compute=list(return.marginals.predictor=TRUE))
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model_int_type_III <- inla(formula_int_type_III,family="poisson",

data=BD_final_concelhos_MI,

offset=log(Total_inhabitants),

control.predictor=list(link=1,compute=TRUE),

control.fixed=list(mean=0,prec=0.00001),

control.compute=list(return.marginals.predictor=TRUE))

par(mfrow=c(1,2))

#SPATIO-TEMPORAL WITHOUT INTERACTION

plot(BD_final_concelhos_MI$N_admissions,

model_year_iid_conc$summary.fitted.values$mean,

xlab="Observed values",ylab="Mean Post. Pred. Distr.")

predicted.p.value<-c()

for(i in (1:1390)) {

predicted.p.value[i]<-inla.pmarginal(q=BD_final_concelhos_MI$N_admissions[i],

marginal=model_year_iid_conc$marginals.fitted.values[[i]])

}

hist(predicted.p.value,main="",

xlab="Posterior predictive p-value",

breaks=11,xlim=c(0,1.0),ylim=c(0,600))

#SPATIO-TEMPORAL WITH INTERACTION

plot(BD_final_concelhos_MI$N_admissions,

model_int_type_III$summary.fitted.values$mean,

xlab="Observed values",ylab="Mean Post. Pred. Distr.")

predicted.p.value<-c()

for(i in (1:1390)) {

predicted.p.value[i]<-inla.pmarginal(q=BD_final_concelhos_MI$N_admissions[i],

marginal=model_int_type_III$marginals.fitted.values[[i]])

}

hist(predicted.p.value,main="",

xlab="Posterior predictive p-value",

breaks=11,ylim = c(0,400))
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Attachments
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A Maps of Portugal

A Maps of Portugal

Figure 17: Municipalities of Portugal.
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