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Abstract 

In recent years, the increase in the number of accidents, chronic diseases, such as diabetes, and 

the impoverishment of certain developing countries have contributed to a significant increase in 

prostheses users. The loss of a particular limb entails numerous changes in the daily life of each user, 

which are amplified when the user loses their hand. Therefore, replacing the hand is an urgent necessity. 

Developing upper limb prostheses will allow the re-establishment of the physical and motor functions 

of the upper limb as well as reduction of the rates of depression. Therefore, the prosthetic industry has 

been reinventing itself and evolving. It is already possible to control a prosthesis through the user's 

myoelectric signals, control known as pattern recognition control. In addition, additive manufacturing 

technologies such as 3D printing have gained strength in prosthetics. The use of this type of technology 

allows the product to reach the user much faster and reduces the weight of the devices, making them 

lighter. Despite these advances, the rejection rate of this type of device is still high since most prostheses 

available on the market are slow, expensive and heavy. Because of that, academia and institutions have 

been investigating ways to overcome these limitations. Nevertheless, the dependence on the number of 

acquisition channels is still limiting since most users do not have a large available forearm surface area 

to acquire the user’s myoelectric signals. 

This work intends to solve some of these problems and answer the questions imposed by the 

industry and researchers. The main objective is to test if developing a subject independent, fast and 

simple microcontroller is possible. Subsequently, we recorded data from forty volunteers through the 

BIOPAC acquisition system. After that, the signals were filtered through two different processes. The 

first was digital filtering and the application of wavelet threshold noise reduction. Later, the signal was 

divided into smaller windows (100 and 250 milliseconds) and thirteen features were extracted in the 

temporal domain. During all these steps, the MatLab® software was used. After extraction, three feature 

selection methods were used to optimize the classification process, where machine learning algorithms 

are implemented. The classification was divided into different parts. First, the classifier had to 

distinguish whether the volunteer was making some movement or was at rest. In the case of detected 

movement, the classifier would have to, on a second level, try to understand if they were moving only 

one finger or performing a movement that involved the flexion of more than one finger (grip). If the 

volunteer was performing a grip on the third level, the classifier would have to identify whether the 

volunteer was performing a spherical or triad grip. Finally, to understand the influence of the database 

on the classification, two methods were used: cross-validation and split validation. 

After analysing the results, the e-NABLE Unlimbited arm was printed on The Original Prusa i3 

MK3, where polylactic acid (PLA) was used. 

This dissertation showed that the results obtained in the 250-millisecond window were better than 

the obtained ones in a 100-millisecond window. In general, the best classifier was the K-Nearest 

Neighbours (KNN) with k=2, except for the first level that was LDA. The best results were obtained for 

the first classification level, with an accuracy greater than 90%. Although the results obtained for the 

second and third levels were close to 80%, it was concluded that it was impossible to develop a 

microcontroller dependent only on one acquisition channel. These results agree with the anatomical 

characteristics since they are originated from the same muscle group. The cross-validation results were 

lower than those obtained in the training-test methodology, which allowed us to conclude that the inter-

variability that exists between the subjects significantly affects the classification performance. 

Furthermore, both the dominant and non-dominant arms were used in this work, which also increased 

the discrepancy between signals. Indeed, the results showed that it is impossible to develop a 

microcontroller adaptable to all users. Therefore, in the future, the best path will be to opt for the 

customization of the prototype. In order to test the implementation of a microcontroller in the printed 
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model, it was necessary to design a support structure in Solidworks that would support the motors used 

to flex the fingers and Arduino to control the motors. Consequently, the e-NABLE model was re-

adapted, making it possible to develop a clinical training prototype. Even though it is a training 

prototype, it is lighter than those on the market and cheaper. 

The objectives of this work have been fulfilled and many answers have been given. However, 

there is always space for improvement. Although, this dissertation has some limitations, it certainly 

contributed to clarify many of the doubts that still exist in the scientific community. Hopefully, it will 

help to further develop the prosthetic industry. 

Key-words: Myoelectric signals, Upper Limb Prostheses, Pattern Recognition Control, 3D 

Printing, Machine Learning Algorithms  
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Resumo 

Nos últimos anos, o aumento do número de acidentes por doenças crónicas, como, por exemplo, 

a diabetes, e o empobrecimento de determinados países em desenvolvimento têm contribuído para um 

aumento significativo no número de utilizadores de próteses. A perda de um determinado membro 

acarreta inúmeras mudanças no dia-a-dia de cada utilizador. Estas são amplificadas quando a perda é 

referente à mão ou parte do antebraço. A mão é uma ferramenta essencial no dia-a-dia de cada ser 

humano, uma vez que é através dela que são realizadas as atividades básicas, como, por exemplo, tomar 

banho, lavar os dentes, comer, preparar refeições, etc. A substituição desta ferramenta é, portanto, uma 

necessidade, não só porque permitirá restabelecer as funções físicas e motoras do membro superior, 

como, também, reduzirá o nível de dependência destes utilizadores de outrem e, consequentemente, das 

taxas de depressão. Para colmatar as necessidades dos utilizadores, a indústria prostética tem-se 

reinventado e evoluído, desenvolvendo próteses para o membro superior cada vez mais sofisticadas. 

Com efeito, já é possível controlar uma prótese através da leitura e análise dos sinais mioelétricos do 

próprio utilizador, o que é denominado por muitos investigadores de controlo por reconhecimento de 

padrões. Este tipo de controlo é personalizável e permite adaptar a prótese a cada utilizador. Para além 

do uso de sinais elétricos provenientes do musculo do utilizador, a impressão 3D, uma técnica de 

manufatura aditiva, têm ganho força no campo da prostética. Por conseguinte, nos últimos anos os 

investigadores têm impresso inúmeros modelos com diferentes materiais que vão desde o uso de 

termoplásticos, ao uso de materiais flexíveis. A utilização deste tipo de tecnologia permite, para além 

de uma rápida entrega do produto ao utilizador, uma diminuição no tempo de construção de uma prótese 

tornando-a mais leve e barata. Além do mais, a impressão 3D permite criar protótipos mais sustentáveis, 

uma vez que existe uma redução na quantidade de material desperdiçado. Embora já existam inúmeras 

soluções, a taxa de rejeição deste tipo de dispositivos é ainda bastante elevada, uma vez que a maioria 

das próteses disponíveis no mercado, nomeadamente as mioelétricas, são lentas, caras e pesadas. Ainda 

que existam alguns estudos que se debrucem neste tipo de tecnologias, bem como na sua evolução 

científica, o número de elétrodos utilizados é ainda significativo. Desta forma, e, tendo em conta que a 

maioria dos utilizadores não possuí uma área de superfície do antebraço suficiente para ser feita a 

aquisição dos sinais mioelétricos, o trabalho feito pela academia não se revelou tão contributivo para a 

indústria prostética como este prometia inicialmente. 

Este trabalho pretende resolver alguns desses problemas e responder às questões mais impostas 

pela indústria e investigadores, para que, no futuro, o número de utilizadores possa aumentar, assim 

como o seu índice de satisfação relativamente ao produto. Para tal, recolheram-se os sinais mioelétricos 

de quarenta voluntários, através do sistema de aquisição BIOPAC. Após a recolha, filtraram-se os sinais 

de seis voluntários através de dois processos diferentes. No primeiro, utilizaram-se filtros digitais e no 

segundo aplicou-se a transformada de onda para a redução do ruído. De seguida, o sinal foi segmentado 

em janelas mais pequenas de 100 e 250 milissegundos e extraíram-se treze features no domínio temporal. 

Para que o processo de classificação fosse otimizado, foram aplicados três métodos de seleção de 

features. A classificação foi dividida em três níveis diferentes nos quais dois algoritmos de 

aprendizagem automática foram implementados, individualmente. No primeiro nível, o objetivo foi a 

distinção entre os momentos em que o voluntário fazia movimento ou que estava em repouso. Caso o 

output do classificador fosse a classe movimento, este teria de, num segundo nível, tentar perceber se o 

voluntário estaria a mexer apenas um dedo ou a realizar um movimento que envolvesse a flexão de mais 

de que um dedo (preensão). No caso de uma preensão, passava-se ao terceiro nível onde o classificador 

teria de identificar se o voluntário estaria a realizar a preensão esférica ou em tríade. Para todos os níveis 

de classificação, obtiveram-se resultados para o método de validação cruzada e o método de teste e 

treino, sendo que neste, 70% dos dados foram utilizados como conjunto de treino e 30% como teste. 
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Efetuada a análise dos resultados, escolheu-se um dos modelos da comunidade e-NABLE. O modelo foi 

impresso na impressora The Original Prusa i3 MK3S e o material escolhido foi o ácido poliláctico 

(PLA). Para que fosse possível testar a implementação de um microcontrolador num modelo que 

originalmente depende da flexão do cotovelo realizada pelo utilizador, foi necessário desenhar uma 

estrutura de suporte que suportasse, não só os motores utilizados para flexionar os dedos, como, também, 

o Arduíno. O suporte desenhado foi impresso com o mesmo material e com a mesma impressora.  

Os resultados obtidos mostraram que a janela de 250 milissegundo foi a melhor e que, regra geral, 

o melhor classificador é o K-Nearest Neighbors (KNN) com k=2, com exceção do primeiro nível, em 

que o melhor classificador foi o Linear Discriminant Analysis (LDA). Os melhores resultados 

obtiveram-se no primeiro nível de classificação onde a accuracy foi superior a 90%. Embora os 

resultados obtidos para o segundo e terceiro nível tenham sido próximos de 80%, concluiu-se que não 

era possível desenvolver um microcontrolador dependente apenas de um canal de aquisição. Tal era 

expectável, uma vez que os movimentos estudados são originados pelo mesmo grupo muscular e a 

intervariabilidade dos sujeitos um fator significativo. Os resultados da validação cruzada foram menos 

precisos do que os obtidos para a metodologia de treino-teste, o que permitiu concluir que a 

intervariabilidade existente entre os voluntários afeta significativamente o processo de classificação. 

Para além disso, os voluntários utilizaram o braço dominante e o braço não dominante, o que acabou 

por aumentar a discrepância entre os sinais recolhidos. Com efeito, os resultados mostraram que não é 

possível desenvolver um microcontrolador que seja adaptável a todos os utilizadores e, portanto, no 

futuro, o melhor caminho será optar pela personalização do protótipo. Tendo o conhecimento prévio 

desta evidência, o protótipo desenvolvido neste trabalho apenas servirá como protótipo de treino para o 

utilizador. Ainda assim, este é bem mais leve que os existentes no mercado e muito mais barato. Nele é 

ainda possível testar e controlar alguns dos componentes que no futuro irão fazer parte da prótese 

completa, prevenindo acidentes. 

Não obstante o cumprimento dos objetivos deste trabalho e das muitas respostas que por ele foram 

dadas, existe sempre espaço para melhorias. Dado à limitação de tempo, não foi possível testar o 

microcontrolador em tempo-real nem efetuar testes mecânicos de flexibilidade e resistência dos 

materiais da prótese. Deste modo, seria interessante no futuro fazer testes de performance em tempo real 

e submeter a prótese a condições extremas, para que a tensão elástica e a tensão dos pins sejam testadas. 

Para além disso, testar os mecanismos de segurança da prótese quando o utilizador tem de fazer muita 

força é fundamental. O teste destes parâmetros evitará a ocorrência de falhas que poderão magoar o 

utilizador, bem como estragar os objetos com os quais a prótese poderá interagir. Por fim, é necessário 

melhorar o aspeto cosmético das próteses. Para que isso aconteça, poderão ser utilizados polímeros com 

uma coloração próxima do tom da pele do utilizador. Uma outra forma de melhorar este aspeto, seria 

fazer o scanning do braço saudável do utilizador e usar materiais flexíveis para as articulações e dedos 

que, juntamente com uma palma de termoplásticos resistentes e um microcontrolador, permitissem um 

movimento bastante natural próximo do biológico. 

Em suma, apesar de algumas limitações, este trabalho contribuiu para o esclarecimento de muitas 

das dúvidas que ainda existiam na comunidade científica e ajudará a desenvolver a indústria prostética.  

Palavras-chave: Sinais Mioelétricos, Próteses do Membro Superior, Controlo por 

Reconhecimento de Padrões, Impressão 3D, Algoritmos de Aprendizagem Automática 
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1. Introduction 

1.1. Motivation  

One of the most crucial structures of the human body is the hand since it plays a fundamental role 

in perceiving tactile sensations and performing basic daily activities. The human hand is also an 

indispensable tool in the establishment of interpersonal communication [1][2]. The loss of a total or part 

of the upper limb causes personal difficulties that result in an emotional detriment of the affected ones 

[3]. Besides that, researchers found that the rates of clinical depression range from 21 to 35% [4]. 

Unfortunately, many people suffer from upper limb deficiencies that might be either due to congenital 

malformations or from limb amputations. 

In 2019, 2 million people lived without a body member. Thirty-five percent of those lived without 

an upper limb [5]. In the United States of America (USA), the prevalence of amputations was 1.6 million 

in 2005, which might duplicate until 2050 [6]. In 2019, The American Academy of Physical Medicine 

and Rehabilitation estimated that approximately 30000 to 40000 amputations were performed in the 

USA [7]. In Europe, Italy performs 3500 upper limb amputations per year [2], and the United Kingdom 

alone has more than three hundred people that suffer from upper limb amputation every year [8]. In 

Portugal, between 2000 and 2015, 11786 amputations of the upper limb were performed [9]. For the 

paediatric population, the occurrence of congenital malformations is the principal reason for the loss or 

non-formation of the upper limb. Globally, the number of newborns babies with congenital 

malformations is 7.9 per 10000 live births [10]. Epidemiologic studies from Finland, Canada, and 

Australia have estimated an overall incidence of upper limb anomalies between 3.4 and 5.3 per 10000 

live births [11]. In Sweden, the prevalence for upper limb anomalies was 21.5 out of 10000 and in the 

USA it was 13.7 per 10000 live births [12]. 

The loss of the total or part of the upper limb has numerous consequences, mainly at young ages. 

Besides the damages to mental health, the negative impact on muscle development and bilateral 

coordination is significant. The use of prosthetic devices at an early age is truly beneficial for children. 

Subsequently, there is an improvement in muscular performance, bimanual activity, symmetrical 

growth, and manual dexterity development [13][14]. As the estimation by the World Health 

Organization for individuals with physical disabilities who require prosthetic treatment is about 0.5% of 

the world population, the prosthetic industry has been growing and innovating in the development of 

new prosthetic solutions [15]. Among all the available commercial options, cosmetic prostheses are the 

most used. Nevertheless, when it comes to functionality, body-powered and electrical prostheses are 

better classified. 

Despite the efforts made by the industries, the prostheses that are currently available in the market 

still need improvement. Due to the fact that this market is relatively small, the development is still slow 

and expensive. Academic institutions have been developing new techniques to promote precise control. 

Nevertheless, the advances in the educational environment do not reach the industry due to the lack of 

robustness and usability [16]. Nowadays, there is a gap between prostheses' functionality and natural 

body functionality [17]. Besides the lack of robustness and functionality, the current prostheses are 

heavy and expensive. These features are responsible for the rejection rates, which are still significant. 

Biddiss et al [18] found that the rejection rate in children is about 38% for passive prostheses, 45% for 

body-powered prostheses and 32% for electric prostheses. In adults, the rejection rate is 39% for passive 
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prostheses, 26% for body-powered prostheses and 23% for electric prostheses. In general, myoelectric 

prostheses, an electrical prosthesis type, have a limited clinical and commercial impact which justifies 

the abandonment average rate of 25% among users [19].  

Solving these limitations and needs might change the prosthetic industry and the lives of 

thousands of amputees and children. Creating more advanced customized solutions is the key to 

balancing the users' needs and industries’ products. 

1.2. Objectives  

The aim of this dissertation is to investigate if it is possible to develop a low-cost and simple 

model suitable for every customer. This model incorporates a myoelectric controller in a low-cost 3D 

printable model. Therefore, we will have a hybrid functional upper limb prototype with a 3D printable 

design, controlled by the patient through myoelectric signals. To accomplish the objective, this work 

was divided into two parts. In the first part, we studied the different methodologies and signal processing 

techniques to develop a reliable and simple machine learning controller algorithm. In the second part, 

we optimised an online 3D printable model.  

The field of prosthetics has been growing. More recently, many prostheses use machine learning 

algorithms that analyse features extracted from myoelectric signals for further gesture recognition. 

Because of that, academic researchers have been giving more and more attention to the methodology 

that can be followed to improve the results. Although there are many previous studies regarding real-

time gesture recognition models, there are no standardised concepts. Furthermore, there is a gap when 

it comes to the recognition of a dataset with grasps and fingers movements with a low number of 

acquisition channels. Therefore, the first part of this work is focused on finding if the use of a single 

channel acquisition is enough to build a machine learning controller algorithm that identifies different 

hand gestures for a large population. 

The second part focuses on re-designing and customising the 3D-printed prosthetic model 

originally designed by the e-NABLE community. Since this prototype will replace the user's forearm 

and its functions, we must ensure that we combine the degree of freedom of the integrant parts of the 

prosthesis with the studied myoelectric controller.   

1.3. Structure 

This dissertation is structured in six chapters:  

Chapter 1 includes the motivation and objectives of this work.  

Chapter 2 presents a basic description of upper limb anatomy and disabilities, the current 

commercial solutions, and the user needs. This chapter also describes the role of additive manufacturing 

in prosthetic design and some concepts of electromyography since it is the basis of myoelectric control.  

Chapter 3 describes the different types of myoelectric controllers and the drawbacks that still 

exist in the prosthetic control. 

Chapter 4 focuses on the signal pre and processing techniques as well as the followed 

methodology and describes design specifications for the optimized structures.  
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Chapter 5 discusses the results obtained during the classification process and the features of the 

produced prototype. 

Chapter 6 presents the conclusion of this dissertation that includes some future perspectives for 

further developments and future studies in this scientific area.  
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2. Background Research  

This chapter describes some of the fundamental concepts about the upper limb anatomy and the 

associated pathologies related to the theme of this dissertation. These concepts are fundamental to 

developing a functional and useful prosthetic device. Furthermore, the current prostheses and the more 

advanced and recent technologies involved in their production are also discussed.  

2.1. Upper Limb Anatomy 

The upper limb is divided into four regions. The first part is the arm, which extends from the 

shoulder to the elbow, the second part is the forearm, which goes from the elbow to the wrist. The third 

one goes from the wrist to the hand. The bones of the upper limb are divided along these four structures: 

the humerus, radius, ulna, eight carpal bones (small bones divided into two rows), five metacarpal bones 

(distributed by the palm) and fourteen phalanges (Figure 2.1) [20][21][22]. 

 

The loss of the hand has a massive impact on users' lives since it limits their lives in the most 

basic daily activities. Only the use of a prosthesis could replace some of the loss functions. Therefore, 

it is crucial to develop a prosthesis capable of performing the same movements as the missing limp part. 

There are six fundamental movements that need to be analysed: flexion, extension, abduction, adduction, 

Figure 2.1: Upper Limb bones structure (extracted from [20]). 



 

5 
 

supination, and pronation. Flexion is a movement of an anterior body part to the coronal plane (Figure 

2.2-A). Conversely, the extension is the movement of a part of the body posterior to the coronal plane 

(Figure 2.2-A). Abduction is the movement away from the midline of the body. In this movement, an 

upper limb part goes from the frontal plane to the opposite direction of the body midline (moving away). 

In turn, adduction is the movement towards the midline (approaching) - Figure 2.2-A. Rotation is the 

movement of the bone along the longitudinal axis. Pronation is a rotation of the palm (Figure 2.2-C). 

Conversely, supination is the movement of the palm previously to the anatomical position (Figure 2.2- 

C). These movements are performed by flexors, extensors and abductors muscles of the upper limb 

(Figure 2.2-A) [20][21][23][24]. 

 

Thumb flexion is the separation of the thumb from the second finger. Thumb abduction and 

adduction occur in the carpometacarpal joint (Figures 2.3- 5 and 6). The anteposition is the movement 

of the thumb and the fifth finger when one moves towards the other [20][21][23][25][26]. 

Figure 2.2: Upper Limb Movements: A- Internal and external rotation of the arm; Extension 

and Flexion of the forearm and elevation. B- Flexion of the Forearm, C- Supination and 

Pronation of the forearm, D- Ulnar and Radial Deviation (extracted from [24]). 
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Figure 2.3: Wrist movements (1-4), thumb movements (5-6), hand basic movements (7-8) – extracted from [26]. 

 

The rest of the hand movements are performed on the wrist joint. This joint can be flexed and 

extended along the perpendicular plane to the palm up to about an 80 to 70 degree angle, respectively- 

see figure 2.3 - 3 and 4. Hand flexion allows the closing of the digital chain, which promotes hand 

closing. The extension, on the other side, induces the opening of the hand. Phalanges flexion and 

extension take place around a transverse axis, which passes at the level of the proximal and distal 

interphalangeal joints. The proximal interphalangeal joint does not perform flexion and extension at all. 

The adduction and abduction movements are performed on the axis of the hand. While the abduction 

movement makes the fingers move away from the hand axis, the adduction one brings the fingers closer 

to the hand axis. These movements are performed during the digital extension movement 

[20][21][23][25]. 

Digital grips use two or more fingers to hold an object without the aid of the palm [27]. Grasping 

movements are the most precise ones (Figure 2.4). The hand starts opening with the fingers’ extension 

and abduction to capture the object. Then, the hand closes through the action of the fingers’ flexor 

muscles and the thumb adductor muscle. The digital grip is a precise movement. The fingers’ position 

is achieved by fixing the wrist, the metacarpophalangeal and interphalangeal joints. Finally, the object 

is fixed with the thumb opposition and the second and third fingers flexion [23][28]. 

 

The muscles that originate the hand movements are located in the forearm and in the hand. 

Because of that, it is essential to study the hand muscles as well (Figure 2.5). 

In this dissertation, studying the muscles responsible for the grasp movements is crucial since they 

originate the myoelectric signals that will be used to control the developed prototype. Due to the 

limitations of the prosthesis user, only the signals that are generated at the forearm level will be recorded. 

Figure 2.4: Grasp Movements: A- Spherical Grip, B- Cylindrical Grip, C- 

Tripod Grip (extracted from [28]). 
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Because of that, in the following table, it is possible to observe the principal muscles involved in the 

forearm and hand movements (Table 2.1, 2.2 and 2.3) [20][21][23][29][30][31]. 

Table 2.1: Arm muscles and its functions (based on the information from [20][21][23][29][30]). 

 

Table 2.2: Forearm muscles and its functions (based on the information from [20][21][23][29][30]). 

Forearm Muscles Localization (Figure 2.6) Affected Structures 

Abductor Pollicis Longus Posterior surface of the radius Abduction of the thumb and the wrist 

Extensor Pollicis Longus Lateral Surface of the Ulna 
Extension of the thumb and wrist 

abduction 

Extensor Pollicis Brevis Dorsal surface of the radius 
Extension of the metacarpal joint of 

the thumb 

Extensor Digitorum Lateral epicondyle of the humerus 
Extension of the wrist and extension 

of the phalanges of the finger 

Flexor Pollicis Longus 
Anterior surface of the radius and 

interosseous membrane (forearm) 

Flexion of the interphalangeal and the 

metacarpophalangeal joint of the 

thumb 

Flexor Digitorum Superficialis 

Medial epicondyle of the humerus, 

coronoid process of the ulna and 

superior half of anterior border 

Flexion of the proximal 

interphalangeal and the 

metacarpophalangeal joints 

Arm Muscles Localization (Figure 2.6) Affected Structures 

Deltoide Lateral third of the clavicle 

Flexion and Extension of the arm; 

Abduction of the shoulder and of the arm 

and Stabilization of the shoulder joint 

Brachialis 
Distal half of the anterior side of the 

humerus 
Flexion of the forearm 

Biceps brachii 

Supraglenoid tubercle of the scapula 

and apex of the coracoid process of 

the scapula  

Flexion of the forearm at the elbow joint, 

supination of the forearm 

CoracoBrachialis Coracoid process of the scapula  Adduction and flexion of the Arm 

Triceps brachii 
Posterior surface of the humerus and 

infraglenoide tubercle of the scapula  
Extension of the forearm 
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Flexor Digitorum Profundus 

Proximal parts of the anterior and 

lateral surfaces of the Ulna and 

interosseous membrane 

Flexion of the distal interphalangeal 

joints 

Pronator Teres Humeral head and ulnar head 
Pronation of the forearm and flexion 

of the elbow 

Pronator Quadratus Anterior surface of the Ulna 
Pronation of the forearm and binding 

of the radius and ulna 

Palmaris Longus Medial epicondyle of the humerus Flexion of the hand at the wrist joint 

Flexor Carpi Ulnaris and Radialis 

Medial Epicondyle of the humerus and 

humeral head and posterior border of 

the ulna respectively 

Flexion of the wrist and ulnar 

deviation 

Supinator Lateral epicondyle of the humerus Supination of the forearm 

Extensor Carpi Ulnaris and Radialis 

Lateral epicondyle of the humerus and 

posterior border of the ulna and 

Lateral supra-epicondylar bridge of 

the humerus 

Extension, adduction (Extensor Carpi 

Ulnaris) of the wrist joint and 

abduction of the hand at the wrist joint 

(Extensor Carpi Radialis) 

Extensor Indicis Proprius 
Posterior side of the distal third of the 

ulnar shaft 
Extension of the second finger 

Extensor Digiti Minimi Lateral epicondyle of the humerus Extension of the little finger 

Brachioradialis 
Proximal two-thirds of the supra 

epicondylar ridge of the humerus 
Flexion of the Forearm 

 

 

 
Table 2.3: Hand muscles and its functions (based on the information from [20][21][23][29][30]). 

Hand Muscles Localization (Figure 2.5) Affected Structures 

Thenar Eminence: Flexor Pollicis 

Brevis, Abductor Pollicis Brevis, 

Opponens Pollicis) 

Flexor Pollicis Brevis and 

Abductor Pollicis Brevis: Flexor 

retinaculum and tubercles of 

trapezium and scaphoind carpal 

bones 

Opponens Pollicis: Flexor 

retinaculum and tubercle of the 

trapezium and scaphoid carpal 

bones 

Flexor Pollicis Brevis: Thumb Flexion 

Abductor Pollicis Brevis: Thumb 

abduction 

Opponens Pollicis: Thumb Flexion, 

abduction and medial rotation 
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Hypothenar eminence: Flexor 

Digiti Minimi Brevis, Abductor 

Digiti Minimi Brevis, Opponens 

Digiti Minimi 

Flexor Digiti Minimi Brevis: 

retinaculum (carpal Bone) 

Abductor Digiti Minimi: Pisiform 

(carpal Bone) 

Opponens Digiti Minimi: hamate 

and retinaculum (carpal bones) 

Flexor Digiti Minimi Brevis: Flexion of 

the thumb 

Abductor Digiti Minimi: Abduction of 

the thumb 

Opponens Digiti Minimi: Opposition of 

the thumb 

Interossei 

Sides of two adjacent metacarpais 

and palmar surfaces of the 

metacarpals (hand)  

Abduction of the fingers, adduction of the 

fingers and thumb 

Lumbricallis 
Tendons of the Flexor Digitorum 

Profundus (hand)  

Flexion of the metacarpophalangeal joints 

and extension of the interphalangeal joints 

Figure 2.5: Superficial and Deep Muscles of the Hand (extracted from [31]). 
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2.2. Upper Limb Pathologies  

2.2.1. Congenital Malformations 

The formation of the upper limb occurs between the fourth and eighth weeks after fertilization. 

The upper limb embryogenesis starts with the lateral migration of two mesoderm layers and it ends with 

Figure 2.6: Upper Limb Muscles (Superficial and deep muscles illustration)- (extracted from [31]). 
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the plaque, which is responsible for muscle formation [32][33][34]. Structural congenital malformations 

are responsible for physical anomalies in limbs. The majority of the structural defects occur in the 

earliest weeks of pregnancy [35]. 

Although 50% of congenital anomalies are not associated with a specific cause, it is possible to 

identify genetic, social, environmental and behavioural risk factors. The genetic pool of some ethnic 

communities gives precedence to the appearance of rare mutations worldwide. Mother's age, the 

presence of diabetes, alcohol and drugs consumption, intake of medication with vasoconstriction effects 

and radiation exposure are some examples that contribute to increasing chromosomal abnormalities 

occurrence. It is thought that the prevalence of structural anomalies is higher in developing countries. 

This might be related to the lack of access to primary health care and family planning appointments. 

Ninety-four per cent of congenital anomalies are observed in populations with a low financial income 

and poor health care systems [11][36]. Another frequent cause is the existence of amniotic bands in the 

uterine cavity.(Figure 2.7) [36][32]. During its development, the embryo is surrounded by a thin 

membrane (amnion). In rare cases, this band can run through the uterine cavity. Since in the urinary 

cavity, the membrane can bind around the upper or lower limbs. There is a blockage in blood flow when 

this happens, which leads to tissue necrosis of the affected limb or part of it. This condition is called 

amniotic band syndrome. There are two treatments, but their application depends on the early detection 

of this condition. The success of the uterus fetal surgery treatment depends on the degree of the damage. 

Postnatal treatment is the reconstructive surgery of the limb. After this, prosthetic treatment is highly 

recommended [36][37]. 

 

There are two main types of congenital anomalies: longitudinal ones and transverse ones that are 

illustrated in Figure 2.8. The longitudinal congenital anomalies are the partial or total loss of a limb part, 

known as dysmelia. Of all malformations of the upper appendicular skeletal bones, the radial ray 

deficiency is the most common one, which happens with an average incidence of 1.01 per 10,000 live 

births [11]. In comparison to the radial deficiency, ulnar longitudinal deficiencies are four times less 

common, with an incidence of 0.44 per 10,000 live births [11]. In this case, the most affected structures 

are the hand and the wrist [11][38][32] In transverse anomalies, the limb resembles an amputation stump 

[10]. The congenital transverse deficiencies incidence is 1 per 20,000 live births [38]. Adams-Oliver 

syndrome, Holt-Oram syndrome, absent radius syndrome-thrombocytopenia are some of the best 

examples [38][32]. This dissertation does not detail these syndromes because they are associated with 

other severe diseases such as heart failure and neurological concerns. Syndromes like these are rare and 

Figure 2.7: Amniotic Band Syndrome Illustration (extracted from [37]). 
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the principal concerns are not the missing of a body limb. Because of that, this dissertation will focus 

on finding a solution for subjects with longitudinal congenital malformations [39]. 

 

2.2.2. Traumas and amputations  

Traumatic events or severe diseases can lead to the loss of the upper limb part. In the last few 

years, wars in African and Middle East countries have caused a million injuries, of which 8% need 

prostheses [20]. Conversely, in developed countries, the leading cause of amputations are vascular 

disorders, Strokes, Transient Ischemic Attacks, Subarachnoid and Subdural Haemorrhages are a few 

examples of such vascular pathologies. In second place are traumas, and in third, a list of other risk 

factors. Untreated infections such as meningitis, encephalitis, polio and epidural abscess, sepsis, and 

diseases such as diabetes, cancerous tumours, neuromuscular diseases, and degenerative diseases 

(Huntington's Disease, Parkinson's Disease) are risk factors as well [40][41]. Depending on the 

amputation level, upper limb amputations can be classified into partial hand amputation, wrist 

disarticulation, transcarpal, transradial or transhumeral amputation and shoulder disarticulation 

illustrated in Figure 2.9 [42][43][44]. In Figure 2.9, the black lines represent the end of the upper limb 

for each amputation case.  

 

 

 

 

Figure 2.8: Upper Limb Anomalies: Terminal and Intercalary at left and 

transverse and longitudinal at right (extracted from [39]). 
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2.3. Additive Manufacturing in Prosthetic Development   

In the last years, additive manufacturing techniques have grown due to their extensive 

applications in solving health problems. With these techniques, the production of structures with a high 

degree of complexity in a short time is a reality. At the same time, it is possible to save material and 

financial resources [45][46]. The interest of the industries in 3D printing arose in 2013. According to 

experts' expectations, 3D print technology grew from 6 billion to 21 billion from 2016 to 2021. The 

main advantage is the possibility of printing a single part instead of a unique prosthetic model which 

ends up being more economical. Furthermore, the time to market is short when compared to current 

prosthetic production techniques. The personalization and customization levels provided by 3D print 

technology are the most central factors to raise the users' awareness [13][47]. 

However, since this technology has not been regulated by the Food and Drug Administration 

(FDA) standards, some tests need to be done to verify its effectiveness and security. [48] In the academic 

world, some studies are exploring new solutions and materials to improve this technology. Most of the 

current 3D printable prostheses are electric and body-powered ones. The best examples of it are the 

online models that are available to the community, such as Cyborg Beast, the Raptor Hand and Limbitess 

Arm body-powered models from the e-NABLE community and Handiii Coyote, an externally powered 

prosthesis [45][46][47]. 

2.4. Current Prosthetic Solutions  

The upper limb prostheses can be categorized into passive prostheses and active prostheses 

[49][50][51]. Passive prostheses are divided into two groups: static and dynamic prostheses. While the 

fixed prostheses only serve for aesthetic purposes, the dynamic ones allow the patient to grab some 

objects since they are controlled by internal mechanisms [51][52]. Active prostheses perform grasping 

movements because they are controlled by internal mechanisms. Those mechanisms can be electric 

actuators or corporal cables. Body-powered prostheses depend a lot on the user, which means that the 

user has to perform auxiliary movements to promote prostheses movement. Conversely, electrical 

prostheses do not require any movements from the patient [13][47][51][52]. 

Figure 2.9: Upper Limb Amputation’s Levels (adapted from [44]). 
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2.4.1. Passive Prostheses 

Passive prostheses are the most competitive prostheses in the market due to their low price. For 

this reason, these prostheses are sought by one-third of the users [42][52]. These prosthetic devices have 

some postural benefits since they restore the body's symmetry, particularly when the user has proximal 

amputations. These prostheses are usually made of flexible latex, rigid plastic materials or silicone [44]. 

Some academic studies present, as an alternative to silicone, the use of 3D printed Filaflex® structures 

[47][53][49]. However, this type of prosthesis is manufactured for cosmetic purposes and therefore does 

not meet the functional needs of the users. One of the most well-known prostheses is the LIVINGSKIN 

™ arm, illustrated in Figure 2.10 [54].The WILMER Passive Hand Prosthesis (Figure 2.11) enables the 

user to perform some movements because it includes a functional hook [55]. 

 

2.4.2. Body-Powered Prostheses  

Body-powered prostheses operate through active hands and operational cables, which move 

through body movement [13][42][56]. Some of these prostheses, mainly the recent ones, are produced 

using 3D printing technology. As already mentioned, body-powered prostheses are devices dependent 

on their user. Therefore, non-elastic cables, which have the same function as the flexors, are connected 

to a healthy part of the residual limb (elbow or hand). As a result, the movement of the prosthesis 

structure will depend on the flexion of the healthy structures. Elastic cords and a combination of 

materials that provide phalanges resistance are used to perform the extensors functions [47]. Body-

powered prostheses are reliable devices that can be used in work and dusty environments. For this 

reason, they are often preferable for workers with outdoor jobs. However, these devices are 

mechanically inefficient. In most cases, users cannot perform muscular prehensile strength with body-

powered prostheses. The extreme user's effort is often painful and causes discomfort in the residual limb 

Figure 2.10: LIVINGSKIN ™ arm by Össur Company (extracted from [54]). 

Figure 2.11: WILMER Passive Hand Prosthesis by TU Delft (extracted 

from [55]). 
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[51]. In economic terms, these prostheses can cost between $4000 and $10000 [49][45][47]. This price 

is lower when body-powered prostheses are made of 3D printable materials. 

Many institutions and communities use this type of prostheses since they are the most cost-

effective ones. The best example is the "Enabling the Future" project from the e-NABLE community. 

This online community has models of low-cost e-NABLES prostheses available as well as their design 

features [57]. The most popular and successful e-NABLE models are the Raptor Hand (Figure 2.12) and 

Cyborg beast (Figure 2.13). The first design of this community was the Limbitless Arm (Figure 2.14), 

an open-source design featuring an Arduino Micro microcontroller, a single servo capable of producing 

torque, muscle sensors, and a Kevlar survival cord to move the fingers. The downside of this design is 

that the hand can only open and close because there is only a single servo motor in the design. 

Conversely, the Limbitless arm is very inexpensive and comfortable for the user [14]. 

Raptor Hand (Figure 2.12) is a 3D prosthesis composed of a modular tension system that contains 

elastic and nylon wires. The flexion movement is accompanied by the wrist flexion and the closing 

movement of the fingers. The cost of this prototype is 35€ [58].  

 

The Cyborg Beast has1.5 mm elastic Velcro strings on the dorsal surface of the fingers that allow 

the passive extension of the finger. Conversely, the flexion movement is performed by 1mm non-elastic 

nylon strands. These strings are placed along the palmar surface of each finger. The materials used were 

Polylactic Acid (PLA) and Acrylonitrile Butadiene Styrene (ABS). The Cyborg beast (Figure 2.14) 

weighs 184.2g and costs 42.48 €. The total printing and assembly time is about 2.5 hours [59]. 

 

 

Figure 2.12: Raptor Hand (extracted from [58]). 

Figure 2.13: Cyborg Beast (Extracted from [59]) 

Figure 2.14: Limbitless Arm (extracted from [14])  
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In Portugal, Patient Innovation, a non-profit association, is categorized as a platform that allows 

patients, collaborators and caregivers to share their solutions with others. As a rule, the available 

solutions focus on solving medical problems and can be found in the following categories: conditions, 

symptoms, location, activities, devices or therapies. Since 2018, Patient Innovation has developed low-

cost body-powered prostheses to offer Portuguese children with upper limb disabilities [60]. To help 

this initiative, Professor Dr Bruno Soares and Professor Dr. ª Cláudia Quaresma from the Nova School 

of Science and Technology of the Nova University of Lisbon created a laboratory with 3D printers where 

mechanical engineers’ students and biomedical engineers’ students can develop and optimize prosthetic 

solutions for the users.  

2.4.3. Electrical Prostheses 

Since 1990, NASA and other technological institutions have been developing robotic hands with 

no more than two degrees of freedom. Despite the high technology, those hands are not suitable for daily 

use due to different physical restrictions. However, some of the prototypes are good examples of actual 

robotic hands [61]. 

Electrical prostheses are composed by servomotors, batteries, microcontrollers and 

electromyography sensors. The force distribution is mainly done equally by all fingers through a single 

servo motor. However, the most advanced ones distribute the force individually for each finger from 

different servomotors [45]. Noise and slow movements are the limitations imposed by conventional 

direct current (DC) electric motors. These prostheses have advantages such as comfort, cosmetic 

acceptance and superior compressive force. Regarding the disadvantages, it is possible to identify the 

noise, slow movements and strength limitations [62]. 

2.4.4. Myoelectric Prostheses  

Myoelectric prostheses belong to electrical prostheses, which means that they have motors and 

microcontrollers as well. The received input is the amplitude of the myoelectric signals, which results 

from muscle activation. Once detected by the surface electrodes, the signals need to be amplified and 

filtered. The resulting output activates the prosthesis, exercising an autonomous and robust control 

[42][45][63][64]. Besides that, these prostheses have more than two degrees of freedom, which is why 

they are preferable for daily activities.  

Nevertheless, the market price of the myoelectric prostheses is too high, between 21000 € and 

64000 €. Most commercial models are too heavy to be used by children [65]. These devices are also 

noisy due to external factors like fatigue, sweat and external pressures. The residual tissue of the stump 

and the environment during EMG acquisition increase the noise as well. These types of parameters will 

increase the response time of the prosthesis and make it move slower [66]. At a mechanical level, the 

existence of frictional forces on the control cable is decisive for the relationship between the control 

movement and the movement of the final effector [67]. 

Despite the overall limitation, there are many industries producing myoelectric prosthetic devices. 

However, the most well-known are the OttoBock Co in Germany, the Utah Arm Company in the USA, 

the Ossur and the OpenBionic™. These prostheses typically perform hand and grip positions and, in 

most cases, are capable of controlling each finger independently [8]. The most popular non-pattern 

myoelectric control prostheses on the market are BeBionic Hand, Michelangelo Hand and i-Limb Hand 
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[47][68][69][70]. Besides these known commercial prostheses, there are still ongoing prostheses such 

as the Modular Prosthetic Limb system sponsored by the Defence Advanced Research Projects Agency, 

the Smart Hand, and the UNB hand [8].  

The BeBionic hand (Figure 2.15) is a top product by Ottobock. It is a comfortable, intuitive and 

precise hand with fourteen different grip patterns and hand movements. The performance of the 

individual motors of each finger allows a natural and coordinated movement. This prosthesis has a 

proportional control that regulates the speed through the strength of the muscles. This prosthesis was 

designed with engines that optimize the weight distribution, which gives some comfort to the user. An 

integrated sensor is attached to the hand since it allows varied movements and different thumb positions. 

The BeBionic includes software and wireless technology that allows the user to customize the available 

functions according to their lifestyle. The materials chosen for its construction are strong enough to 

support up to 45kg. The innovative palm design protects the prosthesis from impacts and physical 

damage and helps to reduce noise [68]. 

 

The i-Limb® (Figure 2.16), produced by Össur, is a multi-articulated prosthesis. Thumb control 

is manual but automatically switches between the lateral and reference positions. The i-Limb offers 

eighteen automated options [69].  

 

Michelangelo’s hand (Figure 2.17) is an Ottobock product. This hand has specific characteristics 

when it comes to finger’s control. While a servomotor controls the thumb, the first and the second 

fingers, the third and fourth fingers move passively. Multiaxial movement patterns minimize unilateral 

Figure 2.15: Be-Bionic Arm by Ottobock (extracted from [68]). 

Figure 2.16: i-Limb by ossur (extracted from [69]). 

Figure 2.17: Michelangelo's hand by Ottobock UK (extracted from [70]). 
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compensation movements performed by the patient maintaining the body's natural posture. When the 

prosthesis is activated, it is possible to choose three positioning modes that allow seven different grips. 

However, as soon as the prosthesis is no longer in use, it returns to its resting position. The material that 

makes up the fingers is lightweight but resistant, which confers a high precision during the grasping 

process to the prosthesis. The patient can also choose to use a silicone glove that gives it a more natural 

look [47][70]. 

The DEKA arm, an advanced prosthetic arm recently approved by the FDA, has a fully powered 

three degree-of-freedom (DOF) shoulder, an elbow, a two DOF wrist, and six hand gripping patterns 

[71][72]. 

 

Another very effective solution that has currently been developed is the OpenBionics™ upper 

limb prosthetic device that uses 3D printed parts to lower production costs and allows customization of 

each commercialized prosthesis. The device produced by OpenBionics™ is the Hero Arm. This 

prosthesis uses proportional control to control the speed of the movement. This device made with nylon 

12 can lift up 8 Kg and weights 340 g [73]. 

Myo Plus Prosthesis (Figure 2.19), is one of the most recent Ottobock products. It is a myoelectric 

prosthesis controlled by pattern recognition-based methods. This prosthesis has the extraordinary 

capacity to learn and interpret the individual movement patterns of the user, through the use of the 

MyoPlus App. This intuitive control enables the users to adapt their prostheses to their individual needs. 

However, this prosthesis is not ideal or recommended for daily activities. [74] 

 

These devices are controlled essentially by proportional control. This control uses the myoelectric 

signal of the user to control the speed of the prosthesis. Therefore, it is possible to conclude that the use 

of myoelectric signals as a natural control source has brought numerous advantages, mainly because it 

can be used in commercial devices [16]. Besides that, the use of myoelectric prostheses is becoming 

more natural. However, there is still a gap between the operational control and the natural appearance 

of the human hand. The operational control is still slow and, unfortunately, mobile apps control the more 

complex movements. Besides that, these prostheses are the most expensive prostheses on the market, 

which means that only some users have access to them. Therefore, it is essential to study the electrical 

signals for a better understanding of such controller mechanisms. 

Figure 2.18: DEKA arm (extracted from [72]). 

Figure 2.19: MyoPlus Prosthesis by Ottobock UK (extracted from 

[74]). 
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2.4.4.1. Electromyography as an input of Myoelectric Control  

Muscles have specialized cells that are responsible for the movements of the upper limb and 

guarantee stabilization. In this way, it is vital to understand the functional unit of the neuromuscular 

systems. The muscle fibres are unnerved by a single motor neuron that excites the fibres through a semi-

permeable membrane phenomenon. The space between the somatic motor neuron and muscle fibre, also 

called synapse, is a neuromuscular joint. This structure receives the impulse and opens calcium channels. 

Calcium diffuses into the cell triggering the release of a neurotransmitter, acetylcholine (ACh). This 

chemical substance is combined with neurotransmitter receptors on the skeletal muscle membrane. The 

binding of this neurotransmitter to the receptor opens the sodium channels and consequently leads to 

cell depolarisation. Cell Depolarization or skeletal action potentials are followed by fibre in a 

contraction- excitation-contraction coupling process. A single relaxation-contraction cycle is referred to 

as a muscle cramp. The resting potential of the skeletal membrane is, on average, -80 mV. This 

membrane potential goes up to 30 mV with the opening of sodium channels [21]. To sum up, this signal 

is the result of the sum of all the sarcomere actions [75]. Muscle fibres are not activated individually. 

Indeed, EMG is a combination of action potentials, called the Motor Unit Action Potential (MUAP) 

[21][76][77][78]. 

Electromyography (EMG) is a technique for monitoring the electrical activity of muscle motor 

units. There are two ways for measuring myoelectric signals: through needles (invasive process) or 

surface electrodes (non-invasive procedure) [5]. The raw myoelectric signal´s amplitude ranges from -

5 to 5 mV with a 10-500 Hz frequency range [40].The electrical noise is outside the frequency range of 

0 - 500 Hz [79].  

The amplitude of the measured signal is influenced by a series of intrinsic and extrinsic factors. 

The first ones are those inbuilt into the user’s physiological and anatomical characteristics. The most 

known intrinsic factors are the muscular fibre composition, the muscle fibre diameter, the distance 

between the active fibres and the amount of tissue between the muscle surface and the electrode 

[80][79][81]. Extrinsic factors are those that affect the moment of acquisition. One of the examples is 

the electrodes’ configuration that can be transmitted by the distance between the electrodes and the 

respective area. Another example is the placement of the electrodes that can be outside of the motor 

points of the muscle or in the lateral border of the muscle. The sweating and temperature of the patient 

are essential as well [80][81]. The resultant noise of the electronic parts used in the measurement kit, 

the electromagnetic radiation of the room where the acquisition is being made, and patients´ movement 

during the entire acquisition are also extrinsic factors. This frequency of this type of noise is expected 

to be limited to an interval between 0 and 20 Hz [79]. 

Another common phenomenon that occurs during signal acquisition is crosstalk. Due to the fact 

that there are signal losses at the tendon level, the system parts that are not propagated originate the 

crosstalk. Besides that, the signal originated by the surrounded muscles can also affect the acquisition 

of the signal. The electrical activity of the heart is also a factor that influences the measurement of 

myoelectric signals. High-pass and bandpass filters are often used to remove the frequency of this 

interference [82]. 
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2.5. Prostheses: User Needs  

Given the high rejection rates of this medical device, it is important to consider the user’s opinion. 

For that reason, a literature review was conducted on the articles that explore the user opinions about 

the existing models on the market and inquire what they would like to see in a prosthetic device. 

Regardless of the user's age or abilities, the prosthesis should be practical and easy to use. Factors 

such as strength, functionality and appearance are the most basic requirements sought by patients. Also, 

the size, weight, shape and colour of the prosthesis are important characteristics [49][50][83]. Many 

prostheses on the market were created to improve the user's bimanual function and provide a better life 

to the users. However, all of them have advantages and disadvantages that the users identified based on 

the most critics and problems found by the users (Table 2.4) [84]. 

Table 2.4: Advantages and disadvantages of the existing prosthesis types.  

 

 

In general, the ability to simultaneously control the different parts and components is a functional 

limitation that generates mechanical and electronic noise. The grip strength, the speed of each 

movement, the sensory feedback, the execution of tasks in real-time and the bidirectional 

communication at the level of the peripheral nervous system are also some of the limitations of such 

medical devices [42]. The mechanical effort, tension forces, deformity and elasticity of the prosthesis 

are the most important properties to have in mind during its development [85][86]. Recovering sensorial 

feedback is also a deterministic part of successful rehabilitation. Developing bilateral sensory systems 

that establish an interaction between the user and the electronic components can be a solution [85][86]. 

Some users report problems with the position of the surface electrodes. As mentioned in section 

2.4.4.1, myoelectric signals are affected by internal and external factors. For that reason, some transient 

changes occur, promoting the degradation of the environment, which limits the clinical validity of the 

prosthetic device [87]. With the natural movement of the limb, some electrodes might change their 

position, which affects the recording process [88]. Developing acquisition training sets that study and 

equate all these factors could be the solution to solve these control problems. 

 

  

Types of 

prostheses Advantages Disadvantages 

Passive  

Similar shape to the human hand; Skin colour 

products; Made with Flexible material and 

silicone; Low Price 

Do not meet the users’ functionality needs 

Body-

powered 

Effective-cost; Permeability; Lighter; Fewer 

adjustments to the user 

Low sensory feedback; Mechanically inefficient; 

Dependent on the user; No strength to perform daily 

activities 

Electrical  

Multiple degrees of freedom; More natural and 

intuitive response; Require less visual feedback; 

Faster than body-powered 

Noisy; Slow control (below the time value required 

by the market); High prices; Heavy; sEMG signal 

dependence; Battery dependence 
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3. State of the art  

The first goal of this dissertation work is to create a 3D printed body-powered myoelectric 

controlled model. Since the first part of this study focuses on developing a low-cost myoelectric 

controller, we need to investigate the best pre and processing EMG signal methods and what has been 

developed and how it has been developed. There are three types of control systems where one of them 

is used in commercial prostheses, and the other two which have been studied over these last years.  

The existing control methods are based on pattern or non-pattern recognition methods [51]. The 

first clinically acceptable myoelectric control appeared in the 1960s. In the following two decades, the 

evolution of this type of control, created by the russians, stagnated. This stagnation was related to the 

lack of applicability at commercial level. However, over the past forty years, North American, Japanese 

and Italian universities have contributed to the evolution of myoelectric control [89]. The current 

commercial myoelectric control systems can be categorized as ON/OFF control, proportional control 

and classifier-based control [90]. 

In the following points, there is a detailed description of each type of control: Non-Pattern 

Recognition (NPR) and Pattern Recognition (PR). NPR control is one of the most used controllers since 

it is simple and is adaptable to all users. PR control has gained attention in the last years due to the 

number of grasps that it can bring to the prosthetic device. 

3.1. Non-Pattern Recognition Based Methods for Myoelectric 

Control  

Non-pattern recognition-based methods include ON-OFF control, proportional control, 

Proportional-Integral-Derivative (PID) control, onset analysis and finite state machines [51]. These 

types of control are focused on the determination of the motor action through the amplitude of the EMG 

signal [87].  

Commercial systems usually receive sEMG signals from two channels. Two options make the 

switch between the control modes. In the first one, the user switches the function via a co-contraction. 

In the second one, the sEMG signal reaches a slope in each channel which determine the function to be 

used. All these types of control are separated into two groups [16][91].  

The first control is based on threshold detection, where the on/off control, the finite state machine 

control and the onset control are included. Such control systems usually allow a slight contraction to 

close the hand, strong contractions to open the hand. As an alternative, the industries choose to 

proportional control. These controls promote the variation of the velocity and the force in a continuous 

way, where the user controls at least some of the inputs. Nevertheless, it is not possible to move each 

finger independently [91].  

The current commercial prostheses use the difference in EMG signals from a single pair of the 

antagonist's muscles to control one DOF at a time, which electronically is the direct control. Therefore, 

the prostheses have two DOF in the bicep and triceps to move the elbow and the hand through switching 

mechanisms. In addition, some prostheses have a third additional mechanism that requires a switching 

mechanism and becomes cumbersome. Nevertheless, these mechanisms are slow and expensive. So the 

need to investigate new control systems made academia study pattern recognition control and regression 

control [92].  
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In commercial and academic prosthetic hands, the Finite State Machine (FSM) control is widely 

used in prosthetic control and wheelchair control. This type of control has several sets of states that 

switch according to muscle contraction or prosthetic modes but require several intrinsic sequential 

control actions. The identification of different grasping movements makes this control one of the most 

advanced non-recognition tool methods [51][89].  

ON-OFF and proportional control models are also used. However, they only offer two DOF. 

Proportional control uses force, speed, or position in a continuous range, which means the user input is 

the muscle contraction. ON-OFF binary control system gives only a single speed or rate of actuation to 

the prosthesis. Conversely, Onset analysis is where muscle activation and deactivation are done 

according to the temporal characteristics. In this type of control, the rectified signals are compared with 

thresholds obtained with the background noise [89]. 

Nowadays, more than 90% of the industrial controls are still based on PID control method. A PID 

controller can be considered a phase-sweep compensator with one pole at the origin and another at 

infinity.[93] This algorithm is an excellent option to calculate the difference between several inputs. PID 

control adjusts the different parameters of the prosthesis, such as speed, position and control [94].  

Direct control is also a chosen method for prosthetic market products. This method interprets each 

input signal as an indicative function. This type of control is sufficient for sudden movements. Direct 

control does the correspondence between independent muscle contraction and the on/off of one DOF 

actuation [95]. The limitations of non-pattern recognition-based control methods are related to the 

functions that they perform [90][96]. 

In most cases, non-pattern-controlled prostheses can perform a single movement like opening and 

closing the hand or the wrist flexion. This type of control is slow because it involves more than one 

switching system [87]. 

3.2. Pattern Recognition Based Methods for Myoelectric control  

Pattern recognition control is a better alternative for the limitations caused by direct control. This 

control is divided into five parts: acquisition of EMG signal, signal pre-processing, data windowing and 

feature extraction, gesture recognition and finally, control motors programming. Since mathematical 

models are out of use when designing real-time prototypes due to their complexity, the application of 

machine learning algorithms for gesture recognition seems to be the perfect solution. Therefore, the 

pattern recognition (PR) based methods include Artificial Neural Networks (ANN), Linear Discriminant 

Analysis (LDA), Fuzzy Logic (FL), Gaussian Mixture Models (GMM), Naive Bayes (NB), K-Nearest 

Neighbour (KNN), Decision Trees (DT) and Support Vector Machines (SVM) due to their high 

accuracies (>95%) [51][90][97].  

The use of this type of control gives users more DOF and promotes muscle tone. However, these 

prostheses are not available in the market due to the complex learning and training methods. At the same 

time, in real life, it is complicated to control muscle fatigue and arm movement [91]. In pattern 

recognition control, there will always be delays of 250 milliseconds. However, in theory, the clinical 

delay should be between 100 and 125 milliseconds since human eyes do not perceive these values [98]. 

As stated by Farrell et al [99] the real-time prosthetic device maximum delay for the response of the 

prosthetic device should be 300 milliseconds. 
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Several studies search the best methodology to produce an effective and fast PR myoelectric 

control from those that already exist in the market. In 1978, Writa et al [100] created the first system to 

control myoelectric signals using LDA.  

Twenty-seven years later, in 2005, Chan and Englehart [101] proposed a Widen Markov Model 

classifier. With a four-channel-six-function design, the accuracy was 94.67%. In 2009, Tenore et al 

[102] acquired EMG signals from five healthy subjects with thirty-two channels and one amputee with 

nineteen channels. Since the objective was to distinguish flexion and extension finger movements, the 

authors extracted time-domain (TD) features analysed by a Multi-Layer Perceptron (MLP) classifier. 

They obtained accuracies of 90%. Besides that, the authors proved that there is no statistical difference 

between healthy subjects and amputees.  

In 2011, due to the lack of investigation related with the use of a single channel, Timeny et al 

[103] proposed a different classification method with a single electrode channel placed on the extensor 

and flexor muscles. Since the use of a single channel saves a lot of computational time, through the 

application of Empirical Mode Decomposition (EMD), a method that is based on the local time-scale 

characteristics of the signal, the authors increased the accuracy by 10.3%. Later in 2013, another survey 

from the same authors [8], after reducing the set features, compared LDA and SVM and concluded that 

LDA showed the highest accuracy (98%) In 2014, F. Riillo et al [104] showed that it is possible to 

identify five different movements from twenty healthy subjects with the combination of Principal 

Component Analysis (PCA) and Common Spatial Patterns (CSP) with LDA. The results showed an 

accuracy between 84% and 87%. In 2015, Stango et al [105] developed an interesting SVM classifier 

to identify gestures in EMG signals followed by spatial correlation obtaining reasonable accuracy 

measures. In the following year, Curline-wandl and Ali [106] developed a 3D printed transradial 

prosthesis with a single channel controller. The author showed that the accuracy is good in producing a 

low-cost and lightweight device, but the prototype has only a single DOF. Later in 2017, Gnazali et al 

[107] created a microcontroller with a Fuzzy-PID control. The author obtained an excellent accurate 

force control but with a unique DOF. Trognum et al [108], also in 2017, discussed a methodology to 

classify patterns in sEMG signals. With a short set of subjects, the author obtained an accuracy of 83% 

with the ANN classifier. In the same year, Mayor et al [109] developed a method capable of discriminate 

dexterous hand movements through a reduced number of electrodes. The authors extracted features from 

ten amputees and then classified the movements with SVM, LDA and KNN. The results showed an 

accuracy of 99.2 % for SVM and an accuracy of 98.94% for KNN with a lower computational time. In 

the same year, Raurale et al [110] used eight channels to identify wrist and hand gestures. The authors 

obtained an average accuracy of 95%. They only took 500 milliseconds.  

Finally, in 2020, Zhou et al [95] propose the development of a compact and cost-effective PR 

control myoelectric system. The authors tested three classifiers and their performances with offline tests. 

The classifiers were LDA, SVM and RF. During the same year, Li C et al [111]., identified nine different 

movements, such as wrist movements, forearm supination/pronation, and hand grasps processing the 

EMG signal. To classify each movement, the authors used SVM and GNRR and obtained 98.64% and 

96.27 % accuracy, respectively.  

Despite the variety of classifiers considered, given the stochastic and non-stationary sEMG 

signals nature, the best classifiers are LDA and KNN due to their easiest implementation and SVM due 

to it kernel-based characteristics [88][112]. The use of neural networks is also quite advantageous. ANN 

uses artificial intelligence to implement tasks through learning. This classifier represents both linear and 

non-linear relationships and can be used in real-time acquisitions. Classification using the FL algorithm 

tolerates contradictions in the data since it analyses it even when class separation may be difficult [89].  
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The biggest disadvantage of PR control is that the patient must undergo Target Muscle Re-

Innervation (TMR) surgery in most cases. TMR is a procedure that reduces phantom limb pain and 

allows the patient to produce meaningful inputs for myoelectric control. This process requires the 

transference of selective nerves from the brachial plexus to the patient's new muscle sites. The decision 

to relocate the nerves depends on the type of amputation. For patients with transhumeral enlargement 

and shoulder dislocations, it is the most recommended procedure [66][113]. Fortunately, the PR-based 

control scheme has been proved clinically on patients who undergo this surgery which is a new start for 

commercial PR systems [114][115].  

3.2.1. Surface EMG Signal Processing Methods 

Now that the classification methods are presented, it is essential to understand how it is possible 

to have accurate classifications.  

In myoelectric prostheses, the EMG signals are used to generate the output for prostheses control. 

Besides that, signal processing methods are fundamental to ensure that the signal is clean and ready to 

be analysed and classified. Therefore, proceedings such as filtration, rectification, normalization and 

windowing are essential for reasonable myoelectric control [80].  

As mentioned in section 2.4.4.1, there are a lot of internal and external factors that affect the 

signal. It is imperative to eliminate this noise. Filtering the signal is the most direct way to increase the 

sEMG signal's fidelity, maintaining the principal spectrum frequencies and removing the noise 

[116][117]. Consequently, filtering the signal at this stage can make a difference in producing an 

accurate control system. There are four types of filters: high-pass filters, low-pass filters, band-pass 

filters and notch filters [79]. For this kind of filters, the most recommended low cut-off frequencies are 

between 5 Hz and 28 Hz, and the high frequencies are between 450 e 450 Hz [79]. In previous academic 

research, the most used filters are Butterworth, Chebyshev, Hamming and Kaiser Windows [118]. 

Besides digital filtering, some authors consider the application of wavelet transform to reduce the noise, 

since it can remove the high frequency noisy contents.  

As previously discussed, to produce real-time devices it is necessary to have a maximum time 

response of 300 milliseconds [126]. To reach this goal and to promote a fast, accurate control is crucial 

to window the signal. This process is more useful for EMG acquisitions since this signal is non-

stationary, which means that the features of the total time would not be representative. Thus, it is 

important to divide the signal into several time segments in a process known as windowing. There are 

two types of windowing: overlap and non-overlap or adjacent windowing. Since the processor has a 

high speed (less than 50 milliseconds), the processing time is inferior to the segment length, making the 

processor idle for a while. For that reason, overlapping is preferable for real-time control [89][119]. In 

the adjacent window (Figure 3.1 (a)), the adjacent segments are used for posterior feature extraction and 

classification. Despite this method occupying less memory and considering that processing time is part 

of the segment length, the processor is idle during the remaining time. For that reason, the overlap 

classification merges in myoelectric control systems since during that idle time more outputs are 

produced. Nevertheless, increments like this produce a denser and redundant stream of class [89]. As an 

alternative to solve the problems caused by the previous processes, continuous segmentation can be 

used. In this type of segmentation, the signal is divided into overlap segments (Figure 3.1 (b)) of both 

transient and steady-state signals. This approach reduces the maximum delay and increases the 

classification performance [120]. In theory, choosing a segment with a length inferior to 200 

milliseconds is enough to estimate movements since this value is the minimum interval between distinct 
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contractions [121]. The accuracy of the classifier decreases with the decrease of the segment length. The 

choice of the segment has to consider two aspects: the first one is promoting good accuracy, the second 

one is occupying the shortest storage space. 

 

The optimal value depends on the selected features, which means that the set of features should 

be the most representative of the movement. Within the different types of features are the time-domain 

one, the frequency domain and the time-frequency domain. Some studies found out that time-domain 

features perform better with LDA [122]. Due to their computational simplicity, time-domain features 

are the most used features in myoelectric control. While frequency features are focused on spectrum 

characteristics, time-domain extract information from the signal amplitude. This amplitude can be 

defined as the time-varying standard deviation of the signal, which measures the activation of the motor 

units. At the clinical level, frequency domain features are used to study muscle fatigue and provide 

information regarding neural and muscular pathological changes [123]. Finally, time-frequency domain 

features are the most complex ones since they are represented by a matrix. Although, with a good 

classifier and after dimensionality reduction being applied, time-frequency domain features give 

robustness to the system.  

In time domain it is possible to calculate the average absolute value, the slope of the average 

absolute value,  the root mean square, the variance, maximum value, minimum value, standard deviation, 

simple square integral, waveform length and zero crossings.  

In the frequency domain, it is possible to calculate the median frequency, the average peak 

frequency and the average power [82]. The features selection should be a thorough process because a 

good classification reflects a good performance. The most convenient features for the LDA algorithm 

have been extensively investigated by Hudgins et al [124] and Ortiz-Catalan et al [125]. The most used 

features are the average absolute value, the waveform length, zero crossings and cardinality [112]. For 

the classifiers used in the Zhou et al [95] survey, the authors used fifteen features among the following: 

variance, integral absolute value, average amplitude change, difference absolute standard deviation 

value, kurtosis, LOG detector, modified mean absolute value type 1 and type 2, mean absolute value, 

root mean square, waveform length, mean frequency, variance of central frequency and power spectrum 

deformation. This work will mainly use time-domain features because of their low computational 

processing time and their accurate results.  

The features that are used have an important role in classification performance. Having features 

that are not correlated or have a low variance for each class can increase the classification performance 

because each gives different information to the classifier, which is helpful for instances that are within 

Figure 3-1: Segmentation processes (a- disjoint segmentation; b- overlapping segmentation) (extracted from [89]). 
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the boundaries of each class. However, when the set has many features, the computational time 

increases, which needs to be avoided. Moreover, correlated features can give redundant information, so 

using them will decrease the accuracy and increase the processing time. Because of that, reducing the 

set of features to the ones that had the principal information can decrease the processing time and 

increase the accuracy. Therefore, it is a good practice to remove some of them to increase the 

classification and reduce the computational cost. The most used feature selection methods are filter and 

wrapper methods. Filter methods study the feature itself, and does not use classification systems or 

predictive models. One of the most applied filter methods is mutual information since it is used when 

the features are numeric, which is the case for myoelectric signals. However, in certain sets it is vital to 

find out how each feature affects the whole set. The wrapper methods used predictive models such as 

LDA or KNN or regression models to select the best features. Some examples are genetic algorithms, 

swarm particle optimization, CSP, and backward or forward feature selection. Reducing features can 

significantly increase the accuracy and reduce the processing time, contributing to maximum class 

separability, robustness minimizing the misclassification rate [127][128]. 

But, in some cases, the entire feature set is still relevant, mainly if the feature matrix has more 

than one column or come from different levels of wavelet coefficients. For those cases, some authors 

suggest applying dimensionality reduction techniques such as PCA, Uncorrelated Linear Discriminant 

Analysis, Orthogonal Fuzzy Neighbourhood Discriminative [126]. Such processes remove the number 

of arbitrary variables and put the features in another space dimension.  

3.3. Current Problems and Future Perspectives  

In the last decade, the scientific community has been suggesting some innovative methods for 

myoelectric control. However, at the commercial level, the current prostheses are underdeveloped and 

far from those advanced technologies in an intriguing way [16]. Although there are different PR 

controlled prostheses, the number of limitations need to be analysed. In the majority of the surveys, the 

signal used for classification is the steady-state signal. In real-time performance, steady-state and 

isolated isometric contractions do not happen. Because of that, it is expected a decrease in the offline 

average accuracy. Despite the high classification performance during online tests (average accuracy > 

90%), the implementation of the classifier in the real set is much lower. Because of that, it is necessary 

to include transient contractions in the training data since they can increase real performance [88][129]. 

Besides using steady-state signals, the classification of long-term myoelectric signals has numerous 

problems. The main reason is the quantity of external and internal factors that affect those signals 

decreasing the performance of the classifier. The existence of classification errors due to the difference 

between training and test sets is also common. In the He et al [115] survey, the authors tested the 

behaviour of the classification error curve with data acquired during eleven days. The authors 

demonstrate that the difference in classification and error rates were smaller as the acquisition days 

increased. This study reveals that measuring transient signals over a long period of time might improve 

the accuracy and promote the robustness to control systems. Furthermore, the current studies involve a 

small number of subjects (usually less than ten), limiting the study to a non-representative population. 

The number of channels that is used it still high when compared to the available user’s surface area.  

Moreover, producing simple prostheses is essential since they are configured by orthopaedic 

technicians and are used by recent users that are using a prostheses for the first time [16]. 

If these problems were not considered, the developed prototype would be produced with 

limitations in classification accuracy and control. 
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To sum up, it is essential to: 

• Develop a prototype with multiple degrees of freedom, with a natural and intuitive control 

[130] [131]; 

• Develop a platform or systems that correlate and connect the EEG signal with EMG 

signals [130] [131]; 

• Create a fast learning process to identify and classify the EMG signals [130][131]; 

• Create a protocol for a significant number of participants; 

• Build a prototype with low-cost materials to make it affordable to all users [88]; 

• Finding the best filtering methodology to eliminate the noise from EMG signals [88]; 

• Investigate the importance of trying deep learning algorithms to classify the signal [87]; 

• Develop models of EMG and ML capable of recognizing short and long time duration 

[132];  

• Introducing the transient signals in the training set [132]; 

• Develop a general controller capable of recognizing the signals from different amputees 

[132]. 

In this master dissertation, it is intended to test if it is possible to develop a prototype with multiple 

degrees of freedom with a fast and simple learner. This learner will identify and classify the myoelectric 

signals that will contain both transient and steady states. Furthermore, the possibility of having a 

prototype that fits everybody will be tested. Adding the intuitive controller to a prototype made with 

low-cost materials, affordable to all the users will also increase the percentage of customers who will 

use the prosthesis. Besides that, including a larger population of users/customers will help the children 

and adults with low income. Therefore, some of these current problems will be investigated with this 

project. 
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4. Methodology  

4.1. EMG signal processing and classification for Pattern 

Recognition myoelectric control  

The main goal of this dissertation is to develop a low-cost and simple myoelectric controller in 

which the input is the volunteer's intention. The idea is to promote a functional device similar to the 

biological hand. There is no consensus in the current surveys and available literature about filtering the 

signal and how the channel needed to be used at a minimum. Therefore, this dissertation intends to 

investigate if reducing the number of electrodes decreases the prosthetic device's functionality as well 

as the influence of increasing the number of volunteers and the complexity of the acquired movements 

in the classification performance. In this section, the different combinations of signal processing 

techniques and pattern recognition algorithms for a single channel acquisition are described. The main 

purpose of such combination is to evaluate which of them could be the best solution for the recognition 

of four different hand gestures - Rest Position, Spherical Grip, Tripod Grip and Index Finger Flexion. 

Considering what is being said, this section intends to answer the next questions: 

1) How accurate is the classification of hand gestures based on surface signals with one single 

channel acquisition?  

2) Is a single-channel acquisition enough to develop a volunteer-independent prosthesis 

controller? 

2) Is there an optimal processing signal technique that achieves the best classification rates in the 

shortest time possible? 

4.1.1. Materials  

To develop a good control system, it is essential to study the best signal processing methods. 

Therefore, we needed to follow a rigorous and controlled acquisition protocol. The Ethical Committee 

of the Faculty of Science of the University of Lisbon approved our acquisition protocol and experiment 

in June 2021. 

Forty-five volunteers (aged 18-24 years, 15 males and 25 females) participated in this study 

(Table A.1 in Appendix A). Each participant received a thorough description of the experiment in oral 

and written form. All volunteers signed a consent form, available in appendix A, where they provided 

permission to publish their data for scientific and educational purposes.  

Unfortunately, it was impossible to acquire data from amputees due to pandemic conditions, so 

all the selected volunteers were healthy individuals without any known neurological or physical 

pathological conditions. This means that this work will serve as a control methodology for later to be 

tested on amputees.  
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4.1.2. Experimental setup and protocol 

The acquisition setup included electrodes designed to record muscle activity and an acquisition 

system connected to a laptop. The myoelectric signals were recorded with BIOPAC (Model MP-36, 

Biopac Inc, Goleta, CA) acquisition unit (Figure A.1-Appendix A) with built-in universal amplifiers 

that record a wide range of physiological signals. The BIOPAC data acquisition system recorded raw 

EMG signals and saved data in .txt format for later offline analysis [133].  

The information is received in one of the four channels and connected through a USB cable to the 

app BIOPAC Lessons Student installed in a laptop. To record myoelectric signals, three Ag/AgCl 

electrodes were used (EL502, Biopac Inc.), which were placed on the surface of the skin of Flexor 

Digitorum Superficialis (red electrode) and Flexor Carpi Radiallis (white electrode) with a reference 

electrode (black electrode) on the wrist. For accurate records, the electrodes incorporate liquid 

electrolyte gel and moderately-high chloride salt concentration. These disposable electrodes have a 

circular contact and are suitable for short-term recordings, including surface EMG.  

 

One of the aims of this dissertation work is to decrease the number of acquisition channels to 

reduce computational cost. Therefore, to test how accurate this will be, we used three electrodes and one 

acquisition channel. The gain of the system was x1000. The sampling rate was 500 Hz. 

This experiment was divided into one training part and one real-time acquisition. The volunteers 

performed three gestures that were followed up by resting time to avoid muscular fatigue. Since the 

focus of this work is the recognition of three specific hand and finger movements, the volunteers were 

asked to avoid exerting high forces and contraction in fatiguing positions. During the train session, it 

was necessary to initiate a calibration phase to establish the rest and maximal voluntary contraction 

(MVC) for all exercises. This calibration stage was useful to see the force that each volunteer was putting 

on the object and if the different records were similar or if it was necessary to repeat the acquisition.  

Recognizing these hand gestures will improve the quality of the user’s life since it can 

substantially impact the basic life diary activities in the simplest and fastest way possible. The number 

of repetitions and the exercise order were not randomised to trigger an unconscious reaction on the part 

of the volunteer. 

• In the first exercise (spherical grip), the volunteers were asked to perform the movement 

by holding a spherical tennis ball (Figure A.2 in Appendix A). 

• In exercise 2 (tripod grip), the volunteers had to perform the movement by pressing the 

thumb to the first and second finger digit (Figure A.3 a) in Appendix A). 

Figure 4.1: Acquisition Electrodes Position. 
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• Finally, for the third exercise/hand gesture (index finger flexion), the volunteers were 

asked to perform the movement of the flexion of the finger. During the resting phase, the 

volunteer's forearm was laid down on the table with the back of the hand (Figure A.3 b) 

in Appendix A). 

Right before the acquisition started, and as recommended in Jamal et al [134] search, we cleaned 

the sweat of the volunteer’s skin with alcohol, which is a crucial step to improve the quality of the 

acquisition and the reduction of possible artefacts. 

The used protocol during the acquisitions was:  

• Before starting the records, to each volunteer was given a written consent form that 

included the associated risks and the explanation of the experiment itself. 

• After signing the consent form, the volunteers received instructions to complete the 

training session.  

• Each volunteer was asked to sit down in a chair in a comfortable position. Each volunteer 

has to maintain an upright body posture with an angle of 90 degrees between the elbow 

and the table.  

• During the training stage, we tested the right place to put the electrodes through the 

display of the signal. Right after, we marked the electrode place for the testing stage. 

These registrations ensure that the electrodes were in the same position in case one of 

them moved. 

• The acquisition started. 

• The volunteer performed the pick ball movement (spherical grip), where the volunteer 

reached the red ball, which had been placed on the table, held the ball for 2 seconds and 

then dropped it. 

• The second movement was the tripod grip. During these hand gestures, the volunteer pulls 

the three fingers (index, thumb and middle finger) together. 

• On the third-hand gesture, finger flexion, the volunteer flexed the finger on the surface of 

the palm. 

• Each exercise was repeated ten times in a total time of 40 seconds. 

• Every volunteer repeated each gesture with both arms (dominant and non-dominant).  

• The data was saved, and the acquisition ended. 

During the training phase and the test acquisition, it was necessary to pay attention to the 

placement of the electrodes. As mentioned in section 2.4.4.1, controlling these processes is very 

important to ensure excellent and accurate results. The space between the muscles and the volume 

conductor of adipose tissue acts like a low pass filter. This filter decreases the amplitude and frequency 

of the EMG signal. In this way, the configuration of the electrodes should be bipolar, and they should 

be placed parallel to the muscle fibre [127]. 

The signal was stored in a matrix [𝑁 × 1], in which N is the number of samples stored by the 

amplitude values of the signal. The data was subsequently analysed in MATLAB Software.  
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4.1.3. Frequency Analysis  

Before choosing which filter that will be used, it is necessary to understand which frequency 

components are related to the energy of the sEMG signal and which ones are significant for movement 

classification. Besides that, it is also important to identify the noisy frequency contents. Choosing a cut-

off value lower than half of the frequency sampling rate avoids aliasing the signal [135]. In this work, 

the sampling rate was 500 Hz. Because of that, the maximum higher cut-off frequency should be 250 

Hz to avoid aliasing.  

To remove the noisy frequency content, it was needed to study the signal in the frequency domain. 

Therefore, we used Fast Fourier Transform (FFT) instead of Fourier Transform (FT) to reduce 

computational time. Thus, it was used the pwelch function available on MATLAB software.  

First the power spectrum was calculated for six volunteers to identify the frequency content of 

the raw signal. However, with power spectrum (Figure 4.2) it was not possible having the information 

about the equipment noise and the volunteer’s skin impedance. Since removing the baseline noise is a 

crucial step, the signals were divided into the moment of contraction and the resting phase. Then, the 

pwelch function was applied, to find out the dominant frequencies of the noise and the dominant 

frequencies that represent the hand movement information. 

In Figure 4.3, it is possible to distinguish two curves between 0 to 50 Hz and 50 Hz to 250 Hz 

since there is a drop of power spectral density at 50 Hz. The first conclusion that can be taken is that the 

BIOPAC system has an internal filter that eliminates the power grid interference with a typical frequency 

band between 50 and 60 Hz. The existence of that filter explains why there is a drop in the power density 

value in these frequency values. Secondly, it is possible to conclude that the signal has a maximum peak 

occurrence between 0 and 20 Hz, which might be justified by the external and internal noisy 

interferences. As mentioned before, the myoelectric signal is affected by numerous noise sources with 

frequency bands between 10 and 20 Hz. The increase of power density values in this band can be 

explained by the displacement of the electrodes or the cables related to volunteers’ sweat or volunteers’ 

involuntary movement. Although it might not be so evident, it is also possible to have interferences 

caused by the baseline cardiac noise.  

 

Figure 4.2: Power spectrum of the signal obtained in volunteer number 1. 
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Lastly, it is possible to observe that around 80 Hz, the power spectral density decreases. Around 

the frequency band between 150 and 200 Hz the spectral density reached values close to 0 V2/Hz. Even 

though for most volunteers, the power spectral density is not significant around 150 Hz, for some of 

them, this reduction is around 200 Hz.  

To identify the contents of the baseline noise and the relevant part of the signal, we plotted the 

pwelch function for each subject. The results obtained in volunteer number one are in Figure 4.3. As it 

can be seen, the power spectral density reaches its maximum for the baseline noise at a frequency value 

of 0 Hz. It is also visible that the power spectral density is greater for the first frequency curve (0-50 Hz) 

than for the second one (50-250 Hz). This might mean that the frequency content is in the range of 20 

to 140 Hz, not the last frequencies (150 - 250 Hz). As it can be observed, the baseline noise (red line) 

has frequency contents in the frequency range between 0 and 20 Hz. Because of that, we considered that 

the noise content is in this frequency range. Besides that, it is also possible to conclude that the power 

spectral density decreases after 80 Hz for volunteer number one, reaching a minimum value in the 

frequency range between 150 and 200 Hz.  

 

The results obtained in volunteer four are different since the frequency content reaches its 

maximum after 200 Hz (Figure B.1 – Appendix B). However, the results obtained for other volunteers 

are similar to those obtained in volunteer number one (Figure B.1-B.11 – Appendix B). Considering 

that, we tested a few cut-off frequencies, where the low frequency values were set between 10 and 20 

Hz and the high frequency values between 150 and 200 Hz. The results are within the cut-off frequencies 

suggested in the literature. Almost all authors widely use the first range of frequencies (10-20 Hz). 

However, the second range was adopted specifically for our dataset. 

Processing the acquired data is a crucial process for the success of the built prosthetic device. The 

first step for obtaining a clean signal is filtering the signal.  

4.1.4. Digital Filtering  

Many filters can be used when it comes to the filtration process. There are two types of filters, the 

Finite Impulse Response filters (FIR) and Infinite Impulse Response filters (IIR). 

Figure 4.3: Pwelch plot of the baseline noise (red line) and the interesting part of the signal (blue line) for 

volunteer number 1. 
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IIR or recursive filters are designed to use previously calculated outputs. Therefore, they use 

delayed input signals and feedback of the output signal during the filtration process [136]. These filters 

are commonly used in linear time-variant systems or signals since their implementation reduces the 

computer memory and processing time [137][138]. Besides that, some authors prefer to use IIR filters 

since they can achieve a sharper transition region roll-off and produce linear phases [139]. Compared to 

FIR filters, IIR have a shorter time delay and require fewer arithmetic operations [136]. FIR filters have 

an impulse response with a finite duration because it settles to zero in finite time. Moreover, these filters 

can compensate the phase shifts of the signal [140]. However, these filters take too much processing 

time [141]. 

The most used and recommended filter for sEMG signals is the Butterworth since it has a flat 

passband response. This filter is defined only by two parameters (number of poles and cut off frequency). 

Furthermore, these filters have the best compromise between attenuation and phase response, implying 

a lower waveform distortion. These features make this ideal for situations where it is necessary to 

preserve the amplitude linearity in the passband region [136]. 

When it comes to windows filters, the history is different. Savitzky-Golay filters are polynomial 

filters used to smooth a noisy signal like sEMG. They performed much better than the rest of the FIR 

filter since they preserved high-frequency components [142].However, since Savitzky-Golay filters are 

moving average window filters, it was necessary apply to the signal a low-pass and a high-pass filters 

with the defined cut-off frequencies. 

Considering that, the filter design app from MATLAB Software was used to design and construct 

a stable filter for sEMG signals. Then, it was implemented the butter function to design the Butterworth 

filter. First, we tested the application of only bandpass filters. Since there is no agreement in the order 

of Butterworth filters, we used six orders for each frequency band. Each filter was evaluated accordingly, 

with two metrics described in the following paragraphs. Besides the Butterworth filter, we also tested 

the Hamming window, the Kaiser window, and the Savitzky-Golay filter. 

Of course, choosing the frequency is important, but it was necessary to ensure that the applied 

filter was a stable filter. Because of that, it was needed to consider the specific characteristics that make 

this filter stable. Therefore, the selected filters had all the poles within the unit circle and an infinite 

impulsive response that tended to zero (Figure B.11 and B.12 in Appendix B).  

The signal-to-noise ratio (SNR) metric measures in decibels the quality of the EMG signal. This 

metric represents the raw and filtered signal ratio between the moment of muscle contraction and when 

the muscle is at rest, often called baseline noise [143][144]. In this dissertation, the baseline noise was 

considered the moment when the volunteers were performing the rest position since it is the moment 

that contains the equipment noise. Equation 4.1 presents the formula used to calculate the SNR, where 

A is the signal representing the contraction moments and rms is the root mean square. 

SNR=20 log(
rms (A)

rms (Baseline Noise)
)    (4.1) 

To complete this evaluation, we added another metric, the Mean Square Error (MSE), which 

measures the average squared difference between the filtered signal and the original one [145]. In the 

following equation, x represents the amplitude of the original signal and 𝑥̅ the filtered signal. 

𝑀𝑆𝐸 =
1

𝑁
× ∑ (𝑥(𝑛) − 𝑥̅(𝑛))2𝑁

𝑛=1  (4.2) 
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4.1.5. Wavelet threshold noise reduction  

Besides the mentioned external factors that can affect the EMG signal, signals are affected by 

electronic component noise that has an energy band that varies from 0 to several thousand Hz. Since this 

type of noise has random frequency components, it becomes difficult for digital filters to remove it. 

Therefore, some authors propose the use of the DWT algorithm as a filtering process to reduce or 

eliminate this type of noise [146]. Despite these advantages, there is no consensus about the proper 

filtration process or even a single methodology to develop control PR systems in current surveys and 

research, which is a problem for the industry [147][148].  

To figure out which methodology is better, it was decided to test and compare how the quality of 

the signal improved using wavelet decomposition. Therefore, it is essential to study the theory behind 

this method. 

As already explained in section 2.4.4.1, the EMG signal is multicomponent since it is originated 

from various MUAPs originated in different periods and with different frequencies [76]. Because of 

that, the signal can be decomposed into several scales by Wavelet Transform (WT) [147]. WT is a time-

scale representation of the signals that provide a good frequency resolution at high frequencies. In this 

work, the DWT was used since it removes the redundancy of CWT. The DWT is the projection of the 

signal over a set of basis functions that are temporal shifts and dilatations of a protype function, known 

as mother wavelet. This basis function and its shifted versions belong to a space that is decomposed into 

a lower resolution approximation space and a detail space. Then, the signal is decomposed into wavelets, 

scaled, and shifted version of the chosen mother wavelet. These wavelets have properties such as 

symmetry and orthogonality that should be considered when the DWT technique is used [207]. In the 

wavelet noise threshold reduction method, the original signal passes through a combination of low pass 

and high pass filters, originating the approximation coefficient subsets (cA1) and detail coefficient 

subsets (cD1) until the desired level [149][150][146]. After that, the coefficients are modified according 

to a specific threshold. Lastly, the inverse wavelet transform is applied, and the original signal is 

reconstructed originating the filtered signal [151][152]. This process is illustrated in figure C-1 in 

Appendix C. To sum up, we have three essential steps:  

• Decomposing the raw signal into coefficients: decomposing the signals into detail 

coefficients (cD) and approximation coefficients (cA) that contain high frequencies 

components originated by the application of high pass filters and low-frequency 

components originated by the low pass filter, respectively; [149] [150] [151] [152] 

• Estimate the threshold to get new coefficients: the noise parts are in the detail 

coefficients, which means that the threshold value will be calculated considering the noise 

variance of these coefficients and then applied to them; [149] [150] [151] [152] 

• Reconstruct the signals with the new coefficients: the filtered signal is constructed 

based on the modified cD coefficients and the cA coefficients. [149] [150] [151] [152] 

It is essential to choose the right threshold and the mother wavelet to improve the classification 

performance. There are two types of wavelets, orthogonal waves and biorthogonal. There are six wavelet 

families that are widely used in sEMG signal filtration process. The first family is the Daubechies 

wavelets that have 10 sub-types. The second ones are the Symlets wavelets that are divided into 7 sub-

types. The third one is the Coiflet wavelet family that has 5 sub-types. Finally, it is possible to identify 

the BiorSplines wavelets and the ReverseBior wavelets both with 15 sub-types and the Discrete Meyer 

wavelet [148]. 
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Besides selecting the correct type of wavelet, it is crucial to choose the number of decomposition 

levels of the signal. This number goes from 1 to log2N, where N is the length of raw signal [148]. 

After selecting the decomposition level, it is crucial to choose the threshold rule and function that 

will be applied. According to Donoho et al [153], the calculation of the threshold depends on two 

parameters: the standard noise energy of the signal σ and on the parameter that depends on the length of 

the data samples (N). There are four types of threshold rules, but three of them are widely used. The 

universal threshold rule uses a fixed threshold that depends on the two previous parameters. Conversely, 

the SURE threshold rule uses the Stein’s Unbiased Estimate of Risk (SURE) rule. Finally, the Minimax 

Rule also uses a specific threshold proposed by Stein [148]. 

When it comes to threshold function, the most used are the hard (HAD) and the soft (SOFT) 

functions. In the HAD, the detail coefficients whose absolute values are lower than the threshold are set 

to be zero, while the other ones are kept. The SOF does the same that HAD one, but then the non-zero 

coefficients are shrunk towards zero [148][153]. 

Therefore, it was searched which wavelet types were used in previous academic investigation that 

could be used in this master dissertation. Guo et al. [154] used the sym5 wavelet with three 

decomposition levels for lower limb prosthesis control. The authors tested the Universal, SURE, Hybrid, 

Minimax threshold rules and HAD, SOF threshold functions. Zhang et al [155] used the wavelet family 

sym8 with four decomposition levels for upper-limb prosthesis control. Phinyomark et al [146] applied 

seven mother wavelets: the second and seventh order of the daubechies family (db2, db7), the fifth order 

of the symelets family (sym5) and the fourth and fifth-order of the coiflet wavelets (coif4, coif 5). They 

conclude that the best decomposition level was the fourth level. 

Considering the applied state of the art wavelet families, we tested the third, fourth and fifth 

decomposition levels for the following wavelet families: db, syms and coif. The best wavelets described 

in literature db2, db6, db10, sym2, sym7, coif4 and coif5 were tested. In order to test each wavelet, the 

wdenoise MATLAB function was used. For the threshold rules, the Universal, the SURE and the 

Minimax rules with HAD and SOFT threshold functions were used. To evaluate each wavelet and 

threshold, the same two metrics were used - SNR and MSE. Then, the same six volunteers’ signals were 

analysed. 
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4.1.6. Signal windowing and feature extraction 

When the objective is to classify the sEMG signal, its original form becomes meaningless. For 

this reason, the recorded data was rectified. In this experiment, the RMS envelope was applied (Figure 

4.4), which is a process that uses a moving window that calculates the square root of the data (filtered 

signal) that is inside the window [156]. The envelope was obtained using the following formula [157], 

where l is the length of the window and x the signal:  

𝑅𝑀𝑆𝑒𝑛𝑣𝑒𝑙𝑜𝑝𝑒 = ( 
1

𝑙
∑ 𝑥2(𝑙)𝑙

1 )
1

2 (4.3) 

To implement the formula, it was needed to choose the size of the window (l). The size of the 

window varies according to the velocity of the movement in the study. Using longer windows is better. 

Despite being recommended to use different window sizes, a length between 50 milliseconds and 100 

milliseconds works for both cases [111][156][157]. For this dissertation, a window of 25 milliseconds 

it was used since the duration of the hand gestures was two seconds.  

After selecting the best filtering process, it was applied the offset compensation by applying the 

detrend function. Since it will be compared the activity from the same muscles from different 

individuals, it was needed to normalize the data [158]. The normalisation process will convert the signals 

to a common scale to all recorded data. Therefore, to eliminate the intervariability, the maximum and 

minimum values of the collect signal (Equation 4.4) were used, in a procedure that transforms the 

original data into a real value between 0 and 1 [159][160]. In the following equation the x represents the 

filtered signal, xmax and xmin the maximum and minimum of the filtered signal, respectively.  

𝑥𝑛𝑜𝑟𝑚 =
𝑥−𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥−𝑥𝑚𝑖𝑛
 (4.4) 

Figure 4.4: Illustration of the enveloped filtered signal. 
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Since the device must have a maximum response time of 300 milliseconds, the signals must be 

divided into several segments to perform meaningful classification in a record processing time. After 

removing the intervariability of the volunteer’s data, the signal was divided into 100 milliseconds and 

250 milliseconds time segments to extract time-domain features. The next step was to determine which 

window size would improve classification performance. Therefore, adjacent windows were used as well 

as the transient signal. As it can be seen in Figure 4.5, the continuous record of the EMG signals makes 

it possible to observe a significant peak related to the change of the hand gesture. 

 

The selection of the right set of features has an enormous influence on classification performance, 

as we demonstrated in section 3.2.2. A set of thirteen time-domain features was used 

[127][161][162][163]. In the following equations, N is the length of the EMG signal and xi represents 

the EMG signal in a segment i. 

Mean Absolute Value (MAV) is the average rectified value. This feature detects muscle 

contraction levels [127][164][165]. 

𝑀𝐴𝑉 =  
1

𝑁
∑ |𝑋𝑖|𝑁

𝑛=1  (4.5) 

To improve the weighting function's smoothness and add robustness to the built prosthetic, it is 

possible calculate the mean modified absolute value and mean modified absolute value type 2. [82] 

𝑀𝑀𝐴𝑉 =  
1

𝑁
∑ 𝑊𝑛|𝑋𝑖|𝑁

𝑛=1  (4.6) 

Where  

𝑊𝑛 =  {
1, 0.25𝑁 ≤ 𝑖 ≤ 0.75𝑁

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 
 (4.7) 

Conversely, 

𝑀𝑀𝐴𝑉2 =  
1

𝑁
∑ 𝑊𝑛|𝑋𝑖|𝑁

𝑛=1  (4.8) 

Where, 

Figure 4.5: Representation of the huge peak related to the change of the hand gesture during a continuous record 

(red line). 
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𝑊𝑖 =  {

1, 0.25𝑁 ≤ 𝑖 ≤ 0.75𝑁
4𝑖

𝑁
,      𝑖 < 0.25𝑁

4(𝑖−𝑁)

𝑁
;     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

 4.9 

Waveform Length (WL) is a measure of the complexity of the signal since it is the cumulative 

length of the signal waveform over the selected window. This feature indicates the amplitude-frequency 

of the waveform and its duration [164].  

WL = ∑ |𝑋𝑖+1 − 𝑋𝑖|    𝑁
𝑖=1  (4.10) 

Root Mean Square (RMS) represents the muscle's constant force and non-fatiguing contractions 

[164].  

𝑅𝑀𝑆 =  √
1

𝑁
∑ 𝑋𝑖

2𝑁
𝑖=1  (4.11) 

Slope Sign Change (SSC) is a feature similar to zero crossing. The number of positive and 

negative slope changes among three consecutive segments, which is performed with the threshold 

function to avoid interference in the EMG signal [82][165]. 

𝑆𝑆𝐶 =  ∑ 𝑓[(𝑋𝑖 − 𝑋𝑖−1) × (𝑋𝑖 − 𝑋𝑖+1)]𝑁−1
𝑖=2  (4.12) 

Where 

𝑓(𝑥) =  {
1, 𝑖𝑓 𝑥 ≥ 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (4.13) 

This means that in MatLab® code we needed to implement these conditions:  

[(𝑋𝑖 >  𝑋𝑖−1 ∩ 𝑋𝑖 > 𝑋𝑛+1) ∪ (𝑋𝑖 < 𝑋𝑖−1  ∩  𝑋𝑖 < 𝑋𝑖+1)] ∪ [|𝑋𝑖 − 𝑋𝑖+1| ≥ 𝑡ℎ𝑒𝑟𝑠ℎ𝑜𝑙𝑑 ∪

|𝑋𝑖 − 𝑋𝑖−1| ≥ 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑] (4.14) 

Integrated absolute value (IAV) is used as a pre-activation index for muscle activity, because it 

measures the summation of the absolute amplitude values of the signal. In mathematical terms it is the 

area under the curve of the rectified EMG signal [164][166]. 

𝐼𝐴𝑉 =  ∑ |𝑋𝑖|𝑁
𝑖=1  (4.15) 

Simple Square Integral (SSI) express the energy of the EMG signal [164]. 

𝑆𝑆𝐼 =  ∑ |𝑋𝑖|2𝑁
𝑖=1  (4.16) 

Zero crossing (ZC) provides an approximate estimation of frequency domain properties 

[82][167]. 

𝑍𝐶 = ∑ [𝑠𝑔𝑛 (𝑋𝑖 × 𝑋𝑖+1) ∩ |𝑋𝑖 − 𝑋𝑖+1| ≥ 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑]𝑁−1 
𝑖=1   (4.17) 

In the case of zero crossing, we need to define some boundaries as well, 

({𝑋𝑖 > 0 ∩  𝑋𝑖+1 < 0}  ∪  {𝑋𝑖 < 0 ∩  𝑋𝑖+1 > 0}) ∩  |𝑋𝑖 − 𝑋𝑖+1| ≥ 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 (4.18) 

Maximum Fractal Length (MFL) is one of the most recently studied features that measure the 

activation of low-level muscle contractions [168][169]. 

𝑀𝐹𝐿 =  𝑙𝑜𝑔10(√∑ (𝑋𝑖+1 − 𝑍𝑖)2𝑁−1
𝑖=1 ) (4.19) 

Variance (VAR) expresses the power of the EMG signals [164]. 
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𝑉𝐴𝑅 =  
1

𝑁−1
∑ |𝑥𝐼|2𝑁

𝐼=1  (4.20) 

Wilson Amplitude (WA) measures the frequency information of the myoelectric signal. This 

feature indicates how many times the difference in signal amplitude between two adjacent segments 

exceeds a predetermined threshold which is related to the motor unit action potential and subsequently 

to muscle contractility [82][165]. 

𝑊𝐴 =  ∑ 𝑓(|𝑋𝑖 − 𝑋𝑖+1|𝑁−1 
𝑖=1 ) (4.21) 

Where, 

𝑓(𝑥) =  {
1,   𝑥 ≥ 𝑡ℎ𝑒𝑟𝑠ℎ𝑜𝑙𝑑

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 
 (4.22) 

Average amplitude change (AAC) is the average length of the EMG waveform over the time 

segment [170]. 

𝐴𝐴𝐶 =  
1

𝑁
∑ |𝑋𝑖+1 − 𝑋𝑖|𝑁−1

𝑖=1  (4.23) 

Some features depend on a threshold value related to the equipment's gain. The suitable threshold 

value is used in ZC, SSC, and WA features, and it is in the amplitude range between 10 and 100 mV 

[171]. 

As explained in the state of the art (Chapter 3), feature selection methods help reduce the 

overfitting, improve the accuracy, and reduce the training and testing time. For this dissertation, three 

different feature selection methods were applied to the dataset. Then it was observed which of them 

improved the accuracy level through Orange Software. This software is an open source of machine 

learning and data visualization that was created in 1996 at the University of Ljubljana. The first feature 

selection filter method that was applied was the information gain, which calculates each feature's 

expected amount of information. The second one was the chi-squared test. From statistics, this test 

represents a way to prove if a variable is independent of another. When applied to machine learning, 

this test calculates whether the features are independent of the target. Finally, it was used the Relief-

based feature selection method. This metric is used to evaluate the ability of each feature in 

distinguishing the classes. The increase of these values is related to how good the feature is. Based on 

that, the best five and ten features for each metric were chosen and the results for a KNN with k=5 

analysed.  

 

4.1.7. Classification  

As it was seen before, there are a variety of classifiers that identify different motion patterns. Due 

to simplicity and fast computational response, LDA and KNN proved to be the best for real-time 

classifiers. 

LDA estimates the probability of a new example belonging to a specific class based on each input 

value by using hyperplanes to separate data which contain different classes. This algorithm is widely 

used for binary and multi-class classification. LDA is a classifier with numerous advantages compared 

to others, since it needs a period of interactive training which avoids overfitting [172]. Moreover, for 

real-time devices, LDA has a low computational cost, one of the most critical requirements for this kind 

of applications. However, this classifier struggles in solving multiple motion problems since it yields 

poor results when applied to non-linear data, as the case of the EMG signals acquired during dynamic 

movements. Despite that fact, this classifier showed better results than others applied in the academic 

field [173]. The same way it happens for other classifiers, LDA considers that each feature follows a 

Gaussian distribution and has the same variance. In addition, this algorithm assumes that the features 
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are randomly sampled and presents a lack of multicollinearity [103][156]. KNN is also one of the most 

implemented classifiers for EMG classification in real-time. KNN is a non-parametric method that 

classifies the data based on the closest feature space since the training sets are mapped into 

multidimensional feature space. In this space, the value is classified according to the most frequent class 

among the k nearest data. To compute the distance between vectors, KNN uses the Euclidean distance 

[149][157][158]. 

SVM and ANN are widely used for sEMG classification since both can generate good 

classification results. Previous authors recommended the use of this classifier for specific hand gesture 

recognition. They concluded that using the Kernel function increases the classifier performance. SVM 

is usually preferred to high-dimensional feature space. Conversely, ANN has good resistance to noise. 

However, both classifiers take too much time during the training stage, require large storage space and 

have high computation complexity. For scenarios where it is wanted to build low-cost real-time devices, 

those are precisely the characteristics that are not needed. So it was decided to not use both [109]. More 

specifically, for cases where the aim was to recognize a set of dexterous movements, KNN was faster 

than SVM and did not show significant differences on applied statistics tests.  

After knowing the assumptions of the classifiers, it was necessary to know which problems it will 

be faced. Having such knowledge will prevent misclassification problems and wrong interpretations of 

the results. In order to answer the existing problems and minimise possible degradations caused by the 

changes in electrode position, the influence of using a classifier divided into two or three levels was 

tested. In each level, different sets of the four performed hand gestures would be recognized.  

Considering the assumptions of each classifier, the distribution of our database was tested. It is 

known that sEMG signals do not follow a normal distribution. Nevertheless, the normality of the features 

was tested. Therefore, it was implemented the Anderson Darling test to investigate if the resulting data 

matrix followed a normal distribution. With the test results it was possible reject the null hypothesis, 

which means that our data do not follow a Gaussian distribution. One of the LDA assumptions is that 

the data follow a normal distribution, which could explain why LDA should not use in this dissertation. 

In most multiclass classification cases, the normality of the feature set is often violated, but the results 

are still accurate [176]. Despite these disadvantages, LDA is still used in scientific academia since it 

demonstrated good classification results. 

Then, the classification was divided into four stages to reduce the computation time and reduce 

the influence of the displacement of the electrodes. Thus, the problem was reduced to binary 

classification instead of analysing the four classes at once. Therefore, the classifier will recognise if the 

volunteer is performing any movement or at rest in the first classification level. Then, in the second 

level, it were tested two options (illustrated by steps 1 and 2 in Figure 4.6). First, it was tested if the 

classifier recognised all the gestures accurately (step 1 in Figure 4.6). Then, it was tested if it would be 

better to divide the classification into binary classifications. Therefore, in the second classification level, 

the classifier had to identify if the subject would perform, for example, movement A or the other 

movements (step 2 in figure 4.6). The A, B and C represent the hand gestures that volunteers performed 

in this dissertation (Spherical Grip, Tripod Grip and Index Finger Flexion). Finally, in the third 

classification level, the classifier had to identify if the volunteer was performing the B or the C 

movement. For each level, two classifiers, LDA and KNN, were tested. In order to optimise the KNN 

classifier, six different values of k (2, 5, 7, 9, 11 and 15) were used. For both of them, the cross-validation 

and split validation methods were applied to the database. It is also important to note that the chosen 

classifiers can differ between levels since what matters is having the most precision and accurate results 

in the shortest time possible. The final result will be a tree classifier with sub classification levels, where 

the input is the vector of features and the output is the performed movement (Figure 4.6). 
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To evaluate the selected machine learning algorithms, the accuracy, recall, precision and kappa 

coefficient were calculated. Besides these metrics, the confusion matrix was also plotted. This one 

display the true positive, true negative, false positive and false negative predictions for binary 

classification and the number of instances that were misclassified for multiclass problems.  

 

 

Finally, for similar results, the accuracy of the two implemented classifiers (LDA and KNN) was 

compared with a paired t-test to observe if there were significant differences between them. 

4.1.8. Technical validation 

To verify that the acquired data is similar to the produced in real-life, it was necessary to evaluate 

the effect of the experimental conditions. Therefore, the difference between movements and baseline 

noise was determined by applying two state-of-the-art classifiers (LDA and KNN) and comparing the 

obtained classification to those of the literature. It should be retained that if the results of the designed 

classifier were about 90%, it can be considered that the device is ready to go to the market, but if the 

results showed a level of accuracy lower than 90%, it is necessary to identify and investigate the reasons 

and the failures that are responsible for such low classification performance.  

4.2. Design of the Prosthetic Hand 

After studying the best signal processing methods and the best classifiers that in the future will 

be part of the myoelectric microcontroller, we chose a 3D printable model. Hence, the users' opinion is 

crucial for the success of the designed prototype. Therefore, their experience with previous models 

should be taken into consideration.  

Figure 4.6: Scheme of the classification stages. First level: The classifier has to recognize if the volunteer 

is performing any movements or at rest. Second level: is divided into two options (1 and 2). If the results 

were better for option 2, the next step is recognising two gestures in a third level. 
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The UnLimbited Arm 2.1 model, an e-NABLE model, is widely used by amputees and children 

that have congenital disorders. This model is lighter when compared to the more advanced prosthesis 

available on the market. Besides that, the Unlimbited Arm is easy to build because all the parts can be 

printed by 3D printers, which makes the time to market short and users' customization possible. 

However, one of the aims of this work is to develop a myoelectric prototype. Thus, it was needed to 

change some parts and design new ones without compromising the prosthesis weight and the associative 

cost.  

4.2.1. Materials 

In additive manufacturing, there are a lot of 3D printers and techniques to produce a model. In 

this dissertation, the most widely available and the cheaper technique was used, Fused Deposition 

Modelling (FDM). 

FDM is a fast, easy, versatile and low-cost manufacturing process. Firstly, the filament is melted 

and then deposited layer by layer. However, the parameters and printer settings must be defined before 

printing the desired part. Despite the advantages of such technology, in FDM the final structure has 

relatively low mechanical properties due to the inter-layer adhesion issues. In this sense, parameters 

such as the connection between the fibre and matrix (which for polymers is a reduced problem), fibre 

orientation, and voids formation should be considered [41][160][161][162]. FDM has numerous 

advantages that make the built prototype unique, such as using coloured filaments and low-cost raw 

materials. In addition to this, unlike what happens with other techniques, the vapours produced here are 

of low toxicity. Despite the advantages listed above, there is a need to use build supports [111].  

In the FDM, mainly in the biomedical field, the most used materials are PLA, poly (e-

caprolactone) (PCL), ABS, Polyethylene terephthalate glycol (PET-G), polyamides (commercially 

known as nylon). This type of material has some degree of rigidity, which is a key factor since we need 

to build a resistant prototype [45][177][178][179].  

The UnLimbited Arm was already designed, so the .stl files were downloaded and rescaled. In 

this dissertation, it was not possible to work with amputees or with children with congenital 

malformation, so it was necessary to rescale the model to fit in a young adult. Because of that, the bicep 

perimeter, the length of the forearm, the length of the beginning of the palm to the fingertip and the wrist 

perimeter were measured - Table 4.1. 

Table 4.1: Distance of the bicep perimeter, the length of the forearm, the length of the beginning of the palm to the fingertip 

and the wrist perimeter in millimetres. 

Structure to measure Distance (mm) 

Hand Length (C- Figure D-1) 185 

Forearm length (B- Figure D-1) 230 

Bicep Circumference (A – Figure D-1) 275 

Tension Pin Hole 65 
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Pin Hole 3 

 

After measuring the distances, the .stl files were opened on Open Scad Software. Then, the code 

of each piece was changed to rescale and readapt the device to a young adult. All the files were rescaled 

except the pins of the device that were of the same size (3.00 mm). After modifying the model, we sent 

the .stl files to Prusa Slicer software. This software is used to define the printing parameters as well as 

filament settings. Besides, it can be tested the best printing position to ensure that the printed piece has 

the minimum amount of support material and can be printed in a faster printing time.  

In this dissertation, we used the original Prusa i3 MK3S by Prusa Research, available on the 

laboratories of the Nova School of Science and Technology. The material that used was PLA. This 

material is thermoplastic, which means that it has the properties that we need to adapt the shape of the 

printed forearm part to the user. Since there are some printing parameters already defined by the e-

NABLE community, the printing process was defined according to them. In one of the parts, it was 

necessary to change some parameters like the velocity and the speed to decrease the printing time (table 

D.1- Appendix D). In addition to the printing parameters described in table D.1, we used the 0.30 mm 

QUALITY print parameter. During the printing process, the visual features of the printed material were 

evaluated to ensure that the quality printing was maintained. It was essential to ensure that didn´t exist 

any defects between layers and bad adhesion between the plate and the printed material. The blue colour 

was used for PLA material and purple for pins and support material.  

Before starting the assembly process, it was necessary to do a small cleaning of the printed 

material to remove the support structures and correct some defects present on the surface of the parts. 

During this process, the pliers and sandpaper were used. Since the parts of the prosthesis model were all 

separated (Figure 4.7). Therefore, the assembling process was divided into three parts: 

• The prosthesis fingers were assembled by placing the pins corresponding to the 

interphalangeal joints forming the finger.  

• The fingers were connected to the palm on the metacarpophalangeal region. 

• The entire forearm-elbow frame was assembled after the hand was complete. 

Before assembling the forearm-elbow part to the hand, it was necessary to mould both pieces with 

hot water. The water was boiled and the pieces were glued and moulded. We use a rolling pin to mould 

the forearm since it has a similar geometric shape. Next, the cuff was moulded with a specific piece, the 

jig (Figure D.2 in Appendix D). Then, the tension mechanism was set. Five tension wires were placed 

on the fingers and joined to the mechanisms of the cuff (Figure D.4). The extremities of the wires were 

tied to the tensioner pins. After that, the elastic wires were placed on each interphalangeal joint to give 

Figure 4.7: Prosthesis before the assembly. 
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some tension during the movement. To ensure that the wires were placed in the right place, we used a 

clamp to pull the strings while we were tying the knots. We removed the excess wire with scissors after 

tying the knots around the fingers and tension pins. Finally, we added rubber thimbles. 
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5. Results and Discussion  

5.1. EMG signal processing and classification for Pattern 

Recognition myoelectric control 

In this section, the results obtained during this study will be presented in the following order: 

firstly, a briefly describe of the pre-processing methods to select and clean our data; secondly, the 

analysis of the digital filtering and wavelet transformation of the signal; at last, the discussion of the 

different processing techniques and the outcome results. 

5.1.1. Pre-Processing Data 

Despite the efforts made to control our real-time acquisitions, sEMG records are susceptible to 

external factors that contaminate the signal. Therefore, the noise increases and the quality of the signal 

decreases, which is negative for further classification and hand gesture recognition. The occurrence of 

such factors causes fluctuations in the amplitude of the sEMG signal. Besides the signal amplitude 

changes, muscle fibre orientation changes and motor unit firing rates influenced phase response. In our 

case, the change in the electrodes’ position, the flexibility of each patient's skin, and the sweat during 

the acquisition time were identified as possible noise sources. To mitigate such problems, the SNR of 

each signal and for each movement was calculated. The signals with an SNR lower than 2 dB were 

eliminated from our dataset to clean the possible outliers and avoid lower classification performances. 

Choosing only the best signals for the training and test sets will increase the classification results and 

reduce the computational time. Because of that, the signals from five volunteers were eliminated during 

these processes, which means that the set was reduced to forty volunteers.  

After eliminating the signals, the data was labelled by choosing a threshold value. To ensure that 

the baseline was well identified, the signals were divided into different intervals and calculated the 

average of the baseline values according to a specific threshold defined for each movement and each 

volunteer.  

Finally, it was necessary organize the dataset for posterior filtering and processing methods 

application. 

5.1.2. Digital filtering  

As mentioned in section 2.4.4.1, removing the signal's noise is crucial for promoting accurate 

control. In order to measure the quality of the filters, the SNR and MSE metrics were used. As explained 

before, the MSE measures the error by comparing the reconstructed signal to the raw signal. For constant 

or periodic signals, it is possible to use the SNR, which is a value that compares the desired signal level 

to the level of background noise. The quality of the signal is positively related to SNR and negatively 

associated with MSE. Therefore, in this section, the SNR and MSE values will be analysed. 

Different filters were tested due to the high dependency between the filtering process and the 

dataset's characteristics. The results can be found in the graphics in Appendix E and the following 

figures. By observing the graphics in Appendix E, it is possible to conclude that the only FIR filter that 

showed better results was the Savitzky-Golay filter (sgolay in the graphic). As suggested in section 

4.1.3, the Savitzky-Golay filter preserves the high-frequency components since they contain the energy 

corresponding to the muscle contractions (50-150 Hz). These filters have the lowest value of MSE when 

compared to Butterworth and Window filters (Figure E.2-E.22).  
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It was proved that Kaiser and Hamming windows filters add noise to the signal, decreasing SNR’s 

value for all volunteers except for volunteers one, eight, nine and twenty-two. Nevertheless, these filters 

have the lowest values of MSE when compared to Butterworth filters. Due to the fact that the window 

filters decrease signal quality by adding noise, it was decided to analyse the obtained values for bandpass 

Butterworth.  

Before analysing each volunteer in detail, three general conclusions can be taken. The first one is 

that the second and the fourth orders are the best filter orders. Moreover, in most cases, applying a 

bandpass filter is advantageous because it attenuates the noise, which increases the SNR. The sEMG 

signals are affected by numerous noise sources that increase the noise in a specific low-frequency band 

between 10 Hz and 20 Hz, which explains the obtained results. The final one is that using 20 Hz as the 

low cut-off frequency is better to remove and attenuate the baseline noise than using 10 Hz.  

Regarding volunteer number one, the SNR reached its maximum value (31.37 dB) for a frequency 

band between 20 and 150 Hz (orange line – Figure 5.1). This value was obtained when applying the 

fourth-order bandpass that increased the SNR by 38.60 %. The minimum SNR obtained was 30.43 dB 

when the sixth-order bandpass filter was applied with a frequency band of 20-200 Hz (red line – Figure 

5.1). There is no considerable difference between the MSE values (standard deviation= 2,07E-3), but it 

is possible to observe that the first-order filters have the minimum MSE values. As the order increases, 

the MSE increases as well (Figure E.1). Therefore, the fourth-order passband filter can be considered 

the best option since it increases SNR to its maximum value and does not have a relevant MSE value 

(6.50E-03).  

 

For volunteer four, the results are different. The maximum SNR value (54.16 dB) was obtained 

in the frequency range between 20 and 200 Hz (red line – Figure 5.2). This maximum value is translated 

into an increase of 14.57% when the second-order bandpass filter was applied. In general, as the superior 

limit of the frequency band increases, the SNR is higher. On the contrary, the minimum (50.48 dB) was 

obtained when the sixth-order filter was applied for a bandpass frequency of 10 to 150 Hz. The difference 

in the frequency range might be directly related to the original SNR. The acquisition of the sEMG signals 

for volunteer number four was made under perfect conditions (the SNR is already excellent). With this, 

it can be concluded that there is no contribution of certain noisy high-frequency contents during the 

acquisitions. 

Figure 5.1: SNR values of the filtered signals when the bandpass Butterworth were applied – Volunteer number 1. 
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The overall results for volunteer number eight are similar to those previously obtained. As it can 

be seen in Figure 5.3, for a cut-off frequency of 20 Hz, the SNR always increases independently of the 

high cut-off frequency (150, 160, 175 or 200 Hz). It is also possible to observe that with the increase of 

the cut-off frequency from 10 Hz to 20 Hz, the SNR increases, which gives the idea that the noise content 

is located in higher frequencies. However, it was not tested the influence of the elimination of such 

higher frequency values because it would remove important sEMG information for posterior 

classification. Nevertheless, for a frequency of 20 Hz the SNR increases which also happens for the 

other volunteers, so it was decided to use this frequency despite the results. The SNR reaches its 

maximum value (34.26 dB) when it was applied a fourth-order bandpass filter (20 -150 Hz). The SNR 

increased 32.12 %. The minimum value (33.22) was obtained in a fifth-order bandpass filter (10-200 

Hz). This minimum corresponded to an increase of 27.90% in the SNR. The MSE obtained values were 

low, which means that the signal was preserved (2.00E-03) – Figure E.7.  

 

Figure 5.2: SNR values of the filtered signals when the bandpass Butterworth were applied – Volunteer number 4. 

Figure 5.3: SNR values of the filtered signals when the bandpass Butterworth were applied – Volunteer number 

8. 
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The results for volunteer nine are similar to the results obtained in the previous analysed 

volunteers, which means that the MSE and SNR increase with the filter order decrease and the increase 

of the high cut-off frequency. The maximum value (33.09 dB) was obtained when a fourth-order 

bandpass Butterworth (20-150 Hz) was applied (orange line – Figure 5.4). The minimum value (32.33 

dB) was obtained when the sixth order filter was applied (10-200 Hz). 

 

As for volunteer twenty-nine, the maximum value of SNR (35.40 dB) was obtained with the 

fourth-order bandpass filter. In figure 5.5, it is possible to observe that the SNR increases as the superior 

limit of the frequency band decreases, which means that the best frequency band is between 20 and 150 

Hz. In this line of thought, the minimum SNR value (34.62 dB) was obtained in a first-order frequency 

passband filter between 20 and 200 Hz. It is possible to conclude that with the increase of the order of 

the filter, the MSE increases, which makes the fourth order an eligible filter. 

 

The results obtained in volunteer forty-one are interesting because they differ from the others. 

Contrary to what happens for most volunteers, there is no difference between the frequency bands 

(Figure 5.6). The SNR values are similar, which means that there is no significant difference between 

Figure 5.4: SNR values of the filtered signals when the bandpass Butterworth were applied – Volunteer number 

9. 

Figure 5.5: SNR values of the filtered signals when the bandpass Butterworth were applied – Volunteer number 

29. 
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them (standard deviation= 0.049). This means that having a high low cut-off frequency does not 

contribute to a better attenuation of the noise. These results demonstrate that the principal noise 

frequency contents are above 10 Hz. The MSE values are the lowest values of all the volunteers. The 

highest SNR values vary between 160 and 175 Hz. Therefore, it is expected that the noisy data has a 

frequency value very close to 175 Hz. In this case, the maximum SNR value (29.66 dB) was obtained 

when a sixth-order Butterworth filter was applied with corner frequencies of 20 Hz and 175 Hz (green 

line – Figure 5.6). The minimum SNR value (29.44 dB) was obtained when applying a second-order 

Butterworth filter with a passband between 20 and 200 Hz. The MSE values were also low (3.00E-03)- 

Figure E.15. 

 

Besides these five volunteers, we also analyse the SNR and MSE values for volunteer twenty-

two. The best SNR was obtained when a fourth-order Butterworth bandpass was applied (35.18 dB –

Figure E.18- Appendix E). For all analysed volunteers’ signals, except for two, the results show that the 

best frequency band is between 20 Hz and 150 Hz. Regarding the filter order and type, it is possible to 

conclude that the fourth-order Butterworth is the most effective filter since it increases the SNR of all 

filtered signals. The analysis of the power spectrum of the filtered signal shows that the power of the 

signal was preserved, reinforcing the idea that this is the best filter to attenuate noisy data. As we already 

explained before, EMG phase information is not considered. Therefore, the amplitude response 

characteristics are the ones that matter, which implies the use of a filter capable of preserving the 

amplitude linearity of the characteristics of the passband region [136]. Fortunately, the fourth-order 

bandpass Butterworth filter has these ideal characteristics, which makes it an acceptable filter. 

To verify if the obtained cut-off frequencies were within the frequency band defined by the 

academic community, a comparison to the existing literature was made. As it is known, the amplitude 

of the sEMG signal is affected by different noise sources that can be either external or intrinsic factors. 

The intrinsic factors are inherent to the patient's physiological and anatomical characteristics. Examples 

of it include the distance between the active fibres and the amount of tissue between the muscle surface 

and the electrode [80][81][180]. During our acquisition, it was possible that some of these factors 

contributed to increasing the noise, since the recruited volunteers had different body shapes and 

characteristics. However, it is possible that the contribution of these factors is not the most significant 

one. Besides, the position of the red electrode could contribute for some of the noisy content, since it 

can be reading information from other muscles or reflected signals. Conversely, external factors like 

Figure 5.6: SNR values of the filtered signals when the bandpass Butterworth were applied – Volunteer number 

41. 
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electromagnetic radiation, the users' movement, and cable movement are the noisy sources that most 

affect the acquisition [180]. It is thought that the noise generated by motion artefacts is below 20 Hz, 

which suggests the use of a frequency corner equal to 20 Hz, the ideal one. Unshielded cables are 

considered noise sources since they have an intrinsic capacitance capable of generating current when 

moved in a magnetic ambient or an electric field. This current has a voltage that is similar to the 

magnitude of the detected EMG. The noise associated with this process has a frequency range of 1 to 

10 Hz [181] [182]. In this dissertation, it was considered that the best low cut-off frequency was 20 Hz, 

which ensures that noise frequency contents like these ones can be smoothed. EMG amplitude is quasi-

random since it depends on the motor firing rates, on the activation of motor units, and on the mechanical 

interaction between muscle fibres. Because of that, the first 20 Hz are unstable frequency components 

that can be considered noise. Therefore, they can be removed from the signal, which is possible with a 

fourth-order filter with a bandpass frequency between 20 Hz and 150 Hz [183]. Another common 

phenomenon that occurs during signal acquisition is crosstalk and the influence of the heart's electrical 

activity. To remove these interferences, the literature recommends the use of a high-pass filter with a 

cut-off frequency of 20 Hz [82]. In addition, the low cut-off frequency recommended by the international 

society of electrophysiology and kinetics is 20 Hz and by the EMG for non-invasive assessment of 

muscles between 10 and 20 Hz. By comparing the values suggested in the literature with the frequency 

obtained in this dissertation it is possible to conclude that almost all noise types can be smoothed and at 

the same time preserved the important signal information.  

While the low cut-off frequency is within the literature frequency band, the obtained high cut-off 

frequency value is not. Most of the authors suggested values between 400 Hz and 500 Hz. Using these 

corner frequencies is very common since most authors use sampling rates of 1000 Hz or more. However, 

in our acquisition, it was used a sampling frequency of 500 Hz. With this in mind, it was investigated if 

using this value influences the classification rates. It was found out that Li et al [135] discovered that 

sampling data at 500 Hz could be computationally more adequate than typical 1000 Hz since it only 

affects the classification rates by 0.8 % for healthy subjects. In theory, Hakonen et al [127] proved that 

lower frequency components of myoelectric signals contain information about the activation rates of the 

active motor units, which is not significant for movement classification. In fact, the optimal cut-off 

frequencies vary depending on muscle and recorded data, which means that the selection of the best 

value is highly dependent on the metric chosen to analyse the best filter. Therefore, according to the 

used evaluation metrics, having a corner frequency of 150 Hz is essential to remove the noise present in 

the high-frequency interval. Besides that, the obtained frequency band contains the principal energy of 

the sEMG signal that is between 50 Hz and 150 Hz.  

MSE values were low values which means that the useful information in the sEMG signal has 

remained and that the undesirable parts were removed.  

Despite the good SNR values, some authors found out that using digital filters to remove the noise 

is not as effective as it was thought. Hargrove et al. show that time-domain features can achieve higher 

classification performances than the frequency domain or time-frequency domain features [107]. Due 

to this, we decided to reconstruct the signal with the approximation and transformed detail coefficients 

instead of using the wavelet coefficients on its original form, to investigate if using the wavelet transform 

algorithm is better than using traditional filters. 

5.1.3. Wavelet threshold noise reduction 

After analysing the results obtained in the digital filtering the results obtained in wavelet threshold 

noise reduction were analysed. The third, the fourth and the fifth levels of decomposition were tested 

since they are the most popular among the academic community. Observing the graphics in Appendix 
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F is possible to conclude that the SNR and MSE values increased from decomposition level three to 

decomposition level five. However, the difference between the MSE values from one decomposition 

level to the other is insignificant compared to the increase in SNR. So, the coefficients were plotted in 

MATLAB. Before applying a set of wavelets to the signals, nine decomposition levels were tested with 

the wavelet denoiser toolbox. It was possible to conclude that the coefficients after level six were not 

significant, which means that only the third, fourth and fifth levels were used. For each level, we tested 

the seven most used wavelet types used for filtering myoelectric signals. Consequently, for each wavelet, 

we tested three different threshold rules (SURE, Minimax and Universal Threshold) and for each of 

them the HAD and SOFT threshold functions. The results for each wavelet mother, level and threshold 

function are in the following figures. 

In Figure 5.7, it is possible to observe the results obtained when the wavelet denoising method 

was applied for the fifth decomposition level. For volunteer number one, the SNR values increased with 

the increase of the decomposition level, reaching its maximum (29.70 dB) for the universal threshold 

rule with the HAD function for sym7 (snr_ut_hard in ocean blue bar – Figure 5.7). The lowest values of 

SNR were obtained when the SURE threshold rule and the universal threshold rule with soft function 

were applied. The minimum was obtained for the SURE threshold rule (26.33 dB). The best wavelet 

families were sym7, sym2 (orange bar), db6 (yellow bar) and db10. The same happened for the third 

and fourth levels (Figures F.1-F.4 in Appendix F). Regarding MSE values, the lowest ones were 

obtained when the SURE threshold rule was applied. The highest values were obtained for the universal 

threshold with soft function (Figure F.5). Comparing these results to those obtained in digital filtering, 

it is possible to conclude that Butterworth effectively eliminated the noise (29.70 < 31.37 dB). However, 

the MSE values were lower for wavelet threshold noise reduction method (2.52E-03 < 6.50E-03). 

 

For volunteer number four, the SNR also increases with the increase of the decomposition level. 

The maximum SNR was reached when the universal threshold rule with HAD function (snr_ut_hard in 

Figure 5.8) was applied. The minimum values were obtained for the SURE threshold rule (snr_sur_hard 

and soft in Figure 5.8). As it can be observed, the best wavelet families were sym2, sym7, db6 and coif 

5. Regarding MSE values (Figure F.10), the variation between the decomposition levels was not 

significant, which means that the values were similar. Comparing the results obtained for the wavelet 

threshold noise reduction method with those obtained in digital filtering, it is possible to conclude that 

Figure 5.7: SNR values of the filtered signals when the wavelet transform noise reduction method was applied 

– Volunteer number 1. 
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Butterworth removed different noisy contents (49.91 < 54.16 dB). Regarding the MSE values, they are 

lower for wavelet threshold noise reduction method than those obtained in digital filtering (4.51E-03 < 

3.22E-02) 

 

For volunteer number eight, the obtained SNR values were also better for the fifth level than for 

the fourth and third levels (Figures F.11- F.14). Therefore, in Figure 5.9, it is possible to observe the 

SNR values obtained in the fifth level of decomposition. The maximum value (32.83 dB) was reached 

when the universal threshold rule was applied with the HAD threshold function for sym7 wavelet 

(illustrated by snr_ut_hard in Figure 5.9). Conversely, the minimum SNR value (28.70 dB) was obtained 

when the SURE threshold rule was applied. For all the levels, the SNR increase when compared to the 

raw SNR value, which means that wavelet threshold noise reduction improved the quality of the signal. 

Regarding MSE values (Figure F.15), they reached their minimum for the SURE threshold rule. 

Conversely, the universal threshold rule had the highest MSE values (2.36E-04). Once again, these 

values were low, which means that the interesting signal was preserved. Comparing these values to those 

obtained in the digital filtering section, it is possible to conclude that the bandpass Butterworth 

outperformed the wavelet noise reduction method. However, the MSE values for digital filtering were 

Figure 5.8: SNR values of the filtered signals when the wavelet transform noise reduction method was applied 

– Volunteer number 4. 

Figure 5.9: SNR values of the filtered signals when the wavelet transform noise reduction method was applied 

– Volunteer number 8. 
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lower, which might be related to the elimination of important peak information during the application 

of the IIR filter. 

The SNR values increased for volunteer number nine, with the decomposition level reaching its 

maximum for the fifth level (29.14 dB) – Figure 5.10. The results obtained for the third and fourth levels 

were similar when it comes to wavelet families and threshold rules (Figures F.16 – F.19). In Figure 5.10, 

it is possible to observe the results obtained for each threshold and for each wavelet family. The best 

from all the threshold rules was the universal threshold rule with the HAD (illustrated as snr_ut_hard in 

Figure 5.10) and the minimax threshold rule with the soft function (snr_min_soft in Figure 5.10). The 

best wavelet family was db6, followed up by coif5. Regarding MSE values, it is possible to conclude 

that they were similar between levels. The lowest values were obtained when the SURE threshold rule 

was applied. Comparing these values to those obtained in digital filtering, it is possible to conclude that 

the maximum SNR was lower for wavelet noise reduction (29.14 < 33.09 dB). The MSE values obtained 

in this section were lower than those obtained in digital filtering (4.43E-03 < 4.00E-02), which means 

that during the application of Butterworth some relevant signal information was lost. 

 

The most interesting values were obtained for volunteer number twenty-nine. As already 

expected, the SNR values increased with the increase of the level of decomposition, reaching their 

maximum for the fifth level (Figure 5.11). For the third (Figure F.21), fourth (Figure F.23) and fifth 

levels, the universal threshold and the minimax threshold are the ones that had the highest SNR values. 

For the fifth level, the maximum SNR value (38.40 dB) was reached for the coif5. However, sym2, sym7 

and db2 also show good results (38.24, 38.30, 38.30 dB). As it can be seen in Figure 5.11, the universal 

threshold rule with the HAD function was the best thresholding method. Regarding fifth level 

decomposition MSE values (Figure F.25), it is possible to conclude that the lower values were obtained 

in the SURE threshold rule and the higher ones in the Universal threshold rule. However, for all levels, 

the MSE results were low, which means that the interesting part of the signal was preserved. Comparing 

these values to those obtained in digital filtering, it is possible to conclude that the results obtained in 

the fourth and the fifth levels outperformed the bandpass Butterworth results (38.40 > 35.40 dB), which 

did not happen for the other volunteers. The MSE values are lower than those obtained in digital filtering 

(1.50E-03 < 3.30E-03), which means that some signal peaks might be removed during the 

implementation of the Butterworth filter.  

Figure 5.10: SNR values of the filtered signals when the wavelet transform noise reduction method was applied 

– Volunteer number 9. 



 

54 
 

Regarding volunteer number forty-one, it is possible to conclude that the SNR increased with the 

increase of the level of decomposition. Therefore, the fifth decomposition level obtained the best SNR 

values (Figure 5.12). In this master dissertation, the third, fourth and filth levels were tested, but since 

the fifth level was the best, it is represented in Figure 5.12. The values obtained in the other two levels 

are in Appendix F. In Figure 5.12, it is also possible to study the influence of each threshold rule and 

the influence of the threshold function when combined with a specific threshold rule. The lowest results 

were obtained for the third and fourth levels when the SURE threshold rule was applied (snr_sur_hard 

and soft illustrated in Figure F.26 to Figure F.29. However, the SNR value reached its maximum (29.47 

dB) for the SURE threshold rule using the soft threshold function for the fifth level. Regarding the 

wavelet type, it is possible to conclude that the best wavelets were the sym7 and the db10. Between 

both, sym7 outperformed for almost all threshold rules. On average, the best threshold function was the 

HAD except when the minimax threshold rule was applied. The lowest SNR value (25.88 dB) was 

obtained in the SURE threshold rule used with the HAD function. The MSE values increased with the 

increase of the decomposition level. However, the difference between each level was low. The highest 

values of MSE were obtained in the universal threshold rule. In general, the SNR improved for all the 

levels and for all the threshold applied rules, which means that part of the noisy data was smoothed. 

Conversely, the MSE values were lower, which suggests that the signals were preserved. Comparing the 

results obtained for this volunteer to those obtained in digital filtering, it is possible to conclude that 

Bandpass Butterworth increased the SNR in the highest percentage than the wavelet method (29.66 > 

29.47 dB). The MSE values are higher for digital filtering, which means that some essential parts of the 

signal might be eliminated. 

 

Figure 5.11: SNR values of the filtered signals when the wavelet transform noise reduction method was applied 

– Volunteer number 29. 
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Phynyomark et al [185] proved that the Daubechies wavelets and the fourth level of 

decomposition provide the minimum mean square error. The results obtained in this master dissertation 

are according to the principle proved by these authors since for almost all volunteers, the db was one of 

the best wavelets. Moreover, with the increase of the decomposition level, the SNR also increased, 

which is also concluded by the scientific paper authors. They compared three different threshold rules 

in other surveys: the SURE, the universal and the minimax [148]. As it happens in this dissertation, the 

authors also conclude that the universal threshold rule was better than the other ones. Besides that, 

Hussain et al [186] proved that universal threshold was the best. Moreover, these authors proved that 

the classification performance improved by using this rule with the HAD function [187]. According to 

Sohabi et al [188], the wavelets that are widely used for denoising biological signals are db2, db6 and 

db8 since they have a similar shape to MUAP. In this dissertation, db2 and db6 proved to be one of top 

three wavelets. 

Phinyomark et al. [152] proved that the HAD threshold function is better than SOF, which agree 

with the results obtained in this dissertation. Regarding the decomposition levels, it was possible to 

conclude that the fifth level was the best level which is also proved by Englehart et al.[189]. The authors 

demonstrated that higher levels of decomposition improved the classification performance. 

Despite the SNR values being more significant than the SNR value of the raw signal, the increase 

on the SNR when the bandpass Butterworth was applied, was higher than the obtained one for the 

wavelet. However, because the FFT transform cannot differentiate the noise that is in the high-frequency 

values from the useful part of the signal, the MSE values are higher for wavelet threshold noise reduction 

[151]. Preserving the critical signals is the most essential thing for gesture recognition. Despite the 

higher results, some information might get lost, which is not intended. For this reason, the wavelet 

transforms was applied to filter and reconstruct the signal. In this dissertation, as it happens in previous 

investigations, the universal threshold with HAD function was applied for all the volunteers’ signals 

[190][191]. Regarding the wavelet family, the sym7 wavelet sub-type was used since it was one of the 

best wavelets. These results are according to what was expected since in most of the literature some 

authors suggested this method as an alternative to digital filters with the main purpose of increasing the 

classification rates. However, in the future it might be important considering the loss of frequency 

resolution in higher frequencies to avoid aliasing in high frequency ranges. Since we are optimising a 

real-time prototype, it was fundamental to consider if it makes sense to use this methodology for devices 

Figure 5.12: SNR values of the filtered signals when the wavelet transform noise reduction method was applied 

– Volunteer number 41. 
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like ours. Therefore, it was found out that DWT uses FIR filters that can easily be implemented on py-

sharp and Arduino platforms.  

For future work, it is important considering some aspects. Despite the promising results obtained 

in this dissertation, it is essential to note that there is a difference between the methodology followed by 

the authors and the followed in this work. In most surveys, the authors apply the wavelet threshold noise 

reduction after filtering the signal with digital filters. In this study, we tried to understand which method 

was better. As it was sawn, for digital filtering and wavelet denoise the SNR increased. However, some 

relevant information might be lost during the digital filtering process, even if very little. These results 

might indicate that using the two filtering processes can be advantageous since the noise at low and high 

frequencies is eliminated.  

5.1.4. Classification performance 

The uncertainty associated with the possibility of developing a low-cost model subject-

independent microcontroller led us to test if using a single channel of acquisition would be enough to 

have accurate results. 

As already stated in the previous chapters, the surface myoelectric signal is a signal affected by 

numerous external factors, mainly the changes in the positions of the electrodes and the equipment noise. 

These external noise sources and the nature of the signal degrade the classifier's performance because 

they create different features values. However, using specific pre and processing techniques can increase 

the accuracy. In order to answer the questions made at the beginning of chapter four and considering 

that long computational response times should be avoided, the influence of the window lengths (100 and 

250 ms) and the number of features in the classification performance were tested. To recognize the 

performed hand gestures, LDA and KNN were used. To improve the classification performance, the 

classification was divided into binary classification problems, or levels, where in each of them two 

movements were recognized. Therefore, a tree-level classifier with two or three levels was defined 

according to the obtained results. In each level, the classifiers that were implemented were different 

(LDA and KNN). The KNN with five neighbours (k=5) was used to test how discriminative were the 

movements (explained in Figure 4.6). Before making that division, it was necessary to study which 

movements were more distinguishable from others. Therefore, the movements were divided into six 

sets. 

The results of the first three sets (spherical grip and rest position, tripod grip and rest position, 

finger flexion and rest position) were similar for both windows. The results of the KNN of the window 

of 100 milliseconds are in Figure G.1. In Figure 5.13, it is possible to observe the obtained results for a 

window of 250 milliseconds. It can be concluded that the three movements were perfectly 

distinguishable from the rest position (average accuracy >90%), being the spherical grip the most 

distinguishable movement (average accuracy = 98.69%). Since the precision and the recall values were 

good, it is possible to suggest that more classes were classified as the right class. Based on these results, 

the first level of the classifier was defined to help the microcontroller detect if the volunteers were 

performing any movement or if they were at rest. 

Conversely, the sets number four, five and six have the lowest scores (between 49 and 61%). 

Despite the similarity between the average accuracy, precision, and recall, it is possible to observe that 

the obtained accuracy and precision scores for the tripod grip and finger flexion (set number four) and 

spherical grip with finger flexion (set number five) were higher than those obtained in set number six. 

Therefore, it was tested if it would be advantageous having a second level that identified all the three 

movements at once or if it would be better to divide the results and have three levels of classification. 
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Before testing the different levels, it was tested which feature-set provided better results to 

optimize the classification process. 

 

5.1.4.1. Feature selection 

As mentioned before, not all the features contribute to the final result, which means that some of 

them are redundant. Because of that, it was necessary to apply different feature selection methods.  

In this section, all the results obtained by each different feature selection method are presented. 

The results are discussed according to the accuracy and kappa coefficient evaluation metrics. The 

features methods will be implemented for all the classifier levels. Because of that, the results are 

discussed by level order. The results for a window length of 100 milliseconds and 250 milliseconds were 

similar. Due to that fact, only the graphics for one of them are showed.  

For a window length of 100 milliseconds, the best set of features was obtained when the best five 

mutual information values were selected, which improved the accuracy to a maximum of 94.58%. The 

kappa coefficient was 0.87, which means that there were almost no misclassified classes. Regarding the 

window of 250 milliseconds, the best feature set was obtained when the best ten information gain values 

were selected (Figure G.2). For this window, the best feature set includes ten features: RMS, VAR, SSI, 

IAV, MAV, MMAV, WL, AAC, ZC and MFL. The kappa coefficient was 0.88, which means that almost 

all classes were classified correctly. Therefore, in this classification level (rest position vs movement), 

for a window length of 100 milliseconds five features were selected (RMS, VAR, SSI, WL, MAV). The 

reduction of the feature-set will reduce the processing time.  

When the objective was to discriminate all the movements, the results showed that the relief f 

filter method had the highest accuracy average values. Since in this classification level (spherical grip 

vs tripod grip vs finger flexion), three classes were being analysed, the number of misclassified classes 

was compared. For both windows, the ten features with the highest relief f score were selected (MMAV 

2, WA, MFL, ZC, SSC, AAC, WL, MMAV, RMS and MAV). 

Figure 5.13: Accuracy, precision and recall average obtained values values for a window of 250 ms when the objective 

was to study the different sets – Setting 1 (spherical grip vs rest position):98.69%, Setting 2 (tripod grip vs rest position): 

91.81%; Setting 3 (finger flexion vs rest position): 91.16%; Setting 4 (tripod grip vs finger flexion): 58.64%; Setting 5 

(spherical grip vs finger flexion): 56.27% and Setting 6 (spherical grip vs tripod grip): 59.27%. 
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For the second level of the classifier (finger flexion vs grasp movements), as expected, the results 

are lower in both windows. Regarding the window of 100 milliseconds, the best accuracy (77.09%) was 

obtained in the best ten information gain values. The kappa coefficient reaches its maximum for the 

same feature set (0.55). Therefore, the selected features in this window were WA, ZC, MMAV2, MAD, 

AAC, WL, VAR, SSI, RMS and MFL. Regarding the windows of 250 milliseconds, the maximum 

accuracy (77.09%) was obtained in the best ten feature relief f scores (Figure G.4). However, the kappa 

coefficient for the best five feature relief f scores (0.20) is lower than the ten features obtained when the 

relief algorithm (0.21) was implemented. Conversely, the accuracy is lower than the previously obtained 

(77.01%). Since the differences between them are not significant, the next classification the best five 

features were used: IAV, MAV, MMAV, RMS, VAR.  

For the third classification level (spherical grip vs tripod grip), the results are lower than for the 

first level of the tree classifier. For a window length of 100 milliseconds, the maximum accuracy 

(68.26%) was reached for the best ten features obtained when the relief f algorithm was applied. 

However, the best five features were obtained when the chi-squared test was applied. For this filter 

method, the maximum accuracy was 67.57% and the kappa coefficient 0.31. The differences between 

these two metrics are not significant, so in order to save time, the five features with the highest accuracy 

score were selected: IAV, MAV, RMS, VAR, SSI. In a window of 250 milliseconds (Figure G.7), the 

accuracy reached its maximum when selecting the ten features with the best information gain values 

(78.39%). The kappa coefficient was 0.56 (Figure G.8). In this way, the selected features were RMS, 

VAR, SSI, MFL, IAV. Despite an accuracy of 70% for the second and third levels, the recall and 

precision of each class are expected to be lower. Besides that, the kappa coefficients reveal that the 

probability of having misclassified classes is higher. It is expected that the tripod grip and index finger 

flexion are misclassified as spherical grip.  

The results obtained in this section defined the features that were used in the posterior 

classification tests. 

5.1.4.2. 10-fold cross-validation method 

The results obtained from cross-validation will be discussed in this section. The kappa 

coefficient, the average accuracy and the elapsed time (time that the classifier take to train and classify 

the data used as test) will be analysed, as well as, the confusion matrices. The results obtained for each 

level are in the Table G1 and G2 in Anexo G. In this section, to simplify the analysis, the results will be 

discussed for levels. 

Since the data is split into nine training sets and one testing set in this method, an increase in 

computational time and a decrease in classification rates are expected. In the first level of the tree level 

classifier, the results obtained in both classifiers (KNN and LDA) are higher than 88%. In Figure 5.14 

it is possible to observe that the accuracy increased with the increase of the k-value. The precision and 

recall values reach their maximum for k=15 (94.102 ± 2.40%), which means that this classifier is 

probably the best KNN classifiers (Figure G.9). The lower results were obtained in a k=2 (92.54 ± 

3.30%). It is interesting to observe that the results obtained in LDA and KNN do not differ at all, since 

accuracy was 94.18 ± 2.60% for LDA as well and recall and precision values. Regarding kappa 

coefficient, the maximum value was obtained when LDA was applied (0.83). To compare these results 

and to prove that they can be obtained using different classifiers, a paired t-test was applied. Therefore, 

it was possible to conclude that there is no significant difference between them because the p-value was 

0.312. When comparing both classifiers in terms of processing time it is possible to conclude that LDA 

is the best classifier in a window of 250 milliseconds since the elapsed time was lower than the obtained 

for KNN (4.39 < 9.86 s). These results indicate the importance of the filtering process. As already 
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mentioned, removing noisy components can improve the SNR of the signal, making the movements 

perfectly distinguishable from the rest, even a single and isolated finger movement.  

The results that can be taken for a window of 100 milliseconds are the same, but the obtained 

average accuracy values were lower (Figure G.10). The average accuracy increased with the increase of 

the k value, reaching its maximum for k=15 (91.67 ± 3.60%). Consequently, the minimum average 

accuracy was reached for k=2 (89.26 ± 4.44%). The precision values and recall also increased with the 

increase of the k value. The kappa coefficient reached its maximum for k=15 (0.83). Despite the high 

values obtained in KNN, LDA had a higher average accuracy. Therefore, the average accuracy was 

91.81 ± 4.00%, and the kappa coefficient 0.83. Since the two obtained average accuracy values were 

similar, both classifiers were compared with a p-paired t test. The results showed that there was no 

statistical difference (p-value=0.151). Comparing both processing times, it is possible to conclude that 

LDA outperforms KNN (5.86 < 20.06 s). Comparing both windows, it is possible to conclude that the 

window length of 250 is better since the processing time is lower (4.39 < 5.86 s) and higher average 

accuracy (94.18 > 91.81 %). 

After that, the set with three movements was analysed. In Figure 5.16, it is possible to observe 

the results obtained in a window of 250 milliseconds. The average accuracy of the KNN classifiers 

decreased with the increase of k-value until k=9, reaching a minimum of 43.59 ± 4.90 %. The kappa 

coefficient also decreases with the increase of the k-value until k=9, reaching a minimum of 0.15. The 

best KNN classifier is for k=2, where a maximum accuracy of 52.26 ± 16.8% was obtained. Despite the 

higher value (~50%), the associated error is greater than 10% (16.8%), which means that there are many 

different average accuracies obtained in all the training and test used samples. The classifier had an 

elapsed time of 6.72 seconds. The lower results were obtained in LDA, with an average accuracy of 

45.19 ± 3.20%. Comparing both classifiers, it is possible to conclude that the kappa coefficient was 

lower for LDA than for KNN with k=2 (kappa= 0.17 < 0.29) and the elapsed time lower for LDA than 

for KNN (4.38 < 6.72 s).  

 

Figure 5.14: Results obtained in the first classification level (movement vs rest position) for a window of 250 ms when 

the 10-fold cross validation method was applied. The minimum accuracy was reached for KNN=2 (92.54 %) and the 

maximum for LDA (94.18 %). 

. 
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Still in the second level, in Figure G.15, it is possible to observe the results obtained in a window 

of 100 milliseconds. LDA outperformed KNN classifiers, reaching a maximum accuracy of 47.56 ± 

3.00%. The kappa coefficient was higher (0.15), and the elapsed time was 7.96 seconds. For the KNN 

classifier, the kappa coefficient and the average accuracy increased with the increase of the k-values, 

reaching a maximum of 0.12 and 45.09 ± 2.20% for KNN with k=5, respectively. When comparing both 

windows, it is possible to conclude that the elapsed time was greater for a window of 100 milliseconds. 

Conversely, the average accuracy percentages and the kappa coefficients were higher for a window of 

250 milliseconds which lead us to conclude that this is a better window. Therefore, it is possible to 

conclude that the KNN with k=2 is the best classifier.  

Figure 5.16: Results obtained when all the movements (spherical grip vs tripod grip vs finger flexion) were classified for 

a window of 250 ms when the 10-fold cross validation method was applied. The minimum accuracy was reached for 

KNN=9 (43.59 %) and the maximum for KNN=2 (52.26 %). 

Figure 5.15: Confusion Matrix for the first level of the tree classifier when the 10-fold cross-validation method 

was applied to the window of 250 ms. Represents the number of instances that were classified correctly for both 

classes (15368 for rest position and 13302 for movement class) and the misclassified ones (461 for rest position 

and 1308 for movement class). – LDA. 
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The low average accuracy and the low kappa coefficients were not satisfactory results. In order 

to identify the errors associated to the classification process, the confusion matrix for all the movements 

was plotted (Figure 5.17). As it can be seen, there are classes that were misclassified as it happens with 

tripod grip and finger flexion. These results indicate that spherical grip is probably the easiest to detect. 

Due to these uncertainties, a little research focused on the biomechanical features of the hand gestures 

performed here was done.  

The capacity to grab or interact with objects depends on postural control, visual and tactile 

feedback. Besides that, it is crucial to consider the role that the biomechanical components, including 

joint movements and muscle activation have during the performance of such movements. As it is known, 

each volunteer's performance depends on the trajectory that each one took until reaching the object. 

Therefore, variations in orientation, neural processing time and speed of the hand path contribute to 

signal amplitude fluctuations. In addition, this type of movements are influenced by the use of the 

dominant or non-dominant arm since they involve different neural control mechanisms. These 

differences can influence the activation of the muscles and the time of response, which means that for 

each arm or volunteer, some differences can affect the myoelectric signal [28][192].  

During the grasping movements, the fingers and the thumb adjust their position. Considering 

the muscle tables in section 2.1 (Table 2.1, 2.2 and 2.3), the muscles involved in spherical grip are the 

flexor pollicis longus, the adductor pollicis, the flexor digitorum profundus and the flexor digitorum 

superficialis. Besides the actuation of these muscles, Betti et al [192] demonstrated the importance of 

the index finger for spherical grip. The authors concluded that the index finger has a specific activation 

pattern during grasping executions, with a different pattern for different grips, especially for the 

spherical grip. Conversely, tripod grip involves the thumb opposition and flexion against the thumb. 

Therefore, for precision grips such as the tripod grip, it is possible to observe the flexion of thumb joints, 

the flexion at metacarpophalangeal and proximal interphalangeal joints, the flexion and extension of 

distal interphalangeal joints, the activation of the flexor pollicis longus and the flexion originated by the 

flexor digitorum superficialis. As can be seen, the prehensions studied in this dissertation are originated 

Figure 5.17: Confusion Matrix for all the movements when the 10-fold cross-validation method was applied 

for a window of 250 ms. Represents the number of instances that were classified correctly for all classes (4784 

for spherical grip, 4573 for tripod grip and 2717 for finger flexion) and the misclassified ones (1851 for 

spherical grip, 3499 for tripod grip and 5677 for finger flexion)) – KNN, k=2. 
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from the same muscles except the spherical one that has the contribution of the flexor pollicis longus 

and the adductor pollicis.  

Keeping the anatomical and physiological features in mind, the first thought was that the 

amplitude values would influence the classification performance. As a matter of fact, the obtained results 

showed that the spherical grip was the gesture that was detected with more success when compared to 

the others. However, in this dissertation, the electrode was placed in the flexor digitorum superficialis, 

which means that the extra information about the flexor pollicis longus is not considered. Because of 

that, the obtained difference is not sufficient to conclude that spherical grip is the strongest grip and 

consequently the most detectable one. Conversely, the flexion of some joints generates the tripod grip. 

Since it was not used a glove or an angle measurement equipment during the acquisition, we only have 

the information given by the flexor digitorum superficialis muscle. Besides that, similar movements are 

more challenging to differentiate, making it easier to distinguish them from finger individual 

movements.  

Because of that, the second level of the classifier would identify the finger flexion and both 

grasps movements. Since the precision, sensitivity and confusion matrix reveal that there are a lot of 

misclassified classes, lower results than those obtained in the first level are expected. Nevertheless, the 

number of misclassified classes is expected to be higher in the second level. Finally, the classifier will 

identify the tripod grip and the spherical grip classes in the third level. Thus, after identifying the 

occurrence of movement or not, the classifier will identify if the volunteer is using one finger only or 

moving more than one finger. With this division, we hope to improve the accuracy. Finally, in the third 

level, the classifier will discriminate the grasps from each other.  

Consequently, the results obtained in the second level are now discussed. Regarding the window 

of 250 milliseconds, the average accuracies were around 65% (Figure 5.18). The higher values were 

obtained in a KNN with k=2, where the accuracy was 68.19 ± 8.80%. The average accuracy decreased 

with the increase of the k value, except for k=7 where an average accuracy of 64.06 ± 4.20% was 

obtained. The lower average results were obtained in k=15 (62.32 ± 2.70%). Despite the high average 

results for k=2, the classification of each class was low, which means that there were a lot of 

misclassified classes as can be seen in the confusion matrix (Figure 5.19). There were 5658 finger 

flexion instances that were classified as grasp movements and 1689 grasps movements classified as 

finger flexion movements. Despite the higher number of misclassified instances, the kappa coefficient 

reaches its maximum (0.23). The LDA had a lower average accuracy (64.06 ± 8.80%). As it can be 

observed in Figure G.18, the number of misclassified classes was higher than for KNN with k=2 (2508 

misclassified grasp movements and 6195 misclassified finger flexion movements). Because of that the 

kappa coefficient decreased to 0.076. The LDA elapsed time was 4.21 seconds. In this dissertation, the 

performance of the classifier is more important than the elapsed time because the developed prototype 

should be robust and accurate. Therefore, the best classifier was KNN with k=2.  

In Figure G.20, it is possible to observe the results obtained in the window of 100 milliseconds. 

It is possible to conclude that even though the higher accuracy was obtained in LDA (69.87 ± 0.60%), 

the kappa coefficient was the lowest one. Despite the low number of false positives (218), false negatives 

were 7257. For that reason, the best classifier was KNN with k=2 (Figure G.22). The number of grasps 

movements that were misclassified (1692) was one of the lowest for all k values and the kappa 

coefficient (0.062) was the higher one (Figure G.21). Comparing both windows, it is possible to 

conclude that the elapsed time was greater for a window of 100 milliseconds, which added to the lowest 
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kappa values and average accuracy, suggests that this window was the worst. So for the second level, 

the best window was 250 milliseconds. 

For the third level, the average results were still lower. In Figure 5.21, it is possible to observe 

the results obtained with a window of 250 milliseconds. The results show that average accuracy and the 

kappa coefficient decreased with the k value increase. The minimum accuracy (63.57 ± 3.20%) was 

obtained in KNN with k= 15. Besides that, it is visible that the number of misclassified tripod classes 

was higher than the number of misclassified spherical grip instances, which supports the previously 

discussed anatomical differences. The maximum accuracy was 67.13 ± 11.7% and the kappa coefficient 

was 0.35 for k=2. However, the associated error was over 10%, which indicates a large variability of 

Figure 5.18: Results obtained in the second classification level (Grasp Movements vs Finger Flexion) for a window of 

250 ms when the 10-fold cross validation method was applied. The minimum accuracy was reached for KNN=15 (62.32 

%) and the maximum for KNN=2 (68.19 %). 

Figure 5.19: Confusion Matrix for the second classification level when the 10-fold cross-validation method 

was applied for a window of 250 ms. Represents the number of instances that were classified correctly for 

both classes (13018 for grasp movements and 2736 for finger flexion) and the misclassified ones (1689 for 

grasp movements and 5658 for finger flexion). –KNN (k=2). 
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average accuracy obtained values. The elapsed time rounds a total of 4 seconds, being the minimum 

4.16 s (k=2).  The LDA outperforms the KNN with k > 5 since the average accuracy was 64.77 ± 6.40% 

and the kappa coefficient was 0.28. Considering these classification results, it is possible to conclude 

that KNN with k=2 was the best classifier.  

 

The results obtained in the window of 100 milliseconds suggested that the tripod grip and the 

spherical grip are similar movements due to their number of misclassified instances. In this case, LDA 

Figure 5.21: Results obtained in the third classification level (Tripod grip vs spherical grip) for a window of 250 ms 

when the 10-fold cross validation method was applied. The minimum accuracy was reached for KNN=15 (63.57 %) and 

the maximum for KNN =2 (67.13 %).  

.  

Figure 5.20: Confusion Matrix for the third level of the tree classifier when the 10-fold cross-validation 

method was applied for a window of 250 ms. Represents the number of instances that were classified correctly 

for both classes (5450 for Spherical Grip and 4423 for tripod grip) and the misclassify ones (1185 for 

Spherical Grip and 3649 for tripod grip). - KNN (k=2). 
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outperformed the KNN reaching a maximum average accuracy of 66.64 ± 6.40%. This classifier's time 

to train and test was lower than the elapsed time obtained in KNN. Besides that, the kappa coefficient 

was the highest kappa coefficient value (0.26). The number of misclassified instances was lower for a 

window of 250 ms and the average accuracy higher, which indicates that this was the best window. 

Therefore, the best classifier was KNN with k=2. 

5.1.4.3. Split validation method 

The results obtained from the application of the split validation method to our data will be 

discussed in the same way that the cross-validation ones, which means that the results obtained in a 

window of 100 milliseconds are in Appendix H. The discussion will be focused on the precision, recall 

and accuracy average values. Besides that, the confusion matrices will also be analysed. Before starting 

the discussion it is important to note that the 70% of the data that was used as training set had at least 

one repetition of the movement for all volunteers. The results obtained for each level are in the following 

table. 

In Figure 5.22, it is possible to observe the results obtained in the first level of the classifier for a 

window of 250 milliseconds. The average accuracy was greater than 88% for all the tested classifiers, 

which indicates that the probability of existing misclassified results was low. The minimum average 

accuracy was obtained in k=2 (91.53 ± 3.36%). The average accuracy increased with the increase of the 

k value reaching its maximum for a k=15 (93.07 ± 2.55%). Conversely, LDA outperforms the results 

obtained in k equals to two, five and seven. The average accuracy for LDA was 93.46 ± 2.56%. Since 

there are no significant differences between the results, a paired t-test was implemented. The obtained 

p-value (0.113) shows no significant difference between the two classifiers. Due to the fact that the 

device should respond in 300 milliseconds, the processing times of each classifier were analysed. While 

the elapsed time for LDA was 74.58 milliseconds, the elapsed time for KNN was 839.52 milliseconds. 

In conclusion, LDA seems to be the best classifier for the first classification level.  

 

Figure 5.22: Results obtained in the first classification level (Movements vs Rest Position) for a window of 250 ms 

when the split validation method was applied. The minimum accuracy was reached for KNN=2 (91.53 %) and the 

maximum for LDA (93.46 %). 
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Regarding the window of 100 milliseconds (Figure H.2), the results show the KNN (k=9) 

outperformed LDA (91.52 ± 3.71% (KNN) > 91.23± 4.02 % (LDA)). For KNN, the minimum was 

obtained with k=2 (88.34 ± 4.02%). Since the results were similar for LDA, we implemented a paired t-

test. The obtained p-value was 0.308, which means that there were no statistical differences between the 

two classifiers. Therefore, the elapsed time and the kappa coefficient for both classifiers were calculated. 

LDA took 100.29 milliseconds, while KNN took 1.30 seconds. Because of that, it is possible to conclude 

that LDA was better than KNN, as suggested as well by the kappa coefficient (0.82 > 0.80). When 

comparing both windows, it is possible to conclude that the average accuracy obtained in LDA was 

greater for the window length of 250 milliseconds and the processing time lower (74.58 < 100.29 ms).  

Similarly to the cross-validation method, the possibility of identify all movements at once was 

tested The results were better for the window of 250 milliseconds since it has the higher average 

accuracy percentages and kappa coefficient values (Figure 5.24). From all the tested k values, the best 

was k=2 since the average accuracy reaches its maximum (72.47 ± 0.71%). The processing time was 

only 366.84 milliseconds. This classifier had the lowest numbers of spherical misclassified instances 

(Figure 5.25). The minimum average accuracy was obtained when the LDA was implemented (44.83 ± 

Figure 5.23: Confusion Matrix for the first classification level when split validation method was applied for 

a window of 250 ms. Represents the number of instances that were classified correctly for both classes (3954 

for rest position and 4559 for movement class) and the misclassified ones (187 for rest position and 408 for 

movement class) – LDA. 
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2.22%) – Figure H.6. Despite the classification results, the use of two levels to identify the three 

movements was tested. 

 

For the window of 100 milliseconds, the results were lower (Figure H.7). The accuracy increased 

with the k value, reaching an average accuracy of 45.09 ±2.20% (KNN with k=15). The minimum 

accuracy was reached for KNN with k=5 (42.58 ±1.90%). For LDA, the average accuracy was 47.56 

±3.00%. Comparing both classifiers, it is possible to conclude that these results are not satisfactory 

which is related to the existing differences between the muscle pattern activation of each volunteer and 

with the electrode position. Despite these classification results, LDA was better than KNN since it had 

more accurate results and a lower processing time (7.96 < 9.63 s). 

Figure 5.25: Results obtained when all the movements (Spherical Grip vs Tripod Grip vs Finger Flexion) were classified 

for a window of 250 ms: The minimum accuracy for KNN=15 was 50.89 % and the maximum for LDA was 72.47 %. 

Figure 5.24: Confusion Matrix for all the movements when the split validation method was applied. Represents the number 

of instances that were classified correctly for all classes (1450 for spherical grip, 1312 for tripod grip and 838 for finger 

flexion) and the misclassified classes (0 for spherical grip, 396 for tripod grip and 971 for finger flexion)) - KNN (k=2). 
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As for the second level, accuracy, precision and recall percentages were low. In Figure 5.26, it is 

possible to observe the accuracy level obtained in a window of 250 milliseconds on each of the used 

classifiers. The best results were obtained in KNN with k=2 (80.45 ±1.19%) with an elapsed time of 

400.21 milliseconds. For the other k values, the classification results were similar, but the average 

accuracy decreased with the increase of the k value. The minimum accuracy was obtained when the 

LDA was implemented (63.61 ±2.71%). The results obtained in each class individually affect the 

average results, which means that the with this number, the misclassified classes might be read as good 

results. For that reason, and to avoid misinterpretations, the confusion matrices were plotted. As it can 

be observed, the index finger flexion was misclassified as grasp movements (Figure 5.26). According 

to the results in confusion matrices, it is possible to conclude that the best KNN classifier is with k=2 

since all grasp movements instances were classified as grasp movements (Figure 5.27). However, 971 

finger flexion instances were classified as grasp movements. It is possible to conclude that more grasps 

movements were misclassified with the increase of k. Conversely, the number of misclassified finger 

flexion instances decreases for k=5 but increases with the increase of k value.  

 

These results suggested that the choice of the k value is very important since it can promote either 

accurate or bad results. The main difference between these movements is probably the amplitude values. 

Using a low value of k neighbours increases the grasp class's precision. Nevertheless, when the k value 

increases, more outlier results and more factors affect the classification, decreasing the recall and 

precision obtained in each class. Besides the difference in anatomical characteristics of each movement, 

the fact that dominant and non-dominant information was extracted influences the result. In some 

volunteers, using both arms can degrade the performance of movements such as spherical grip and tripod 

grip, decreasing the signal amplitude. In addition, based on what has been discussed before, each 

volunteer's performance is smoothed with the increase of contraction time and it is affected by muscular 

fatigue that affects the amplitude of the signals. The fact that our feature dataset does not follow a normal 

distribution might be the reason for such poorer results obtained during the implementation of LDA. 

Furthermore, LDA was the worst classifier since 1549 finger flexion instances were classified as grasp 

movements (Figure H.11). Besides, the place where the electrode was placed could also influence the 

results since it can be measuring noise at tendon level or noise from the other forearm muscles. 

Figure 5.26: Results obtained in the second classification level (Grasp Movements vs Finger Flexion ) for a window of 250 

ms, when the split validation method was applied.The minimum accuracy was reached with KNN=15 (67.16 %) and the 

maximum for LDA and KNN (k=2) (80.45 %). 
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For a window of 100 milliseconds (Figure H.12), the KNN outperformed the LDA since the 

average accuracy was greater for KNN with k=2 (76.36 ± 2.36% (KNN) > 76.36 ± 2.71% (LDA)). 

Besides the higher average accuracy, the number of grasp instances that were misclassified was only 

110. However, 1098 finger flexion instances were classified as grasps movements. For k=5 (average 

accuracy=67.60 ± 1.66%), the number of finger flexion instances that were misclassified decreased from 

1098 to 974, but the grasp instances that were wrongly classified duplicated. It is also possible to 

conclude that with the increase of the k value, the number of misclassified finger flexion instances 

increased. However, the number of false positives - grasps instances classified as finger flexion 

movement- decreased. For a k=15, the number of false positives was lower than the obtained in k=2 

(Figure H.13). Still, the number of false positives does not compensate for the rise of false negatives- 

finger flexion movements classified as grasp movements. Since the results of LDA and KNN with k=2 

were equal, both of them were compared with a paired t-test. The p-values was 0.001 which means that 

both probably follow different distributions. Therefore, the elapsed time and the kappa coefficient of 

each classifier were compared. For LDA, the processing time was 55.81 milliseconds and the kappa 

coefficient was 0.02. For KNN, the elapsed time was 500.83 milliseconds and the kappa coefficient was 

0.04. Since the results are similar, it is possible to conclude that LDA is the best option for the window 

of 100 milliseconds. To sum up, KNN with k= 2 is the best classifier. 

Comparing both windows, it is possible to conclude that the window of 250 milliseconds is better 

than 100 ms since it has the maximum average accuracy (80.45 % (250 ms) > 76.37 % (100 ms) and a 

shorter processing time (400.21 ms (window of 250 ms) < 500.83 ms (window of 100 ms)).  

In Figure 5.28, it is possible to observe the results obtained in the third classification level, more 

specifically for the window of 250 milliseconds. The average results decreased with the increase of the 

k-value, reaching an average minimum accuracy of 66.65 ± 1.41%. The best results were obtained in 

KNN with k=2 (average accuracy= 81.09 ± 0.52%). Conversely, the worst results were obtained with 

Figure 5.27: Confusion Matrix for the second level when the split validation method was applied for a window 

of 250 ms. Represents the number of instances that were classified correctly for the two classes (3158 for grasp 

movements and 838 for finger flexion) and the misclassified ones (0 for grasp movements and 971 for finger 

flexion) - KNN (k=2). 
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LDA that reached an average accuracy of 63.61+1.73%. As previously mentioned, it is important to 

analyse the confusion matrix since these results might be affected by misclassified classes.  

 

For k=2, the number of false positives- the number of misclassified spherical grip instances- is 

zero and the number of false negatives is 597 (5.29). For k=5, the number of tripod grip misclassified 

results decreased from 597 to 377 and the number of false positives increased to 456. For the rest of the 

k-values, the number of the spherical grip instances that were classified as tripod grip movements 

increased up to 527 (k=15) and the number of false negatives to 526.  

Despite the lower values of misclassified tripod grip instances, the increase in false positives is 

not accepted in real-time performances. Similarly to what happened in the second classification level 

(grasp movements vs finger flexion), these classification results suggested the influence of muscular 

fatigue and volunteer’s variability during the performance of these hand gestures.  

In this specific case, LDA was the worst classifier since false positives reached their maximum 

(624). The number of misclassified tripod instances was 525 (Figure H.15). These lower results might 

be explained by the fact that our dataset does not follow a normal distribution, and of course, by the 

previously discussed factors. Besides that, the difference between the precision and power grip can be 

due to the strong amplitude of the signals detected during the spherical volunteer's movement, which 

explains why higher values of tripod grip instances are misclassified. The amplitude can be a crucial 

factor because in this work, thirteen time-domain features are used. Therefore, considerable differences 

in the amplitude imply different features and consequently more accurate results, which is not the case. 

Besides that, it is known that power grips require more high force movements than precision grips. 

Because of that, in force grips the hand muscles are used to generate the force instead of using the 

strength of each finger. Unlike tripod grip, the spherical grip can be distinguished by dynamic and static 

phases. While in the dynamic phases, the hand and the thumb open until both reach a comfortable 

position to grasp the object, the static phase involves the fine adjustment of the finger to the object's 

shape (hold moment). Grips like spherical grip are related to the muscular antagonist activity between 

the upper limb digits and the hand, which involves the extrinsic and intrinsic muscles [193]. 

Figure 5.28: Results obtained in the third classification level (Tripod grip vs Spherical grip) when the split 

validation method was applied for a window of 250 ms. The minimum accuracy was reached for LDA=5 (63.61 

%) and the maximum for KNN with k=2 (81.05 %). 
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For a window of 100 milliseconds (Figure H.16), the maximum average accuracy was obtained 

in LDA (67.13 ± 4.37%)., where only 909 tripod instances were misclassified. For k=2, the average 

accuracy was 61.91±1.51%. Therefore, it is possible to observe that 479 false positives - the number of 

spherical grip instances that were misclassified - and 1199 false negatives were obtained during the 

classification. For k=5, the results were interesting since the number of false negatives decreased, but at 

the same time, the number of false positives duplicated. For the rest of the k-values testes, with the 

increase of parameter k, the average accuracy and the number of false positives decreased. Conversely, 

the number of false negatives increased. Therefore, it is possible to infer that the best k is k=2. Despite 

being the best KNN classifier, LDA is the best choice since it has a higher average accuracy percentage 

and a shorter elapsed time (52.86 ms (LDA) < 314.12 ms (KNN)). Comparing both windows, it is 

possible to conclude that the window of 250 milliseconds is better since it has a higher average accuracy 

percentage (81.09 % (250 ms) > 67.13 % (100 ms)) and lower values of false positives and false 

negatives. The only disadvantage is the processing time of 400.21 milliseconds that is higher than 52.86 

milliseconds.  

The movements that were under study were very similar. Subsequently, the signal that was being 

recorded was similar. Having similar signals is the same as having similar features and similar values 

which later are mirrored in the classification score. The similarity between the signal and the features is 

amplified when a single channel is used [109]. Besides that, the relationship between force and electric 

activity at low contraction levels might also decrease the accuracy rates, since it affects the amplitude 

of the signal [194]. To support these theories, previous research demonstrated a non-linear relationship 

between the strength of contraction and signal amplitude on dexterous movements. Subsequently, it is 

not easy to differentiate the muscular activities from each other [195]. These similarities between the 

three hand gestures added to the place where the electrode was placed contribute for lowest results. 

Figure 5.29:Confusion Matrix for the third classification level when the split validation method was 

applied for a window of 250 ms. Represents the number of instances that were classified correctly 

for both classes (1450 for spherical grip and 1111 for tripod grip) and the misclassify ones (0 for 

spherical grip and 597 for tripod grip) - KNN (k=2). 



 

72 
 

5.1.4.4. Final evaluation and literature comparison 

When the objective is to develop a real-time prosthetic device, each classifier's time used in 

training and testing processes should be considered. This is crucial to ensure that the maximum device 

response is 300 milliseconds. It is noticeable that there are some differences between the results obtained 

in cross-validation and train-test validation models. The most noticeable difference is in the second and 

third classification levels. The results obtained in cross-validation were lower than the obtained in train-

test model due to the volunteers’ intervariability. As previously explained, cross-validation randomly 

uses all the samples in training and testing sets, which means that the training set might not containing 

all volunteers. As it is known, as the time of acquisition increases, the performance of the volunteer 

decreases, affecting the acquired signal and, consequently, the quality of the extracted features. 

Furthermore, the anatomical differences between the performed hand movements and the way that each 

volunteer performs each gesture are also factors that increase the intervariability and consequently 

decrease the classification performance leading to misclassified classes. Using dominant and non-

dominant arms could also be a factor that influences the differences between the volunteers' signals. 

Lastly, the position of the electrode used during the acquisitions might not be the best. Besides worse 

results, cross-validation takes too much time for training and testing both classifiers, which means that 

it cannot be considered for real-time applications, more specifically for training the users, but can be 

used to optimise the parameters of the microcontroller algorithm. 

The classification results showed that it is more robust to use a three classification levels since it 

has fewer misclassified instances. Moreover, the kappa values for each level are superior to the kappa 

coefficient obtained using all the movements in the second level. Besides that, the average accuracies 

are also greater than the obtained when recognizing the three movements. Regarding the classifiers, it 

is possible to conclude that the first level will be constructed with LDA and the other two with KNN 

with k=2. The only disadvantage is the processing time, which with three levels is 789.59 milliseconds 

and for just two levels 506.29 milliseconds. In the future, it will be interesting to test if the increase of 

the channels will decrease the time that the classifier takes to recognize the different instances. 

Furthermore, it will be interesting test if a low window length, for example, 200 milliseconds, will 

improve the accuracy. Regarding to the acquisition process it will be interesting vary the position of the 

electrode and compare the classification results. 

To the best of our knowledge, there are no studies that classify grasps and finger movements with 

the BIOPAC single-channel acquisition system. However, we compared our results to some studies 

whose conditions of acquisition, feature selection, or classification methods were similar.  

As explained in chapter 3, myoelectric control has been used in recent years. Most studies analyse 

wrist and arm movements like forearm supination and pronation, wrist flexion and extension, radial and 

ulnar deviation [196][197][198]. In those studies, the authors obtained accurate results for these cases 

where the average accuracy was over 80%. Despite such good results, these movements are not complex 

and are not the most required ones by the users. Contrasting to other studies, this dissertation did not 

acquire forearm and wrist movements, which might be the first reason to explain the lower results 

obtained in this dissertation. The difference between the high accuracy percentages obtained in those 

studies and the results obtained in this dissertation is mainly related to the anatomical and physiological 

characteristics of the movements. The wrist extension, for example, has the contribution of almost all 

extensor forearm muscles (extensor digitorum, extensor indicis, extensor carpi radialis longus, extensor 

carpi radialis brevis and extensor carpi ulnaris). Since the surface of the electrodes is placed along the 

forearm, it is natural that the signal has a strong amplitude for movements that are originated by forearm 

muscles. Higher values of amplitude signals promote higher SNR, which originates differentiated 

features for each class, which does not happen for similar movements such as finger movements and 
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grasp movements. In the tripod grip, the thumb is brought into opposition with an index and middle 

finger, a movement originated by the joints (metacarpophalangeal joint and proximal interphalangeal 

joint). Conversely, finger flexion is controlled by flexor digitorum superficialis.  

Besides that, as discussed in the state of the art, most of the available literature uses multi-channel 

acquisitions to recognize different hand gestures. However, using multi-channel to acquire the 

myoelectric signals systems is not recommended since amputees do not have a large surface area 

available. In addition, there is an increase in the training time, which drives the users to prefer less 

complex devices with only two or three degrees of freedom [199]. 

Al-Timemy et al [8] suggested a different classification method with a single electrode channel 

placed in the extensor (channel 10) and flexor muscles (Channel 1) separately. In their study, six subjects 

performed forearm pronation, forearm supination, wrist flexion, wrist extension, radial deviation, ulnar 

deviation, key grip, chuck grip, hand open, and rest state. The authors calculated the auto regression 

coefficients, root mean square value, zero crossings, integral absolute value and slope sign changes. The 

authors obtained an accuracy of 83.7 % for channel 1 and 80.16% for channel 10. Al-Timemy et al did 

not use the same classifiers, but it is still possible to compare the results since they used a single channel 

acquisition. The average accuracy percentages obtained in this master dissertation are lower than ones 

obtained by those authors. The difference in the performed movement might be the reason why this 

happens. The authors identify hand movements and forearm movements that, as already explained, are 

easier to differentiate than grasps and finger movements, which justifies the lower accuracies obtained 

in this dissertation work. Furthermore, the authors studied only six volunteers, which reduces the inter 

variability between the recorded myoelectric signals. Consequently, the average accuracy values are 

higher than those obtained in this work. 

In the same work, Al-Timemy et al [8] recruited ten healthy subjects and two amputees to perform 

fifteen and twelve individual finger movements, respectively. Since the volunteers that participated in 

this dissertation experience were healthy, only the results obtained in the healthy subjects were 

considered. Each of their recruited volunteers performed flexion and extension of all the fingers; thumb 

abduction; little and ring fingers flexion; flexion of the ring, middle and index fingers; and finally, the 

flexion of the little, ring, middle and index fingers. The authors tested the influence of the number of 

channels in the accuracy result and the number of movements considered in all experiments. They 

concluded that the error rates increase with the addition of movements to the training and test sets. While 

the addition of movements decreases the accuracy values, the authors proved that using multi-channels 

increases the results. They concluded that the average accuracy sharply increased with the number of 

used channels reaching its maximum at six channels (98%). These findings support the conclusions that 

were previously reached. Considering what has been said, using a single channel of acquisition cannot 

be enough to study such complex movements due to the lower detected forearm surface area. Even 

though only three hand gestures were analysed in this dissertation, their complexity affects the results. 

As the authors proved, adding more complex movements to the set decreased the model's accuracy. 

Furthermore, the authors remove the transition regions of the signal, which might also contribute to 

accurate results. To sum up, it is possible to conclude that using a single channel for sEMG acquisition 

is not enough to produce a commercial prototype. 

Chen et al [200] studied twenty-five hand gestures that include wrist motions, extensions of a 

single finger, extensions motions of multiple fingers. The sensors were placed to cover all the main 

muscles involved in those actions. They recruited four healthy subjects and each one repeated the 

gestures more than one hundred times. The authors reached an average accuracy between 78.80 and 

90.30% when they used a set with finger movements, another with multi-finger flexion and finally a set 

with wrist motions. The difference between this academic study and our experiment is that the authors 
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analysed each subject separately, eliminating subjects' intervariability. Thus, they increase the 

classification score. Despite the good results, the accuracy value dropped when they tried to classify 

hand gestures that involved similar finger activities. Therefore, it is possible to conclude that movements 

like hook grip or lateral grip tend to confuse the classifier leading to bad performances. Once again, it 

was demonstrated that the movements that were used in this master dissertation are complex, which 

explains the lower classification performance.  

Mayor et al [109] suggested a methodology that uses four channels to acquire dexterous gestures 

in amputees. The authors studied thirteen movements, including index flexion, hand close, and tripod 

grip. However, before analysing and implementing the classifier, the authors tested the influence of the 

window size on classification performance. They conclude that the accuracy increases until it reaches a 

maximum for a window of 300 ms. The authors divide the movements into three groups. The first one 

considered all the individual finger movements, the second considered gestures like hand open and hand 

close and the last one grasp gestures. In this work, the authors tested LDA, SVM and KNN. The LDA 

was the worst classifier. The SVM proved to be the best, followed by KNN. Despite the better results, 

SVM took too much time, making the KNN a better algorithm for real-time applications. The accuracy 

obtained by the authors was 99% for finger movements recognition, 97% for hand gesture recognition 

and grasp gestures. The results obtained in this master dissertation are lower than the results obtained 

by Mayor et al. The differences between this dissertation results and the authors are related to the number 

of channels used and how they separate the set of movements per classification. As suggested in the 

literature, the number of channels strongly influences classification performance since it increases the 

accuracy of the classifiers. Besides that, it was proven that dexterous movements, like isolated finger 

movements, are distinguishable between them but not when compared to grasps movements and hand 

gestures. Contrary to what happens in this dissertation, the authors analysed each classifier for each 

volunteer individually. By separating the volunteers, the inter variability on the training and testing 

samples will be eliminated, which explains the higher results obtained by the authors.  

Shi et al [201] constructed a myoelectric prototype system to control a homemade prosthetic hand. 

Thirteen volunteers extended the index finger, the thumb, and four fingers. They placed electrodes on 

the flexor digitorum superficialis and extensor digitorum muscles to record the EMG activity and then 

extracted MAV, ZC, SSC, WL. To classify the performed movements, the authors used KNN. The 

authors studied the influence of using feature selection methods and varying the number of channels. 

The authors concluded that using a higher number of features increased the average accuracy value. 

However, the results did not fulfil the expectations (65 % < 80 %). The results obtained by the authors 

support the results obtained in this dissertation. It was possible to conclude that the average accuracy 

increased when almost all features were in the set. In our specific case, the classification was higher 

when five or ten features were selected. The accuracy values with more features are higher when 

compared to those that only have a part of the initial feature set with both windows. Regarding the 

number of channels, the authors concluded that adding more channels would increase the accuracy 

value. The authors studied the k value as well. They conclude that the accuracy increased to k=9 but 

decreased when k =11. These results are similar to the results obtained during this dissertation work. It 

was proved that for high values of k the average accuracy increases but the accuracy for each class and 

the precision and sensitivity of the classifier decrease.  

Despite the lower results obtained in this dissertation, Kim et al.[202] proved that it is possible to 

recognize hand gestures with an accuracy of over 90%. The only difference between this dissertation 

and the authors' study is that they study wrist movements. These movements are originated by almost 

all the flexor and extensor muscles of the forearm, which means that using a single channel is enough 

to acquire the signal. Another advantage that the authors implemented was using a combination of two 

classifiers. The same way as in this dissertation, the authors implemented a tree classifier. However, 
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there is a difference. Instead of separating the movements, the authors decided to construct each tree 

level based on the percentage that each of the used classifiers can achieve. Using more than one classifier 

or choosing which the best for each situation is, can improve the performance of the systems, which 

improves the overall performance. Another interesting conclusion that can be taken is that in cases where 

the signal is that they test a set of twenty volunteers and they obtained good results as well. But the 

authors adopted the system for each user defining the threshold values of each of them. Thus, the 

variability between the subject does not affect the classification performance. 

Wan et al [203] used a window of 250 ms with an overlap of 125 ms. They extracted four time-

domain features ZC, SSL, WL, AR coefficients and MAV. The authors used eight channels and 

extracted data from eight surface electrodes and five force sensors. They recorded signals from thirteen 

volunteers and divided them into three groups to test which methodology would increase the 

classification performance. Since in this dissertation the use of sEMG electrodes is studied, only the 

results obtained in the experiment where the authors used the sEMG sensor will be analysed. The first 

difference that can be found is related to the movements that were performed in both experiments, the 

authors analysed wrist movements, grasps and finger movements. They concluded that the accuracy was 

lower when they tried to recognize finger movements and a combination of finger movements. They 

obtained the worst results for these movements that were misclassified by others similar to them. The 

main explanation is that these movements are complex and require more than one finger, which 

originates from slight signals. The accuracies vary from 68% to 83%. 

Georgi et al [204] proved that the accuracy drops when the training samples contain all the 

subjects to percentages under 80%. These findings, added to the ones that were concluded during this 

discussion, can explain the lower results that were obtained in this dissertation. Conversely to what 

happened in other experiments, in this dissertation, all the subjects were analysed at once. This little 

difference causes a drop in the accuracy results.  

In another study, Whadi et al [175] recognized three different hand gestures with a subject-

independent trained classifier. The authors obtained a mean accuracy of 96.4%. Although the overall 

accuracy, the results dropped when the authors recognized the first gesture. This dropp is associated 

with the complex activity of several intrinsic muscles that actuate during the performed gesture. These 

results are far from the ones obtained in this dissertation. The main reason is that the authors study wrist 

movements, which are more distinguishable than complex movements like tripod grip and finger 

flexion. These results proved that, for simple movements, the inter variability that exists between the 

subjects is not significant. However, when the aim is to study a larger set of movements where finger 

movements are included, that intervariability influences the classification results [205]. 

From the comparison with the previous works, it is possible to conclude that using a single 

acquisition channel is sufficient to identify when the volunteer is performing a gesture or is at rest. 

Besides that, the results showed that each gesture is distinguishable from the rest position using a single 

channel, even if the gesture is a finger movement or a grasp. However, using a single acquisition system 

is not enough to promote an accurate and robustness control (accuracy < 90%) when the objective is to 

recognize dexterous movements from each other. Therefore, it is essential to investigate what could be 

done to improve these results (Chapter 6).  

Despite these results, the objective of this work was accomplished since all questions made at the 

beginning of chapter 4 were answered. 



 

76 
 

5.2. Design of the Prosthetic Hand 

This study aimed to build a prototype that was safe, ecological, ergonomic, and cheap. Besides 

that, the device should be more functional than the actual UnLimbited model and more independent of 

the movements of the healthy body parts of the volunteer. 

This prosthesis is adapted to be a body-powered prosthesis. Because of that, it was needed to do 

some design modifications and create new systems to transform this body-powered prototype into a 

myoelectric prosthesis. Therefore, it was created a support system to hold the Arduino controller and 

the servomotors.  

Since part of the prosthesis will be electronic, the tension system inherent to the cuff was removed. 

However, the tension wires systems remained connected to the fingers and forearm because they were 

linked to the servomotors, later added to the support. After reading a specific input, the motors will 

rotate and pull the fingers creating the flexion movement. Therefore, it was decided to create a new 

support system on which the prosthesis will be based instead of modifying the cuff part. The constructed 

system consists of a flat platform that will support the servomotors and support the Arduino. The support 

system's design (Figure 5.30) also includes a gutter system that is adaptable to the full size of the 

prosthesis.  

In the previous section, it was possible to conclude that using a single channel acquisition system 

is enough to control a mechanism capable of activating and deactivating the prosthesis. However, the 

same does not happen for the other movements. Due to that fact, this prosthesis will be activated or 

deactivated according to the user signal. Conversely, the spherical grip and the tripod grip will be 

performed by proportional control. Therefore, in the case of the output will be tripod grip and based on 

an addition information given by the user the two motors will rotate with different velocities. In this 

way, the first and second fingers and the thumb can move quickly compared to the third and fourth 

fingers.  

 

Since the prosthesis will perform two grips, it was decided to use only two motors. The motors 

were placed in the lateral side of the support system to give some stability to the support. Additionally, 

the chosen position allows the cables to be directly connected to the prosthesis without having to go 

through holes or be connected to another part of the prosthesis. This design alteration reduces the 

probability of wire tension failure. These two design specifications make the prosthesis much safer for 

the user. In addition, the fact that it does not depend on the user's strength makes the control much more 

accurate, giving more comfort to the user and increasing their safety. 

Figure 5.30: Posterior and Anterior view of the support system. 
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In theory, the human hand weight is on average 0.585% of the total body weight, which means 

that the designed prosthesis needs to have less than 380.25 g (considering a user of 65 Kg) [206]. 

Therefore, the developed prototype should be lighter than that. In this dissertation, we used PLA which 

means that the created prototype weights less than 300 g.  

Due to the low classification rates (< 80%) obtained on online tests, it is expected that the rates 

will be lower than 50% on offline tests. Having classification rates lower than 90% is a risk for the user's 

safety, which decreases the functionality and robustness of the prosthesis. Because of that, the built 

device will not be used as a daily use prosthesis but as a training device in clinical environments. 

However, the condition is that this device's condition is for training the activation prostheses and 

defining voltage-dependent security systems. In this dissertation, the adaptability of the designed system 

to any size does not restrain the training to a specific user, which is an advantage in clinical background.  

Despite the combination of both controls (proportional control and pattern recognition control), 

it was possible to overcome some of the limitations inherent to the original model. The recognition of 

the rest position and the movement is already an improvement since the patient will no longer need to 

make much force or flex the elbow to grab some objects. Furthermore, the prosthesis now has two 

degrees of freedom instead of only one and increased the friction between the tips and the objects.  

This prototype was produced within 24 hours, which proved that the 3D printing has a lower time-

to-market. Besides that, the total material used in this prototype costs less than 50 €, which means that 

this prosthesis will cost less than 100 €.  

Nevertheless, this prototype still has limitations. In this dissertation work, the risks associated 

with the failure of the prototype, such as tension pin failure, finger failure, elastic tension failure, locking 

mechanism failure and electronic failures were not considered. The risk associated with this prosthesis 

can be moderate or higher since it can put at risk the user's safety and can lead to the damaging of the 

object or making the finger useless. Besides that, the resistance of the material was not tested. 
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6. Conclusion and Future Work 

Losing a hand or even part of the upper limb has a relevant influence on a patient's daily life and 

mental health. Furthermore, the increasing incidence of some diseases such as diabetes makes this 

problem more frequent. In addition, it is predicted that by 2050 the number of people who will need to 

use a prosthesis will have duplicated.  

Several engineers created solutions to allow the user to live normally. Therefore, the prosthetic 

industry is growing today in its most significant period of development and growth. There are cosmetic 

prostheses, body-powered prostheses, and electrical prostheses within the different prostheses. The 

cosmetic prosthesis can be static or dynamic. The static ones are made of silicone and are similar to the 

arm. The dynamic cosmetic prostheses have hooks to grab the object. Despite the similarities in terms 

of colour and shape to the human arm, these prostheses do not have degrees of freedom or have just one. 

Therefore, the robustness of each one is limited. Secondly, there are body-powered prostheses. These 

are very competitive when it comes to their time to reach the market. Moreover, some of them are made 

of 3D printable materials, which allow each patient to customise their prototype. Besides that, these are 

lighter and cheaper prostheses.  However, there is a huge dependence on the users' force during the 

flexion of a particular body part. Finally, the electrical prostheses give more natural and intuitive control 

and a high grip force. Additionally, this type of prosthesis is the only one that has multiple degrees of 

freedom and requires less visual attention. However, these prostheses are noisy, heavy and battery 

dependent. 

According to the user, having a lighter, cost-effective, and high functionality level prosthesis is 

essential to daily activities. Because of that, during this dissertation, we tried to develop a hybrid system 

that combines the advantages of the 3D printable body-powered prosthesis and the myoelectric ones. 

Proportional control is widely used in the market since it is fast and requires low training times. 

However, only one or two degrees of freedom are available. To overcome this limitation, the industry 

and academia started to use artificial intelligence algorithms to identify different grip patterns. These 

algorithms introduced more degrees of freedom in prosthetic models, added more complex movements 

such as tripod grip, lateral grip, cylindrical grip, etc. This is possible because the authors used several 

multi-channel acquisitions, which in several scenarios is not possible. Furthermore, with this control it 

is not possible to identify dexterous movements.  

In this dissertation, we explored the option of using a single channel to identify dexterous 

movements using two fast and straightforward classifiers. Besides that, we studied the possibility of 

developing a subject-independent microcontroller. Therefore, we filtered the signal, divided it into time 

segments and extracted features for further classification. 

Filtering the signal is one of the most critical pre-processing signal techniques because it improves 

the overall accuracy and classification performance. In this work, two different filtering processes were 

tested. The first filter method, digital filtering, increased the SNR of the signal but it might remove some 

peak information. Wavelet threshold noise reduction suggested to be the best filtering method since the 

MSE values were lower.  

Although the classification results obtained in this dissertation differ from those obtained in the 

literature, it can be concluded that the main limitations were in the methodology and the number of used 

channels. Nevertheless, this dissertation has overcome the drawbacks found in other articles and studies, 

mainly the use of many channels. Besides that, this dissertation studies dexterous movements in a unique 

dataset, which does not happen in other works. The authors usually separate hand movements and 

prehensions from finger isolated movements.  
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The overall results proved that using a single acquisition channel is sufficient to identify when 

the volunteer is performing a gesture or is at rest. Besides that, the results showed that each gesture is 

distinguishable from the rest position using a single channel, even if the gesture is a finger movement 

or a grasp. Despite the high offline accuracy percentages (> 90%), it is expected that the classification 

performance will decrease in the online tests. Conversely, the results of the second and third levels of 

the cascade classifier proved that single acquisitions are not enough to promote an accurate and 

robustness control (accuracy < 90%), which means that it is not recommended to use a single channel 

in real-time classifications. As it is known, the myoelectric signal is affected by numerous factors since 

it measures the activity of muscle groups that are close to each other. This phenomenon increases when 

the number of different movement types increases, making the estimation of each class's probability 

distributions even more difficult. Thus, it is possible to conclude that a single channel acquisition is not 

enough to produce a robust myoelectric controller. It would be interesting to test different electrode 

positions and increase the number of channels at a maximum of two channels soon. In addition, adding 

some features from the frequency domain could also be interesting. 

Introducing amputated people in the volunteers' group would allow a precise evaluation of the 

real-time implementation of the myoelectric controller. It is known that following a specific 

methodology for amputees seems impossible due to the fact that there are too many different 

amputations and surgical procedures. Furthermore, some amputees might not have intact nervous 

structures. Therefore, it is fundamental to test this methodology in a group of amputees or children with 

congenital anomalies. As it was suggested in this work, it will not be easy to follow a specific 

methodology that fits every amputee, especially if the signal is recorded with a single acquisition system. 

So, the most probable scenario will be creating a personalised prosthetic device that fits each amputee 

and follows a specific signal processing methodology, which means that it is not possible to develop an 

independent subject controller as the prosthetic industry wanted. 

Considering the obtained results, we printed a lighter and cheaper prototype than those available 

on the market. Since it was impossible to develop a microcontroller with the single use of pattern 

recognition control, we decided to use both types of control.  

As with all studies and experiments, this dissertation has a few limitations that should be 

considered. The first limitation of this dissertation is that the studied volunteers are healthy, which is not 

enough to validate the development of a commercial prototype designed for amputees. The second one 

is that this study does not consider the movement of the arm in space and the load that the prosthesis 

will have to support. The third one is related to the impossibility of studying a few essential parameters 

for users as well as testing the mechanical success of the developed prosthesis. For example, covering 

the interior of the prosthesis with a breathable material would stabilise the reading of sEMG, reducing 

the amount of noisy external sources. Furthermore, it is also essential to study and improve the flexibility 

of the fingers, adapting them to the natural movement and degrees inherent to each joint. 

Despite all the implemented methods, it is always space for improvement. Because of that, the 

following are suggested: 

Improvement of the functionality of the myoelectric controller: this can be done through the 

reduction of the misclassified classes. To do that, it would be interesting to add one more acquisition 

channel to test how the accuracy of the classifier would increase. Furthermore, introducing wrist and 

arm movements can give robustness since in previous studies, the classification of such moments 

resulted in an average accuracy higher than 90%. Even though the index finger plays different activation 

roles in all grasp movements at the neuronal level, the signal recorded on the surface of the forearm skin 

is similar. Because of that, it would be crucial to place the electrodes in extensor muscles, or another 

group of muscles to increase the signal detection and consequently the classification performance. 
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Besides that, it will be interesting to use a motion capture glove and force sensors to identify individual 

finger movements as well as amplitude thresholds, which can be used as boundary limits to define 

security amplitude lock systems. Finally, testing other normalisation methods like peak to peak might 

increase the classification performance.   

Improvement of the robustness of the prototype: in the future, it is important to test the 

microcontroller as well as the material used in the prototype. The robustness of a prototype is a measure 

of its security and functionality. Therefore, it will be interesting to test the flexibility and resistance of 

the material to compression and tension forces. In addition, testing the electronic components and the 

efficiency of the microcontroller would also increase the robustness of the prototype through target tests 

and majority voting. Besides that, testing more materials, mainly flexible, resistant and waterproof 

materials, would increase the functionality of the prosthesis and at the same time solve some of the 

limitations pointed out by users.  Finally, testing the number of objects that the prosthesis can grab and 

how long it lasts prehension would also be essential to improve the robustness of the prosthesis. 

Therefore, it is important to test the prototype with box and block tests, target achievement control tests 

and Fit’s Law tests. Besides these tests, it is fundamental to evaluate the motor's battery duration and 

their performance during daily use. A set of tension and compression forces should be applied to test 

the resistance of the prosthesis material. After that, the results should be produced and analysed. 

Moreover, the prototype should be tested underwater, under specific temperature conditions and in noisy 

environments.  

Enhancement of the cosmetic appearance: The prototype produced in this dissertation is blue 

and has an artificial appearance. These prostheses are produced specially for children, which means that 

their appearance is very similar to a superhero hand. But limiting these types of prototypes to children 

is not a profitable solution. Therefore, the ideal would be to scan the healthy arm of the user and readapt 

the scan to a tension mechanism controlled by a microcontroller. After that, the next step would be 

redesigning some parts to promote an easy assembly and, finally, printing the parts with new and more 

sophisticated materials like FilaFlex®. Using this material would be a bonus point for users since it is 

available in skin colours. Besides that, this material is flexible, which could promote a more natural 

movement of the interphalangeal joints.  

Despite the limitations and the overall results, this dissertation clarifies several questions and 

limits found in previous academic works and current commercial solutions. Besides that, in this work 

different methodologies were explored, which gives a great contribute to scientific community. This 

dissertation will contribute to advances in the prosthetic industry and in the implementation of new ideas 

and solutions to develop prosthetic solutions and to improve the state of the art as well.  
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A. Materials used during data acquisition 

 
Table A.1: Demographic table of the recruited volunteers 

Participant Number Age Dominant Arm 
Presence of motor issues or 

diseases? 

Regular practice of 

physical exercise 
Gender 

1 22 Right No No F 

2 22 Right No Yes F 

3 18 Right No No F 

4 22 Right No No F 

5 22 Right No Yes M 

6 18 Right No No M 

7 22 Right No No M 

8 20 Left No Yes M 

9 20 Right No Yes M 

10 22 Right No No F 

11 19 Right No No M 

12 19 Right No No M 

13 20 Right No No F 

14 20 Right No Yes M 

15 22 Right No No M 

16 18 Right No No F 

17 21 Left No No M 

18 24 Left No Yes M 

19 19 Right No No M 

20 18 Right No No M 

21 18 Right No No F 

22 21 Right No No F 

23 20 Right No No M 

24 22 Right No No F 

25 20 Right No Yes F 

26 19 Left No Yes F 

27 22 Right No Yes M 

28 22 Right No No M 

29 22 Right No No F 

30 24 Right No No M 

31 23 Right No Yes F 

32 22 Right No No F 

33 18 Right No No M 

34 20 Left No No F 

35 20 Right No No F 

36 22 Right No No F 

37 21 Right No Yes F 

38 20 Right No Yes F 

39 19 Right No No M 



 

92 
 

 

Consent form: 

PROJECTO: Development and Optimization of a Low-Cost Upper Limb Prosthesis  

INVESTIGADOR RESPONSÁVEL: Prof. Doutor Nuno Matela e Aluna Ema Lopes 

 

Agradecemos o seu interesse e colaboração neste estudo. 

Por favor, preencha o formulário que se segue. Receberá uma cópia quando sair. 

 

1. Confirmo que li e compreendi o folheto informativo associado ao projeto. 

 

  

2. Foi-me dada a oportunidade de ler e considerar a informação apresentada, e fazer 

perguntas, as quais foram respondidas de forma satisfatória. 

 

  

3. Compreendo que a minha participação é voluntária e que sou livre de desistir do estudo 

em qualquer altura, sem ter que dar quaisquer explicações e sem quaisquer 

consequências. 

 

  

4. Compreendo que os dados recolhidos durante o estudo possam ser do conhecimento 

dos membros da equipa de investigação, sempre que necessário para o estudo. 

Autorizo que os membros da equipa tenham acesso a esses dados. 

 

  

5. Compreendo que, caso esta investigação venha a ser publicada, todos os dados serão 

mantidos anónimos e nenhuma informação será identificável como sendo minha.  

 

  

6. Gostaria que me fosse enviado o relatório final do estudo. 

 

O meu endereço de e-mail é: ______________________________________ 

 

  

7. Gostaria de ser contactado para o endereço acima acerca de sessões ou estudos 

adicionais relacionados com este estudo.  

 

  

8. Declaro que não comuniquei nenhuma razão potencial de qualquer natureza que 

constitua um eventual facto de risco para a minha saúde ou integridade física. 

 

  

9. Declaro que participo neste estudo sem qualquer remuneração ou contrapartida, para 

além do ressarcimento das despesas em que tiver incorrido.  

 

  

10. Declaro que tomo a minha decisão de forma inteiramente livre. 

 

 

11. Concordo em participar neste estudo.  

 

Nome do Participante    Assinatura   Data 

_________________________________________________________________  ___/____/____ 

 

Sou da opinião que o participante compreendeu os aspetos relevantes da informação fornecida e está 

apto a tomar uma decisão informada. 

 

Assinatura do Investigador Responsável      Data 

_________________________________________________________________ 

 ___/____/____ 

 

 

40 18 Right No No F 

41 18 Right No No F 

42 20 Right No Yes F 

43 18 Right No Yes M 

44 22 Right No No F 

45 20 Right No Yes F 
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Figure A.1: BIOPAC acquisition system. 

 

 

Figure A.2: Illustration of the acquired movement: Spherical Grip. 

 

Figure A.3: Illustration of the acquired movements: a) Tripod Grip and b) Finger Flexion. 

 

 

 

 

  

a) 

b) 
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B. Power Spectrum of the signals 

 

 

 

 

 

 

 

 

 

Figure B.1: Power spectrum of the signal for volunteer number 4. 

Figure B.2: Pwelch plot of the baseline noise (red line) and the interesting part of the signal (blue line) for volunteer 

number 4. 
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Figure B.3: Power spectrum of the signal for volunteer number 8. 

Figure B.4: Pwelch plot of the baseline noise (red line) and the interesting part of the signal (blue line) for volunteer 

number 8. 
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Figure B.5: Power spectrum of the signal for volunteer number 9. 

Figure B.6: Pwelch plot of the baseline noise (red line) and the interesting part of the signal (blue line) for volunteer 

number 9.  
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Figure B.7: Power spectrum of the signal for volunteer number 29. 

Figure B.8: Pwelch plot of the baseline noise (red line) and the interesting part of the signal (blue line) for volunteer 

number 29.  
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Figure B.9: Power spectrum of the signal for volunteer number 41. 

Figure B.10: Pwelch plot of the baseline noise (red line) and the interesting part of the signal (blue line) for volunteer number 

41.  
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Figure B.11: Poles of the fourth-order Butterworth Bandpass for a frequency band between 20-150 Hz. 

Figure B.12: Impulsive response of the fourth-order Butterworth Bandpass for a frequency band between 20-

150 Hz. 
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C. Wavelet transform illustration 

 

Figure C.1: Illustration of the Wavelet Transform Noise Reduction method. A- represents the application of discrete 

wavelet transform. First, the signal is passed through high and low pass filters (H and L, respectively). After that, in 

B, the detail coefficients (d[n]) are compared to a threshold. After that, the signal is reconstructed with the 

approximation coefficients and modified detail coefficients (extracted from: [208]).  
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D. Materials used in the design of the prosthetic model  

 

 

 

 

 

 

 

 

Figure D.1: Necessary measures for Assembly. A: Bicep perimeter; B: Forearm length; C: Hand Length . 

Figure D.2: Jig piece.  

Figure D.3: Elastic Tension Mechanism of the fingers.  
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Table D.2: Printing parameters. 

Printer Parameters Value 

Quality 

Layer height 0.20 (mm) 

Vertical Shells perimeter 3 

Horizontal Shells – Solid Layer 3 

Horizontal Shells – Bottom 3 

Fill density (%) Honeycomb 

Printing temperature 220 (°C) 

Bed temperature 60 (°C) 

Support 

Support Type On build plate only 

 

 

  

Figure D.4: Tension Mechanism of the fingers (its linked on the 

forearm and cuff. 
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E. Digital Filtering Results 

 

 

 

 

 

 

 

 

 

 

 

Figure E.1: MSE values of the filtered signal when six order different bandpass Butterworth filters were applied – 

Volunteer number 1.  

Figure E.2: SNR values of the filtered signal when the FIR filters were applied – Volunteer number 1. 
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Figure E.3: MSE values of the filtered signal when six order different Bandpass Butterworth filters were applied – Volunteer 

number 1.  

Figure E.4: MSE values of the filtered signal when six order different Bandpass Butterworth filters were applied – Volunteer 

number 4.  
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Figure E.5: SNR values of the filtered signal when the FIR filters were applied – Volunteer number 4.  

Figure E.6: MSE values of the filtered signal when the FIR filters were applied – Volunteer number 4.  
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Figure E.8: SNR values of the filtered signal when the FIR filters were applied – Volunteer number 8. 

Figure E.9: MSE values of the filtered signal when the FIR filters were applied – Volunteer number 8 

Figure E.9: MSE values of the filtered signal when the FIR filters were applied – Volunteer number 8. 
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Figure E.10: MSE values of the filtered signal when six order different Bandpass Butterworth filters were applied – Volunteer 

number 9. 

Figure E.11: SNR values of the filtered signal when the FIR filters were applied – Volunteer number 9.  
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Figure E.12: MSE values of the filtered signal when the FIR filters were applied – Volunteer number 9. 

Figure E.13: MSE values of the filtered signal when six order different Bandpass Butterworth filters were applied – Volunteer 

number 29. 
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Figure E.14: MSE values of the filtered signal when the FIR filters were applied – Volunteer number 29. 

. 

Figure E.15: MSE values of the filtered signal when six order different Bandpass Butterworth filters were applied – 

Volunteer number 41  
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Figure E.16: SNR values of the filtered signal when the FIR filters were applied – Volunteer number 41.  

Figure E.17: MSE values of the filtered signal when the FIR filters were applied – Volunteer number 41.  
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Figure E.18: SNR values of the filtered signal when six order different Bandpass Butterworth filters were applied – 

Volunteer number 22.  

Figure E.19: MSE values of the filtered signal when six order different Bandpass Butterworth filters were applied – 

Volunteer number 22. 
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Figure E.20: SNR values of the filtered signal when the FIR filters were applied – Volunteer number 22.  

Figure E.21: SNR values of the filtered signal when the FIR filters were applied – Volunteer number 29.  
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Figure E.22: MSE values of the filtered signal when the FIR filters were applied – Volunteer number 22.  
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F. Wavelet transform noise reduction method results 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure F.1: SNR obtained for the third decomposition level when several wavelet families and thresholds were 

tested – volunteer number 1.  

Figure F.2: MSE obtained for the third decomposition level when several wavelet families and thresholds were 

tested – volunteer number 1.  
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Figure F.3: SNR obtained for the fourth decomposition level when several wavelet families and thresholds were 

tested – volunteer number 1. 

Figure F.4: MSE obtained for the fourth decomposition level when several wavelet families and thresholds 

were tested – volunteer number 1.  
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Figure F.5: MSE obtained for the fifth decomposition level when several wavelet families and thresholds were 

tested – volunteer number 1. 

Figure F.6: SNR obtained for the third decomposition level when several wavelet families and thresholds were 

tested – volunteer number 4. 
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Figure F.7: MSE obtained for the third decomposition level when several wavelet families and thresholds were 

tested – volunteer number 4. 

Figure F.8: SNR obtained for the fourth decomposition level when several wavelet families and thresholds were 

tested – volunteer number 4. 
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Figure F.9: MSE obtained for the fourth decomposition level when several wavelet families and thresholds 

were tested – volunteer number 4.  

Figure F.10: MSE obtained for the fifth decomposition level when several wavelet families and thresholds were 

tested – volunteer number 4. 
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Figure F.11: SNR obtained for the third decomposition level when several wavelet families and thresholds were 

tested – volunteer number 8. 

Figure F.12: MSE obtained for the third decomposition level when several wavelet families and thresholds 

were tested – volunteer number 8. 



 

120 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure F.13: SNR obtained for the fourth decomposition level when several wavelet families and thresholds 

were tested – volunteer number 8.  

Figure F.14: MSE obtained for the fourth decomposition level when several wavelet families and thresholds 

were tested – volunteer number 8. 
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Figure F.15: MSE obtained for the fifth decomposition level when several wavelet families and thresholds were 

tested – volunteer number 8. 

Figure F.16: SNR obtained for the third decomposition level when several wavelet families and thresholds were 

tested – volunteer number 9. 
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Figure F.17: MSE obtained for the third decomposition level when several wavelet families and thresholds 

were tested – volunteer number 9. 

Figure F.18: SNR obtained for the fourth decomposition level when several wavelet families and thresholds 

were tested – volunteer number 9. 
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Figure F.19: MSE obtained for the fourth decomposition level when several wavelet families and thresholds 

were tested – volunteer number 9.  

Figure F.20: MSE obtained for the fifth decomposition level when several wavelet families and thresholds were 

tested – volunteer number 9. 
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Figure F.21: SNR obtained for the third decomposition level when several wavelet families and thresholds were 

tested – volunteer number 29.  

Figure F.22: MSE obtained for the third decomposition level when several wavelet families and thresholds 

were tested – volunteer number 29.  
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Figure F. 23: SNR obtained for the fourth decomposition level when several wavelet families and thresholds 

were tested – volunteer number 29. 

Figure F.24: MSE obtained for the fourth decomposition level when several wavelet families and thresholds 

were tested – volunteer number 29.  
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Figure F.25: MSE obtained for the fifth decomposition level when several wavelet families and thresholds were 

tested – volunteer number 29. 

Figure F.26: SNR obtained for the third decomposition level when several wavelet families and thresholds were 

tested – volunteer number 41. 
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Figure F.27: MSE obtained for the third decomposition level when several wavelet families and thresholds 

were tested – volunteer number 41.  

Figure F.28: SNR obtained for the fourth decomposition level when several wavelet families and thresholds 

were tested – volunteer number 41. 
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Figure F.30: MSE obtained for the fifth decomposition level when several wavelet families and thresholds were 

tested – volunteer number 41. 

Figure F.29: MSE obtained for the fourth decomposition level when several wavelet families and thresholds 

were tested – volunteer number 41.  
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Figure F.31: SNR obtained for the fourth decomposition level when several wavelet families and thresholds 

were tested – volunteer number 22. 

Figure F.32:  MSE obtained for the fifth decomposition level when several wavelet families and thresholds 

were tested – volunteer number 22. 
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Figure F.33: SNR obtained for the fourth decomposition level when several wavelet families and thresholds 

were tested – volunteer number 22. 

Figure F.34: MSE obtained for the fourth decomposition level when several wavelet families and thresholds 

were tested – volunteer number 22. 
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Figure F.35: MSE obtained for the fourth decomposition level when several wavelet families and thresholds 

were tested – volunteer number 22. 

Figure F.36: MSE obtained for the fifth decomposition level when several wavelet families and thresholds 

were tested – volunteer number 22. 
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G. 10 - fold cross validation results  

Table G.1: Classification results for a window length of 250 ms when the 10-fold cross validation method was applied. The 

results are distributed by classification levels. 

Evaluation 

Metrics (%) 
KNN (k=2) KNN (k=5) KNN (k=7) KNN (k=9) KNN (k=11) KNN (k=15) LDA 

First Classification Level – Movements vs Rest 

Accuracy 92.54 93.61 93.77 93.91 93.98 94.10 94.19 

Recall 92.54 93.61 93.77 93.91 93.98 94.10 94.19 

Precision 92.47 93.59 93.74 93.89 93.96 94.08 94.15 

Second Classification Level – Spherical Grip vs Tripod Grip vs Finger Flexion 

Accuracy 52.26 46.34 45.76 43.59 44.64 43.78 45.19 

Recall 52.26 46.34 45.76 43.59 44.64 43.78 45.19 

Precision 51.52 46.35 45.82 38.72 44.69 43.86 44.76 

Second Classification Level – Grasp Movements vs Finger Flexion 

Accuracy 64.06 63.33 62.25 64.06 62.55 62.32 64.06 

Recall 59.23 56.27 58.16 58.02 50.21 59.29 49.09 

Precision 64.06 63.33 62.25 64.06 62.55 62.32 64.06 

Third Classification Level – Tripod Grip vs Spherical Grip 

Accuracy 67.13 65.10 64.15 64.16 63.77 63.57 64.77 

Recall 56.14 58.64 58.86 59.43 59.18 59.14 62.28 

Precision 67.13 65.10 64.15 64.16 63.77 63.57 64.77 

 

 
Table G.2: Classification results for a window length of 100 ms when the 10-fold cross validation method was applied. The 

results are distributed by classification levels.  

Evaluation metrics 

(%) 

KNN (K=2) KNN 

(k=5) 

KNN (k=7) KNN 

(k=9) 

KNN 

(k=11) 

KNN 

(k=15) 

LDA 

First Classification Level (Movements Vs Rest Position) 

Accuracy 89.26 91.13 91.29 91.49 91.58 91.67 91.81 

Recall 89.22 91.12 91.28 91.48 91.57 91.66 91.80 

Precision 89.26 91.13 91.29 91.49 91.58 91.67 91.82 

Second Classification Level (Tripod Grip Vs Spherical Grip vs Finger Flexion) 

Accuracy 43.35 42.58 43.03 47.80 44.02 45.09 47.56 

Recall 43.36 42.58 43.04 47.80 44.52 45.09 47.56 

Precision 37.34 38.27 38.88 37.45 38.89 39.52 40.60 
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Second Classification Level (Grasp Movements vs Finger Flexion) 

Accuracy 67.76 64.50 65.87 66.73 67.51 62.32 69.87 

Recall 67.76 64.50 69.55 66.73 67.51 62.32 69.87 

Precision 49.38 50.64 51.39 49.24 50.73 49.87 42.90 

Third Classification Level (Spherical Grip and Tripod Grip) 

Accuracy 61.70 61.38 62.09 62.97 63.49 64.18 66.64 

Recall 61.70 61.38 62.09 62.97 63.49 64.18 66.64 

Precision 54.53 58.46 58.81 56.31 59.69 56.58 58.93 

 

 

 

 

Figure G.1: Accuracy, precision and recall average obtained values for a window of 100 ms when the objective 

was to study the different sets – Setting 1: 96.27 %, Setting 2: 87.69 %; Setting 3: 87.85 %; Setting 4: 60.40 %; 

Setting 5: 65.56% and Setting 6: 50.71 %. 
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Figure G.2: Average accuracy obtained results for the three different filter methods for feature selection – 

Movement vs Rest (KNN – k=5). 

Figure G.3: Kappa coefficient obtained results for the three different filter methods for feature selection – All 

movements (KNN – k=5). 
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Figure G.4: Average accuracy obtained results for the three different filter methods for feature selection – All 

movements (KNN – k=5). 

Figure G.5: Average accuracy obtained results for the three different filter methods for feature selection – Grasp 

Movements vs Index Finger Flexion (KNN – k=5).  
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Figure G.6: Kappa coefficient obtained results for the three different filter methods for feature selection – Grasp 

Movements vs Index Finger Flexion (KNN – k=5).  

Figure G.7: Average accuracy obtained results for the three different filter methods for feature selection – 

Spherical Grip vs Tripod Grip (KNN – k=5).  
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Figure G.8: Kappa coefficient obtained results for the three different filter methods for feature selection – 

Movement Vs Rest (KNN – k=5). 
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Figure G.9:   

Figure G.9: Confusion Matrix for the first classification level when the 10-fold cross-

validation method was applied for a window of 250 ms. Represents the number of instances 

that were classified correctly for both classes (15142 for rest position and 13502 for 

movement class) and the misclassified ones (687 for rest position and 1108 for movement 

class) - KNN (k=15).  

Figure G.10:  Results obtained in the first level of the tree classifier for a window of 100 ms: Movements vs 

Rest Position. The minimum accuracy was reached for KNN=2 (89.26 %) and the maximum for LDA (91.81 

%). 
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Figure G.11: Confusion Matrix for the first level of the tree classifier when the 10-fold cross 

validation method was applied for a window of 100 ms. Represents the number of instances 

that were classified correctly for both classes (22566 for rest position and 22049 for 

movement class) and the misclassified ones (1213 for rest position and 2763 for movement 

class) – LDA.  

Figure G.12: Confusion Matrix for the first level of the tree classifier when the 10-fold cross-

validation method was applied for a window of 100 ms. Represents the number of instances 

that were classified correctly for both classes (21957 for rest position and 22589 for 

movement class) and the misclassified ones (1822 for rest position and 2223 for movement 

class) - KNN (k=15).  



 

140 
 

 

 

 

 

 

 

Figure G.13: Confusion Matrix for the all the movements of the second level when the 10-fold 

cross-validation method was applied for a window of 250 ms. Represents the number of instances 

that were classified correctly for both classes (3310 for spherical grip, 3438 for tripod grip and 

3367 for Index Finger Flexion) and the misclassified ones (3325 for spherical grip, 4634 for 

tripod grip and 5027 for Index Finger Flexion) - KNN (k=15). 

Figure G.15: Results obtained when all the movements were classified for a window of 100 ms: Spherical Grip vs 

Tripod Grip vs Finger Flexion. The minimum accuracy was reached for KNN=2 (43.03 %) and the maximum for 

LDA (47.56 %).  
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Figure G.14: Confusion Matrix for the all the movements of the second level when the 10-

fold cross-validation method was applied for a window of 250 ms. Represents the number 

of instances that were classified correctly for both classes (3403 for spherical grip, 2584 

for tripod grip and 4454 for Index Finger Flexion) and the misclassified ones (3232 for 

spherical grip, 5488 for tripod grip and 3940 for Index Finger Flexion) – LDA.  

Figure G.16: Confusion Matrix for the second level of the tree classifier when the 10-fold cross-

validation method was applied for a window of 100 ms. Represents the number of instances that 

were classified correctly for the three classes (7620 for spherical grip, 1771 for tripod grip and 

1797 for finger flexion) and the misclassified ones (2814 for spherical grip, 5203 for tripod grip 

and 5607 for finger flexion) - KNN (k=15).  
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Figure G.17: Confusion Matrix for the second classification level when the 10-fold cross-

validation method was applied for a window of 100 ms. Represents the number of instances 

that were classified correctly for the three classes (8342 for spherical grip, 1466 for tripod 

grip and 1993 for finger flexion) and the misclassified ones (2092 for spherical grip, 5508 

for tripod grip and 3322 for finger flexion) – LDA.  

Figure G.18: Confusion Matrix for the second level when the 10-fold cross validation  

method was applied for a window of 250 ms. Represents the number of instances that were 

classified correctly for the two classes (13671 for grasp movements and 1129 for finger 

flexion) and the misclassified ones (1036 for grasp movements and 7265 for finger flexion).- 

LDA. 
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Figure G.19: Confusion Matrix for the second level when 10-fold cross validation method 

was applied for a window of 250 ms. Represents the number of instances that were classified 

correctly for the two classes (11676 for grasp movements and 2758 for finger flexion) and the 

misclassified ones (3031 for grasp movements and 5636 for finger flexion) - KNN (k=9).  

Figure G.20: Results obtained in the second level of the classifier for a window of 100 ms: Grasp Movements 

vs Finger Flexion. The minimum accuracy was reached for KNN=15 (62.32 %) and the maximum for LDA 

(69.87 %).  
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Figure G.21: Confusion Matrix for the second level when the 10-fold cross validation 

method was applied for a window of 100 ms. Represents the number of instances that 

were classified correctly for the two classes (17190 for grasp movements and 147 for 

finger flexion) and the misclassified ones (218 for grasp movements and 7257 for finger 

flexion) – LDA. 

Figure G.22: Confusion Matrix for the second level when the 10-fold cross validation 

method for a window of 100 ms. Represents the number of instances that were classified 

correctly for the two classes (15716 for grasp movements and 1099 for finger flexion) and 

the misclassified ones (1692 for grasp movements and 6305 for finger flexion) - KNN (k=2).  



 

145 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure G.23: Confusion Matrix for third level when the 10-fold cross validation method 

was applied for a window of 250 ms. Represents the number of instances that were 

classified correctly for the two classes (3944 for spherical grip and 5582 for tripod grip) 

and the misclassified ones (2691 for spherical grip and 2490 for tripod grip) – LDA. 

Figure G.24: Results obtained in the third level of the classifier for a window of 100 ms: Tripod grip vs spherical 

grip. The minimum accuracy was reached for KNN=5 (61.38 %) and the maximum for LDA (66.64 %).  
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Figure G.25: Confusion Matrix for the third level when the 10-fold cross validation method 

was applied for a window of 100 ms. Represents the number of instances that were classified 

correctly for the two classes (8335 for spherical grip and 2838 for tripod grip) and the 

misclassified ones (2099 for spherical grip and 4136 for tripod grip) - KNN (k=15).  

Figure G.26: Confusion Matrix for the third level when the 10-fold cross validation 

method for a window of 100 ms. Represents the number of instances that were 

classified correctly for the two classes (8774 for spherical grip and 2831 for tripod 

grip) and the misclassified ones (1660 for spherical grip and 4143 for tripod grip) - 

LDA. 
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H. Split validation method results  

Table H.1: Classification results for a window length of 250 ms when the split validation method was applied. The results are 

distributed by classification levels. 

Evaluation 

Metrics (%) 
KNN (k=2) KNN (k=5) KNN (k=7) KNN (k=9) 

KNN 

(k=11) 

KNN 

(k=15) 
LDA 

Window of 250 ms 

First Classification Level – Movement vs Rest 

Accuracy 91.53 92.63 92.78 93.19 93.03 93.07 93.47 

Recall 91.53 92.63 92.78 93.19 93.03 93.07 93.47 

Precision 91.48 92.56 92.70 93.13 92.97 93.00 93.35 

Second Classification Level – Spherical Grip vs Tripod Grip vs Finger Flexion 

Accuracy 72.47 59.57 57.68 54.29 52.92 50.89 44.83 

Recall 72.47 59.57 57.68 54.29 52.92 50.89 44.83 

Precision 78.19 60.19 57.78 54.42 53.11 50.96 44.95 

Second Classification Level – Grasp Movements vs Finger Flexion 

Accuracy 80.45 73.00 71.35 69.01 68.30 67.16 63.61 

Recall 80.45 73.00 71.35 69.01 68.30 67.16 63.61 

Precision 88.24 71.20 69.35 66.60 68.07 64.37 63.30 

Third Classification Level – Spherical Grip vs Tripod Grip 

Accuracy 81.09 73.62 70.80 69.28 68.30 66.65 63.61 

Recall 81.09 73.62 70.80 69.28 68.30 66.65 63.61 

Precision 85.41 73.49 70.62 69.06 68.07 66.43 63.30 

 

 
Table H.2: Classification results for a window length of 100 ms when the split validation method was applied. The results are 

distributed by classification levels. 

Evaluation Metrics 

(%) 

KNN 

(K=2) 

KNN 

(k=5) 

KNN 

(k=7) 

KNN 

(k=9) 

KNN 

(k=11) 

KNN 

(k=15) 
LDA 

Window of 100 ms 

First Classification Level – Movement vs Rest  

Accuracy 88.34 91.08 91.33 91.52 91.46 91.34 91.23 

Recall 88.34 91.08 91.33 91.52 91.46 91.341 91.23 

Precision 88.8 91.05 91.29 91.49 91.43 91.32 91.36 

Second Classification Level – Spherical Grip vs Tripod Grip vs Finger Flexion 

Accuracy 46.08 43.5 44.08 44.66 44.52 46.19 48.84 



 

148 
 

Recall 46.08 43.5 44.08 44.66 44.52 46.19 48.84 

Precision 39.86 38.53 39.52 39.8 39.26 41.18 44.64 

Second Classification Level – Grasp Movements vs Finger Flexion 

Accuracy 76.36 67.60 69.55 70.47 71.83 72.73 76.36 

Recall 76.36 67.60 69.55 70.47 71.83 72.73 76.36 

Precision 55.29 52.51 53.03 53.40 54.55 54.53 55.29 

Third Classification Level – Spherical Grip vs Tripod Grip 

Accuracy 61.91 60.44 61.71 62.46 62.73 64.07 67.13 

Recall 61.91 60.44 61.71 62.46 62.73 64.07 67.13 

Precision 58.08 57.94 59.23 59.87 60.13 61.47 64.97 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure H.1: Confusion Matrix for the first classification level when the split validation methdo was 

applied to data for a window of 250 ms. Represents the number of instances that were classified 

correctly for both classes (3836 for rest position and 4652 for movement class) and the misclassified 

ones (305 for rest position and 315 for movement class) -  KNN (k=9). 
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Figure H.2: Results obtained in the first classification level for a window of 100 ms: Movements vs Rest 

Position. The minimum accuracy was reached for KNN=2 (88.34 %) and the maximum for KNN with k=9 

(91.52 %).  

Figure H.3: Confusion Matrix for the first classification level when the split validation method was 

applied for a window of 100 ms. Represents the number of instances that were classified correctly for 

both classes (4777 for rest position and 5138 for movement class) and the misclassified ones (360 for 

rest position and 558 for movement class) - KNN (k=9).  
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Figure H.4: Confusion Matrix for the first classification level when the split validation 

method was applied for a window of 100 ms. Represents the number of instances that were 

classified correctly for both classes (4893 for rest position and 4990 for movement class) and 

the misclassified ones (244 for rest position and 706 for movement class) – LDA.  

Figure H.5: Confusion Matrix for the second classification level (Tripod Grip vs Spherical Grip 

vs Finger Flexion) when the split validation method was applied for a window of 250 ms. 

Represents the number of instances that were classified correctly for both classes (818 for 

spherical grip, 855 for tripod grip and 855 for Index Finger Flexion) and the misclassified ones 

(632 for spherical grip, 853 for tripod grip and 954 for Index Finger Flexion) - KNN (k=15).   
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Figure H.6: Confusion Matrix for the all the movements of the second classification level when 

the split validation was applied for a window of 250 ms. Represents the number of instances 

that were classified correctly for both classes (742 for spherical grip, 545 for tripod grip and 

974 for Index Finger Flexion) and the misclassified ones (632 for spherical grip, 1163 for 

tripod grip and 835 for Index Finger Flexion) – LDA.  

Figure H.7: Results obtained when all the movements were classified for a window of 100 ms: Spherical Grip vs Tripod 

Grip vs Finger Flexion. The minimum accuracy was reached for KNN=5 (43.50 %) and the maximum for LDA (48.84 

%).  
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Figure H.9: Confusion Matrix for the second classification level when the  split validation was 

applied for a window of 100 ms. Represents the number of instances that were classified correctly 

for the three classes (1970 for spherical grip, 332 for tripod grip and 480 for finger flexion) and 

the misclassified ones (735 for spherical grip, 1369 for tripod grip and 810 for finger flexion) -  

LDA.  

Figure H.8: Confusion Matrix for the second classification level when the split validation method was 

applied for a window of 100 ms. Represents the number of instances that were classified correctly for 

the three classes (1796 for spherical grip, 469 for tripod grip and 366 for finger flexion) and the 

misclassified ones (909 for spherical grip, 1232 for tripod grip and 996 for finger flexion) - KNN 

(k=15). 
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Figure H.10: Confusion Matrix for the second level when the split validation method was 

applied for a window of 250 ms. Represents the number of instances that were classified 

correctly for the two classes (2803 for grasp movements and 533 for finger flexion) and 

the misclassified ones (355 for grasp movements and 1276 for finger flexion) - KNN 

(k=15).  

Figure H.11: Confusion Matrix for the second level when the split validation method was 

applied for a window of 250 ms. Represents the number of instances that were classified 

correctly for the two classes (2954 for grasp movements and 260 for finger flexion) and the 

misclassified ones (204 for grasp movements and 1549 for finger flexion) -LDA.   
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Figure H.12: Results obtained in the second level of the classifier for a window of 100 ms: Grasp Movements vs Finger 

Flexion. The minimum accuracy was reached for KNN=5 (67.60 %) and the maximum for LDA and KNN (k=2) (76.36 %).. 
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Figure H.13: Confusion Matrix for the second level when the split validation method for a 

window of 100 ms. Represents the number of instances that were classified correctly for the two 

classes (3927 for grasp movements and 192 for finger flexion) and the misclassified ones (479 

for grasp movements and 1098 for finger flexion) - KNN (k=2).   

Figure H.14: Confusion Matrix for the second level when the split validation method was 

applied to data for a window of 100 ms. Represents the number of instances that were 

classified correctly for the two classes (4296 for grasp movements and 54 for finger flexion) 

and the misclassified ones (110 for grasp movements and 1236 for finger flexion) – LDA. 
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Figure H.15: Confusion Matrix for the third level when the split validation method was 

applied for a window of 250 ms. Represents the number of instances that were classified 

correctly for the two classes (826 for spherical grip and 1183 for tripod grip) and the 

misclassified ones (6241 for grasp movements and 525 for finger flexion) – LDA. 

  

Figure H.16: Results obtained in the third level of the classifier for a window of 100 ms: Tripod grip vs spherical 

grip. The minimum accuracy was reached for KNN=5 (60.44 %) and the maximum for LDA (67.13 %).  
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Figure H.17: Confusion Matrix for the third level when the split validation method was 

applied for a window of 100 ms. Represents the number of instances that were classified 

correctly for the two classes (2054 for spherical grip and 769 for tripod grip) and the 

misclassified ones (651 for spherical grip and 932 for tripod grip) - KNN (k=15).  

Figure H.18: Confusion Matrix for the third level when the split validation method was 

applied for a window of 100 ms. Represents the number of instances that were classified 

correctly for the two classes (2166 for spherical grip and 792 for tripod grip) and the 

misclassified ones (539 for spherical grip and 909 for tripod grip) – LDA.  


